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Abstract. This paper addresses the security of symmetric cryptosys-
tems in the blockwise adversarial model. At Crypto 2002, Joux, Mar-
tinet and Valette have proposed a new kind of attackers against several
symmetric encryption schemes. In this paper, we first show a generic
technique to thwart blockwise adversaries for a specific class of encryp-
tion schemes. It consists in delaying the output of the ciphertext block.
Then we provide the first security proof for the CFB encryption scheme,
which is naturally immune against such attackers.
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1 Introduction

Modes of operation are well-known techniques to encrypt messages longer than
the output length of a block cipher. The message is first cut into blocks and the
mode of operation allows to securely encrypt the blocks. The resulting construc-
tion is called an encryption scheme. Specific properties are achieved by some of
these modes: self-synchronization, ensured by chained modes such as CBC and
CFB [13], or efficient encryption throughput, ensured by parallelized modes such
as ECB and OFB [13]. Two different techniques are mainly used to build these
schemes. The first one directly outputs the block of the block cipher (ECB,
CBC). The second method uses the block cipher to generate random strings
which are then XORed with the message blocks (CTR [2], OFB, CFB). In this
paper we investigate the security of the classical modes of operation in a more
realistic and practical scenario than previous studies.

In cryptography, security is usually defined by the combination of a security
goal and an adversarial model. The security goal of an encryption scheme is
privacy. Informally speaking, privacy of an encryption scheme guarantees that,
given a ciphertext, an adversary is not able to learn any information about the
corresponding plaintext. Goldwasser and Micali have formalized this notion in [6]
where it has been called the semantic security. An equivalent definition called
indistinguishability of encryptions (IND) has also been more extensively studied



in [2] for the symmetric encryption setting: given two equal length messages M0

and M1 chosen by the adversary and the encryption C of one of them, it is
difficult for the adversary to distinguish whether C is the encryption of M0 or
M1. In practical scenarii, adversary goals can be different from this theoretical
notion of privacy. For example, the adversary can try to recover the secret key or
to recover the plaintext underlying a given ciphertext. However, from a security
point of view, if the scheme is secure under the IND security notion, key recovery
or plaintext recovery cannot be achieved by the adversary. It is worth noticing
that a security proof for encryption mode is not an absolute proof of security. As
often in cryptography, proofs are made by reduction, in the complexity theoretic
sense, between the security of the scheme and the security of the block cipher
used in the encryption scheme. In practice, such a proof shows that the mode
achieves the security goal assuming the security of the underlying block cipher.

Orthogonally to the security goal, the adversarial model defines the adversary
abilities. The considered adversarial models are known plaintext attacks, chosen
plaintext attacks (CPA) or chosen ciphertext attacks (CCA). In these scenarii, the
adversaries have access to an encryption oracle, queried with known or chosen
messages, and/or a decryption oracle, queried with ciphertexts, that may be
chosen according to the previous pairs of plaintexts and ciphertexts. In the sequel
we consider schemes secure against Chosen Plaintext Attacks, such as CBC or
CFB. We do not take into account schemes secure against Chosen Ciphertext
Attacks, such as OCB [14], IACBC, IAPM [11] or XCBC [?].

Usually, it is implicitly assumed that messages sent to the encryption ora-
cle are atomic entities. However, in the real world, the encryption module can
be a cryptographic accelerator hardware or a smart card with limited memory.
Thus, ciphertext blocks are output by the module before having received the
whole message. Practical applications are thus far from the theoretical security
model. Recently, Joux, Martinet and Valette in [10] have proposed to change
the adversary interactions with the encryption oracle to better model on-line
symmetric encryption schemes. Such a scheme can output the ciphertext block
C[i] just after the introduction of the block M [i], without having the knowledge
of the whole message. Many modes of operation have this nice property. There-
fore, from the attacker side, adversaries in the IND security game can adapt the
message blocks according to the previously received ciphertext blocks. The same
notion concerning integrity on real-time applications has been used by Gennaro
and Rohatgi [4].

The blockwise adversarial model, presented in [10], is used to break the IND-
CPA security of some encryption schemes, provably secure in the standard model.
For example, in order to encrypt a message M = M [1]M [2] . . .M [`] with the
CBC encryption mode, a random initial vector C[0] = IV is chosen and for all
1 ≤ i ≤ `, C[i] = EK(M [i]⊕ C[i− 1]). In [2], Bellare et al. have shown that, in
the standard model, the CBC encryption scheme is IND-CPA secure up to the
encryption of 2n/2 blocks, where n denotes the length of the block cipher EK .
However, in [10], Joux et al. have shown that the CBC encryption mode cannot
be IND secure in the blockwise adversarial model: only two-blocks messages
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M0 and M1 allow the adversary to win the semantic security game. Indeed, if
the same input is given twice to the block cipher, the same result is output.
Consequently in the IND security game, if the adversary knows the initial vector
C[0] = IV and the first ciphertext block C[1], he can adaptively choose M0[2] as
C[1]⊕C[0]⊕M0[1] and a random value for M1[2]. Then, if the second ciphertext
block C[2] is such that C[2] = C[1], the ciphertext C = C[0]C[1]C[2] is the
encryption of M0. Otherwise it is the encryption of M1. This attack works since
the adversary can adapt his message blocks according to the output blocks. In the
standard model, as the messages are chosen before the ciphertext is returned by
the oracle, the probability that such a collision occurs in the inputs of the block
cipher is upperbounded by µ2/2n, where µ denotes the number of encrypted
blocks with the same key. While µ remains small enough, the probability is
negligible and the mode of encryption is secure.

From a practical point of view, the blockwise attack on the CBC encryption
scheme is as efficient as an attack on the ECB encryption scheme in the standard
model. Indeed, for both the ECB mode in the standard model and the CBC mode
in the blockwise model, the adversary knows inputs and outputs of the block
cipher. For the ECB mode, he can then adapt his messages to force a collision.
For the CBC mode, he adapts the message blocks. It is worth noticing that in
both cases a key recovery attack on the block cipher is possible. Such an attack
only requires the encryption of some chosen plaintext blocks. For example, a
dictionary attack on the block cipher can be mounted (see for example [12]).
In this kind of attacks, the adversary precomputes the encryption of a plaintext
block P under all the keys, and stores them in a table. Therefore, if he knows the
encryption of P under the key used in the block cipher, he just looks in his table
to recover the secret key. Moreover, the time/memory tradeoff of Hellman [9] can
be adapted to reduce the required memory of this attack. Therefore, blockwise
attacks need to be taken into account in practical uses since attacks are not only
theoretical but paves the way to more practical and serious attacks.

Our results. In this paper we study the security of some well known encryption
mode against blockwise adversaries. In a first part we show how to secure the
CBC encryption mode. The countermeasure we propose simply consists in de-
laying the output blocks. This modified scheme, called delayed CBC (DCBC), is
proved secure against blockwise adaptive adversaries, mounting chosen plaintext
attacks. Furthermore, this modification can be applied to secure several modes
of operation. In a second part, we show that the CFB (Ciphertext FeedBack)
encryption mode is secure without any change in this new model. We also give
in appendices a rigorous proof for the security of the DCBC and CFB modes.

2 Preliminaries

2.1 Notations

In the sequel, standard notations are used to denote probabilistic algorithms
and experiments. If A is a probabilistic algorithm, then the result of running
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A on inputs x1, x2, . . . and coins r will be denoted by A(x1, x2, . . . ; r). We let
y ← A(x1, x2, . . . ; r) denote the experiment of picking r at random and letting y
be A(x1, x2, . . . ; r). If S is a finite set then x← S is the operation of picking an
element uniformly from S. If α is neither an algorithm nor a set then x← α is a
simple assignment statement. We say that y can be output by A if there is some
r such that A(x1, x2, . . . ; r) = y. If p(x1, x2, . . . ) is a predicate, the notation
Pr[x1 ← S;x2 ← A(x1, y2, . . . ); . . . : p(x1, x2, . . . )] denotes the probability that
p(x1, x2, . . . ) is true after ordered execution of the listed experiments. Recall
that a function ε : N → R is negligible if for every constant c ≥ 0 there exists
an integer kc such that ε(k) ≤ k−c for all k ≥ kc. The set of all functions from
{0, 1}m to {0, 1}n is denoted byRm→n. The set of all the permutations of {0, 1}n
is denoted by Permn.

2.2 Security Model

Security of a symmetric encryption scheme is viewed as indistinguishability of
the ciphertexts, when considering chosen plaintext attacks. However, the recent
attacks on some schemes, proved secure in the standard model, show that a new
adversarial model has to be defined. The new kind of adversaries, introduced in
[10], are adaptive during a query, according the previous blocks of ciphertext.
The security model has to take into account these adversaries, realistic in an
implementation point of view. The difference with the standard model is that
here the queries are made on the fly: for each plaintext block received, the oracle
outputs a ciphertext block. This better models on-line encryption. Thus, it is
natural to consider a new kind of interactions, induced by this model: since the
adversary does not send the whole plaintext in a single query, so that he can
adapt the next plaintext block according to the ciphertext he receives, one can
also suppose that the adversary may interleave the queries. In this case, the
attacker is able to query the oracle for the encryption of a new message, even if
the previous encryption is not finished. This introduces concurrent queries. The
security model is thus modified in depth and security of known schemes has to
be carefully re-evaluated in this new model.

Formally, in this model, the adversary, denoted by A in the sequel, is given
access to a blockwise concurrent encryption left-or-right oracle: this oracle is
queried with inputs of the form (M i

0[j],M i
1[j]), where M i

0[j] and M i
1[j] are two

plaintext blocks. At the beginning of the game, this oracle flips at random a bit b.
Then, if b = 0 it will always encrypt M i

0[j], and otherwise, if b = 1, it will encrypt
M i

1[j]. The corresponding ciphertext block Cib[j] is returned to the adversary,
whose goal is to guess which message has been encrypted. Here the queries are
made on the fly (for each plaintext block received, the oracle outputs a ciphertext
block), and also concurrently (the adversary may interleave the queries). In this
case, A is able to query the oracle for the encryption of messages, even if the
previous encryption is not finished. This introduces concurrent queries. Thus,
we define the encryption left-or-right oracle, denoted by Ebl,cK (LR(., ., b, i)), to
take as input two plaintext blocks M i

0[j] and M i
1[j] along with the number i of
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the query, and encrypt M i
b [j]. We now give the formal description of the attack

scenario:

Expt
lorc−bcpa(b)
SE,A (k)

K
R← K(k)

d← AE
bl,c
K (LR(·,·,b,·))

Return d

The adversary advantage in winning the LORC-BCPA game is defined as:

Advlorc−bcpa
SE,A (k) =

∣∣∣2 · Pr[Expt
lorc−bcpa(b)
SE,A (k) = 1]− 1

∣∣∣
We define Advlorc−bcpa

SE (k, t, q, µ) = max
A
{Advlorc−bcpa

SE,A (k)}, where the maxi-

mum is over all legitimate A having time-complexity t, making to the concurrent
oracles at most q encryption queries totaling µ blocks. A secret-key encryption
scheme SE is said to be lor-secure against concurrent blockwise adaptive chosen
plaintext attack (LORC-BCPA), if for all polynomial-time probabilistic adver-
saries, the advantage in this guessing game is negligible as a function of the
security parameter k. In this case, SE is said LORC-BCPA secure.

The security of a block cipher is viewed as the indistinguishability from ran-
dom permutations, as defined for example in [2]. The attack scenario for the
adversary is to distinguish the outputs of a permutation randomly chosen in
Permn, from the outputs of a permutation randomly chosen in the family P of
all permutations induced by a given block-cipher. The adversary advantage in
winning this game is denoted by Advprp

P (k, t, q). Following the same idea, the
security of a pseudorandom function f randomly chosen in a given family F
of functions of input length m and output length n, is the indistinguishability
from a random function of Rm→n. The attacker game is the same as above,
except that permutations are replaced by functions. The adversary advantage in
winning the game in denoted by Advprf

F (k, t, q).

3 Blockwise Secure Encryption Schemes

In this section, we propose two modes of encryption that enable to withstand
blockwise adversaries. These modes are well-known and simple. The CFB encryp-
tion scheme and a variant of the CBC are secure against the powerful adversaries
we consider. The complete security proofs are given in appendices and we only
summarize in this section the security results and their implications on the use
of those modes of encryption.

3.1 A blockwise secure variant of the CBC: the Delayed CBC

Description. The CBC mode of encryption, probably the most currently used in
practical applications, suffers from strong weaknesses in the blockwise adversarial
model, as it has been shown in [10]. The main reason is that the security of modes
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Fig. 1. The Delayed CBC encryption mode.

of operation is closely related to the probability of collision in the inputs of the
underlying block cipher. As shown by the attacks presented in [10], blockwise
adversaries can choose the message blocks according to the previously revealed
ciphertext blocks so that they can force such a collision. This kind of adversaries
are realistic if the output blocks are gradually released outside the cryptographic
component.

A simple countermeasure to prevent an adversary from having access to the
previously ciphered block is to delay the output by one single block. Conse-
quently, an attacker can no longer adapt the message blocks. More precisely,
we slightly modify the encryption algorithm in such a way that the encryption
module delays the output by one block, i.e., instead of outputting C[i] just af-
ter the introduction of M [i], C[i] is output after the introduction of M [i + 1].
This modification in the encryption process is efficient and does not require any
modification of the scheme; ciphertexts produced by a device implementing the
delayed CBC mode are compatible with those produced by standard ones.

A detailed description for this scheme, called Delayed CBC or simply DCBC,
is given below and is also depicted in figure 1. We assume that each block is
numbered from 1 to ` and that the end of the encryption is indicated by sending
a special block M [` + 1] = stop. If the decryption algorithm does not have
to output a block, it sends, as an acknowledgment, a special block “Ack”. Of
course, the index i is only given to simplify the description of the algorithm
but in practice this counter should be handled by the encryption module. In
other words, we do not consider attacks based on false values of i since they do
not have any practical significance. In the following, EK(.) will be denoted by
E(K, .).
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Function E −DCBCE(K,M [i], i) Function D −DCBCE(K,C[i], i)
If i = 1, If i = 0,

IV ← {0, 1}n, C[0] = IV Return Ack
Return C[0] Else

Else If M [i] =stop Return C[i− 1]⊕ E−1(K,C[i])
Return C[i− 1]

Else
C[i] = E(K,C[i− 1]⊕M [i])
Return C[i− 1]

Note that the decryption process is unchanged compared to the standard
CBC encryption mode. Indeed, there is no need to delay the output block in
the decryption phase since the adversary is not given any access to a decryption
oracle for chosen plaintext attacks. Furthermore, since the DCBC does not pro-
vide chosen ciphertext security, for both the standard and the blockwise model,
the decryption process does not need to be modified.

Blockwise Security of the DCBC Encryption Mode. In appendix B, we analyze
the security of the DCBC against blockwise concurrent adversaries mounting
chosen plaintext attacks. Intuitively, it is easy to see that a blockwise adversary
cannot adapt the plaintext blocks according to the previously returned ciphertext
blocks since it does not know C[i− 1] when submitting M [i]. Furthermore, the
knowledge of the previous blocks C[0], . . . , C[i− 2] does not help him to predict
the i-th input C[i − 1] ⊕M [i] of the block cipher as long as the total number
µ of encrypted blocks with the same key K is not too large. The security proof
shows that the advantage of an adversary is at most increased by a term µ2/2n.
In other words, DCBC is provably secure in the blockwise model, assuming the
security of the underlying block cipher, while the total number of encrypted
blocks with the same key is much smaller than 2n/2. The security of the DCBC
encryption mode is given in the following theorem:

Theorem 1. Let P be a family of pseudorandom permutations of input and
output length n where each permutation is indexed with a k-bit key. If E is drawn
at random in the family P, then the DCBC encryption scheme is LORC-BCPA
secure. Furthermore, for any t, q and µ ≥ 0, we have:

Advlorc−bcpa
DCBC (k, t, q, µ) ≤ 2 · Advprp

P (k, t, µ) +
µ2

2n−1

It is important to notice that this security bound is similar to the one obtained
in the standard model for the CBC mode [2]. This means that the delayed CBC
is as secure in the blockwise model as the classical CBC encryption scheme in
the standard model.

3.2 CFB encryption scheme

A review of the most classical modes of operation shows that one of them, the
CFB mode [13], is naturally immune against blockwise attacks.
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Description. The CFB encryption mode is based on a function F , indexed by a
key K, taking n-bit blocks as input and outputting n-bit blocks. This function
F does not need to be a permutation, i.e., does not need to be implemented
using a block cipher. For example the construction of Hall et al. [8], proved by
Bellare and Impagliazzo in [3], can be used.

In the following, FK(.) will be denoted by f(K, .). A detailed description
for this scheme is given below and also depicted in figure 2, using the same
conventions as for DCBC.

Function E − CFBf (K,M [i], i) Function D − CFBf (K,C[i], i)
If i = 1, If i = 0,

IV ← {0, 1}n, C[0] = IV Return Ack
C[1] = f(K,C[0])⊕M [1] Else
Return C[0] and C[1] Return C[i]⊕ f(K,C[i− 1])

Else
C[i] = f(K,C[i− 1])⊕M [i]
Return C[i]

We insist on the fact that we have not modified the original CFB mode and
that we only recall it in order to be complete.

Blockwise Security of the CFB Encryption Mode. In appendix C, we analyze the
security of the CFB against blockwise concurrent adversaries mounting chosen
plaintext attacks. Intuitively, a blockwise adversary cannot adapt the plaintext
blocks in order to force the input to the function f while the ciphertext blocks are
all pairwise distinct. If no adaptive strategy is efficient, the inputs of f behave
like random values and the system is secure until a collision at the output of
this function occurs. If the total number µ of encrypted blocks with the same
key K is not too large, i.e., much smaller than the square root of 2n, this event
only happens with negligible probability. The security proof formalizes those
ideas and shows that the advantage of an adversary is at most increased by a
term µ2/2n, as for DCBC. In other words, the CFB mode is provably secure in
the blockwise model, assuming the security of the underlying block cipher (or
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function), while the total number of encrypted blocks with the same key is much
smaller than 2n/2.

Theorem 2 (Security of the CFB mode of operation). Let F be a family
of pseudorandom functions with input and output length n, where each function
is indexed with a k-bit key. If the CFB encryption scheme is used with a function
f chosen at random in the family F , then, for every integers t, q, µ ≥ 0, we have:

Advlorc−bcpa
CFB (k, t, q, µ) ≤ 2 ·Advprf

F (k, t, µ) +
µ2

2n−1

Such a bound is tight since practical attacks against the indistinguishability
of the mode can be mounted if more than 2n/2 blocks are encrypted. In practice,
notice that using 64-bit block ciphers such as DES or triple-DES, this bound of
232 blocks could be quickly reached in some applications based on high speed
networks.

A block cipher rather than a pseudorandom function can be used in the
CFB mode as it is specified in [13]. Indeed, a secure block cipher behaves like a
pseudorandom function up to the encryption of 2n/2 blocks.
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A Security Proof for the DCBC encryption scheme

We recall the following theorem giving the security bound for the DCBC en-
cryption scheme, in the security model defined in section 3.1.

Theorem 3. Let P be a family of pseudorandom permutations of input and
output length n where each permutation is indexed with a k-bit key. If E is drawn
at random in the family P, then the DCBC encryption scheme is LORC-BCPA
secure. Furthermore, for any t, q and µ ≥ 0, we have:

Advlorc−bcpa
DCBC (k, t, q, µ) ≤ 2 · Advprp

P (k, t, µ) +
µ2

2n−1

Proof. The proof goes by contradiction. Assume that there exists an adversary
A against the DCBC encryption scheme with non-negligible advantage. From
this adversary, we construct an attacker B that can distinguish the block cipher
EK used in the DCBC, and randomly chosen in the family P, from a random
permutation with non-negligible advantage. More precisely, the attacker B in-
teracts with a permutation oracle that chooses a bit b and if b = 1, chooses f
as a permutation in the set of all permutations Permn. Otherwise, if b = 0, it
runs the key generation algorithm K(1k), obtains a key K and sets f as EK .
The goal of B is to guess the bit b with non-negligible advantage. To this end,
B uses the adversary A and consequently B has to simulate the environment of
the adversary A.

First, B chooses a bit b′ at random and runs A. B has to concurrently answer
the block encryption queries of the LORC game. When A submits pairs of input
block (M i

0[j],M i
1[j]), B always encrypts the block M i

b′ [j]⊕ Cib′ [j − 1] under the
DCBC encryption mode thanks to the permutation oracle, yielding Cib′ [j], and
returns Cib′ [j − 1] to A. Finally, A will return a bit b′′ and if b′ = b′′, then B
returns b∗ = 0, otherwise, B returns b∗ = 1 to the oracle. The advantage of A in
winning the LORC game is defined as:

Advlorc−bcpa
DCBC,A (k) =

∣∣∣2 · Pr[Expt
lorc−bcpa(b)
DCBC,A (k) = 1]− 1

∣∣∣
=
∣∣2 · Pr[b′ = b′′|K ← K(1k), f = EK ]− 1

∣∣
It is easy to verify that the attacker B can simulate the concurrent lor-

encryption oracle to adversary A since B has access to a permutation f and B
can simulate the encryption mode of DCBC. The advantage for B in winning his
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game is defined as:

Advprp
P,B(k) = |Pr[b∗ = 0|b = 0]− Pr[b∗ = 0|b = 1]|

= |Pr[b′′ = b′|b = 0]− Pr[b′′ = b′|b = 1]|
= Pr[b′′ = b′|K ← K(1k), f = EK ]− Pr[b′′ = b′|f ← Permn]

≥
1 + Advlorc−bcpa

DCBC,A (k)
2

− Pr[b′′ = b′|f ← Permn]

Let us now analyze Pr[b′′ = b′|f ← Permn]. We denote by D the event that all
the inputs on the f permutation are distinct. Thus we have:

Pr[b′′ = b′|f ← Permn] = Pr[b′′ = b′|f ← Permn ∧ D] · Pr[D]
+ Pr[b′′ = b′|f ← Permn ∧ D̄] · Pr[D̄]

= 1/2 ·
(
1− Pr[D̄]

)
+
(

1− 1
2n

)
· Pr[D̄]

This last equation comes from the fact that if f is a permutation chosen at
random from the set of all permutations and no collision occurs, outputs of f
are independent of the input blocks M i

0[j] and M i
1[j] and the adversary A has no

advantage in winning the LORC game. Therefore, Pr[b′′ = b′|f ← Permn∧D] = 1
2 .

Otherwise, if a collision occurs, there exists i, i′, j, j′ such that (i, j) 6= (i′, j′) and
Cib′ [j] = Ci

′

b′ [j
′], and then since A knows all the plaintexts blocks (M i

0,M
i
1) and

the corresponding ciphertext blocks Cib′ , he can decide whether M i
0[j]⊕M i′

0 [j′] =
Cib′ [j−1]⊕Ci′b′ [j′−1] or whether M i

1[j]⊕M i′

1 [j′] = Cib′ [j−1]⊕Ci′b′ [j′−1]. However,
with probability 1/2n, we have M i

0[j]⊕M i′

0 [j′] = M i
1[j]⊕M i′

1 [j′] if (M i
0,M

i
1) are

chosen at random. Thus in any way A wins his game in this case and we have
Pr[b′′ = b′|f ← Permn ∧ D̄] ≤

(
1− 1

2n

)
. So, we get:

Pr[b′′ = b′|f ← Permn] ≤ 1
2

+
(

1
2
− 1

2n

)
· Pr[D̄]

Now, let us bound the probability that a collision occurs. The following
lemma shows that if µ is the number of encrypted blocks, then Pr[D̄] ≤ µ(µ−1)

2n−1 .
Consequently, the advantage of the attacker B is related to the advantage of the
adversary A:

Advprp
P,B(k) ≥

1 + Advlorc−bcpa
DCBC,A (k)
2

−
(

1
2

+
(

1
2
− 1

2n

)
· Pr[D̄]

)
≥

Advlorc−bcpa
DCBC,A (k)

2
−
(

1
2
− 1

2n

)
· Pr[D̄]

Consequently, we obtain

Advlorc−bcpa
DCBC,A (k) ≤ 2 ·Advprp

P,B(k) +
(

1− 1
2n−1

)
· Pr[D̄]

≤ 2 ·Advprp
P,B(k) +

(
1− 1

2n−1

)
· µ(µ− 1)

2n−1
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and the theorem follows.

To conclude the proof, we have to prove the following lemma.

Lemma 1. Pr[D̄] ≤ µ(µ−1)
2n−1 .

Proof. We note that Pr[D̄] = Pr[Collµ] where Collµ denotes the event that a
collision occurs on the input of the function f during the encryption of the µ
blocks. Consequently,

Pr[Collµ] = Pr[Collµ ∧ Collµ−1] + Pr[Collµ ∧ Collµ−1]
= Pr[Collµ|Collµ−1] · Pr[Collµ−1] + Pr[Collµ−1]
≤ Pr[Collµ|Collµ−1] + Pr[Collµ−1]

≤
k=µ∑
k=1

Pr[Collk|Collk−1]

We now prove that Pr[Collk|Collk−1] = 2(k−1)
2n−(k−1) . This represents the prob-

ability that a collision occurs in the input of the function f at the kth block
given that no collision appeared before. We have Pr[Collk ∧ Collk−1] = 2(k−1)

2n

since there is (k− 1) choices of picking one out of the 2(k− 1) previous different
values of M i

b [j]⊕Ci[j− 1] (as no collision occurs before the (k− 1)th step). The
factor 2 comes from the fact that there are two messages M0 and M1. Thus, if
a collision occurs for one of them, the adversary wins the game. The adversary
cannot force a collision in the kth block: indeed, he does not know the output
of the (k − 1)th block and this output of the function f is independent of the
(k − 1)th input known by the adversary. Furthermore, there are 2n different
values of M i[j]⊕ Ci[j − 1].

We also have Pr[Collk−1] = 2n−(k−1)
2n since there are 2n−(k−1) different val-

ues for M i[j]⊕Ci[j−1] out of the 2n choices (f is a permutation). Consequently,
for k = 1, . . . , µ, we get:

Pr[Collk|Collk−1] =
2(k − 1)/2n

[2n − (k − 1)]/2n
= 2 · 2(k − 1)

2n − (k − 1)

Thus, if µ ≤ 2n−1,

Pr[Collµ] ≤
k=µ∑
k=1

Pr[Collk|Collk−1] =
k=µ∑
k=1

2(k − 1)
2n − (k − 1)

=
k=µ−1∑
k=0

2k
2n − k

≤
k=µ−1∑
k=0

2k
2n − 2n−1

=
k=µ−1∑
k=0

2k
2n−1

=
µ(µ− 1)

2n−1

and the lemma is proved. ut
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B Security Proof for the CFB encryption mode

The following theorem gives the security bound for the CFB encryption scheme
against concurrent blockwise adaptive adversaries.

Theorem 4 (Security of the CFB mode of operation). Let F be a family
of pseudorandom functions with input and output length n, where each function
is indexed with a k-bit key. If the CFB encryption scheme is used with a function
f chosen at random in the family F , then, for every integers t, q, µ ≥ 0, we have:

Advlorc−bcpa
CFB (k, t, q, µ) ≤ 2 ·Advprf

F (k, t, µ) +
µ2

2n−1

Proof. We consider an adversary A against the CFB mode, trying to win the
LORC-BCPA security game. We show that this adversary can be turned into
an adversary B trying to distinguish the function FK from a random function
chosen in Rn→n. The attack scenario for A is as defined in section A.2. B has to
simulate for the environment of A, by using his own oracle. Indeed, B has access
to an oracle Of , defined as follows: in the beginning of the game, Of picks at
random a bit b. If b = 0 then he chooses at random a key K for the function
F ∈ F and lets f = FK . Otherwise, if b = 1, then f is a random function chosen
in the set Rn→n of all the function from {0, 1}n into {0, 1}n. B has to guess with
non negligible advantage the bit b.

We now precisely describe how the adversary B answers the encryption
queries made by A. First, B picks at random a bit b′. A feeds his encryption
oracle with queries of the form (M i

0[j],M i
1[j]), where M i

b [j] is the j-th block of
the i-th query. Note that queries can be interleaved, so that some of the previous
queries are not necessarily finished at this step. When B receives such a query and
if j = 1, then B picks at random a value Ri, sends it to Of and receives f(Ri).
If j 6= 1, then B transmits Cib′ [j − 1] to Of and receives f(Cib′ [j − 1]). Finally, B
returns Cib′ [j] = M i

b′ [j]⊕ f(Cib′ [j − 1]) or Ri along with Cib′ [1] = M i
b′ [1]⊕ f(Ri)

to A, according to the value j. At the end of the game, A returns a bit b′′ rep-
resenting its guess for the bit b′. Then, B also outputs a bit b∗ representing his
guess for the bit b chosen by Of and such that b∗ = 0 if b′ = b′′, and b∗ = 1
otherwise. We have to evaluate Advprf

F (k). We have:

Advprf
F (k) = |Pr[b∗ = 0|b = 0]− Pr[b∗ = 0|b = 1]|

= |Pr[b′ = b′′|f ← F ]− Pr[b′ = b′′|f ← Rn→n]|

≥
1 + Advlorc−bcpa

CFB,A (k)
2

− Pr[b′ = b′′|f ← Rn→n] (1)

Thus, Advlorc−bcpa
CFB,A (k) ≤ 2 ·Advprf

F (k) + 2 · Pr[b′ = b′′|f ← Rn→n] − 1 and it
remains to upperbound Pr[b′ = b′′|f ← Rn→n].

As for the previous proof for the security of the DCBC encryption scheme, we
will look at the collisions that can occur in the inputs of the function f . Indeed,
if no such collision appears, then the advantage for the adversary A in winning

13



his game equals 0. However if such a collision occurs then the adversary can
easily detect it and consequently he can adapt the following plaintext block, to
distinguish which of the messages is encrypted. Thus, in this case, the adversary
wins the game. We denote by Coll the event that some collision appears on the
inputs of the function f . So we have:

Pr[b′ = b′′|f ← Rn→n] = Pr[b′ = b′′|f ← Rn→n ∧ Coll] · Pr[Coll]
+ Pr[b′ = b′′|f ← Rn→n ∧ Coll] · Pr[Coll]

≤ Pr[Coll] + Pr[b′ = b′′|f ← Rn→n ∧ Coll]

≤ Pr[Coll] +
1
2

(2)

The last inequality come from the fact that if no collision occurs on the input
of the function f , where f is a function chosen at random in Rn→n, then the
outputs of this function are random values, uniformly distributed in {0, 1}n
and independent of the previous values. Thus, the adversary cannot adapt the
following message block, according to the previous ciphertext blocks. Thus, the
random guess is the unique strategy for him to guess the bit b′.

We have now to evaluate Pr[Coll]. As before, we denote by Collk the prob-
ability that a collision occurs on the (k− 1)th input of the function f . We have:
Pr[Collk] = Pr[∃ 0 ≤ ` < k s.t. Cib′ [`] = Cib′ [k]], where Cib′ [0] = Ri. Thus, we
have:

Pr[Coll] =
µ∑
k=1

Pr[Collk|Collk−1]

For sake of clarity, in the following we omit the bit b′ and the index i rep-
resenting the number of the queries. We remark that: C[`] = C[k] if and only
if M [`] ⊕ f(C[` − 1]) = M [k] ⊕ f(C[k − 1]). This last equation can be ver-
ified either at random, or if the adversary can choose M [k] so that M [k] =
M [`] ⊕ f(C[` − 1]) ⊕ f(C[k − 1]). However, since by assumption C[k − 1] does
not collide with any of the previous ciphertext block, f(C[k−1]) has never been
computed and is then a random value, uniformly distributed in {0, 1}n and in-
dependent of the previous computed values. Thus, the adversary cannot guess
it to adapt M [k] accordingly, except with negligible probability. Finally, we can
write that for all 1 ≤ k ≤ µ: Pr[∃ 0 ≤ ` < k s.t. C[`] = C[k] | Collk−1] ≤ 2 · k−1

2n .
Indeed, there is at most k − 1 choices for the value `, and two messages are
queried. Thus, by summing up all the values k, we have:

Pr[Coll] ≤ µ2

2n−1

Finally, by replacing all the probabilities involved in equations 1 and 2, we
obtain:

Advprf
F (k, t, µ) ≥

Advlorc−bcpa
CFB,A (k, t, q, µ)

2
− µ2

2n−1

and the theorem follows. ut

14


