
Di�erential Atta
ks against the Helix Stream Cipher

Frédéri
 Muller

DCSSI Crypto Lab
51 boulevard de la Tour-Maubourg

75700 Paris - 07 SP, Fran
e
Frederi
.Muller�m4x.org

Abstra
t. In this paper, we analyze the se
urity of the stream 
ipher Helix,
re
ently proposed at FSE'03. Helix is a high-speed asyn
hronous stream 
ipher,
with a built-in MAC fun
tionality. We analyze the di�erential properties of its
keystream generator and des
ribe two new atta
ks.
The �rst atta
k requires 2

88 basi
 operations and pro
esses only 2
12 words of


hosen plaintext in order to re
over the se
ret key for any length up to 256 bits.
However, it assumes the atta
ker 
an for
e non
es to be used twi
e. Our se
ond
atta
k relies on weaker assumptions. It is a distinguishing atta
k that dete
ts
internal state 
ollisions after 2

114 words of 
hosen plaintext.

1 Introdu
tion

A stream 
ipher is a se
ret key 
ryptosystem that transforms a short random se
ret

key K into a long pseudo-random sequen
e also 
alled keystream, whi
h is XORed

to the plaintext to produ
e the 
iphertext. Although it is possible to obtain a simi-

lar primitive with a blo
k 
ipher in a �pseudo-random number generator� mode (like

OFB or CFB [6℄), it is generally not 
onsidered to o�er optimal speed performan
es.

To respond e�
ien
y 
onsiderations, fast stream 
iphers reveal useful in real-life ap-

pli
ations, espe
ially those using live data transmission. Many re
ent stream 
iphers

proposals have been made in that dire
tion in
luding SEAL [16℄, SNOW [2℄, S
ream [10℄

or Sober-t32 [11℄.

However, the se
urity of stream 
iphers is still an issue (see [1, 3, 7℄), espe
ially when


ompared to the level of 
on�den
e in blo
k 
iphers se
urity. For instan
e, all stream


iphers 
andidates for the NESSIE proje
t [14℄ revealed various degrees of weakness

allowing at least distinguishing atta
ks faster than exhaustive sear
h, while no se
ond

round blo
k 
ipher was su

essfully atta
ked. As a 
onsequen
e, NESSIE did not sele
t

any stream 
ipher in its �nal portfolio. Thus the a
tual 
hallenge is to design fast stream


iphers and provide a better 
on�den
e in their se
urity level. Several new 
iphers aim

at rea
hing these expe
tations.

Helix was re
ently proposed at FSE'03 [5℄. It is an asyn
hronous stream 
ipher

based on a fast keystream generator. Its advantage over other new 
iphers is to o�er

both 
on�dentiality and integrity. Indeed, after en
ryption, Helix 
an produ
e a tag

that guarantees the integrity of the message for very little additional 
omputation and

without requiring a se
ond pass. This fun
tionality is very useful in many appli
ations

where en
ryption and authenti
ation must fun
tion together on streaming data. Re-


ently, several blo
k 
ipher modes of operation also providing integrity �almost for free�

(see [9, 12, 15℄) have been proposed, but some of them appear to be patented, whi
h is

supposedly not the 
ase of Helix.



Moreover, the analysis of Helix is an interesting topi
 sin
e new me
hanisms that

will be in
luded in the new 802.11i standard for wireless networks are apparently fairly


lose to Helix [4, 18℄. The new standard will have to repair some 
ryptologi
 �aws from

the previous 802.11b standard, whi
h resulted from weaknesses in RC4 key s
heduling

and from an improper use of initialization ve
tors [8℄.

In this paper, we analyze the se
urity of Helix against 
hosen plaintext and 
hosen

non
e atta
ks. We present two atta
ks whi
h are both faster than exhaustive sear
h.

Our �rst atta
k re
overs the se
ret key (for any length up to 256 bits) with time


omplexity of 288 basi
 operations and using 212 words of 
hosen plaintext. It assumes

an atta
ker 
ould for
e en
ryption of several messages using the same pair (key,non
e).

Our se
ond atta
k is based on internal state 
ollisions and distinguishes Helix from

random with data 
omplexity of 2114 blo
ks. This atta
k uses 
hosen non
es and 
hosen

plaintext but never re-uses a pair (key,non
e). Our paper is organized as follows : �rst,

we brie�y des
ribe Helix. Then, in Se
tion 3, we show two weaknesses of the 
ipher

whi
h are further developed in Se
tion 4. In Se
tion 5, we des
ribe two atta
ks based

on the previous observations.

2 Des
ription of Helix

Helix o�ers two main features : en
ryption of a plain message and produ
tion of a

Message Authenti
ation Code (MAC) to ensure integrity. Several modes of operation

for Helix are proposed by its authors - en
ryption only, MAC only, PRNG, . . . Here,

we des
ribe brie�y the me
hanisms of Helix that are important in our atta
ks. More

details about this design 
an be obtained in [5℄.

We mostly handle 32 bits values that we denote as words. Besides, ⊕ denotes bitwise

addition on these values and + addition modulo 232. ROTLn(x) is the 
ir
ular rotation
of the word x by n bits to the left. We also use the notations LSB and MSB to refer

to the least and most signi�
ant bit of a word.

2.1 General stru
ture of the 
ipher

Helix is an asyn
hronous stream 
ipher, based on an iterated blo
k fun
tion applied to

an internal state of 160 bits. The input 
onsists in a se
ret key K of varying length,

up to 256 bits, and a non
e N of 128 bits. The internal state before en
ryption of the

i-th word of plaintext is represented as 5 words

(Z
(i)
0 , . . . , Z

(i)
4 )

whi
h are initialized for i = 0 using K and N . Details of this initialization me
hanism

are irrelevant here. The general stru
ture of the en
ryption algorithm is des
ribed in

Figure 1. It basi
ally uses a blo
k fun
tion F to update the internal state in fun
tion

of the plaintext P , the key K and the non
e N .

More pre
isely, during the i-th round, the internal state is updated with F , using

the i-th word of plaintext Pi and two words derived from K, N and i, denoted as Xi,0

and Xi,1. We refer to them as the �round key words�. Hen
e,

(Z
(i+1)
0 , . . . , Z

(i+1)
4 ) = F (Z

(i)
0 , . . . , Z

(i)
4 , Pi,Xi,0,Xi,1)



�
�
�
�

�
�
�
�

160 bits

NK

P C

160 bits

F

Fig. 1. The general stru
ture of Helix

The i-th keystream word, also denoted as Si, is equal to Z
(i)
0 . It is added to Pi to

produ
e the i-th 
iphertext word Ci. Thus,

Si = Z
(i)
0

Ci = Si ⊕ Pi

This pro
ess is repeated until all words of the plaintext have been en
rypted. Finally,

a last step (des
ribed in [5℄) 
an generate a tag of 128 bits that 
onstitutes the MAC.

More details on this general framework are given in the following se
tions.

2.2 The blo
k fun
tion

The round fun
tion F of Helix mixes three types of basi
 operations on words: bitwise

addition represented as ⊕, addition modulo 232 represented as ⊞, and 
y
li
 shifts rep-

resented as <<<. F relies on two 
onse
utive appli
ations of a single �helix� fun
tion,

whi
h 
onstitutes half of the round fun
tion. This �helix� fun
tion is denoted as G and

is represented in Figure 2.

G uses two auxiliary inputs (A,B). In the �rst half of the round fun
tion, (A,B) =
(0,Xi,0) and in the se
ond half, (A,B) = (Pi,Xi,1). Thus, the blo
k fun
tion 
an be

des
ribed by the following relations

(Y
(i)
0 , . . . , Y

(i)
4 ) = G(Z

(i)
0 , . . . , Z

(i)
4 , 0,Xi,0)

(Z
(i+1)
0 , . . . , Z

(i+1)
4 ) = G(Y

(i)
0 , . . . , Y

(i)
4 , Pi,Xi,1)

where (Y
(i)
0 , . . . , Y

(i)
4 ) is the internal state in the middle of the 
omputation.

2.3 Role of K and N

To prote
t the 
ipher against related-key atta
ks, a �rst step is applied that 
omputes

a working key K from the a
tual se
ret key U . Independently of its length l(U), K



<<< 15

<<< 25

<<< 9

<<< 30

<<< 13

<<< 20

<<< 11

<<< 10

<<< 17

<<< 5

A

B

0 1 2 3 4
INPUT

0 1 2 3 4
OUTPUT

Fig. 2. The half-round �helix� fun
tion G

is always 256 bits long and is used in all subsequent operations instead of U . The

derivation of K is based on 8 rounds of a Feistel network. The result is also represented

as 8 words: K0, . . . ,K7.

Besides, Helix uses a non
e N to obtain di�erent keystream sequen
es with the

same se
ret key. N is always 128 bits long and is generally represented as 4 words:

N0, . . . , N3. An expansion phase turns it into a 256 bits value by 
reating 4 additional

words N4, . . . , N7 de�ned as

Nk+4 := (k mod 4) − Nk

for k = 0, . . . , 3. During the i-th round of en
ryption, the round key words Xi,0 and

Xi,1 are 
omputed as

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 + Ni mod 8 + X ′

i + i + 8

X ′

i :=







⌊

(i + 8)/231
⌋

if i mod 4 = 3
4 l(U) if i mod 4 = 1
0 otherwise

These values depend only on i, K and Ni. Besides, it is straightforward to re
onstru
t

the se
ret key from these values for 4 
onse
utive rounds when the non
e is known.

3 Some weaknesses of Helix

In this se
tion, we des
ribe two weaknesses of the blo
k fun
tion. They respe
tively


on
ern the role of the plaintext words and the non
e words at ea
h round.



3.1 In�uen
e of Ea
h Plaintext Word

Sin
e Helix requires a plaintext-dependent keystream, it is reasonable to analyze the

round fun
tion assuming an atta
ker 
an 
ontrol the plaintext introdu
ed. In general,

an atta
ker should not be able to re
over any information about the se
ret key or

the internal state of the 
ipher, by observing the keystream 
orresponding to 
hosen

plaintext.

Using the notations of Se
tion 2, Pi denotes the i-th word of plaintext. It is intro-

du
ed inside Helix internal state at the i-th advan
e. Then, at the beginning of the

(i + 1)-th advan
e, a new keystream word Si+1 is produ
ed. From the des
ription of

Helix, one sees that Pi is introdu
ed only in the se
ond half of the blo
k fun
tion (as

the input A of Figure 2). It is XORed to Y
(i)
3 , then added to Y

(i)
0 . The result is then

modi�ed only on
e before the end of the round - ex
epting 
y
li
 shifts - through a

XOR with some intermediate value (referred to as a). However, it is easy to verify that

a is a
tually independent of Pi. Thus Si+1 
an be 
omputed as

Si+1 = Z
(i+1)
0 = ROTL20(a ⊕ ROTL9(Y

(i)
0 + (Y

(i)
3 ⊕ Pi)))

If the plaintext word P ′

i = Pi⊕∆ was introdu
ed instead of Pi, then the next keystream

word would be S′

i+1, su
h that

δ = Si+1 ⊕ S′

i+1

= ROTL29((x + (y ⊕ Pi)) ⊕ (x + (y ⊕ Pi ⊕ ∆)))

where x and y respe
tively denote the intermediate words Y
(i)
0 and Y

(i)
3 . Suppose that

Pi = 0, then for any di�eren
e ∆ on the plaintext,

∆′ = ROTL3(δ) = (x + y) ⊕ (x + (y ⊕ ∆)) (1)

is the 
orresponding di�eren
e on the keystream. In Se
tion 4, we will dis
uss how an

atta
ker 
an take advantage of this di�erential property.

3.2 In�uen
e of ea
h Non
e Word

Similar di�erential properties hold regarding ea
h non
e word. Indeed, the non
e N
serves two purposes in Helix :

� Fill the initial 160 bits of internal state.

� Derive two words Xi,0 and Xi,1 introdu
ed at round i.

Con
erning this se
ond task, it appears from Se
tion 2.3 that the two �key words�

introdu
ed at ea
h round do not depend on the full non
e. A
tually, the round key

words at round i depend only on Ni mod 4. Therefore, if we 
onsider two distin
t

non
es N and N ′ where only one word 
hanges, the round fun
tion will essentially

apply the same mapping on the internal state, for 3 rounds out of 4. This property has


onsequen
es on the propagation of state 
ollisions.

Moreover, if only one non
e word Ni is modi�ed to Ni + ∆ then, for rounds j su
h

that j mod 4 6= i, both round key words remain un
hanged. For other positions, Xj,1

is 
hanged to (Xj,1 ±∆) while Xj,0 is un
hanged. Sin
e Xj,1 is introdu
ed at the very

end of the blo
k fun
tion, we have a di�erential property, like in Se
tion 3.1. When all



other inputs are un
hanged, the di�eren
e on the keystream words resulting from this

di�eren
e ∆ on the non
e word Ni is

∆′ = a ⊕ (a ± ∆) (2)

for some unknown internal value a (see Figure 2).

4 Di�erential properties of addition modulo 2
32

We have seen that di�erential patterns on the plaintext or the non
e propagate to

simple di�erential patterns on the keystream. More pre
isely, the di�erential property

on the plaintext is related to a general problem 
on
erning linear approximations of

addition modulo 232 that 
an be summarized by relation (1). In this se
tion, we will

des
ribe various ways to take advantage of this observation.

4.1 Related Problems

A well known problem (see [13℄) is, given two �xed words x and y, to �nd a pair (∆,∆′)

su
h that

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (3)

and that is observed with high probability. This problem has been studied from a

theoreti
al point of view in [17℄. However, in the present situation, we are looking

things the other way around sin
e x and y are unknown to us but we might be able to


hoose ∆ and observe ∆′. More pre
isely, we want to

1. �nd statisti
al properties that 
an be easily dete
ted in order to distinguish Helix

from a random sour
e.

2. re
over some se
ret information about the internal state of Helix (the values of x
and y for instan
e).

4.2 A �Dummy� Distinguisher

Suppose an atta
ker en
rypts two messages that begin similarly, but, at some point,

di�er on one word by

∆ = 0x80000000

Then, the di�eren
e on the next keystream word (
alled ∆′) is su
h that ∆′ = ∆, sin
e

there is no propagation from MSBs to LSBs during an addition. Using this relation,

the blo
k fun
tion of Helix 
an be distinguished from a random sour
e with two 
hosen

messages, but this requires to use twi
e the same key and the same non
e. This atta
k

s
enario is dis
ussed in Se
tion 5. In the next se
tion, we go further by trying to a
tually

re
over the two internal values x and y using relation (3).



4.3 Re
overing x and y

In this se
tion, we are interested in re
overing the two intermediate values x and y
involved in relation (3). Thus, we have to 
onsider the following problem

Problem 1. Let x and y be two given 
onstants of 32 bits. For any

∆,

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (4)

is given. How many (x, y) are possible solutions ? Give an e�
ient

algorithm to re
over these solutions.

First, it is easy to see that the solution is not always unique. Indeed, if x = 0, then
∆′ does not depend on y. However, in average, the number of 
andidates is small. In

this se
tion, we propose an e�
ient algorithm to re
over the two unknown values x
and y with a limited number of observations. The following notations are used : wj

denotes the j-th bit of a word w. Besides, let cj denote the 
arry bit at position j in

the addition of x and y ⊕ ∆. For all j, 0 ≤ j ≤ 31,

(x + (y ⊕ ∆))j = xj ⊕ yj ⊕ ∆j ⊕ cj

and initially c0 = 0. We also suppose that x 6= 0.

Claim. Let t, 0 ≤ t ≤ 30, denote the position of the least signif-

i
ant bit '1' of x. Then, there are exa
tly 2t+3 valid pairs (x, y),
solutions of the previous problem. Re
overing these solutions 
an

be done by testing at most 93 
hosen values of ∆.

We use the following indu
tion

� Assume all bits of x and y are known up to position (i − 1).
� If any xj = 1 with 0 ≤ j < i, then

• By 
hoosing an appropriate value of ∆k for j ≤ k < i, it is possible to obtain

any value of ci (0 or 1), sin
e everything is known up to position i.
• In both 
ases, pi
k both values of ∆i (0 and 1) and set all other bits of ∆ to 0.
The resulting value of ∆′

i+1 depends only on the 
arry bit ci+1.

• Re
over xi and yi by 
omparing the di�erent distributions (see Table 1)

� Otherwise

• Ne
essarily, ci = 0
• Using Table 1, it is still possible to re
over xi.

• No information on yi is obtained.

Therefore, by indu
tion, all bits of x 
an be re
overed from position 0 to 30 (it is

impossible to re
over x31 be
ause no observation 
an be made about position 32 of

∆′). Similarly, all bits of y from position (t+1) to 30 
an be re
overed. The other t+3
bits of x and y need to be guessed. When x = 0, our analysis remains valid by taking

t = 30.
In fa
t, 3 queries are enough to distinguish the distributions in Table 1. Thus, at

most 3 × 31 = 93 queries are su�
ient to re
over a valid solution (x, y). Besides, it is
easy to verify that �ipping the bit yt will imply to �ip all bits xj and yj for t < j < 31



xi yi ci ∆i ∆′

i+1

1 1 0 0 δ

1 1 0 1 δ ⊕ 1

1 1 1 0 δ

1 1 1 1 δ

1 0 0 0 δ

1 0 0 1 δ ⊕ 1

1 0 1 0 δ ⊕ 1

1 0 1 1 δ ⊕ 1

xi yi ci ∆i ∆′

i+1

0 1 0 0 δ

0 1 0 1 δ

0 1 1 0 δ ⊕ 1

0 1 1 1 δ

0 0 0 0 δ

0 0 0 1 δ

0 0 1 0 δ

0 0 1 1 δ ⊕ 1

Table 1. Distribution of ∆′

i+1 depending on xi and yi

in order to obtain an other valid solution, sin
e all 
arry bits also get �ipped. Therefore

all solutions of the system 
an be expressed dire
tly from a single solution, without

any extra query.

We performed some experiments using various values of x and y and always iden-

ti�ed with su

ess the expe
ted number of 2t+3 solutions.

5 Atta
ks Against Helix

In this se
tion, two atta
ks against Helix are developed. The �rst one is a distinguishing

atta
k using 
hosen plaintext, whi
h is extended to a key re
overy atta
k requiring 288

basi
 operations and about 212 blo
k en
ryptions. A se
ond atta
k takes advantage of


hoosing similar non
es to dete
t internal state 
ollisions.

5.1 A Distinguishing Atta
k

In Se
tion 3.1, we have shown that the introdu
tion of a 
hosen di�eren
e on the

plaintext from a �xed internal state results in predi
table patterns on the keystream.

However, to turn these observations into an atta
k, it is ne
essary to 
onsider the

following s
enario

� The atta
ker requests en
ryption of some random message P = (P1, . . . , Pn) under
some pair (key,non
e) = (K,N). The resulting 
iphertext is C = (C1, . . . , Cn).

� He requests en
ryption with (K,N) of an other message where Pn−1 is repla
ed by

P ′

n−1 = Pn−1 ⊕ ∆. This yields the 
iphertext C ′ = (C ′

1, . . . , C
′

n).
� The atta
ker observes ∆′ = Cn ⊕ C ′

n.

In this 
ase, we have seen that a real Helix output 
an be distinguished from a random

output, by pi
king ∆ = 0x80000000 (then, ne
essarily, ∆′ = ∆).

5.2 A Simple Key Re
overy Atta
k

Now, we wish to extend the observations of Se
tion 4.3. This te
hnique allowed an

atta
ker to retrieve up to 64 bits of intermediate values by observing the keystream


orresponding to well 
hosen plaintexts. A
tually, this information leakage is an impor-

tant weakness, sin
e it redu
es the entropy of the internal state. Using an appropriate



guessing te
hnique, one may hope to turn it into a key re
overy atta
k. Su
h an atta
k

is generally 
alled a guess-then-determine atta
k, sin
e an atta
ker will �rst guess some

internal state bits and then determine the 
orre
t guess using available information.

First, let us 
onsider the round number i of Helix en
ryption. We suppose an at-

ta
ker has a

ess to the keystream word Z
(i)
0 and to a few 
andidates for Y

(i)
0 and

Y
(i)
3 as des
ribed in Se
tion 4.3. These two intermediate words depend on the internal

state at input of round i : (Z
(i)
0 , . . . , Z

(i)
4 ) and on the �rst round key word Xi,0. This is

represented in Figure 3 where ea
h box is a 32 bits value and dashed boxes represent

known values. An atta
ker may hope to use these 
onditions to redu
e the number of

possible internal states to

2128 × 232 × 2−64 = 296

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

Internal state

Intermediate state

round key

word
G

Fig. 3. The framework of the simple atta
k

A
tually, this number 
an be rea
hed by guessing Z
(i)
2 , Z

(i)
3 and Xi,0. Then the

atta
ker 
an retrieve Z
(i)
1 and Z

(i)
4 by looking pre
isely at the fun
tion G (see Figure 2).

Thus, the atta
ker 
an indeed �nd 296 
andidates for the internal state at the beginning

of round i. To tell whi
h 
andidate is 
orre
t, some of the previous rounds (say τ =
5 rounds) need to be inverted. This 
an be done without in
reasing the number of


andidates, provided Y
(i−j)
0 and Y

(i−j)
3 are known, for 0 ≤ j < τ . For this purpose,

the re
overy te
hnique of Se
tion 4.3 needs to be applied τ times here. As long as it

returns few solutions, an appropriate round inversion redu
es the number of 
andidates

- roughly by a fa
tor 232. Thus, for τ = 5 we eventually obtain a unique 
andidate,

and enough �round key words� to dire
tly retrieve the 
omplete se
ret key.

To summarize, this simple atta
k requires to guess 96 bits of internal state and to

apply τ times the te
hnique des
ribed in Se
tion 4.3 to re
over intermediate values.

However, this te
hnique does not provide a unique solution, whi
h in
reases the time


omplexity of the atta
k. A
tually, only the round i is in the 
riti
al path and with

probability 1
2 , the number of solutions here is only 8. In this �good� 
ase, the 
omplexity

of the atta
k is 296 × 8 = 299 basi
 instru
tions. In �bad� 
ases, there are more than 8
solutions at position i, but the atta
ker may easily �nd another position i′ where there
are only 8 solutions.



The data 
omplexity 
orresponds to the en
ryption of τ × 93 pairs of messages of

length at most τ = 5 words. Thus, the number of plaintext blo
ks en
rypted is

2 × 5 × 5 × 93 ≃ 212

5.3 An Improved Atta
k

A more subtle guessing te
hnique 
an be applied using bitwise analysis of the blo
k

fun
tion. The �subtle� atta
k 
onsists in guessing only 2 words, Z
(i)
3 and (Z

(i)
1 + Z

(i)
4 ),

plus 17 LSBs of Z
(i)
2 . Then, like in the �simple� atta
k, the atta
ker 
an obtain the 17

LSBs of ROTL25(Z
(i)
4 ) and thus the 17 LSBs of ROTL25(Z

(i)
1 ). Looking at the blo
k

fun
tion of round i−1, the atta
ker knows two output words, and has partial knowledge

of the three other output words. Two relations 
an be written, involving one unknown

intermediate word a

Z
(i)
3 = ROTL21(Z

(i)
1 ) + a

Y
(i−1)
3 = ROTL28(Z

(i)
1 ) ⊕ ROTL21(Z

(i)
2 )

⊕ROTL26(Z
(i)
4 ) ⊕ ROTL19(a)

From the �rst relation, one sees that guessing the 4 LSBs of a will give the atta
ker

a 
andidate for the 21 LSBs of a (using partial knowledge of Z
(i)
1 ). Then, using the

se
ond relation, a 
ondition on bit number 13 of Y
(i−1)
3 is obtained. This 
ondition

eliminates half of the 
andidates. Then, ea
h additional guessed bit of Z
(i)
2 provides

one extra 
ondition, that is immediately used to dis
ard half of the guesses. This "early

abort" te
hnique results in a guessing 
omplexity of

232 × 232 × 217 × 24 = 285

The ba
ktra
king 
an be performed here exa
tly as before to 
omplete the atta
k.

The resulting time 
omplexity is redu
ed to 8 × 285 = 288 guesses (ea
h requiring a

few boolean operations on 32 bit words). Furthermore, the existen
e of even better

guessing te
hniques should be investigated.

5.4 Pra
ti
al Impa
t

Previously, we have proposed a di�erential atta
k on Helix, using 
hosen plaintext. It

requires to obtain twi
e the same internal state as input of the blo
k fun
tion. Thus, the

atta
ker needs to en
rypt twi
e with the same key and the same non
e, and to introdu
e

a di�eren
e in the plaintext at some point. However in [5℄, it is spe
i�ed that "the sender

must ensure that ea
h (K,N) is used at most on
e to en
rypt a message", otherwise

Helix "loses its se
urity properties". A

ording to the authors, this requirement is not

restri
tive sin
e it is underlying many similar situations in 
ryptography. For instan
e,

when using a syn
hronous stream 
ipher, if se
ret key and non
e are un
hanged, the

same pseudo-random sequen
e is generated twi
e, whi
h breaks the 
on�dentiality.

Similar problems may also be en
ountered when using a blo
k 
ipher in OFB mode for

instan
e. In general, a distinguishing atta
k is always possible when non
es are re-used.

We believe the situation is more preo

upying in the 
ase of Helix sin
e we obtain key

re
overy atta
ks and not only distinguishing atta
ks.



On the one hand, there are situations where the previous s
enario is not realisti
.

Indeed, the se
ret key may be used to 
ommuni
ate only in one dire
tion. In this 
ase,

it is straightforward for the sender never to re-use the same non
e (he 
an use 
ounters

for instan
e). Apparently, this is true for wireless networks, where ea
h pair of users

have two separate se
ret keys, one for ea
h dire
tion. A di�erential atta
k 
annot be

applied there, unless the atta
ker gains physi
ally a

ess to the en
ryption ma
hine

and 
an for
e non
e repetition. This may be possible in some parti
ular o

asions, but

in general it is a strong assumption.

On the other hand, in most situations, our di�erential atta
k s
enario seems re-

alisti
. For instan
e, several users often need to share a se
ret key. Even if they split

properly the non
e spa
e, what happens if the same message is sent to multiple re
eivers

? An atta
ker 
an sit in the middle, and modify the 
iphertext on one of the 
ommuni-


ation 
hannels. Then, by 
omparing a �faulty� de
ryption with a 
orre
t de
ryption,

he may obtain the kind of di�erential information he needs.

To 
on
lude, we think the se
urity impa
t of our atta
ks will highly depend on the


ontext, but in general, one should expe
t the blo
k fun
tion of Helix to resist better

against di�erential atta
ks. Overall, the se
re
y of the key 
annot reasonably rely on

the absen
e of non
e repetition.

5.5 A Chosen Non
e Atta
k

A weakness regarding the in�uen
e of ea
h non
e word has been identi�ed in Se
-

tion 3.2. Here, we propose an extension to a distinguishing atta
k against Helix. Its


omplexity is mu
h bigger than the previous atta
k. However it has the advantage of

being based on weaker assumptions. Indeed, in this 
ase, the atta
ker does not need to

en
rypt several messages with the same pair (key,non
e). Instead, we suppose that the

same plaintext P is en
rypted twi
e with the same se
ret key, but two distin
t non
es

N and N ′ su
h that

N = (N0, N1, N2, N3)

N ′ = (N0, N1, N2, N3 + ∆)

Then, as argued in 3.2, the blo
k fun
tion is essentially the same for any round i su
h
that i mod 4 6= 3. If a state 
ollision o

urs on the input of su
h a round, it will also

propagate to a state 
ollision for the input of the next round. Thus state 
ollisions

on inputs of rounds i su
h that i mod 4 = 0 imply 
ollisions on 4 
onse
utive blo
ks

of keystream. Moreover, the di�eren
e on the 5-th blo
k 
an be predi
ted exa
tly (by

pi
king ∆ = 10 . . . 0x for instan
e). Thus, we obtain a dete
table 
ondition on 160 bits

of keystream. This is su�
ient to dete
t state 
ollisions with good probability.

Therefore, 
ontrarily to what is 
laimed in [5℄, state 
ollisions in Helix 
an be de-

te
ted. However, the length of messages is not allowed to ex
eed 262 blo
ks, so 
ollisions

are unlikely to be observed for pra
ti
e purpose.

5.6 For
ing the Collisions

In this se
tion, we show that the previous atta
k 
an be extended into a distinguisher

against Helix with only 2114 en
rypted blo
ks. This is an important result, sin
e it


onstitutes a break of the 
ipher, a

ording to the de�nition given by the authors [5℄.



The general idea is to work on a large set of non
es that will preserve 
ollisions dur-

ing a few rounds. Then these 
ollisions 
an be dete
ted by observing the 
orresponding

keystream blo
ks. More pre
isely, we build a message P of the maximal authorized

length 262 words by repeating 262 times the same word P0. Then, P is en
rypted under

a �xed unknown se
ret key K using di�erent non
es of the form

N (δ,∆) = (N0 + δ,N1 + δ,N2 + δ,N3 + ∆)

with four �xed 
onstants (N0, . . . , N3). δ is of the form 8 × x where x spans all values

from 0 to 220 and ∆ spans all 232 possible words. Therefore the number of blo
ks

en
rypted is

262 × 232 × 220 = 2114

As before, we 
onsider any state 
ollisions that o

urs between two di�erent non
es

N (δ1,∆1) and N (δ2,∆2), at two di�erent positions in the en
ryption, respe
tively i1 and

i2. We would like this state 
ollision to be preserved for several rounds, in order to

dete
t some properties on the keystream, as in the previous Se
tion. We are sure that

the plaintext word introdu
ed is always P0, by 
onstru
tion. Furthermore we would

like to have the same round key words for both en
ryptions. Hen
e, these positions

should satisfy

i1 mod 8 = i2 mod 8 = 0

in order to have Xi1+j,0 = Xi2+j,0 for all j. Besides, if

δ1 + i1 = δ2 + i2 mod 232 (5)

then Xi1+j,1 = Xi2+j,1 when j mod 4 6= 3. In this 
ase, the state 
ollision is preserved

during at least 3 rounds. Con
erning rounds i1 + 3 and i2 + 3, we would like to also

preserve the 
ollision, thus we need Xi1+3,1 = Xi2+3,1 or

∆1 + i1 + X ′

i1+3 = ∆2 + i2 + X ′

i2+3 mod 232 (6)

With these three assumptions, the state 
ollision is preserved at least until the rounds

i1 + 7 and i2 + 7 whi
h results in 
ollisions on 8 
onse
utive words of keystream.

To mount an atta
k, we �rst store sequen
es of 8 
onse
utive keystream words,

for ea
h message and for ea
h position i su
h that i mod 8 = 0. Then, we look for a


ollision among the 2114

8 = 2111 entries in this table. This 
an be a
hieved by sorting the

table, with 
omplexity of 2111 × 111 ≃ 2118 basi
 instru
tions. Then, sin
e we 
onsider

obje
ts of 256 bits, the number of �fortuitous� 
ollisions in the table is

2111 × 2111

2
× 2−256 ≃ 0

Besides, when a �true� state 
ollision o

urs, a 
ollision is also observed on the entries

of the table, provided the additional assumptions (5) and (6) hold. (5) holds with

probability 2−29, sin
e all terms are multiples of 8, and (6) holds with probability

2−32. Therefore, the number of �true� 
ollision observed in the table is in average

2111 × 2111

2
× 2−160 × 2−29 × 2−32 = 1

Thus we have 
onsidered enough en
rypted data to dete
t some parti
ular state 
olli-

sions that are preserved during a few rounds. We a
hieve it by observing patterns of



8 
onse
utive words of keystream. For a true Helix output we expe
t to �nd a 
olli-

sion in the previous table, while it will not be the 
ase for a random output. A
tually

this distinguishing atta
k 
an be slightly improved if we take into a

ount the 
ase

i mod 8 = 4.

To 
on
lude, we have proposed a distinguishing atta
k against Helix requiring the

en
ryption of 2
114 words of plaintext under 
hosen non
es. This atta
k is faster than

exhaustive sear
h, pro
esses less than 2
128 blo
ks of plaintext and respe
ts the se
u-

rity requirements proposed in [5℄, sin
e no pair (key,non
e) is ever re-used to en
rypt

di�erent messages. Therefore, this atta
k 
onstitutes a theoreti
al break of Helix.

6 Con
lusion

This paper des
ribes two atta
ks against the new stream 
ipher Helix. The �rst one

re
overs the se
ret key with a reasonably low 
omplexity in time and data, so we think

it should be 
onsidered as an important threat. The assumptions we use are quite usual

(
hosen plaintext, 
hosen non
e), but they are outside the se
urity model proposed by

the authors of the 
ipher.

However, we also propose a se
ond atta
k, less e�
ient but whi
h relies on weaker

assumptions. This distinguishing atta
k 
onstitutes a break of Helix a

ording to the

de�nition given by the authors. Both atta
ks result from weak di�erential properties of

the en
ryption fun
tion regarding the plaintext and the non
e. In general, our atta
k

illustrates the fa
t that one should be 
areful to prote
t new stream 
iphers against

di�erential-like atta
ks.

Referen
es

1. D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of Stream Ciphers with Linear
Masking. In M. Yung, editor, Advan
es in Cryptology � Crypto'02, volume 2442 of Le
tures
Notes in Computer S
ien
e, pages 515�532. Springer, 2002.

2. P. Ekdahl and T. Johansson. SNOW - a New Stream Cipher. In First
Open NESSIE Workshop, KU-Leuven, 2000. Submission to NESSIE. Available at
http://www.it.lth.se/
ryptology/snow/.

3. P. Ekdahl and T. Johansson. Distinguishing Atta
ks on SOBER-t16 and t32. In J. Daemen
and V. Rijmen, editors, Fast Software En
ryption � 2002, volume 2365 of Le
tures Notes
in Computer S
ien
e, pages 210�224. Springer, 2002.

4. N. Ferguson. Mi
hael: an improved MIC for 802.11 WEP. Do
ument 2-020. Available at
http://grouper.ieee.org/groups/802/11/.

5. N. Ferguson, D. Whiting, B. S
hneier, J. Kelsey, S. Lu
ks, and T. Kohno. Helix, Fast
En
ryption and Authenti
ation in a Single Cryptographi
 Primitive. In T. Johansson,
editor, Fast Software En
ryption � 2003, 2003. To appear.

6. FIPS PUB 81. DES Modes of Operation, 1980.
7. S. Fluhrer. Cryptanalysis of the SEAL 3.0 Pseudorandom Fun
tion Family. In M. Matsui,

editor, Fast Software En
ryption � 2001, volume 2355 of Le
tures Notes in Computer
S
ien
e, pages 135�143. Springer, 2001.

8. S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key S
heduling Algorithm of
RC4. In S. Vaudenay and A.M. Youssef, editors, Sele
ted Areas in Cryptography � 2001,
volume 2259 of Le
tures Notes in Computer S
ien
e, pages 1�24. Springer, 2001.

9. V.D. Gligor and P. Dones
u. Fast En
ryption and Authenti
ation: XCBC En
ryption and
XECB Authenti
ation Modes. In M. Matsui, editor, Fast Software En
ryption � 2001,
volume 2355 of Le
tures Notes in Computer S
ien
e, pages 192�108. Springer, 2001.



10. S. Halevi, D. Coppersmith, and C. Jutla. S
ream : a Software-e�
ient Stream Cipher. In
L. Knudsen, editor, Fast Software En
ryption � 2002, volume 2332 of Le
tures Notes in
Computer S
ien
e, pages 195�209. Springer, 2002.

11. P. Hawkes and G. Rose. Primitive Spe
i�
ation and Supporting Do
umentation for
SOBER-t32. In First Open NESSIE Workshop, 2000. Submission to NESSIE.

12. C. Jutla. En
ryption Modes with Almost Free Message Integrity. In B. P�tzmann,
editor, Advan
es in Cryptology � Euro
rypt'01, volume 2045 of Le
tures Notes in Computer
S
ien
e, pages 529�544. Springer, 2001.

13. H. Lipmaa and S. Moriai. E�
ient Algorithms for Computing Di�erential Properties of
Addition. In M. Matsui, editor, Fast Software En
ryption � 2001, volume 2355 of Le
tures
Notes in Computer S
ien
e, pages 336�350. Springer, 2001.

14. NESSIE - New European S
hemes for Signature, Integrity and En
ryption.
http://www.
ryptonessie.org.

15. P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz. OCB/ A Blo
k-
ipher Mode of Opera-
tion for E�
ient Authenti
ated En
ryption. In Eight ACM Conferen
e on Computer and
Communi
ations Se
urity (CCS-8), pages 196�205. ACM Press, 2001.

16. P. Rogaway and D. Coppersmith. A Software-optimized En
ryption Algorithm. In R. An-
derson, editor, Fast Software En
ryption � 1994, volume 809 of Le
tures Notes in Com-
puter S
ien
e, pages 56�63. Springer-Verlag, 1994.

17. J. Wallen. Linear Approximations of Addition Modulo 2
n. In T. Johansson, editor, Fast

Software En
ryption � 2003, 2003. To appear.
18. IEEE P802.11, The Working Group for Wireless LANs.

http://grouper.ieee.org/groups/802/11/.


