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Abstract. Stream cipher HC-256 is proposed in this paper. It generates
keystream from a 256-bit secret key and a 256-bit initialization vector.
HC-256 consists of two secret tables, each one with 1024 32-bit elements.
The two tables are used as S-Box alternatively. At each step one element
of a table is updated and one 32-bit output is generated. The encryption
speed of the C implementation of HC-256 is about 1.9 bit per clock cycle
(4.2 clock cycle per byte) on the Intel Pentium 4 processor.

1 Introduction

Stream ciphers are used for shared-key encryption. The modern software efficient
stream ciphers can run 4-to-5 times faster than block ciphers. However, very few
efficient and secure stream ciphers have been published. Even the most widely
used stream cipher RC4 [25] has several weaknesses [14, 16, 22, 9, 10, 17, 21]. In
the recent NESSIE project all the six stream cipher submissions cannot meet
the stringent security requirements [23]. In this paper we aim to design a very
simple, secure, software-efficient and freely-available stream cipher.

HC-256 is the stream cipher we proposed in this paper. It consists of two
secret tables, each one with 1024 32-bit elements. At each step we update one
element of a table with non-linear feedback function. Every 2048 steps all the
elements of the two tables are updated. At each step, HC-256 generates one
32-bit output using the 32-bit-to-32-bit mapping similar to that being used in
Blowfish [28]. Then the linear masking is applied before the output is generated.

In the design of HC-256, we take into consideration the superscalar feature
of modern (and future) microprocessors. Without compromising the security, we
try to reduce the dependency between operations. The dependency between the
steps is reduced so that three consecutive steps can be computed in parallel.
At each step, three parallel additions are used in the feedback function and
three additions are used to combine the four table lookup outputs instead of the
addition-xor-addition being used in Blowfish (similar idea has been suggested by
Schneier and Whiting to use three xors to combine those four terms [29]).

With the high degree of parallelism, HC-256 runs very efficiently on the
modern processor. We implemented HC-256 in C and tested its performance on
the Pentium 4 processor. The encryption speed of HC-256 reaches 1.93 bit/cycle.

This paper is organized as follows. We introduce HC-256 in Section 2. The se-
curity of HC-256 is analyzed in Section 3. Section 4 discusses the implementation
and performance of HC-256. Section 5 concludes this paper.



2 Stream Cipher HC-256

In this section, we describe the stream cipher HC-256. From a 256-bit key and a
256-bit initialization vector, it generates keystream with length up to 2128 bits.

2.1 Operations, variables and functions

The following operations are used in HC-256:

+ : x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

¯ : x ¯ y means x− y mod 1024
⊕ : bit-wise exclusive OR
|| : concatenation
>> : right shift operator. x >> n means x being right shifted n bits.
<< : left shift operator. x << n means x being left shifted n bits.
>>> : right rotation operator. x >>> n means ((x >> n)⊕(x << (32−n))

where 0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q are used in HC-256. The key and the initialization vector of
HC-256 are denoted as K and IV . We denote the keystream being generated as s.

P : a table with 1024 32-bit elements. Each element is denoted as P [i]
with 0 ≤ i ≤ 1023.

Q : a table with 1024 32-bit elements. Each element is denoted as Q[i]
with 0 ≤ i ≤ 1023.

K : the 256-bit key of HC-256.
IV : the 256-bit initialization vector of HC-256.
s : the keystream being generated from HC-256. The 32-bit output

of the ith step is denoted as si. Then s = s0||s1||s2|| · · ·
There are six functions being used in HC-256. f1(x) and f2(x) are the same as
the σ

{256}
0 (x) and σ

{256}
1 (x) being used in the message schedule of SHA-256 [24].

For g1(x) and h1(x), the table Q is used as S-box. For g2(x) and h2(x), the table
P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3)
f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10)

g1(x, y) = ((x >>> 10)⊕ (y >>> 23)) + Q[(x⊕ y) mod 1024]
g2(x, y) = ((x >>> 10)⊕ (y >>> 23)) + P [(x⊕ y) mod 1024]

h1(x) = Q[x0] + Q[256 + x1] + Q[512 + x2] + Q[768 + x3]
h2(x) = P [x0] + P [256 + x1] + P [512 + x2] + P [768 + x3]

where x = x3||x2||x1||x0, x is a 32-bit word, x0, x1, x2 and x3 are four bytes.
x3 and x0 denote the most significant byte and the least significant byte of x,
respectively.



2.2 Initialization process (key and IV setup)

The initialization process of HC-256 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 4096 steps without generating output.

1. Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7, where each Ki and
IVi denotes a 32-bit number. The key and IV are expanded into an array
Wi (0 ≤ i ≤ 2559) as:

Wi =





Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 2559

2. Update the tables P and Q with the array W .

P [i] = Wi+512 for 0 ≤ i ≤ 1023
Q[i] = Wi+1536 for 0 ≤ i ≤ 1023

3. Run the cipher (the keystream generation algorithm in Subsection 2.3) 4096
steps without generating output.

The initialization process completes and the cipher is ready to generate keystream.

2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gen-
erated. An S-box is used to generate only 1024 outputs, then it is updated in
the next 1024 steps. The keystream generation process of HC-256 is given below
(“¯” denotes “−” modulo 1024, si denotes the output of the i-th step).

i = 0;
repeat until enough keystream bits are generated.
{

j = i mod 1024;
if (i mod 2048) < 1024
{

P [j] = P [j] + P [j ¯ 10] + g1( P [j ¯ 3], P [j ¯ 1023] );
si = h1(P [j ¯ 12] )⊕ P [j];

}
else
{

Q[j] = Q[j] + Q[j ¯ 10] + g2(Q[j ¯ 3], Q[j ¯ 1023] );
si = h2(Q[j ¯ 12] )⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat



2.4 Encryption and decryption

The keystream is XORed with the message for encryption. The decryption is to
XOR the keystream with the ciphertext.

3 Security Analysis of HC-256

We start with a brief review of the attakcs on stream ciphers. Many stream
ciphers are based on the linear feedback shift registers (LFSRs) and a number
of correlation attacks, such as [30, 31, 19, 11, 20, 4, 15], were developed to analyze
them. Later Golić [12] devised the linear cryptanalysis of stream ciphers. That
technique could be applied to a wide range of stream ciphers. Recently Cop-
persmith, Halevi and Jutla [6] developed the distinguishing attacks (the linear
attack and low diffusion attack) on stream ciphers with linear masking.

The correlation attacks cannot be applied to HC-256 because HC-256 uses
non-linear feedback functions to update the two tables P and Q. The output
function of HC-256 uses the 32-bit-to-32-bit mapping similar to that being used
in Blowfish. The analysis on Blowfish shows that it is extremely difficult to
apply linear cryptanalysis [18] to the large secret S-box. The large secret S-box
of HC-256 is updated during the keystream generation process and it is almost
impossible to develop linear relations linking the input and output bits of the S-
box. Vaudenay has found some differential weakness of the randomly generated
large S-box [32]. But it is very difficult to launch differential cryptanalysis [2]
against HC-256 since it is a synchronous stream cipher for which the keystream
generation is independent of the message.

In this section, we will analyze the security of the secret key, the randomness
of the keystream, and the security of the initialization process.

3.1 Period

The 65547-bit state of HC-256 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-256 is difficult to predict. The average
period of the keystream is estimated to be about 265546 (if we assume that the
invertible next-state function of HC-256 is random). The large number of states
also completely eliminates the threat of time-memory tradeoff attack on stream
ciphers [1, 13].

3.2 The security of the key

We begin with the study of a modified version of HC-256 (with no linear mask-
ing). Our analysis shows that even for this weak version of HC-256, it is impossi-
ble to recover the secret key faster than exhaustive key search. The reason is that
the keystream is generated from a highly non-linear function (h1(x) or h2(x)), so
the keystream leaks very small amount of information at each step. Recovering
P and Q requires the partial information leaked from a lot of steps. Because
the tables are updated in a highly non-linear way, it is difficult to retrieve the
informtion of P and Q from those leaked information.



HC-256 with no linear masking. For HC-256 with no linear masking, the
output at the ith step is generated as si = h1(P [i ¯ 12] ) or si = h2( Q[i ¯ 12] ).
If two outputs generated from the same S-box are equal, then very likely those
two inputs to the S-box are equal. According to the analysis on the randomness
of the outputs of h1(x) and h2(x) given in Subsection 3.3, s2048×α+i = s2048×α+j

(0 ≤ i < j < 1024) with probability about 2−31. If s2048×α+i = s2048×α+j , then
at the (2048 × α + j)-th step, P [i ¯ 12] = P [j ¯ 12] with probability about 0.5
(31-bit information of the table P is leaked). We note that for every 1024 steps
in the range (2048× α, 2048× α + 1024), the same S-box is used in h1(x). The
probability that there are two equal outputs is

(
1024

2

)× 2−31 ≈ 2−12. In average
each output leaks 2−12×31

1024 ≈ 2−17 bit information of the table P . To recover
P , we need to analyze at least 1024×32

2−17 ≈ 232 outputs. Recovering P from those
232 outputs involves very complicated non-linear equations and solving them is
computationally infeasible. Recovering Q is as difficult as recovering P . We note
that the table Q is used as S-box to update P , and vice versa. P and Q interact
in such a complicated way and recovering them from the keystream cannot be
faster than exhaustive key search.

HC-256. The analysis above shows that the secret key of HC-256 with no linear
masking is secure. With the linear masking, the information leakage is greatly
reduced and it would be even more difficult to recover the secret key from the
keystream. We thus conclude that the key of HC-256 cannot be recovered faster
than exhaustive key search.

3.3 Randomness of the keystream

In this subsection, we investigate the randomness of the keystream of HC-256.
Because the large, secret and frequently updated S-boxes are used in the cipher,
the efficient attack is to analyze the randomness of the overall 32-bit words.
Under this guideline, we developed some attacks against HC-256 with no linear
masking. Then we show that the linear masking eliminates those threats.

3.3.1 Keystream of HC-256 with no linear masking .

The attacks on HC-256 with no linear masking is to investigate the security
weaknesses in the output and feedback functions. We developed two attacks
against HC-256 with no linear masking.

Weakness of h1(x) and h2(x). For HC-256 with no linear masking, the output
is generated as si = h1(P [i ¯ 12]) or si = h2(Q[i ¯ 12]). Because there is no
difference between the analysis of h1(x) and h2(x), we use h(x) to refer h1(x)
and h2(x) here. Assume that h(x) is a 32-bit-to-32-bit S-box H(x) with randomly
generated secret elements and the inputs to H are randomly generated. Because
the elements of the H(x) are randomly generated, the output of H(x) is not



uniformly distributed. If a lot of outputs are generated from H(x), some values
in the range [0, 232) never appear and some appear with probability larger than
2−32. Then it is straightforward to distinguish the outputs from random signal.
However each H(x) in HC-256 is used to generate only 1024 outputs, then it
gets updated. The direct computation of the distribution of the outputs of H(x)
from those 1024 outputs cannot be successful. Instead, we consider the collision
between the outputs of H(x). The following theorem gives the collision rate of
the outputs of H(x).

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n and n is a large integer. Let x1 and x2 be
two m-bit random inputs to H. Then H(x1) = H(x2) with probability about
2−n + 2−m.

Proof. If x1 = x2, then H(x1) = H(x2). If x1 6= x2, then H(x1) = H(x2) with
probability 2−n. x1 = x2 with probability 2−m and x1 6= x2 with probability
1 − 2−m. The probability that H(x1) = H(x2) is 2−m + (1 − 2−m) × 2−n ≈
2−n + 2−m.

Attack 1. According to Theorem 1, for the 32-bit-to-32-bit S-box H, the collision
rate of the outputs is 2−32 + 2−32 = 2−31. With 235 pairs of (H(x1),H(x2)), we
can distinguish the output from random signal with success rate 0.761. (The suc-
cess rate can be improved to 0.996 with 236 pairs.) Note that only 1024 outputs
are generated from the same S-box H, so 226 outputs are needed to distinguish
the keystream of HC-256 with no linear masking.

Experiment. To compute the collision rate of the outputs of HC-256 (with no
linear masking), we generated 239 outputs (248 pairs). The collision rate is
2−31 − 2−40.09. The experiment confirms that the collision rate of the outputs
of h(x) is very close to 2−31, and approximating h(x) with randomly generated
S-box has negligible effect on the attack.

Remarks. The distinguishing attack above can be slightly improved if we con-
sider the differential attack on Blowfish. Vaudenay [32] has pointed out that the
collision in a randomly generated S-box in Blowfish can be applied to distinguish
the outputs of Blowfish with reduced round number (8 rounds). The basic idea
of Vaudenay’s differential attack is that if Q[i] = Q[j] for 0 ≤ i, j < 256, i 6= j,
then for a0 ⊕ a′0 = i ⊕ j, h1(a3||a2||a1||a0) = h1(a3||a2||a1||a′0) with probability
2−7, where each ai denotes an 8-bit number. We can detect the collision in the
S-box with success rate 0.5 since that S-box Q is used as inputs to h2(x) to
produce 1024 outputs. If Q[i] = Q[j] for 256α ≤ i, j < 256α + 256, 0 ≤ α < 4,
i 6= j, and x1 and x2 are two random inputs (note that we cannot introduce
or identify inputs with particular difference to h(x)), then the probability that
h1(x1) = h1(x2) becomes 2−31 + 2−32. However the chance that there is one

useful collision in the S-box is only (256
2 )×4

232 = 2−15. The average collision rate
becomes 2−15 × (2−31 + 2−32) + (1− 2−15)× 2−31 = 2−31 + 2−47. The increase



in collision rate is so small that the collision in the S-box has negligible effect on
this attack.

Weakness of the feedback function. The table P is updated with the non-
linear feedback function P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯
3], P [i ¯ 1023] ). The following attack is to distinguish the keystream by exploit-
ing this relation.

Attack 2. Assume that the h(x) is a one-to-one mapping function. Consider two
groups of outputs (si, si−3, si−10, si−2047, si−2048) and (sj , sj−3, sj−10, sj−2047,
sj−2048). If i 6= j and 1024 × α + 10 ≤ i, j < 1024 × α + 1023, they are equal
with probability about 2−128. The collision rate is 2−160 if the outputs are truely
random. 2−128 is much larger than 2−160, so the keystream can be distinguished
from random signal with about 2128 pairs of such five-tuple groups of outputs.
Note that the S-box is updated every 1024 steps, 2119 outputs are needed in the
attack.

The two attacks given above show that the HC-256 with no linear masking
does not generate secure keystream.

3.3.2 Keystream of HC-256 .

With the linear masking being applied, it is no longer possible to exploit those
two weaknesses separately and the attacks given above cannot be applied di-
rectly. We need to remove the linear masking first. We recall that at the ith
step, if (i mod 2048) < 1024, the table P is updated as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1( P [i ¯ 3], P [i ¯ 1023] )

We know that si = h1(P [i¯12])⊕P [i mod 1024]. For 10 ≤ (i mod 2048) < 1023,
this feedback function can be written alternatively as

si ⊕ h1(zi) = (si−2048 ⊕ h′1(zi−2048)) + (si−10 ⊕ h1(zi−10)) +
g1( si−3 ⊕ h1(zi−3), si−2047 ⊕ h′1(zi−2047) ) (1)

where h1(x) and h′1(x) indicate two different functions since they are related to
different S-boxes; zj denotes the P [j ¯ 12] at the j-th step. The linear masking
is removed successfully in (1). However, it is very difficult to apply (1) directly
to distinguish the keystream. To simplify the analysis, we attack a weak version
of (1). We replace all the ‘+’ in the feedback function with ‘⊕’ and write (1) as

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23)
= h1(zi)⊕ h′1(zi−2048))⊕ h1(zi−10))⊕ (h1(zi−3) >>> 10)⊕
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri], (2)

where ri = (si−3 ⊕ h1(zi−3) ⊕ si−2047 ⊕ h′1(zi−2047)) mod 1024. Because of the
random nature of h1(x) and Q, the right hand side of (2) is not uniformly



distributed. But each S-box is used in only 1024 steps, these 1024 outputs are
not sufficient to compute the distribution of si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>>
10)⊕ (si−2047 >>> 23). Instead we need to study the collision rate. The effective
way is to eliminate the term h1(zi) before analyzing the collision rate.

Replace the i with i+10. For 10 ≤ i mod 2048 < 1013, (2) can be written as

si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23)
= h1(zi+10)⊕ h′1(zi−2038))⊕ h1(zi)⊕ (h1(zi+7) >>> 10)⊕
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] (3)

For the left-hand sides of (2) and (3) to be equal, i.e., for the following equation

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23) =
si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23) (4)

to hold, we require that (after eliminating the term h1(zi))

h1(zi−10)⊕ h′1(zi−2048)⊕ (h1(zi−3) >>> 10)
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri]

= h1(zi+10)⊕ h′1(zi−2038)⊕ (h1(zi+7) >>> 10)
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] (5)

For 22 ≤ i mod 2048 < 1013, we note that zi−10 = zi ⊕ zi−2048 ⊕ (zi−3 >>>
10)⊕(zi−2047 >>> 23), and zi+10 = zi⊕zi−2038⊕(zi+7 >>> 10)⊕(zi−2037 >>> 23).
Approximate (5) as

H(x1) = H(x2) (6)

where H denotes a random secret 106-bit-to-32-bit S-box, x1 and x2 are two 106-
bit random inputs, x1 = zi−3||zi−2047||zi−2048||ri and x2 = zi+7||zi−2037||zi−2038

||ri+10. (The effect of zi is included in H.) According to Theorem 1, (6) holds
with probability 2−32 + 2−106. So (4) holds with probability 2−32 + 2−106. We
approximate the binomial distribution with the normal distribution. The mean
µ = Np and the standard deviation σ =

√
Np(1− p), where N is the total

number of equations (4), and p = 2−32 + 2−106. For random signal, p′ = 2−32,
the mean µ′ = Np′ and the standard deviation σ′ =

√
Np′(1− p′). If |u− u′| >

2(σ + σ′), i.e. N > 2184, the output of the cipher can be distinguished from
random signal with success rate 0.9772.

After verifying the validity of 2184 equations (4), we can successfully distin-
guish the keystream from random signal. We note that the S-box is updated
every 1024 steps, so only about 210 equations (4) can be obtained from 1024
steps in the range 1024×α ≤ i < 1024×α+1024. To distinguish the keystream
from random signal, 2184 outputs are needed in the attack.

The attack above can be improved by exploiting the relation ri = (si−3 ⊕
h1(zi−3)⊕si−2047⊕h′1(zi−2047)) mod 1024. If (si−3⊕si−2047) mod 1024 = (si+7⊕
si−2037) mod 1024, then (6) holds with probability 2−32 + 2−96 and 2164 equa-
tions (4) are needed in the attack. Note that only about one equation (4) can



now be obtained from 1024 steps in the range 1024× α ≤ i < 1024× α + 1024.
To distinguish the keystream from random signal, 2174 outputs are needed in
the attack.

We note that the attack above can only be applied to HC-256 with all the ‘+’ in
the feedback function being replaced with ‘⊕’. To distinguish the keystream of
HC-256, more than 2174 outputs are needed. So we conclude that it is impossible
to distinguish a 2128-bit keystream of HC-256 from random signal.

3.4 Security of the initialization process (key/IV setup)

The initialization process of the HC-256 consists of two stages, as given in Sub-
section 2.2. We expand the key and IV into P and Q. At this stage, every bit
of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Then we run
the cipher 4096 steps without generating output so that the P and Q become
more random. After the initialization process, we expect that any difference in
the keys/IVs would not result in biased keystream.

4 Implementation and Performance of HC-256

The direct C implementation of the encryption algorithm given in Subsection
2.3 runs at about 0.6 bit/cycle on the Pentium 4 processor. The program size
is very small but the speed is only about 1.5 times that of AES [7]. At each
step in the direct implementation, we need to compute (i mod 2048), i ¯ 3,
i ¯ 10 and i ¯ 1023. And at each step there is a branch decision based on the
value of (i mod 2048). These operations affect greatly the encryption speed. The
optimization process is to reduce the amount of these operations.

4.1 The optimized implementation of HC-256

This subsection describes the optimized C implementation of HC-256 given in
Appendix B (“hc256.h”). In the optimized code, loop unrolling is used and only
one branch decision is made for every 16 steps. The experiment shows that the
branch decision in the optimized code affects the encryption speed by less than
one percent.

There are several fast implementations of the feedback functions of P and
Q. We use the implementation given in Appendix B because it achieves the best
consistency on different platforms. The details of that implementation are given
below. The feedback function of P is given as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1( P [i ¯ 3], P [i ¯ 1023] )

A register X containing 16 elements is introduced for P . If (i mod 2048) < 1024
and i mod 16 = 0, then at the begining of the ith step, X[j] = P [(i − 16 +



j) mod 1024] for j = 0, 1, · · · 15, i.e. the X contains the values of P [i¯16], P [i¯
15], · · · , P [i ¯ 1]. In the 16 steps starting from the ith step, the P and X are
updated as

P [i] = P [i] + X[6] + g1( X[13], P [i + 1] );
X[0] = P [i];

P [i + 1] = P [i + 1] + X[7] + g1(X[14], P [i + 2] );
X[1] = P [i + 1];

P [i + 2] = P [i + 2] + X[8] + g1(X[15], P [i + 3] );
X[2] = P [i + 2];

P [i + 3] = P [i + 3] + X[9] + g1(X[0], P [i + 4] );
X[3] = P [i + 3];

· · ·
P [i + 14] = P [i + 14] + X[4] + g1(X[11], P [i + 15] );

X[14] = P [i + 14];
P [i + 15] = P [i + 15] + X[5] + g1(X[12], P [(i + 1) mod 1024] );

X[15] = P [i + 15];

Note that at the ith step, two elements of P [i¯10] and P [i¯3] can be obtained
directly from X. Also for the output function si = h1(P [i¯12])⊕P [i mod 1024],
the P [i ¯ 12] can be obtained from X. In this implementation, there is no need
to compute i ¯ 3, i ¯ 10 and i ¯ 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

To reduce the memory requirement and the program size, the initialization
process implemented in Appendix B is not as straightforward as that given in
Subsection 2.2. To reduce the memory requirement, we do not implement the
array W in the program. Instead we implement the key and IV expansion on P
and Q directly. To reduce the program size, we implement the feedback functions
of those 4096 steps without involving X and Y .

4.2 Performance of HC-256

Encryption Speed. We use the C codes given in Appendix B and C to mea-
sure the encryption speed. The processor used in the test is Pentium 4 (2.4
GHz, 8 KB Level 1 data cache, 512 KB Level 2 cache, no hyper-threading). The
speed is measured by repeatedly encrypting the same 512-bit buffer for 226 times
(The buffer is defined as ‘static unsigned long DATA[16]’ in Appendix C). The
encryption speed is given in Table 1.

The C implementation of HC-256 is faster than the C implementations of al-
most all the other stream ciphers. (However different designers may have made
different efforts to optimize their codes. And the encryption speed may be mea-
sured in different ways. So the speed comparison is not absolutely accurate.)



SEAL [26] is a software-efficient cipher and its C implementation runs at the
speed of about 1.6 bit/cycle on Pentium III processor. Scream [5] runs at about
the same speed as SEAL. The C implementation of SNOW2.0 [8] runs at about
1.67 bit/cycle on Pentium 4 processor. TURING [27] runs at about 1.3 bit/cycle
on the Pentium III mobile processor. The C implementation of MUGI [33] runs
at about 0.45 bit/cycle on the Pentium III processor. The encryption speed of
Rabbit [3] is about 2.16 bit/cycle on Pentium III processor, but it is programmed
in assembly language inline in C.

Table 1. The speed of the C implementation of HC-256 on Pentium 4

Operating System Compiler Optimization
option

Speed
(bit/cycle)

Windows XP (SP1) Intel C++ Compiler 7.1 -O3 1.93
Microsoft Visual C++ 6.0

Professional (SP5)
-Release 1.81

Red Hat Linux 9 Intel C++ Compiler 7.1 -O3 1.92
(Linux 2.4.20-8) gcc 3.2.2 -O3 1.83

Remarks. In HC-256, there is dependency between the feedback and output func-
tions since the P [i mod 1024] (or Q[i mod 1024]) being updated at the ith step
is immediately used as linear masking. This dependency reduces the speed of
HC-256 by about 3%. We do not remove this dependency from the design of
HC-256 for security reason. Our analysis shows that each term being used as
linear masking should not have been used in an S-box in the previous steps,
otherwise the linear masking could be removed much easier. In our optimized
implementation, we do not deal with this dependency because its effect on the
encryption speed is very limited on the Pentium 4 processor.

Initialization Process. The key setup of HC-256 requires about 74,000 clock
cycles (measured by repeating the setup process 216 times on the Pentium 4
processor with Intel C++ compiler 7.1). This amount of computation is more
than that required by most of the other stream ciphers (for example, the ini-
tialization process of Scream takes 27,500 clock cycles). The reason is that two
large S-boxes are used in HC-256. To eliminate the threat of related key/IV
attack, the tables should be updated with the key and IV thoroughly and this
process requires a lot of computations. So it is undesirable to use HC-256 in the
applications where key (or IV) is updated frequently.

5 Conclusion

In this paper, we proposed a software-efficient stream cipher HC-256. Our anal-
ysis shows that HC-256 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We thus invite
and encourage the readers to analyze the security of HC-256.

Finally we explicitly state that HC-256 is available royalty-free and HC-256
is not covered by any patent in the world.
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A Test Vectors of HC-256

Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7. The first 512 bits of
keystream are given for different values of key and IV.

1. The key and IV are set as 0.

8589075b 0df3f6d8 2fc0c542 5179b6a6
3465f053 f2891f80 8b24744e 18480b72
ec2792cd bf4dcfeb 7769bf8d fa14aee4
7b4c50e8 eaf3a9c8 f506016c 81697e32

2. The key is set as 0, the IV is set as 0 except that IV0 = 1.



bfa2e2af e9ce174f 8b05c2fe b18bb1d1
ee42c05f 01312b71 c61f50dd 502a080b
edfec706 633d9241 a6dac448 af8561ff
5e04135a 9448c434 2de7e9f3 37520bdf

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55.

fe4a401c ed5fe24f d19a8f95 6fc036ae
3c5aa688 23e2abc0 2f90b3ae a8d30e42
59f03a6c 6e39eb44 8f7579fb 70137a5e
6d10b7d8 add0f7cd 723423da f575dde6

B The optimized C implementation of HC-256
(“hc256.h”)

#include <stdlib.h>

typedef unsigned long uint32;
typedef unsigned char uint8;

uint32 P[1024],Q[1024];
uint32 X[16],Y[16];
uint32 counter2048; // counter2048 = i mod 2048;

#ifndef _MSC_VER
#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n))))
#else
#define rotr(x,n) _lrotr(x,n)
#endif

#define h1(x,y) { \
uint8 a,b,c,d; \
a = (uint8) (x); \
b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \
(y) = Q[a]+Q[256+b]+Q[512+c]+Q[768+d]; \

}

#define h2(x,y) { \
uint8 a,b,c,d; \
a = (uint8) (x); \
b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \
(y) = P[a]+P[256+b]+P[512+c]+P[768+d]; \



}

#define step_A(u,v,a,b,c,d,m){ \
uint32 tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \
(a) = (u); \
h1((d),tem3); \
(m) ^= tem3 ^ (u) ; \

}

#define step_B(u,v,a,b,c,d,m){ \
uint32 tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \
(a) = (u); \
h2((d),tem3); \
(m) ^= tem3 ^ (u) ; \

}

void encrypt(uint32 data[]) //each time it encrypts 512-bit data
{

uint32 cc,dd;
cc = counter2048 & 0x3ff;
dd = (cc+16)&0x3ff;

if (counter2048 < 1024)
{

counter2048 = (counter2048 + 16) & 0x7ff;
step_A(P[cc+0], P[cc+1], X[0], X[6], X[13],X[4], data[0]);
step_A(P[cc+1], P[cc+2], X[1], X[7], X[14],X[5], data[1]);
step_A(P[cc+2], P[cc+3], X[2], X[8], X[15],X[6], data[2]);
step_A(P[cc+3], P[cc+4], X[3], X[9], X[0], X[7], data[3]);
step_A(P[cc+4], P[cc+5], X[4], X[10],X[1], X[8], data[4]);
step_A(P[cc+5], P[cc+6], X[5], X[11],X[2], X[9], data[5]);
step_A(P[cc+6], P[cc+7], X[6], X[12],X[3], X[10],data[6]);
step_A(P[cc+7], P[cc+8], X[7], X[13],X[4], X[11],data[7]);
step_A(P[cc+8], P[cc+9], X[8], X[14],X[5], X[12],data[8]);
step_A(P[cc+9], P[cc+10],X[9], X[15],X[6], X[13],data[9]);
step_A(P[cc+10],P[cc+11],X[10],X[0], X[7], X[14],data[10]);
step_A(P[cc+11],P[cc+12],X[11],X[1], X[8], X[15],data[11]);



step_A(P[cc+12],P[cc+13],X[12],X[2], X[9], X[0], data[12]);
step_A(P[cc+13],P[cc+14],X[13],X[3], X[10],X[1], data[13]);
step_A(P[cc+14],P[cc+15],X[14],X[4], X[11],X[2], data[14]);
step_A(P[cc+15],P[dd+0], X[15],X[5], X[12],X[3], data[15]);

}
else
{

counter2048 = (counter2048 + 16) & 0x7ff;
step_B(Q[cc+0], Q[cc+1], Y[0], Y[6], Y[13],Y[4], data[0]);
step_B(Q[cc+1], Q[cc+2], Y[1], Y[7], Y[14],Y[5], data[1]);
step_B(Q[cc+2], Q[cc+3], Y[2], Y[8], Y[15],Y[6], data[2]);
step_B(Q[cc+3], Q[cc+4], Y[3], Y[9], Y[0], Y[7], data[3]);
step_B(Q[cc+4], Q[cc+5], Y[4], Y[10],Y[1], Y[8], data[4]);
step_B(Q[cc+5], Q[cc+6], Y[5], Y[11],Y[2], Y[9], data[5]);
step_B(Q[cc+6], Q[cc+7], Y[6], Y[12],Y[3], Y[10],data[6]);
step_B(Q[cc+7], Q[cc+8], Y[7], Y[13],Y[4], Y[11],data[7]);
step_B(Q[cc+8], Q[cc+9], Y[8], Y[14],Y[5], Y[12],data[8]);
step_B(Q[cc+9], Q[cc+10],Y[9], Y[15],Y[6], Y[13],data[9]);
step_B(Q[cc+10],Q[cc+11],Y[10],Y[0], Y[7], Y[14],data[10]);
step_B(Q[cc+11],Q[cc+12],Y[11],Y[1], Y[8], Y[15],data[11]);
step_B(Q[cc+12],Q[cc+13],Y[12],Y[2], Y[9], Y[0], data[12]);
step_B(Q[cc+13],Q[cc+14],Y[13],Y[3], Y[10],Y[1], data[13]);
step_B(Q[cc+14],Q[cc+15],Y[14],Y[4], Y[11],Y[2], data[14]);
step_B(Q[cc+15],Q[dd+0], Y[15],Y[5], Y[12],Y[3], data[15]);

}
}

//The following defines the initialization functions

#define f1(x) (rotr((x),7) ^ rotr((x),18) ^ ((x) >> 3))
#define f2(x) (rotr((x),17) ^ rotr((x),19) ^ ((x) >> 10))
#define f(a,b,c,d) (f2((a)) + (b) + f1((c)) + (d))

#define feedback_1(u,v,b,c) { \
uint32 tem0,tem1,tem2; \
tem0 = rotr((v),23); tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \

}

#define feedback_2(u,v,b,c) { \
uint32 tem0,tem1,tem2; \
tem0 = rotr((v),23); tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \



}

void initialization(uint32 key[], uint32 iv[])
{

uint32 i,j;

//expand the key and iv into P and Q
for (i = 0; i < 8; i++) P[i] = key[i];
for (i = 8; i < 16; i++) P[i] = iv[i-8];

for (i = 16; i < 528; i++)
P[i] = f(P[i-2],P[i-7],P[i-15],P[i-16])+i;

for (i = 0; i < 16; i++)
P[i] = P[i+512];

for (i = 16; i < 1024; i++)
P[i] = f(P[i-2],P[i-7],P[i-15],P[i-16])+512+i;

for (i = 0; i < 16; i++)
Q[i] = P[1024-16+i];

for (i = 16; i < 32; i++)
Q[i] = f(Q[i-2],Q[i-7],Q[i-15],Q[i-16])+1520+i;

for (i = 0; i < 16; i++)
Q[i] = Q[i+16];

for (i = 16; i < 1024;i++)
Q[i] = f(Q[i-2],Q[i-7],Q[i-15],Q[i-16])+1536+i;

//run the cipher 4096 steps without generating output
for (i = 0; i < 2; i++) {

for (j = 0; j < 10; j++)
feedback_1(P[j],P[j+1],P[(j-10)&0x3ff],P[(j-3)&0x3ff]);

for (j = 10; j < 1023; j++)
feedback_1(P[j],P[j+1],P[j-10],P[j-3]);
feedback_1(P[1023],P[0],P[1013],P[1020]);

for (j = 0; j < 10; j++)
feedback_2(Q[j],Q[j+1],Q[(j-10)&0x3ff],Q[(j-3)&0x3ff]);

for (j = 10; j < 1023; j++)
feedback_2(Q[j],Q[j+1],Q[j-10],Q[j-3]);
feedback_2(Q[1023],Q[0],Q[1013],Q[1020]);

}

//initialize counter2048, and tables X and Y
counter2048 = 0;
for (i = 0; i < 16; i++) X[i] = P[1008+i];
for (i = 0; i < 16; i++) Y[i] = Q[1008+i];

}



C Test HC-256 (“test.c”)

//This program prints the first 512-bit keystream
//then measure the average encryption speed

#include "hc256.h"
#include <stdio.h>
#include <time.h>

int main()
{

uint32 key[8],iv[8];
static uint32 DATA[16]; // the DATA is encrypted

clock_t start, finish;
double duration, speed;
uint32 i;

//initializes the key and IV
for (i = 0; i < 8; i++) key[i]=0;
for (i = 0; i < 8; i++) iv[i]=0;

//key and iv setup
initialization(key,iv);

//generate and print the first 512-bit keystream
for (i = 0; i < 16; i++) DATA[i]=0;
encrypt(DATA);
for (i = 0; i < 16; i++) printf(" %8x ", DATA[i]);

//measure the encryption speed by encrypting
//DATA repeatedly for 0x4000000 times
start = clock();
for (i = 0; i < 0x4000000; i++) encrypt(DATA);
finish = clock();

duration = ((double)(finish - start))/ CLOCKS_PER_SEC;
speed = ((double)i)*32*16/duration;

printf("\n The encryption takes %4.4f seconds.\n\
The encryption speed is %13.2f bit/second \n",\
duration,speed);

return (0);
}


