
F-FCSR: design of a new class of stream ciphers

François Arnault and Thierry P. Berger

arnault@unilim.fr thierry.berger@unilim.fr

LACO, Université de Limoges, 123 avenue A. Thomas,

87060 Limoges CEDEX, France

Abstract

In this paper we present a new class of stream ciphers based on a very simple mechanism.
The heart of our method is a Feedback with Carry Shift Registers (FCSR) automaton. This
automaton is very similar to the classical LFSR generators, except the fact that it performs
operations with carries. Its properties are well mastered: proved period, non-degenerated
states, good statistical properties, high non-linearity.

The only problem to use such an automaton directly is the fact that the mathematical
structure (2-adic fraction) can be retrieved from few bits of its output using an analog of the
Berlekamp-Massey algorithm.

To mask this structure, we propose to use a filter on the cells of the FCSR automaton. Due
to the high non-linearity of this automaton, the best filter is simply a linear filter, that is a
XOR on some internal states. We call such a generator a Filtered FCSR (F-FCSR) generator.

We propose four versions of our generator: the first uses a static filter with a single output
at each iteration of the generator (F-FCSR-SF1). A second with an 8 bit output (F-FCSR-
SF8). The third and the fourth are similar, but use a dynamic filter depending on the key
(F-FCSR-DF1 and F-FCSR-DF8). We give limitations on the use of the static filter versions,
in scope of the time/memory/data tradeoff attack.

These stream ciphers are very fast and efficient, especially for hardware implementations.

Keywords: stream cipher, pseudorandom generator, feedback with carry shift register, 2-adic
fractions.

1 Introduction

Linear Feedback Shift Registers (LFSR) are the most popular tool used to design fast pseudoran-
dom generators. Their properties are well known, among them the fact that the structure of an
LFSR can be easily recovered from his output by the Berlekamp-Massey algorithm. Many methods
have been used to thwart the Berlekamp-Massey attack because the high speed and simplicity of
LFSRs are important benefits.

Feedback with Carry Shift Registers (FCSR) were introduced by M. Goresky and A. Klapper
in [7]. They are very similar to classical Linear Feedback Shift Registers (LFSR) used in many
pseudorandom generators. The main difference is the fact that the elementary additions are not
additions modulo 2 but with propagation of carries. This generator is almost as simple and as fast
as a LFSR generator. The mathematical model for FCSR is the one of rational 2-adic numbers
(cf. [9, 10]). This model leads to proved results on period and non degeneration of internal states
of the generator. It inherits the good statistical properties of LFSR sequences.

Unfortunately, as for the LFSR case, it is possible to recover the structure of a sequence
generated by an FCSR (cf. [8, 2],[1]). To avoid this problem, we propose to use a filter on the
cells of the FCSR automaton. Since this automaton has good non linear properties, the filter is
simply a linear function, i.e. a XOR on some cells. This method is very efficient for practical
implementations.

First we describe the FCSR automaton and recall the properties of its output. For applications,
we propose an automaton with a key of 128 bits in the main register.

Then we present the different versions of our generator with a detailed security analysis in
each case. For the F-FCSR-SF1 version, we show that the algebraic attack is not possible and we
describe some dedicated attacks. For the proposed parameters, this attack is more expensive than
the exhaustive one. The main restriction to the use of this version is the fact that the cost of the
time/memory/data tradeoffs attack is O(298), which is less than the exhaustive attack.

With the F-FCSR-SF8 version, we explain how our automaton can be filtered in order to
obtain an 8-bit output at each iteration. The problem on designing a good filter in that situation
is discussed. This leads to some problems on its design. This is why we recommend to use the
F-FCSR-DF8 version of our generator to perform a 8-bit output system with high level of security.

In the dynamic filter versions of our generator, we substitute to the static filter a dynamic
one, i.e. depending on the secret initialization key. This method increases the cost of the
time/memory/data tradeoffs attack. This cost becomes O(2162) for a 128-bit key. Moreover this
dynamic filter avoids all 2-adic and algebraic attacks. In particular for the 8-bit output version, it
avoids some attacks on filter combinations. For practical applications, we propose to use the S-box
of Rijndael in order to construct the dynamic filter. This method is very efficient, and generally,
this box is already implemented.

In the last section, we explain how it is possible to use our generators as stream ciphers with IV
mode of size 64 bits. The 128-bit key is used to initialize the main register, and the initial vector
is used to initialize the carries register. For some dedicated applications, we also propose to use a
key of 96 bits with an IV of 64 bits.

2 The FCSR automaton

We first recall the properties of an FCSR automaton used to construct our pseudorandom gener-
ators: an FCSR automaton performs the division of two integers following the increasing powers
of 2 in their binary decompositions. This mechanism is directly related to the theory of 2-adic
fractions. For more theoretical approach, the reader could refer to [11, 7].

The main results used here are the following:

• Any periodic binary sequence can be expressed as a 2-adic fraction p/q, where q is a negative
odd integer and 0 ≤ p < |q|.

• Conversely, if a periodic binary sequence is generated from a 2-adic fraction p/q, then the
period of this sequence is known and is exactly the order of 2 modulo q.

• It is easy to choose a prime number q such as the order of 2 is exactly T = |q| − 1, and
therefore the period generated by any initial value 0 < p < |q| is exactly T . So, in the rest
of this paper, we suppose that q is such that 2128 < |q| < 2129 and that the condition on the
order of 2 is always satisfied in order to guarantee a period greater than 2128.

• If p and q are integers of ”small size”, i.e. 128 bits for p and 129 bits for q, the sequences p/q
looks like random sequences of period T in terms of linear complexity (but it remains false
for its 2-adic complexity (i.e. the size of q)).

2

¿From now, we suppose that the FCSR studied in this section verifies the following conditions:
q < 0 ≤ p, p < −q, p =

∑k−1
i=0 pi2i, q = 1− 2d and d =

∑k−1
i=0 di2i.

p will be the initial (secret) state of the automaton whereas q will be the equivalent of the
”feedback polynomial” of a classical LFSR.

2.1 Modelization of the automaton

If q is defined as above, the FCSR generator with feedback prime q can be described as a circuit
containing two registers:

• The main register M with k binary memories (one for each cell), where k is the bitlength
of d, that is 2k−1 ≤ d < 2k.

• The carry register C with ` binary memories (one for each cell with a � at its left) where
` + 1 is the Hamming weight of d. Using the binary expansion

∑k−1
i=0 di2i of d, we put

Id = {i | 0 ≤ i ≤ k − 2 and di = 1}. So ` = #Id. We also put d∗ = d− 2k−1.

We will say that the main register contains the integer m =
∑k−1

i=0 mi2i when it contains the
binary values (m0, . . . ,mk−1). The content m of the main register always satisfies 0 ≤ m ≤ 2k −1.
In order to use similar notation for the carry register, we can think of it as a k bit register where
the k − l bits of rank not in Id are always 0. The content c =

∑
i∈Id

ci2i of the carry register
always satisfies 0 ≤ c ≤ d∗.

Example 1 Let q = −347, so d = 174 = 0xAE, k = 8 and ` = 4. The following diagram shows
these two registers:

m(t) m7 m6 m5 m4 m3 m2 m1 m0- - - - - - - -- � � � �

6 6 6 6

c(t) 0 0 c5 0 c3 c2 c1 0

? ? ? ?
6 6 6 6

d 1 0 1 0 1 1 1 0

where � denotes the addition with carry, i.e., it corresponds to the following scheme in hardware:

ci

��

HH
-a
-b
-c(t−1)

- s=a⊕b⊕c(t−1)
c(t)=ab⊕ac(t−1)⊕bc(t−1)

�

Transition function

As described above, the FCSR circuit with feedback prime q is an automaton with 2k+l states
corresponding to the k + l binary memories of main and carry registers. We say that the FCSR
circuit is in state (m, c) if the main and carry registers contain respectively the binary expansion
of m and of c.

Suppose that at time t, the FCSR circuit is in state (m(t), c(t)) with m =
∑k−1

i=0 mi(t)2i and
c =

∑k−1
i=0 ci(t)2i. The state (m(t + 1), c(t + 1)) at time t + 1 is computed using:

• For 0 ≤ i ≤ k − 2 and i /∈ Id

mi(t + 1) := mi+1(t)
• For 0 ≤ i ≤ k − 2 and i ∈ Id

3

mi(t + 1) := mi+1(t)⊕ ci(t)⊕m0(t)
ci(t + 1) := mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)

• For the case i = k − 1
mk−1(t + 1) := m0(t).

Note that this transition function is described with (at most) quadratic boolean functions and
that for all three cases mi(t + 1) and ci(t + 1) can be expressed with a single formula:

mi(t + 1) := mi+1(t)⊕ dici(t)⊕ dim0(t)

ci(t + 1) := mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)

if we put mk(t) = 0 and ci(t) = 0 for i not in Id.
We now study the sequences of values taken by the binary memories of the main register, that

is the sequences Mi = (mi(t))t∈N, for 0 ≤ i ≤ k − 1.
The main result is the following theorem:

Theorem 1 Consider the FCSR automaton with (negative) feedback prime q = 1 − 2d. Let k be
the bitlength of d. Then, for all i such that 0 ≤ i ≤ k − 1, there exists an integer pi such that Mi

is the 2-adic expansion of pi/q. More precisely, these values pi can be easily computed from the
initial states mi(0) and ci(0) using the recursive following formulas:

pi =
{

qmi(0) + 2pi+1 if di = 0
q
(
mi(0) + 2ci(0)

)
+ 2(pi+1 + p0) if di = 1.

If we consider a prime divisor q such that the period is exactly T = (|q| − 1)/2, the sequences
Mi are distinct shifts of a same sequence (e.g. 1/q), but each shift amount depends on the initial
values of the main register and the carry register, and looks like random shifts on a sequence of
period T (remember that, for applications T ' 2128).

2.2 Hardware and software performances of the FCSR

2.2.1 Hardware realization

As we have just seen before, we could directly implement in hardware the structure of an FCSR
using a Galois architecture. Even if the needed number of gates is greater, the speed of such a
structure is equivalent to the one of an LFSR.

2.2.2 Software aspects

The transition function can also be described in pseudocode with the following global presentation
expressing integers m(t), c(t) instead of bits mi(t), ci(t) more suitable for software implementations.

If ⊕ denotes bitwise addition without carries, ⊗ denotes bitwise and, shift+ the shift of one
bit on the right, i.e. shift+(m) = bm(t)/2c and par is the parity of a number m (1 if m is odd, 0
if it is even):

m(t + 1) := shift+(m(t))⊕ c(t)⊕ par(m)d

c(t + 1) := shift+(m(t))⊗ c(t)⊕ c(t)⊗ par(m)d⊕ par(m)d⊗ shift+(m(t))

And the pseudoalgorithm could be written as:
b := par(m) (boolean)
a := shift+(m)
m := a⊕ c

4

c := a⊗ c
if b = 1 then

c := c⊕ (m⊗ d)
m := m⊕ d

end if
The number of cycles needed to implement the FCSR in software seems to be twice greater

than the one required for an LFSR but as we will see in the following section, due to the very
simplicity of our filtering function, the general speed in software of our Filtering FCSR might be
more efficient than usual LFSR based generators.

2.2.3 Parameters of the FCSR automaton for designing the stream ciphers

For a cryptographic use with a security greater than 2128, we recommend the use of a negative
retroaction prime −q, corresponding to k = 128. This implies that 2128 < |q| < 2129 − 1.

In order to maximize the period of the generated sequence, the order of 2 modulo q must be
maximal i.e. equals to |q| − 1. Moreover, to avoid some potential particular cases, we propose to
choose a prime q such that (|q| − 1)/2 is also a prime.

The FCSR retroaction prime must be public. We propose
−q = 493877400643443608888382048200783943827 (1)

= 0x1738D53D56FC4BFAD3D0C6D3430ADD893
The binary expansion of d = (|q|+ 1)/2 is

10111001 11000110 10101001 11101010 10110111 11100010 01011111 11010110
10011110 10000110 00110110 10011010 00011000 01010110 11101100 01001010.
Its Hamming weight is 69 and then there are ` = 68 carry cells (the Hamming weight of d∗ =
d− 2128) and k = 128 cells in the main register.

3 Design of F-FCSR : Filtered FCSR automaton with a
static filter

As for the LFSRs, a binary sequence generated by a single FCSR can not be used directly to
produce a pseudorandom sequence (even if the output bits have good statistical properties and
high linear complexity), since the initial state and the 2-adic structure can be recovered using a
variant of the Berlekamp-Massey algorithm [8, 2]. So, we propose in this section to filter the output
of an FCSR with two appropriate static functions and we prove the efficiency and the resistance
against known attacks of those two constructions.

3.1 The F-FCSR-SF1 : one output bit

How to filter an FCSR automaton?

For the LFSR case many tools have been developed to mask the structure of the generator, by using
boolean functions with suitable properties (see for example [12, 4]) to combine several LFSRs, by
using combiners with memory or by shrinking the sequence produced by an LFSR.

It is possible to use similar methods with an FCSR generator, but with a very important
difference: since an FCSR generator looks like a random generator for the non linear properties,
it is not necessary to use a filter function with high non linearity.

Then the best functions for filtering an FCSR generator are linear functions:
f : GF (2)n → GF (2), f(x1, . . . , xn) =

⊕n
i=1 fixi, fi ∈ GF (2).

5

As studied previously, the sequence Mi observed on the i-th dividend register is a 2-adic fraction,
with known period, good statistical properties and looks like a random sequence except from the
point of view of 2-adic complexity.

The sequences Ci (with i ∈ I∗d) produced by the carry register are not so good from a statistical
point of view: these sequences are probably balanced, however, if a carry register is in the state
1 (resp. 0), it remains in the same state 1 (resp. 0) with a probability 3/4 since each of the two
other entries of the corresponding addition box corresponds to 2-adic fractions and produces a 1
with a probability approximatively 1/2. It is sufficient to have only one more 1 to produce a 1 in
the carry register.

These remarks lead to filter only on the k cells mi(t) of the main register, not on the cells of
the carry register.

To modelize our linear filter, we consider a binary vector F = (f0, . . . , fk−1) of length k.
The output sequence of our filtered FCSR is then

S = (s(t))t∈N, where s(t) =
k⊕

i=1

fi ·mi(t).

The extraction of the output from the content of the main register M and the filter F can be
done using the following algorithm:
S := M ⊗ F
for i := 6 to 0 do

S := S ⊕ shift+2i(S)
Output: par(S)

It needs 7 shifts, 7 Xor and 1 And on 128-bit integers. So, the proposed F-FCSR is very efficient
in hardware.

Design of the static filter for the F-FCSR-SF1 stream cipher

Let kF be the integer such that 2kF ≤ F < 2kF +1. We will see in Paragraph 3.2.1 that it is possible
to develop an attack on the initial key which needs 4kF trials.

If F is a power of 2, the output is a 2-adic sequence and is not resistant to 2-adic attacks.
Moreover, if F is known, and its binary expansion contains few 1, the first equations of the algebraic
attack are simpler, even if it is not possible to develop such an attack (cf. Paragraph 3.2.3).

A first natural solution would be to choose F = 2128 − 1, that is to xor all the cells of the
main register. In this case, suppose that the output is S = (s(t))t∈N. It is easy to check that the
sequence S′ = (s(t) + s(t + 1))t∈N is the same that the one that would be obtained by xoring all
the carry cells. Even if we do not know how to use this fact to develop a cryptanalysis, we prefer
to use another filter for this reason.

In our application, we propose to choose F = d = (|q| + 1)/2. With this filter, the output is
the XOR of all cells of the main register which are just at the right of a carry cell. For the prime q
proposed above in (1) the value of kF is 128 and the Hamming weight of the filter is 69.

We propose a very simple initialization of the F-FCSR-SF1 generator: we choose a key K
with 128 bits. The key K is used directly to initialize the main register M . The carry register is
initialized at 0.

Statistical properties of the filtered output

When two or more sequences are xored, the resulting sequence has good statistical properties as
soon as one of the sequences is good, under the restriction that this sequence is not correlated with
the other.

6

In our generator, each sequence is a 2-adic fraction with denominator q and has good statistical
properties. The only problem is the fact that these sequences are not independent, since they are
obtained by distinct shifts of the same periodic sequence. Note that the period of the sequence
is very large (T ≥ 2127), and that a priori the 69 distinct shifts looks like random shifts. So the
output sequence will have good statistical properties.

This hypothesis is comforted by the fact that our generator passes the NIST statistical test
suite, as we checked.

3.2 Cryptanalysis of F-FCSR-SF1

3.2.1 2-adic cryptanalysis of F-FCSR-SF1

2-adic complexity of the XOR of two or more 2-adic integers
A priori, the XOR is not related with 2-adic operations (i.e. operations with carries), and then

the sequence obtained by XORing two 2-adic fractions looks like a random sequence from the point
of view of 2-adic complexity. Experiments support this assumption.

Moreover, due to the choice of q, in particular to the fact that (|q|−1)/2 is prime, the probability
to have a high 2-adic complexity is greater than in the general case.

Let q be a negative prime such that 2 is of order |q| − 1 modulo q. Consider the xor (p1/q)⊕
(p2/q) of the 2-adic expansions of two fractions with q as denominator and 0 < p1, p2 < |q|. By
Theorem 2, both summands are a sequence of period |q| − 1 so the xor is also a sequence of
period |q| − 1 (or dividing it). Can this latter sequence written also as a fraction p/q? (with
0 ≤ p ≤ q and possibly non reduced). Surely, the answer is yes in some cases (e.g. if p1 = p2).
But in very most cases, the answer is no. Here is an heuristic argument to show this under the
assumption that such an xor gives a random sequence of period dividing |q| − 1. The number
of such sequences is 2|q|−1 and the number of sequences of the form (p1/q) ⊕ (p2/q) is at most
(|q| − 1)2/2. So we can expect that the probability that the xor can be written p/q is about
|q|2/2|q| which is very small. This remark extends to the xor of O(ln |q|) summands.
A 2-adic attack

Theorem 2 Assume that the filter F is known by the attacker and let kF be an integer such that
F < 2kF +1 (that is all cells selected by the filter belong to the rightmost kF + 1 cells of the main
register). Then the attacker can discover the key of the generator at a cost O(k22kF).

We first state a lemma.

Lemma 1 Assume that the attacker knows the initial values mi(0) for 0 ≤ i < kF (he also knows
the initial values ci(0) for 0 ≤ i < kF which were assumed to be 0). Then he can compute the T
first bits mkF

(t) (for 0 ≤ t < T) of the sequence MkF
by observing the sequence outputted by the

generator, in time O(TkF).

Proof : The attacker observes first S(0) =
⊕kF

i=0 fimi(0). In this equality, the only unknown
value is mkF

(0) so the attacker can compute it in time O(kF). For subsequent bits the method
generalizes as follows.

Assume that the attacker has computed bits mkF
(t) for 0 ≤ t < τ and knows mi(t) and ci(t)

for 0 ≤ t < τ and 0 ≤ i < kF . Observing the bit S(τ) he gets

S(τ) =
kF⊕
i=0

fimi(τ)

7

and the only unknown value here is mkF
(τ). So the attacker obtains it, also in time O(kF). He

can also compute mi(τ + 1) and ci(τ + 1) for 0 ≤ i < kF , using the transition function. The time
needed to compute these 2kF bits is also O(kF). We obtain the result by induction. �

The attack whose existence is asserted in Theorem 2 works following six steps.

• Choose an arbitrary new set of values for the bits mi(0) for 0 ≤ i < kF and put ci(0) = 0 for
0 ≤ i < kF .

• Assuming that these bits correspond to the chosen values, compute the first k bits of the
sequence MkF

.

• Using the transition function, compute the first k + kF bits of the sequence M0 from the
assumed values for the bits mi(0) with 0 ≤ i < kF and the k bits obtained in the previous
step.

• Multiply the integer
∑k−1

t=0 m0(t)2t by q modulo 2k to obtain a candidate p0 for the key.

• Run a simulation of the generator with the key p0. Stop it after generating k + kF bits.
Compare the last kF bits obtained to the ones computed in Step 3. If they don’t agree, the
candidate found is not the true key. Return to first step until all possibilities are exhausted.

• After all possibilities in Step 1 are exhausted, use some more bits of the generator to determine
which key is the true key, if more than one good candidate remains.

Now the proof of the theorem:

Proof : From Lemma 1, the cost of Step 2 is in O(kkF) ≤ O(k2). Step 3 has also a cost of O(kkF).
The cost of Step 4 is O(k2) and those of Step 5 is O(k(k + kF)) ≤ O(k2). The loop defined by
Step 1 has to be iterated O(2kF) times. Multiplying the number of iterations by the inner cost
gives the cost of the whole attack. �

With our parameters k = 128 and kF = 127, this attack is more expensive than the exhaustive
attack on the key.

Moreover, if the carries are not initialized to 0, there are 196 unknowns in the system instead
of 128.

3.2.2 Linear complexity of F-FCSR-SF1 generator: XOR of two or more 2-adic in-
tegers

Arguments for the linear complexity are similar to those yet presented for the 2-adic complexity:
since each 2-adic fraction looks like a random sequence from the point of view of linear complexity,
the XOR of these sequences have a high linear complexity (cf. [17]). Experiments also support
this assumption.

As for the 2-adic case, the particular value chosen for the period T helps for the 2-adic complex-
ity to be high. Let q be a negative prime such that 2 is of order |q|−1 modulo q. Consider the xor
(p1/q) ⊕ (p2/q) of the 2-adic expansion of two fractions with q as denominator, and numerators
such that 0 < p1, p2 < |q|. Similar arguments as those above about the 2-adic behavior of this xor
applies to its linear behavior.

If this xor corresponds to the expansion of a series P (X)/Q(X) (written as a fraction in
reduced form), then the order of the polynomial Q must be a divisor of T = |q|−1. With the value
of q proposed in (1), the order of Q must be 1, 2, T , or T/2. The only polynomials of order 1 or 2
are the powers of (X + 1). Polynomials of order T or T/2 must have an irreducible factor Q1 of

8

order T or T/2. But this order must be a divisor of 2deg(Q1) − 1, so deg(Q1) is a multiple of the
order of 2 modulo q. In the case of the above value of q, this order is T/2, a number of bitsize 127.
Hence polynomials Q with a divisor of such a degree are not so frequent.

3.2.3 Algebraic cryptanalysis of F-FCSR-SF1

The algebraic cryptanalysis of a pseudorandom generator is a tool developed recently (cf.[5]).
The principle is simple: we consider the bits of the initial state m = (m0, . . . ,mk−1) =

(m0(0) . . . , mk−1(0)) as the set of unknowns (suppose first that the initial value of the carry regis-
ter is 0) and, using the transition function, we compute the successive outputs of the generator as
functions of these unknowns fi(m0, . . . ,mk−1). If the attacker knows the first output bits of the
generator, he gets a system of (non linear) equations in k variables. We can add to this system the
equations m2

i = mi as the unknowns are Booleans. If the system obtained is not too complicated,
it can be solved using for example the Gröbner basis methods [6].

The transition function of an FCSR automaton is quadratic: the first equation is linear on 128
variables (or 196 variables if the carries are not initialized to 0), the second one is quadratic, the
third is of degree 3, and so on. For example, the eleventh equation is of degree 11 in 128 variables,
its size is about 250 monomials and is not computable. To solve the algebraic system, we need at
least 128 equations.

Note that the fact we use a known filter does not increase the difficulty of this attack. The
filter is just a firewall against a 2-adic cryptanalysis.

3.2.4 The time/memory/data tradeoff attack

There exists a recent attack on stream ciphers with inner states: the time/memory/data tradeoff
attack [3]. The cost of this attack is O(2n/2), where n is the number of inner states of the
stream cipher. This cost reflects not only the time needed for the attack, but also the use of
memory and the amount of data required. For the F-FCSR-SF1, the number of inner states is
n = k + ` = 128 + 68 = 196. Even if this attack remains impracticable, it is faster than the
exhaustive one. This is why we recommend to use the dynamic filter method.

3.3 Design of F-FCSR-SF8: a static filter and an 8-bit output

In order to increase the speed of the generator, we propose to use several filters to get several bits
at each transition of the FCSR automaton. For example, using 8 distinct filters, it is possible to
obtain an 8-bit output at each transition. However, the design of several filters may be difficult.

A first cryptanalysis on multiple filters

Suppose that we use 8 filters F1, . . . , F8 on the same state of main register M . Obviously, each of
these filters must be resistant to the 2-adic attack. These 8 filters must be linearly independent to
avoid a linear dependency on the 8 outputs. Moreover, by linear combinations of the 8 filters, it is
possible to obtain 28 filters, each of them must also be resistant to the 2-adic attack.

Let C be the binary linear code generated by F1, . . . , F8.

• The condition on the independence of the 8 filters is the fact that the dimension of C is
exactly 8.

• For F ∈ C, let kF be the least integer such that 2kF > F (here F is viewed as an inte-
ger). The minimum over C of the values of kF must be as larger as possible. Note that
minF∈C,F 6=0{kF } ≤ k − 8 = 120. If we choose C such that minF∈C,F 6=0{kF } = 120, the

9

cost of the 2-adic attack is O(120× 2120) which is approximatively the cost of the exhaustive
attack.

Note that it is easy to construct a code C satisfying this condition.

• We recommend to avoid the use of a code C with a small minimum distance d. Indeed, from
a codeword of weight d, it is possible to construct a filter on d cells of the main register M .
Even if we do not know how to design such an attack for d ≥ 2, we suggest to choose C
satisfying d ≥ 6.

A simple way to construct 8 simultaneous filters

In order to construct good filters with a very efficient method to extract the 8-bit output, we
recommend the following method:

The filters are chosen with supports included in distinct sets. More precisely, for i = 0 to 7,
Supp(Fi) ⊂ {j | j ≡ i (mod 8)}.

This construction ensures dim(C) = 8, minF∈C,F 6=0{kF } = mini{kFi
} and d = mini(w(Fi)),

where w(F) is the Hamming weight of F . Moreover the extraction procedure becomes very simple:
First, set F =

⊕7
i=0 Fi. The extraction of the 8-bit output from the content of the main register

M and the filter F can be done using the following algorithm:
S := M ⊗ F
for i := 6 to 3 do

S := S ⊕ shift+2i(S)
Output: S ⊗ 255 (the 8 lower weight bits of S)

This needs 4 shifts, 4 Xor and 2 And on 128-bit integers. This extraction is faster than the
extraction of a single bit.

Note that conversely, from a 128-bit filter F , we obtain a family of 8-bit filters. As an example,
for the value F = d proposed for the F-FCSR-SF1 generator, we obtain a code C with dim(C) = 8,
minkF = 113 and d = 4. For this choice of filter, it will be possible to design a 2-adic attack
slightly more efficient than the exhaustive one.

A possible attack

Let S(t) = (S0(t), . . . , S7(t)) be the 8-bit output at time t. Some entries selected by the filter on
which depend S0(t + 7), S1(t + 6),. . . , S7(t) may be related. And the relations involved might be
partially explicited when the state of the automaton is partially known.

So, even if we do not know how to design such an attack, we do not advice to use the 8-bit
output generator with a static filter. The dynamic filter method presented in the next section will
resist to such attack and will be preferred. We also propose to use an IV mode with the F-FCSR
designs in order to have a high confidence on the security against be sure to resist to the different
attacks.

4 Design of F-FCSR-DF1 and F-FCSR-DF8: dynamic fil-
tered FCSR stream ciphers

Due to the fact that the filter is very simple and its quality is easy to check, it is possible to use
a dynamic filter: the filter can be constructed as a function of the key K, and then, is not known
by the attacker. As soon as the filter is not trivial (F 6= 0 and F 6= 2i), it is not possible to use
the algebraic attack, nor the attack exploiting the small binary size of F .

10

The construction of this dynamic filtered FCSR generator (DF-FCSR generator) is very simple:
let g be a bijective map of GF (2)128 onto itself. For a 128-bit key K, we construct the filter
F = g(K) and also we use the key to initialize the main register. The carry register is initialized
at 0, since the attacker cannot find the equations for the algebraic attack.

The main interest of the use of a dynamic filter is the fact that the number n of inner state is
increased of the size of the filter, i.e. n = 2k` = 324. The cost of the time/memory/data tradeoffs
attack becomes higher than those of the exhaustive one.

4.1 Design of F-FCSR-DF1

This stream cipher is identical to F-FCSR-SF1 except the fact that the filter is dynamic.
We propose to use for g the Rijndael S-box (cf. [14, 15]). This S-box operates on bytes, and

using it for each 16 bytes of a 128-bit key, we get a suitable function g.
It is suitable to add a quality test for the filter, for example by testing the binary size kF of

F and its Hamming weight w(F). For example, if kF < 100 or w(F) < 40, then we iterate g to
obtain another filter with good quality.

The computation of this dynamic filter is very simple. The main advantages are to thwart com-
pletely the 2-adic attack (§3.2.1), the algebraic attack (§3.2.3) and to avoid the time/memory/data
tradeoff attack.

However, until now, we do not find any attack faster than the exhaustive search against the
static filter generator.

4.2 Design of F-FCSR-DF8

For the 8-bit output version, the use of a dynamic filter has also other justification: it avoids all
possible attacks on the filter described in Paragraph 3.3.

For a practical use we recommend the following key loading procedure:
• Construction of the filter F from the 128-bit secret key K by applying the Rijndael S-box.
• Test the quality of the 8 subfilters extracted from F . Each of them must have an Hamming
weight at least 6, and a binary size at least 100.
• Go to the first step until the test succeed.
• Use the key K to initialize the main register M . The carry register is initialized to 0.

The filter procedure is those of F-FCSR-SF8 (§3.3).

4.3 An initial vector mode for F-FCSR stream ciphers

The IV mode

There are several possibilities to add some initial vector IV to our generators. A first one will be
to use it as filter F , where the main register is initialized with the key K and the carry register is
initialized to 0.

In that case, we are in the situation of multiple known filters on the same initialization of the
automaton. This method will be dangerous.

In fact, the good solution is to use always the same filter from a fixed key K with a static filter
for 1 bit output and dynamic filter for 8-bit output. The IV is used to initialize the carry registers.

With our automaton, there are 68 bits in the carry register. It is easy to use them for IV of size
64. In order to avoid some problems related to the use of the same key K for the main register, we
recommend to wait 6 cycles of the automaton before using an input after a change of IV . After
these 6 cycles, every cell of the main register contains a value depending not only of K but also of
IV .

11

We recommend to use the following protocol either with the F-FCSR-DF1 stream cipher, or
with the F-FCSR-DF8 stream cipher:

Pseudocode:

1. F := g(K) (dynamic construction of the filter).
2. M := K; M := K.
3. Clock 6 times the FCSR and discard the output.
4. Clock and filter the FCSR until the next change of IV .
5. If change of IV , return to step 2.

A variant of our generator with a key of size 96 and initial vector of size 64

For some purposes where the security is important only during a limited amount of time, it can
be useful to define a variant with a smaller key-size (but with same IV-size). For that we propose
to use the retroaction prime

q = −145992282562012510535118773123 = −0x1D7B9FC57FE19AFEFEF7C5B83

This prime has been selected according the following criteria. Its bit size is 97, so that d has
bitsize 96. Also (|q| − 1)/2 is prime. The order of 2 modulo |q| − 1 is exactly |q| − 1. And
d = 0xEBDCFE2BFF0CD7F7F7BE2DC2 has weight 65 so that there are 64 useful cells in the
carries register.

Conclusion

We proposed a very fast pseudorandom generator, easy to implement especially in hardware (but
also in software). It has good statistical properties and it is resistant to all known attacks. Its
design can be compared to older generators (such as the summation generator [16]) for whose the
heart has a linear structure, and is broken by a 2-adic device. Instead, our generator has a heart
with a 2-adic structure which is destroyed by a linear filter. It might be of similar interest of these
older generators (the summation generator is one of the best generator known) while being even
easier to implement due to the simplicity of the filter.

Acknowledgments: Both authors would like to thank Anne Canteaut and Marine Minier for
helpful comments and suggestions.

12

References

[1] F. Arnault, T. Berger, and A. Necer. A new class of stream ciphers combining LFSR and
FCSR architectures. In Advances in Cryptology - INDOCRYPT 2002, number 2551 in Lecture
Notes in Computer Science, pp 22–33. Springer-Verlag, 2002.

[2] F. Arnault, T.P. Berger, A. Necer. Feedback with Carry Shift Registers synthesis with the
Euclidean Algorithm. IEEE Trans. Inform. Theory, Vol 50, n. 5, may 04, pp. 910–917

[3] A. Biryukov and A. Shamir Cryptanalytic time/memory/data tradeoffs for stream ciphers
LNCS 1976 (Asiacrypt 2000), pp 1–13, Springer, 2000.

[4] D. Coppersmith, H Krawczyk, Y. Mansour. The Shrinking Generator, Lecture notes in
computer science (773), Advances Cryptology, CRYPTO’93. Springer Verlag 1994, 22-39

[5] N. Courtois, W. Meier Algebraic attack on stream ciphers with linear feedback LNCS 2656
(Eurocrypt’03), Springer, pp 345–359

[6] J.C. Faugère A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5) Proceedings of International Symposium on Symbolic and Algebraic Computation,
ISSAC’02, Villeneuve d’Ascq, pp. 75–83

[7] A. Klapper and M. Goresky. 2-adic shift registers, fast software encryption. In Proc. of
1993 Cambridge Security Workshop, volume 809 of Lecture Notes in Computer Science, pages
174–178, Cambridge, UK, 1994. Springer-Verlag.

[8] A. Klapper and M. Goresky. Cryptanalysis based on 2-adic rational approximation. In Ad-
vances in Cryptology, CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages
262–274. Springer-Verlag, 1995.

[9] A. Klapper and M. Goresky. Feedback shift registers, 2-adic span, and combiners with memory.
Journal of Cryptology, 10:11–147, 1997.

[10] A. Klapper and M. Goresky. Fibonacci and Galois representation of feedback with carry shift
registers. IEEE Trans. Inform. Theory, 48:2826–2836, 2002.

[11] N. Koblitz. p-adic Numbers, p-adic analysis and Zeta-Functions. Springer-Verlag, 1997.

[12] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone Handbook of
Applied Cryptography, CRC Press, 1996.

[13] ”A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Ran-
dom Number Generators for Cryptographic Applications”,
http://csrc.nist.gov/rng/

[14] J. Daemen, V. Rijmen The Block Cipher Rijndael, Smart Card Research and Applications,
LNCS 1820, J.-J. Quisquater and B. Schneier, Eds., Springer-Verlag, 2000, pp. 288-296.

[15] http://csrc.nist.gov/CryptoToolkit/aes/

[16] R.A. Rueppel, Correlation immunity and the summation generator, Lecture Notes in Com-
puter Science (218), Advances in Cryptology, CRYPTO’85, Springer-Verlag 1985, 260-272.

[17] R.A. Rueppel, Linear complexity of random sequences, Lecture Notes in Computer Science
(219, Proc. of Eurocrypt’85, 167–188)

13

