
Fast Software-Based Attaks on SeurIDSott Contini1 and Yiqun Lisa Yin21 Maquarie University, Computing Department, NSW 2109 Australia,sontini�omp.mq.edu.au,2 Prineton University, EE Department, Prineton, NJ 08540, USA,yyin�prineton.eduAbstrat. SeurID is a widely used hardware token for strengtheningauthentiation in a orporate environment. Reently, Biryukov, Lano,and Preneel presented an attak on the alleged SeurID hash funtion [1℄.They showed that vanishing di�erentials { ollisions of the hash funtion{ our quite frequently, and that suh di�erentials allow an attaker toreover the seret key in the token muh faster than exhaustive searh.Based on simulation results, they estimated that the running time oftheir attak would be about 248 full hash operations when using only asingle 2-bit vanishing di�erential.In this paper, we present tehniques to improve the [1℄ attak. Our theo-retial analysis and implementation experiments show that the runningtime of our improved attak is about 245 hash operations. We then inves-tigate into the use of extra information that an attaker would typiallyhave: multiple vanishing di�erentials or knowledge that other vanishingdi�erentials do not our in a nearby time period. When using the extrainformation, we believe that key reovery an always be aomplishedwithin about 240 hash operations.1 IntrodutionThe SeurID, developed by RSA Seurity, is a hardware token used for strength-ening authentiation when logging in to remote systems, sine passwords bythemselves tend to be easily guessable and subjet to ditionary attaks. TheSeurID adds an \extra fator" of authentiation: one must not only prove them-selves by getting their password orret, but also by demonstrating that theyhave the SeurID token assigned to them. The latter is done by entering the 6-or 8-digit ode that is being displayed on the token at the time of login.Eah token has within it a 64-bit seret key and an internal lok. Everyminute, or every half-minute in some tokens, the seret key and the urrent timeare sent through a ryptographi hash funtion. The output of the hash funtiondetermines the next two authentiator odes, whih are displayed on the LCDsreen. The seret key is also known to the \ACE/server", so that the sameauthentiator an independently be omputed and veri�ed at the remote end.If ever a user loses their token, they must report it so that the urrent tokenan be deativated and replaed with a new one. Thus, the user bears someresponsibility in maintaining the seurity of the system. On the other hand, if



the user were to temporarily leave his token in a plae where it ould be observedby others and then later reover it, then it should not be the ase that the seurityof the devie ould be entirely breahed, assuming the devie is well-designed.The senario just desribed was onsidered in a reent publiation by Biryukov,Lano, and Preneel [1℄, where they showed that the hash funtion that is allegedto be used by SeurID [4℄ (ASHF) has weak properties that ould allow oneto �nd the key muh faster than exhaustive searh. The attak they desriberequires reording all outputs of the SeurID using a PC amera with OCRsoftware, and then later searhing the outputs for indiation of a vanishing dif-ferential { two losely related input times that result in the same output hash.If one is disovered, the attaker then has a good hane of �nding the internalseret key using a searh algorithm that they estimated to be equivalent to 248hash funtion operations. On a 2.4 GHz PC, 248 hash operations take about 111years3. It would require over 1300 of these PC's to �nd the key in a month.In this paper, we present three tehniques to signi�antly speed up the �lter-ing, whih is the bottlenek of their attak. Our theoretial analysis and imple-mentation experiments show that the time omplexity an be redued to about245 hash operations when using only a single vanishing di�erential.We then investigate into the use of extra information that an attaker wouldordinarily have, in order to speed up the attak further. This information onsistsof either multiple vanishing di�erentials, or knowledge that no other vanishingdi�erentials our in a nearby time period of the observed one. In either ase,the running time an be redued signi�antly. Our preliminary analysis suggeststhat after a vanishing di�erential is observed, the attaker would nearly alwaysbe able to perform the key searh algorithm in 240 hash operations or less. Ona typial PC, this an be done in about 5 months, making the omputing powerrequirements for the searh attainable by almost any individual.The suess probability of all attaks (inluding [1℄) depend upon how longthe attaker must wait for a vanishing di�erential to our. Simulations haveshown that in any one-week period, 1% of the SeurID ards will have a vanishingdi�erential; in any one-year period, 35% of the tokens will have a vanishingdi�erential. Aording to these statistis, we mention two realisti senarios inwhih the token ould be ompromised. In the �rst senario, a user may be onvaation for one week and left his token behind in a plae where others ouldobserve it, in whih ase there is a small but de�nitely non-negligible hane thata ollision would happen. In the seond senario, the suess is muh more likely.Sine the ost of SeurID tokens is very expensive, tokens are often reassignedto new users when a previous owner leaves a ompany [5℄. This is a bad idea,sine the original user would have a high hane of being able to �nd the internalkey, assuming he reorded many of the outputs while it was in his possession. Inlight of our new results, token reassignment beomes a very serious risk.3 Requires some optimisations to Wiener's ode, suh as re-ordering bytes to eliminatebswaps.



2 The SeurID Hash FuntionWe provide a high level desription of the alleged SeurID hash funtion, follow-ing the same notation as in [1℄ wherever possible. More detailed desriptions anbe found in [1, 4℄.The funtion an be modeled as a keyed hash funtion y = H(k; t), where kis a 64-bit seret key stored on the SeurID token, t is a 24-bit time obtainedfrom the lok every 30 or 60 seonds, and y is two 6- or 8-digit odes. Thefuntion onsists of the following steps:{ an expansion funtion that expands t into a 64-bit \plaintext",{ an initial key-dependent permutation,{ four key-dependent rounds, eah of whih has 64 subrounds,{ an exlusive-or of the output of eah round onto the key,{ a �nal key-dependent permutation (same algorithm as the initial one), and{ a key-dependent onversion from hexadeimal to deimal.Throughout the paper, we use the following notation to represent bits, nib-bles, and bytes in a word: a 64-bit word b, onsisting of bytes B0; :::; B7, nibblesB0; :::; B15, and bits b0b1:::b63. The nibble B0 orresponds to the most signi�antnibble of byte 0 and the bit b0 orresponds to the most signi�ant bit. The othervalues are as one would expet.For our analysis, only the time expansion, key-dependent permutation, andthe key-dependent rounds are of interest. In the next three setions, we willdesribe them in more detail.2.1 Time ExpansionThe time t is a 24-bit number representing twie the number of minutes sineJanuary 1, 1986 GMT. So the least signi�ant bit is always 0, and if the tokenoutputs odes every minute, then the expansion funtion will lear the 2nd leastsigni�ant bit as well. Let the result be represented by the bytes T0T1T2 whereT0 is the most signi�ant. The expansion is of the form T0T1T2T2T0T1T2T2. Notethat the least signi�ant byte is repliated 4 times, and the other two bytes arerepliated 2 times eah.2.2 Key-Dependent PermutationWe give a more insightful desription of how the ASHF key-dependent permu-tation really works. The original ode, obtained by Wiener [4℄ (apparently byreverse engineering the ACE/server ode), is quite rypti. Our desription isdi�erent, but produes an equivalent output to his ode.The key-dependent permutation uses the key nibbles K0 : : : K15 in order toselet bits of the data for output into a permuted data array. The data bits willbe taken 4 at a time, opied to the permuted data array from right to left (i.e.higher indexes are �lled in �rst), and then removed from the original data array.



Every time 4 bits are removed from the original data array, the size shrinks by4. Indexes within that array are always modulo the number of bits remaining.A pointer m is �rst initialised to the index K0. The �rst 4 bits that are takenare those right before the index of m. For example, if K0 is 0x2, then bits 62,63, 0, and 1 are taken. As these bits are removed from the array, the index mis adjusted aordingly so that it ontinues to point at the same bit it pointedto before the 4 bits were removed. The pointer m is then inreased by a valueof K1, and the 4 bits prior to this are taken, as before. The proess is repeateduntil all bits have been taken.Note that one the algorithm gets down to the �nal 3 or less key and data nib-bles, the number of data bits remaining is at most 12 yet the number of hoiesfor eah key nibble is 16. Hene, multiple keys will result in the same permuta-tion, whih we all \redundany of the key with respet to the permutation."This was used in the attak [2℄, and to a lesser extent in [1℄.2.3 Key-Dependent RoundsEah of the four key-dependent rounds takes as inputs a 64-bit key k and a64-bit value b0, and outputs a 64-bit value b64. The key k is then exlusive-oredwith the output b64 to produe the new key to be used in the next round.One round onsists of 64 subrounds. For i = 1; :::; 64, subround i transformsbi�1 into bi using a single key bit ki�1. Depending on whether the key ki�1 isequal to bi�10 , the value bi�1 is transformed aording to two di�erent funtions,denoted by R and S. The details of R and S are not so important for ourresearh, with the exeption of two properties:1. Both the R and the S funtions are byte-oriented, that is, they update eahof the eight bytes in bi separately. After the update, only bytes B0 and B4are modi�ed, and the other six bytes remain the same.2. The way R and S are used auses the hash funtion to have easy-to-�ndollisions after a small number of subrounds within the �rst round.At the end of eah subround, all the bits are rotated one bit position to the left.So, up to subround N � 25 of the �rst round, only 2N +14 data bits have beeninvolved in the omputation. This property is used in the Biryukov, Lano, andPreneel attak.3 The Attak of Biryukov, Lano, and PreneelThe attak of Biryukov, Lano, and Preneel [1℄ an determine the full 64-bitseret key when given a single ollision of the hash funtion. Suppose that twoinput times t and t0 get expanded and permuted to beome 64-bit words b andb0, and the two words ollide in subround N of the �rst round. The ollision fromthe pair (t; t0) is alled a vanishing di�erential. In their key reovery attak, theattaker �rst guesses the subroundN , and then uses a �ltering algorithm for eahN to searh the set of andidate keys that make suh a vanishing di�erential



possible. Aording to their simulations, one only needs to do up to N = 12 tohave a 50% hane of �nding the key.4 A summary of their desription for N = 1is given below. For simpliity, assume that a 2-bit vanishing di�erential is used,though this need not be the ase.A one-time ost preomputation table is needed before the �ltering starts.The table ontains entries the form(k0; B0; B4; B00; B04):where k0 represents a key bit, (B0; B4) represent data bytes of b after the initialkeyed permutation, and (B00; B04) represent data bytes of b0 after the permuta-tion. The exat entries in the table are those where (B0; B4) di�ers from (B00; B04)in exatly 2-bits known as the \di�erene bits," and for whih a vanishing dif-ferential ours during the �rst subround. Sine none of the other key bits ordata bytes are involved in the �rst subround, whether a vanishing di�erentialan happen or not for N = 1 is ompletely haraterised by this table.For eah entry in the table, the �ltering proeeds in two phases, eah of whihontains two steps.{ First Phase. (proess the �rst half of the key bits)� Step One. Guess key bits k1; :::; k27. Together with k0, 28 key bits areset, whih determines 28 bits of b and b0 after the initial key-dependentpermutation. Sine these bits overlap with the entries in the table innibbles B9 and B09, a key value that does not produe the orret nibblesfor both b and b0 is �ltered out.� Seond Step. Continue to guess key bits k28; :::; k31. Filtering is doneusing overlaps in nibbles B8 and B08.{ Seond Phase. (proess the seond half of the key bits)� First Step. Continue to guess key bits k32; :::; k59. Filtering is done usingoverlaps in nibbles B1 and B01.� Seond Step. Continue to guess key bits k60; :::; k63. Filtering is doneusing overlaps in nibbles B0 and B00.Finally, eah andidate key that passes the �ltering is tested by performing afull hash funtion to see if it is the orret key. For general N , the two phases of�ltering eah involve d 7+N4 e data nibbles, so the phases eah have d 7+N4 e steps.4 Analysis of the Biryukov, Lano, and Preneel AttakBiryukov, Lano, and Preneel estimated the time omplexity of their attakthrough simulation. They provided results for N = 1: step 1 of phase 1 re-dued the number of possibilities to 227, step 2 of phase 1 further redued theount to to 225, step 1 of phase 2 inreased the ount to 245, and step 2 of phase4 Our own simulations suggest that one needs to searh up to N = 16. The disrepanyis due to di�erenes in the way the attak is viewed, whih we elaborate on in Setion7.1. For larger values of N , the ost of the preomputation stage beomes prohibitive.



2 resulted in 241 true andidates. For larger values of N , they expet that theomplexity of the attak would be lower due to stronger �ltering.Here we analyse their algorithm, giving some mathematial justi�ation forthe simulation results they observed and also showing that their onjeture ofthe �ltering improving for larger N appears to be orret. In our analysis, wesometimes treat probabilities as if they are independent, whih is not alwaystrue, but it is assumed that it provides a reasonable approximation.Some properties of the preomputed tables are used in the analysis. For agiven value of N , the table entries are of the following form:{ legal values for the key bits in indies 0; : : : ; N � 1,{ legal values for the plaintext pairs after the initial permutation in bit indies32; 33; : : : ; 38+N whih we label as (W4;W 04) (we use the subsript 4 beausethe words begins at byte B4), and{ legal values for the plaintext pairs after the initial permutation in bit indies0; 1; : : : ; 6 +N whih we label as (W0;W 00) (the word begins at byte B0).The words W0;W 00;W4;W 04 eah onsist of 7 + N bits and the number of keybits is N . By \legal values" we mean that the ombination of plaintext bits afterthe initial permutation and key bits will ause the di�erene to vanish in sub-round N . We also have one other requirement, whih was previously overlooked(inluding in an earlier version of this researh): the values of the two bits inb (or b0) where the di�erenes are loated must be the same, due to the waythe time expansion works. This redues the number of table entries and resultsin a speedup to the �ltering. Although this is one of our three main �lteringspeedups, we apply it to the analysis of the original [1℄ algorithm in order tokeep things as lean as possible.Analysis of �nal number of andidates: Analysing the �nal step is equiva-lent to determining the true number of andidates that need to be tested withthe full SeurID hash funtion. The expeted number of true andidates aneasily be determined sine anything that mathes an entry in the preomputedtable will result in a vanishing di�erential. In other words, the entries in thetable are not only a neessary set of ases for a vanishing di�erential to our,but also suÆient.For eah entry in the preomputed table, we have:{ Only a portion of about 1=�642 � of the 264 keys will permute the 2 di�erenebits into the loations orresponding to what is in that table entry.{ With probability 12 , the value of the two di�erene bits will math those inthe table (reall, the 2 bits in b must be the same, and the orrespondingbits in b0 are the omplement).{ With probability 122N+12 , the remaining permuted data bits will math thetable entry.{ With probability 12N the guessed key bits will math the entry of the table.



Hene, the expeted number of �nal andidates is:table size� 264 � 1�642 � � 12 � 122N+12 � 12N : (1)Run time analysis of phase 2, step 1: Phase 2, step 1 of the Biryukov, Lano,and Preneel attak is typially the dominant ost. To analyse it, we must �rstdetermine the number of andidates passing phase 1.De�ne C0 to be the number of unique table entries of the form (k0; : : : ; kN�1;W4;W 04)where W4 = W 04, C1 similarly exept W4 �W 04 having hamming weight 1, andC2 similarly exept W4 �W 04 having hamming weight 2.Among the of 232 key bits onsidered in phase 1, a fration of �57�N2 �=�642 �will put no di�erene in the tuple (W4;W 04). Of those, only a fration of C027+Nwill math one of the C0 unique entries in the table for W4 (whih is the sameas W 04). With probability 12N , the guessed key bits will math those in the tableas well. Thus, the expeted number of 32-bit keys resulting in no di�erene in(W4;W 04) that pass phase 1 is:232 � �57�N2 ��642 � � C027+N � 12N = 219�2N � 3192� 113N +N263 � C0 :For 1-bit di�erenes, the equation is232 � �57�N1 ��642 � � 12 � C126+N � 12N = 220�2N � 57�N63 � C1 :For 2-bit di�erenes, the equation is232 � 1�642 � � 12 � C225+N � 12N = 221�2N � C263 :The 12 in this last equation aounts for whether the two di�erene bits in the�rst plaintext math the table entry (the bits must be the same). Thus, theexpeted number of andidates to pass the phase 1 isT = 219�2N63 � �(3192� 113N +N2)C0 + (114� 2N)C1 + 4C2� : (2)The �rst step in phase 2 involves guessing enough key bits so that the re-sulting permuted data array just begins to overlap with W0 and W 00. The exatnumber of key bits guessed in this step is 4 � b 29�N4 : Under the assumptionthat the permutation is 5% of the time required to do the full SeurID hash, therunning time is equivalent toT � 24�b 29�N4  � 4� b 29�N4 64 � 2� 0:05� s (3)



full hash operations, where s is the speedup fator that an be obtained by takingadvantage of the redundany in the key with respet to the permutation. Thevalue of s is 96256 for N = 1, 1216 for N = 2::5, and 1 for all other values.We remark that in some ases, there is a hane that the seond step ofphase 2 may be a bit more time onsuming than the �rst. A suÆient but notneessary ondition for step 1 to be the most time onsuming is if the fration ofvalues that remain is less than b 29�N4 16 of the values onsidered. This is usuallythe ase. We shall ignore the exeptional ases for now, but will deal with themwhen we present our �ltering speedups.Combined analysis: The running time of algorithm [1℄ for a partiular valueof N is expeted to be the approximately the sum of equations 3 and 1. ForN = 1::6, these running times are given in Table 1. Again, we reiterate thatthe table sizes are di�erent from [1℄ beause of an extra ondition due to thetime expansion, whih also gives a small improvement in the running time. Theanalysis for N = 1 losely mathes the simulated results from [1℄5.Table 1. Computing the running time estimates of algorithm [1℄ for N = 1::6.N Table C0 C1 C2 T Time for Time for testing Totalsize phase 2, step 1 �nal andidates time1 12 5 2 0 225:0 247:0 240:6 247:02 152 11 64 44 224:3 243:2 241:3 243:53 1130 64 362 128 224:8 243:6 241:2 243:94 7292 453 1750 712 225:5 244:3 240:9 244:45 48212 2775 10614 3864 226:0 244:9 240:6 244:96 276788 15076 52716 19520 226:4 241:4 240:1 241:9Even though the number of andidates T after the �rst phase are approxi-mately the same as N goes from 1 to 2 and also from 5 to 6, the running times ofthe phase 2, step 1 drop signi�antly. This is beause one less nibble of the key isbeing guessed, and an extra �ltering step is being added. In general, we see thepattern that larger values of N are ontributing less and less to the sum of therunning times, whih agrees with the onjeture from [1℄. The total running timefor N = 1 to 6 is 247:7 and larger values of N would appear to add minimally tothis total. For vanishing di�erentials that involve � 4-bits, whih happens aboutone third of the time, preliminary analysis suggests that the run time is better.5 A small disrepany for T exists due to the fat that their simulations involved apreomputed table about twie as big ours.



5 Faster FilteringTable 1 illustrates that the trik to speeding up the key reovery attak in [1℄ isfaster �ltering. We have found three ways in whih their third �ltering an besped up:1. Only inlude entries in the preomputed table that atually an be derivedfrom the time expansion. In partiular, the values of the two bits in b (or b0)where the di�erenes are loated must be the same.2. In the original �lter, a separate permutation is omputed for eah trial key.This is ineÆient, sine most of the permuted bits from one partiular per-mutation will overlap with those from many other permutations. Thus, wean amortise the ost of the permutation omputations.3. We an detet ahead of time when a large portion of keys will result in \bad"permutations in steps 1 of both phase 1 and phase 2, and the �ltering proessan skip past hunks of these bad permutations.The �rst tehnique was already applied to the analyses in the previous se-tion. Without this improvement, the running time would have been about 50%worse.The seond tehnique is aimed at reduing the numerator of the fator4�b 29�N4 64 = b 29�N4 16 in equation 3. To do this, we view the key as a 64-bitounter, where k0 is the most signi�ant bit and k63 is the least. In phase 2,step 1 of the �lter, the bits k0; : : : ; k31 are �xed and so are some of the leastsigni�ant bits (the exat number depends upon N), so we an exlude these fornow. The keys are tried in order via a reursive proedure that handles one keynibble at a time. At the jth reursive branh, eah of the possibilities for nibbleK7+j are tried. The part of the permutation for that nibble is omputed, andthen the j+1st reursive branh is taken. The level of reursion stops when keynibble K7+b 29�N4  is reahed. Thus, the b 29�N4  from equation 3 gets replaedwith the average ost per permutation trial, whih is Pb 29�N4 �1i=0 2�4i � 1:07:Observe that when N = 1, this results in a fator of 71:07 � 6:5 speedup. Thistrik alone knoks more than 2 bits o� the running time.The third speedup is dependent upon the seond. It will apply in both phasesof the �ltering. During the proess of trying a permutation, there will be largehunks of bad trial keys that an be identi�ed immediately and skipped. Inpartiular, whenever a di�erene bit is plaed outside of words (W0;W 00) and(W4;W 04), the key an be skipped beause the di�erene is not in a legal position.Moreover, any other key with the same most signi�ant bits (up to the key nibblethat plaed the di�erene bit) will also result in illegal values, implying that theentire reursive branh an be skipped. Heuristially, one would expet that thenumber of keys that get tested for �ltering in phase 2, step 1 to be about afration of about �14+2N2 �=�642 � of the number for the attak in [1℄. However, thisover simpli�es the analysis. A more proper analysis an be done similar to ouranalysis in the previous setion.



The ombined speedups give the run times in Table 2. In all ases, phase2, step 1 has beome faster than the time for testing the �nal andidates. Therunning time for N = 1::6 is 243:6, so we onjeture that the run time for N upto 16 is no more than 16=6� 243:6 � 245. We remark that the run times for thethird speedup ignore the overhead time for rejeting keys in phase 2 where thedi�erene bit gets put outside of (W0;W 00), but suh overhead time is expeted tomake little di�erene. We have also ignored the time for other �ltering steps of thealgorithm. Of those, only step 2 of phase 2 is expeted to have omparable ostto step 1 of phase 2. In fat, it an be more ostly, espeially when N � 2 mod 4.However, there are several possible speedups for this step, partiularly when N issmall (this restrition is for pratial reasons) where the run time beomes mostrelevant. Suh speedups involve using additional preoomputed lookup tablesto determine valid keys from the remaining data bits and testing whether thehamming weight of the remaining data bits mathes that of the preomputedtable entries before blindly trying keys. Therefore, it seems fair to assume thatthe testing of �nal andidates will always be the dominant ost in the modi�edalgorithm.Table 2. Running times using our improved �lter, for N = 1::6.N Time for Time for testing Totalphase 2, step 1 �nal andidates time1 238:7 240:6 240:92 236:4 241:3 241:33 237:1 241:2 241:34 237:9 240:9 241:15 238:6 240:6 240:96 235:7 240:1 240:2Although it appears that we annot do muh better using only a single van-ishing di�erential, we an improve the situation if we use other information thatan attaker would have. In later setions we will show that we an improve thetime greatly if we take advantage of multiple vanishing di�erentials, or if wetake advantage of knowledge that no other vanishing di�erentials our withina small time period of the observed one.6 Software ImplementationThe attak of Biryukov, Lano, and Preneel was speially designed to keep RAMusage low - only one of the preomputed table entries needs to be in programmemory at a time. We tested our ideas only for N = 1 and 2-bit di�erenes,and sine the table size is small, we took the freedom of implementing a slightvariant of their attak whih kept the whole preomputed table in memory atone.



We programmed all �ltering steps of both phases and the three main �lteringspeedups. In addition, we programmed an extra \table lookup" speedup thatwould improve the running time by a fator of 8 for N = 1. The extra speedupis only appliable for small values of N due to the memory requirements. Thus,the running time is expeted to be 8 times faster than the 238:7 listed in Table2. On our 2.4 GHz PC, this translates to about 8 days of e�ort.Our ode did the searh in numerial order, when the key is viewed as aounter as desribed in Setion 5. The only thing we did not do was testingthe �nal andidates using the real funtion. Instead, we just stopped when wearrived at the target key. So our implementation was designed to test and timethe �ltering only, in order to on�rm that �ltering is signi�antly faster thantesting of the �nal andidates.At the time of writing, we have not done the full key searh yet. However,we have done a searh that starts out knowing the orret �rst nibble of the key.The key we were searhing for is 356b48b3ae15271 whih yields a vanishingdi�erential when times 0x13ba8 and 0x13aa8 are sent in. We were able to�nd the key in 13:8 hours. If we assume that the full searh will take at most24 times longer, the full running time would be 9.2 days, whih is on target ofexpetations.7 Multiple Vanishing Di�erentialsThere are two senarios for multiple vanishing di�erentials: when they have thesame di�erene and when they have di�erent di�erenes. The former is morelikely to our, but in either ase we an speed up the attak.7.1 Multiple Vanishing Di�erentials with the Same Di�ereneAording to omputer simulations, about 45% of the keys that had a ollisionover a two month period will atually have at least 2 ollisions. There is a simpleexplanation for this, and a way to use the observation to speed up the key searheven more.Consider a vanishing di�erential whih omes from times t = T0T1T2 and t0 =T 00T 01T 02. As we saw earlier, the only bits that determine whether the vanishingdi�erential will our at a partiular subround are those that get permuted intowords W0;W 00;W4; and W 04. Suppose we ip one of the bits in T2 and T 02 (thesame bit in eah). This bit will be repliated four times in the time expansion.If, after the permutation, none of those bits end up in W0;W 00;W4; or W 04, thenwe will witness another vanishing di�erential. The new vanishing di�erential willfollow the same di�erene path and disappear in the same subround. Thus, newinformation is learned that an be used to speed up the key searh, whih weexplain below. In the ase that another vanishing di�erential does not our,information is also learned whih an improve the searh, whih is detailed inSetion 8.Following the above thought proess, it is evident that:



{ Flipping time bits in T1; T 01 or T0; T 00 will only repliate the ipped bit twiein the expansion. Sine there are only two bits that are not allowed to be inW0;W 00;W4; andW 04, the ollision is more likely to our. On the other hand,the time between the ollisions is inreased, sine these are more signi�anttime bits.{ Multiple vanishing di�erentials are more likely to our when the �rst ol-lision happened in a small number of subrounds. This is beause the wordsW0;W 00;W4; and W 04 are smaller, giving more plaes where the ipped bitsan land without interfering with the ollision.6{ The onverse of these observations is that when multiple vanishing di�er-entials our, it is most often the ase that the ollisions all happened inthe same subround and followed the same di�erene path. Moreover, theollisions usually happen within a few subrounds.By simply eying the time data that aused the multiple vanishing di�eren-tials, one an determine with lose to 100% auray whether this situation hashappened. The signs of it are: 1) Same input di�erene for all vanishing di�er-entials, 2) All input times di�er in only a few bits, and 3) It is the same bitsthat di�er in all ases. An example is given in Appendix B.The attaker learns z � 2 bits whih annot be permuted to wordsW0;W 00;W4;or W 04. This new knowledge an be ombined with our third �ltering speedupto skip past more bad keys. The expeted number of �nal key andidates to betested beomes a fration of �50�2Nz �=�64z � of the values given in Table 2. SeeTable 3 for a summary of these �gures when z = 2, z = 4, and z = 8. The timesan be further redued using information about where ertain related plaintextsdid not ause a vanishing di�erential: see Setion 8.Table 3. Number of �nal andidates assuming the attaker beame aware of z-bitsthat do not get permuted into words W0;W 00;W4; or W 04.N Number of �nal ands using Number of �nal Number of �nal Number of �nalonly a single ollision ands with z = 2 ands with z = 4 ands with z = 81 240:6 239:8 238:9 237:02 241:3 240:3 239:3 237:23 241:2 240:1 239:0 236:64 240:9 239:7 238:4 235:75 240:6 239:2 237:8 234:86 240:1 238:6 237:0 233:66 This is the reason for the apparent disrepany between our researh laiming thatone needs to preompute up to N = 16 in order to have a � 50% of �nd the keyand [1℄ laiming 12. In our view, the attaker has a single token and will performa key searh one a single vanishing di�erential has ourred. In their view, theattaker has several tokens for a �xed period of time, and the attaker selets avanishing di�erential randomly among all vanishing di�erentials that have ourred[3℄. Sine their view inludes multiple vanishing di�erentials, the expeted numberof subrounds is less.



7.2 Multiple Vanishing Di�erentials with Di�erent Di�erenesGiven two vanishing di�erentials with di�erent di�erenes, the number of an-didate keys an be redued signi�antly by onstruting more e�etive �lters ineah step. Denote the two pairs of vanishing di�erentials V1 and V2, and theirN values N1 and N2.We �rst make a guess of (N1; N2). The number of guesses will be quadratiin the number of subrounds tested up to. The following is a simpli�ed sketh forthe new �ltering algorithm.{ First Phase. Take V1 and guess the �rst 32 bits of the key. For eah 32-bit keythat produes a valid (W4;W 04), test it against V2 to see if it also produesa valid (W4;W 04).{ Seond Phase. For 32-bit keys that pass phase 1, do the same thing to guessthe seond 32 bits of the key.The main idea here is to do double �ltering within eah stage so that thenumber of andidate keys is further redued in omparison to when only a singlevanishing di�erential is used.When N1 = N2 = 1, the probability that a 32-bit key passes phase 1 (seeTable 1) is 225:0=232 = 2�7:0 (assuming using the original �lter of [1℄ - it is evenmore redued using our improved �lter), and the probability that a 64-bit keypasses both phases is 240:6=264 = 2�23:4. If the two vanishing di�erentials areindeed independent, we would expet the number of keys to pass the �rst phaseto be 232 � 2�7:0 � 2�7:0 = 218and the number of keys to pass both phases to be264 � 2�23:4 � 2�23:4 = 217:2:Experimental results will reveal whether these �gures are attainable in pratie,but even if they are not, a big speed up is still expeted. The situation shouldbe better in the ases where di�erenes with hamming weights � 4 are involved.We should mention the aveat that the hanes of suess using the abovetehnique are lower, sine we need both di�erene pairs to disappear within 16subrounds. On the other hand, the ost of trying this algorithm for two di�erenepairs is expeted to be substantially heaper than trying the previous algorithmsfor only one. Therefore, the double �ltering should add negligible overhead tothe searh in the ases that it fails, and would greatly speedup the searh whenit is suessful.8 Using Non-Vanishing Di�erentials with a VanishingDi�erentialIn Setion 7.1, we argued that even if only a single vanishing di�erential oursover some time period, the searh an still be sped up if one takes advantage ofknowing where related di�erentials do not vanish. Here, we give the details.



Assume a vanishing di�erential ourred at times t and t0, but no vanishingdi�erential ourred among the time pairs (t�2i; t0�2i) for i = 2; : : : ; j. We startwith i � 2 beause in the most typial ase, where authentiators are displayedevery minute, the least two signi�ant bits of the time are 0 (see Setion 2.1). Forthe values 2 � i � 7, the di�erene is repliated 4 times in the time expansion,and for i � 8, it is repliated twie.For eah value of i, we learn a set of 2 or 4 bits for whih at least one in eahset must be permuted into the wordsW0;W 00;W4; or W 04. Let us label these setsas U2; : : : ; Uj . For simpliity, we will take j = 13, whih orresponds to no othervanishing di�erential within a window of 2.8 days before or after the observedone. So, we are interested in the probability of at least one bit in eah of thesesets getting permuted into words W0;W 00;W4; or W 04.We say a set Ui is represented with i � 1 bits if exatly i bits from Ui getpermuted into W0;W 00;W4; or W 04. The number of ways 2N + 14 bits an beseleted to end up in W0;W 00;W4; or W 04 is � 642N+14�. The number of ways thatexatly i bits are represented in the seletion for 2 � i � 13 is7Yi=2�4i�� 13Yi=8�2i��� 282N + 14�P13i=2 i�:The �rst produt tells the number of ways of seleting i bits from eah set thathas 4 bits, the seond produt is the same exept for among sets with 2 bits, andthe third produt is the number of ways of seleting the remaining bits from the28 bits that are not among any of the Ui. Thus, our desired probability is:Xall valid (2; : : : ; 13) Q7i=2 � 4i��Q13i=8 � 2i�� � 282N+14�P13i=2 i�� 642N+14� (4)where valid (2; : : : ; 13) means that eah value is at least 1, but the sum of allvalues is no more than 2N + 14.We have omputed these probabilities using the Magma [6℄ omputer algebrapakage. The probabilities, and orresponding running time for the testing of�nal andidates are given in Table 4. Monte Carlo experiments have been doneto double-hek the auray of these results. The fat that the probabilities areso small for low values of N is onsistent with the argument in Setion 7.1 thatwhen a ollision happens early, other ollisions are likely to follow soon after.One should not assume that the times for the testing the �nal andidatesgiven in Table 4 are the dominant ost in applying this strategy. Unlike the�ltering speedups given in Setions 5 and 7.1, the use of non-vanishing di�er-entials seem to require more overhead in heking the onditions. So althoughwe do not have an exat running time, we on�dently surmise that the use ofnon-vanishing di�erentials will redue the time down below 240 hash operations.



Table 4. Assuming no more vanishing di�erentials our within 2.8 days before orafter of a given vanishing di�erential, the �nal testing of andidates an be improvedby the amounts given in this table.N Fration of keys Time for testinghaving property �nal andidates1 2�14:3 226:32 2�11:7 229:63 2�9:7 231:54 2�8:1 232:85 2�6:7 233:96 2�5:7 234:49 ConlusionThe design of the alleged SeurID hash funtion appears to have several prob-lems. The most serious appears to be ollisions that happen far too frequentlyand very early within the omputation. The involvement of only a small frationof bits in the subrounds exaerbates the problem. Moreover, the redundany ofthe key with respet to the initial permutation adds an extra avenue of attak.Altogether, ASHF is substantially weaker than one would expet from a modernday hash funtion.Our researh has shown that the key reovery attak in [1℄ an be sped upby more than a fator of 8, giving an improved attak with time omplexityabout 245 hash operations. In pratie, the attaker an atually obtain moreinformation than just a single ollision. We have shown that, with this extrainformation, the time omplexity an be further redued to about 240 hash op-erations, making the attak doable by anyone with a modern PC.aknowledgements: We are grateful to Joe Lano for his insights and helpfulomments, and for his hospitality while the �rst author of this doument visitedBrussels.Referenes1. A. Biryukov, J. Lano, B. Preneel. Cryptanalysis of the Alleged SeurID Hash Fun-tion, In Proeedings of SAC 2003, to appear in LNCS. A longer version of this paperis available online from http://eprint.iar.org/2003/162.2. S. Contini, The E�et of a Single Vanishing Di�erential in ASHF, si.rypt post,6 Sep, 2003.3. J. Lano, private ommuniation, 28 Ot, 2003.4. I.C. Wiener, Sample SeurID Token Emulator with Token Seret Import, postto BugTraq, http://arhives.neohapsis.om/arhives/bugtraq/2000-12/0428.html ,21 De, 2000.



5. Tips on Reassigning SeurID Cards and Requesting New SeurIDCards, AMS Newsletter, Marh 2002, Issue No. 117. Available athttp://www.utoronto.a/ams/news/117/html/117-5.htm .6. The Magma Computer Algebra Pakage. Information available athttp://magma.maths.usyd.edu.au/magma/ .A Analysing Preomputed TablesUsing omputer experiments, we were able to exhaustively searh for valid entriesin the preomputed table up to N = 6 for 2-bit vanishing di�erentials and up toN = 4 for 4-bit di�erentials at this point. It was predited in [1℄ that the size ofthe table gets larger by a fator of 8 as N grows and it may take up to 244 stepsand 500GB memory to preompute the table for N = 12.Here we make an attempt to derive the entries in the table analytially whenN = 1. If we ould extend the method to N > 1, we may be able to enumeratethe entries analytially without expensive preomputation and storage.We start with Equation (6) in [1℄. Note that we are trying to �nd onstraintsfor the values in the subround i�1. So for simpliity, we will omit the supersripti� 1 from now on, and Equation (6) beames the following.B04 = ((((B0 >>> 1)� 1) >>> 1)� 1)�B4; (5)B00 = 100�B4 :We �rst note that B0 and B00 have to be di�erent in the msb. Therefore,there is at least one bit di�erene in (B0; B00). The other bit di�erene an beplaed either in the remaining 7 bits of (B0; B00) or any of the 8 bits in (B4; B04).Rewriting Equation 5, we haveB0 = (((B4 �B04) + 1) <<< 1) + 1) <<< 1:Sine there are at most one bit di�erene in (B4; B04), it an only take on 9possible values: 0 (for no bit di�erene) or 2i (for one bit di�erene in bit i).Below, for eah possible value of (B4; B04), we enumerate the possible values of(B0; B00). During the enumeartion, we also take into onsideration the additionalrequirement that the two bits in b where the di�erenes our must be the same(See Setion 4).{ If B4 � B04 = 0, then B0 =0x06. Sine there is no bit di�erene in (B4; B04),we know that B0 and B00 di�er in two bits { one of them must be the msb,and the other an be any of the remaining 7 bits.B4 �B04 B0 B00 k00x00 0x06 0x87, 84, 82, 8e, 96, a6, 6 0The additional requirement rules out two possible values of B00 (0x84, 0x82),leaving 5 possible ombinations.



{ If B4 � B04 = 2i, then there is only one bit di�erene in (B0; B00), whih isthe msb. In this ase, there are only one hoie for B00 for eah B0.B4 �B04 B0 B00 k00x01 0x0a 0x8a 00x02 0x0e 0x8e 00x04 0x16 0x96 00x08 0x26 0xa6 00x10 0x46 0x6 00x20 0x86 0x06 10x40 0x07 0x87 00x80 0x08 0x88 0The additional requirement rules out every ombination above exept the�rst one (B0 =0x0a and B00 =0x8a).Combining the above two ases, we have 5 + 1 = 6 pairs of (B0; B00), eah ofwhih giving a valid tuple (k0; B0; B4; B00; B04), where k0 is the msb of B0.Finally, note that if (k0; a; b; ; d) is a valid tuple, than (k0; ; d; a; b) is alsoa valid typle. For example, if (0, 0x06, 0xdd, 0x87, 0xdd) is valid, then (0,0x87, 0xdd, 0x06, 0xdd) is also valid. Therefore, the table onsists of a total of2� 6 = 12 entries. These entries math the results from our simulation.B Example of Multiple Vanishing Di�erentialsTable 5 is an example where 16 vanishing di�erentials happened within 1.3 days.All had the same di�erene path, whih ollided at N = 2. One an see thatonly the 4 least signi�ant bits of time byte T1 di�er. Sine eah of these bits aredupliated twie, the expeted running time of the last steps is given by z = 8in Table 3. Taking into onsideration N = 2, the total time is expeted to be onthe order of 238 operations.



Table 5. Example of 16 vanishing di�erentials that happened within 1.3 days, usingkey b5 a9 f4 8 16 23 a6 1a.First plaintext Seond plaintext1e 80 8 8 1e 80 8 8 1e 90 8 8 1e 90 8 81e 81 8 8 1e 81 8 8 1e 91 8 8 1e 91 8 81e 82 8 8 1e 82 8 8 1e 92 8 8 1e 92 8 81e 83 8 8 1e 83 8 8 1e 93 8 8 1e 93 8 81e 84 8 8 1e 84 8 8 1e 94 8 8 1e 94 8 81e 85 8 8 1e 85 8 8 1e 95 8 8 1e 95 8 81e 86 8 8 1e 86 8 8 1e 96 8 8 1e 96 8 81e 87 8 8 1e 87 8 8 1e 97 8 8 1e 97 8 81e 88 8 8 1e 88 8 8 1e 98 8 8 1e 98 8 81e 89 8 8 1e 89 8 8 1e 99 8 8 1e 99 8 81e 8a 8 8 1e 8a 8 8 1e 9a 8 8 1e 9a 8 81e 8b 8 8 1e 8b 8 8 1e 9b 8 8 1e 9b 8 81e 8 8 8 1e 8 8 8 1e 9 8 8 1e 9 8 81e 8d 8 8 1e 8d 8 8 1e 9d 8 8 1e 9d 8 81e 8e 8 8 1e 8e 8 8 1e 9e 8 8 1e 9e 8 81e 8f 8 8 1e 8f 8 8 1e 9f 8 8 1e 9f 8 8


