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Abstract. Algebraic attack has recently become an important tool in
cryptanalysing different stream and block cipher systems. A Boolean
function, when used in some cryptosystem, should be designed properly
to resist this kind of attack. The cryptographic property of a Boolean
function, that resists algebraic attack, is known as Algebraic Immunity
(AI). So far, the attempt in designing Boolean functions with required
algebraic immunity was only ad-hoc, i.e., the functions were designed
keeping in mind the other cryptographic criteria, and then it has been
checked whether it can provide good algebraic immunity too. For the
first time, in this paper, we present a construction method to generate
Boolean functions on n variables with highest possible algebraic immu-
nity dn

2
e. Such a function can be used in conjunction with (using direct

sum) functions having other cryptographic properties.
In a different direction we identify that functions, having low degree
subfunctions, are weak in terms of algebraic immunity and analyse some
existing constructions from this viewpoint.
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1 Introduction

Recent literature shows that algebraic attack has gained a lot of attention in
cryptanalysing stream and block cipher systems. The attack uses overdefined
systems of multivariate equations to recover the secret key [1, 2, 10–14, 18, 17].
Given a Boolean function f on n-variables, different kinds of scenarios related to
low degree multiples of f have been studied in [13, 18]. The core of the analysis
is to find out minimum (or low) degree annihilators of f and 1 + f , i.e., to
find out minimum (or low) degree functions g1, g2 such that f ∗ g1 = 0 and
(1 + f) ∗ g2 = 0. To mount the algebraic attack, one needs only the low degree
linearly independent annihilators [13, 18] of f, 1 + f .

So far very little attempt has been made to provide construction of Boolean
functions that can resist algebraic attacks. In [15], some existing construction



methods have been analysed that can provide Boolean functions with some other
cryptographic properties to see how good they are in terms of algebraic immu-
nity.

Algebraic immunity of certain constructions have also been studied in [3–5].
In [5], the authors have proved that the algebraic immunity of the n-variable
functions constructed by Tarannikov’s method [21, 19] attain Ω(

√
n) algebraic

immunity. This presents a sharper result than what presented in [15] in terms of
analysing Tarannikov’s construction [21, 19]. Construction of cryptographically
significant Boolean functions with improved algebraic immunity has also been
presented in [7].

However, so far there is no existing construction method that can achieve
maximum possible algebraic immunity. In this paper, for the first time, we pro-
vide a construction method where the algebraic immunity is the main concern.
We show that given a Boolean function on n − 2d variables having algebraic
immunity 1, we can always construct a Boolean function on n variables with
algebraic immunity at least d + 1. The construction is iterative in nature (a
function with two more variables is constructed in each step) and we need to
apply it d times to get an n-variable function from an (n − 2d)-variable initial
function. We also show that the construction preserves the order of resiliency and
increases the nonlinearity by more than 22d times in d-steps (as it can be seen
as a direct sum of a function with good nonlinearity and resiliency with another
function with good algebraic immunity). Also using our construction one can
generate n-variable functions with highest possible algebraic immunity dn

2 e and
good nonlinearity. For this one needs to start with 1 or 2-variable nonconstant
functions.

Further, in a different direction, we show that if a Boolean function has low
degree subfunctions then it is not good in terms of algebraic immunity. This
result generalizes the analysis on Maiorana-McFarland type functions presented
in [18]. Further our analysis answers some of the questions presented in [15]
regarding the algebraic immunity of the functions presented in [20].

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}n

into {0, 1} and define Bn as the set of all n-variable Boolean functions. One of
the standard representation of a Boolean function f(x1, . . . , xn) is by the output
column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

The set of x ∈ {0, 1}n for which f(x) = 1 (respectively f(x) = 0) is called
the onset (respectively offset), denoted by 1f (respectively 0f ). We say that a
Boolean function f is balanced if the truth table contains an equal number of
1’s and 0’s.

The Hamming weight of a binary string S is the number of ones in the string.
This number is denoted by wt(S). The Hamming distance between two strings,



S1 and S2 is denoted by d(S1, S2) and is the number of places where S1 and S2

differ. Note that d(S1, S2) = wt(S1 +S2) (by abuse of notation, we also use + to
denote the GF (2) addition, i.e., the XOR). By S1||S2 we mean the concatenation
of two strings. By S we mean the complement of the string S.

Any Boolean function has a unique representation as a multivariate polyno-
mial over GF (2), called the algebraic normal form (ANF),

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai,j , . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree, deg(f),
is the number of variables in the highest order term with non zero coefficient. A
Boolean function is affine if there exists no term of degree > 1 in the ANF and
the set of all affine functions is denoted An. An affine function with constant
term equal to zero is called a linear function.

It is known that a Boolean function should be of high algebraic degree to
be cryptographically secure [16]. Further, it has been identified recently, that it
should not have a low degree multiple [13]. The algebraic attack (see [13, 18] and
the references in these papers) is getting a lot of attention recently. To resist
algebraic attacks, the Boolean functions used in the cryptosystems should be
chosen properly. It is shown [13] that given any n-variable Boolean function f ,
it is always possible to get a Boolean function g with degree at most dn

2 e such
that f ∗ g is of degree at most dn

2 e. Here the functions are considered to be
multivariate polynomials over GF (2) and f ∗ g is the polynomial multiplication
over GF (2). Thus while choosing an f , the cryptosystem designer should be
careful that it should not happen that degree of f ∗ g falls much below dn

2 e.
Towards defining algebraic immunity [13, 18, 15], one needs to consider the

multiples of both f and 1 + f .

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g of low
degree such that f ∗g = h or (1+f)∗g = h, where h is a nonzero function of
low degree and without loss of generality, deg(g) ≤ deg(h). Among all such
h’s we denote the lowest degree h (may be more than one and then we take
any one of them) by ldgmn(f).

2. Assume there exists a nonzero function g of low degree such that f ∗ g = 0
or (1 + f) ∗ g = 0. Among all such g’s we denote the lowest degree g (may
be more than one and then we take any one of them) by ldgan(f).

It can be checked that [18, 15] for f ∈ Bn, deg(ldgmn(f)) = deg(ldgan(f)) and
in this line the following definition of algebraic immunity has been presented
in [15].

Definition 1. The algebraic immunity of an n-variable Boolean function f is
denoted by AIn(f) which is basically deg(ldgmn(f)) or deg(ldgan(f)).

Later we also need the following definition related to the annihilator set of a
function.

Definition 2. Given f ∈ Bn, define AN(f) = {g ∈ Bn|g nonzero, f ∗ g = 0}.



The nonlinearity of an n-variable function f is the minimum distance from
the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈A(n)

(d(f, g)).

Boolean functions used in crypto systems must have high nonlinearity to prevent
linear attacks [16].

Many properties of Boolean functions can be described by the Walsh trans-
form. Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and
x · ω = x1ω1 + . . . + xnωn. Let f(x) be a Boolean function on n variables. Then
the Walsh transform of f(x) is an integer valued function over {0, 1}n which is
defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)+x·ω.

A Boolean function f is balanced iff Wf (0) = 0. The nonlinearity of f is
given by nl(f) = 2n−1 − 1

2 maxω∈{0,1}n |Wf (ω)|. Correlation immune functions
and resilient functions are two important classes of Boolean functions. A function
is m-resilient (respectively mth order correlation immune) iff its Walsh transform
satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively 1 ≤ wt(ω) ≤ m).

The paper is organized as follows. In the next section we present the con-
struction and the following section discusses the analysis of algebraic immunity
of a function in terms of the degree of its subfunctions.

3 Construction to get AI as required

In this section we present a construction to get Boolean function of n+2 variables
with algebraic immunity d + 2 ≤ dn+2

2 e. The construction is iterative in nature
and it starts from an initial function of n+2−2(d+1) = n−2d variables having
algebraic immunity 1 (the minimum possible value). In each step, 2 variables
are added and algebraic immunity gets increased by 1. Let us now formalize the
construction.

Construction 1 Let f ∈ Bn such that f = E||F ||G||H where E,F,G,H ∈
Bn−2. Let n − 2d > 0 and d ≥ 0. Take an initial function fn−2d ∈ Bn−2d with
AIn−2d(fn−2d) = 1. Suppose after d-th step fn ∈ Bn has been constructed. The
next function fn+2 ∈ Bn+2 is constructed in following manner:

fn+2 = fn||fn||fn||f1
n, where fk = Ek−1||F k||Gk||Hk+1,

for any function fj,
f0

j = fj ,

and for the initial function fn−2d,

fs
n−2d = fn−2d (and f

s

n−2d = fn−2d),

for s > 0.



To understand the recursion in the Construction 1, we present an example
up to some depths.

– f1
n = fn−2||f1

n−2||f1
n−2||(f1

n−2)
2 as

fn = fn−2||fn−2||fn−2||f1
n−2,

– (f1
n−2)

2 = f1
n−4||(f1

n−4)
2||(f1

n−4)
2||((f1

n−4)
2)3 as

f1
n−2 = fn−4||f1

n−4||f1
n−4||(f1

n−4)
2,

– ((f1
n−4)

2)3 = (f1
n−6)

2||((f1
n−6)

2)3||((f1
n−6)

2)3||(((f1
n−6)

2)3)4 as
(f1

n−4)
2 = f1

n−6||(f1
n−6)

2||(f1
n−6)

2||((f1
n−6)

2)3.

This goes on unless we reach at the level of the (n−2d)-variable initial function.
For m ≥ 2, denote ((f1)2···)m as f1,m. As example, ((f1

n−6)
2)3 = f1,3

n−6. Also, for
notational consistency, we take (f1)1 = f1 and f1,0 = f0 = f .

Take an initial function fl (the 2l length binary string which is the truth
table of the function) on l variables. Below we present the construction idea as
truth table concatenation.

Step 1:fl+2 = flflflf l

Step 2:fl+4 = fl+2fl+2fl+2flf lf lfl = flflflf lflflflf lflflflf lflf lf lfl

Step 3:fl+6 = fl+4fl+4fl+4fl+2flf lf lflflf lf lflf lflflf l

Step 4:fl+8 = fl+6fl+6fl+6fl+4fl+2flf lf lflflf lf lflf lflflf lfl+2flf lf lfl

flf lf lflf lflflf lflf lf lflf lflflf lf lflflf lflf lf lfl

Thus after the k-th step, the function fl+2k is the concatenation of 22k num-
bers of fl and fl = 1 + fl. That is, the subfunctions of fl+2k at 2k-depth are
only fl and fl. That is, fl+2k can be seen as direct sum of fl and a 2k-variable
function.

To prove the main theorem we first present the following results. In the
proofs we will use the fact that for any f ∈ Bn and any subset V ∈ {0, 1}n, the
restriction of any annihilator g of f to V is an annihilator of the restriction of
f to V . For technical reasons (see also Remark 1 after the proof of Lemma 2),
during our proofs we will encounter certain situations when degree of a function
is < 0. As such functions cannot exist, we will replace those functions by 0
(function).

Lemma 1. Consider that the function fn+2 ∈ Bn+2 has been generated by Con-
struction 1 after (d + 1) many steps, d ≥ 1, taking fn−2d as the initial function.
Take g, h ∈ Bn−2. We assume that if g′ ∈ AN(fn−2d+2j), h′ ∈ AN(f1

n−2d+2j)
for 0 ≤ j ≤ d− 1 and deg(g′ + h′) ≤ j − 1, then g′ = h′ = 0. If

1. g ∈ AN(f1,i
n−2) and h ∈ AN(f1,i+1

n−2 ) for any i, i ≥ 1 and
2. deg(g + h) ≤ d− 2− i,

then g = h = 0.

Proof. We prove it by induction. For the base step d = 1. Here deg(g + h) ≤
1 − 2 − i ≤ −2 implies such a function cannot exist (see also Remark 1), i.e.,
g + h is identically 0, which gives g = h.

Now g ∈ AN(f1,i
n−2d) and h ∈ AN(f1,i+1

n−2d ). Since fn−2d is the initial function,

by Construction 1, f1,i+1
n−2d = (f1,i

n−2d)
i+1 = f1,i

n−2d. Hence g ∈ AN(f1,i
n−2d) and



h ∈ AN(f1,i
n−2d). Thus g, h, being nonzero, cannot be same. So g = h = 0. This

proves the base step.
Now we prove the inductive step. Consider that the function fn ∈ Bn has

been generated by Construction 1 after d many steps, d ≥ 1, taking fn−2d as the
initial function. For any g′, h′ ∈ Bn−4 with g′ ∈ AN(f1,i

n−4) and h′ ∈ AN(f1,i+1
n−4 )

and for any i, i ≥ 1, if deg(g′ + h′) ≤ (d− 1)− 2− i, then g′ = h′ = 0.
Suppose that fn+2 is constructed by Construction 1 and there exists g ∈

AN(f1,i
n−2) and h ∈ AN(f1,i+1

n−2 ) with deg(g +h) ≤ d− 2− i. By construction, we
have

f1,i
n−2 = f1,i−1

n−4 ||f1,i
n−4||f

1,i
n−4||f

1,i+1
n−4 ,

f1,i+1
n−2 = f1,i

n−4||f
1,i+1
n−4 ||f1,i+1

n−4 ||f1,i+2
n−4 .

Take,

g = v1||v2||v3||v4,

h = v5||v6||v7||v8,

This gives, v1 ∈ AN(f1,i−1
n−4 ), v2, v3, v5 ∈ AN(f1,i

n−4), v4, v6, v7 ∈ AN(f1,i+1
n−4 ) and

v8 ∈ AN(f1,i+2
n−4 ). Since deg(g + h) ≤ d− 2− i, from ANF of g + h = (v1 + v5) +

xn−3(v1 + v5 + v2 + v6) + xn−2(v1 + v5 + v3 + v7) + xn−3xn−2(v1 + · · ·+ v8) we
deduce the following.

– deg(v1 + v5) ≤ d − 2 − i = (d − 1) − 2 − (i − 1), implying that v1 = v5 =
0, for i ≥ 2. For i = 1, we have v1 ∈ AN(fn−4), v5 ∈ AN(f1

n−4) with
deg(v1 + v5) ≤ d − 3. Following the assumption in the statement of the
lemma, we get v1 = v5 = 0.

– deg(v2 + v6) ≤ d− 3− i = (d− 1)− 2− i, implying that v2 = v6 = 0.
– deg(v3 + v7) ≤ d− 3− i = (d− 1)− 2− i , implying that v3 = v7 = 0.
– deg(v4 + v8) ≤ d− 4− i = (d− 1)− 2− (i + 1), implying that v4 = v8 = 0.

Hence we get g = h = 0 for i ≥ 1. ut

Lemma 2. Consider that fn+2 ∈ Bn+2 has been generated using the Construc-
tion 1 after (d+1)-th step with initial function fn−2d. Let AI(fn−2d+2i) = i+1
for 0 ≤ i ≤ d. Consider that

1. gn+2 ∈ AN(fn+2),
2. deg(gn+2) ≤ d + 1, and
3. gn+2 is of the form gn+2 = gn+xn+2xn+1(gn+hn), where gn ∈ AN(fn), hn ∈

AN(f1
n).

If deg(gn + hn) ≤ d− 1, then gn = hn = 0.

Proof. We will use induction on d. For the base step (i.e., d = 0) we have f1
n = fn

as fn the initial function when d = 0. Here gn and hn are annihilators of fn and
f1

n = fn respectively. Since deg(gn+2) ≤ 1, and gn+2 = gn +xn+2xn+1(gn +hn),



gn + hn = 0, which gives gn = hn. Since gn ∈ AN(fn) and hn ∈ AN(fn), being
non zero functions, they cannot be same, i.e., gn = hn = 0. Then gn+2 = 0.

Now we prove the inductive step. Assume the induction assumption holds
till d steps, d ≥ 0. Now we will prove the lemma statement at (d + 1)-th step.
That is fn+2 ∈ Bn+2 has been generated by Construction 1 after (d+1)-th step
with AI(fn+2) ≤ d + 1 and AI(fn−2d+2i) = i + 1 for 0 ≤ i ≤ d. Here gn+2 =
gn + xn+2xn+1(gn + hn) ∈ AN(fn+2) of degree ≤ d + 1, where gn ∈ AN(fn)
and hn ∈ AN(f1

n). Suppose deg(gn + hn) ≤ d− 1. Then here, we will prove that
gn = hn = 0. Here

fn = fn−2||fn−2||fn−2||f1
n−2,

f1
n = fn−2||f1

n−2||f1
n−2||(f1

n−2)
2.

Let

gn = A||B||C||D,

hn = E||F ||G||H, where

A,B,C, E ∈ AN(fn−2), D,F,G ∈ AN(f1
n−2) and H ∈ AN((f1

n−2)
2). Since

A,E ∈ AN(fn−2), we have A + E ∈ AN(fn−2) and hence deg(A + E) ≥ d or
A + E = 0. Since deg(gn + hn) ≤ d − 1, A + E = 0. Then deg(B + F ) ≤ d − 2
and deg(C +G) ≤ d−2. Thus, using the induction hypothesis we have B = C =
F = G = 0. So,

gn = A||0||0||D,

hn = E||0||0||H.

So, deg(D + H) ≤ d− 3 = d− 2− 1.
We have assumed the inductive steps upto d-th step. That gives that if

gn−2d+2i ∈ AN(fn−2d+2i), hn−2d+2i ∈ AN(f1
n−2d+2i) for 0 ≤ i ≤ d − 1 and

deg(gn−2d+2i + hn−2d+2i) ≤ i, then gn−2d+2i = hn−2d+2i = 0. Note that, this
satisfies the assumption considered in the statement of Lemma 1 and now we
can apply it.

Since D ∈ AN(f1
n−2) and H ∈ AN((f1

n−2)
2) with deg(D + H) ≤ d − 3,

following Lemma 1 we get D = H = 0. So we have gn = A||0||0||0, hn =
E||0||0||0, and hence

gn+2 = gn + xn+2xn+1(gn + hn)
= (1 + xn−1 + xn + xn−1xn)A

+xn+1xn+2((1 + xn−1 + xn + xn−1xn)(A + E)),

i.e., gn+2 = (1+xn−1+xn+xn−1xn)A, since A+E = 0. Then deg(gn+2) ≥ d+2,
since deg(A) ≥ d as A ∈ AN(fn−2). As deg(gn+2) ≤ d + 1, we have A = 0. This
gives the proof. ut

Remark 1. In the proof of Lemma 2 above, if deg(D + H) ≤ d − 3 < 0, we
have (D + H) = 0, because here gn+2 = gn + xn+2xn+1xnxn−1(D + H) and
deg(gn+2) ≤ d + 1. Since there is no negative degree function, we have to take
the term xn+2xn+1xnxn−1(D + H) as 0.



Now we present the main result.

Theorem 1. Refer to Construction 1. Let the algebraic immunity of the initial
function fn−2d be 1. Then after (d + 1)-th step the algebraic immunity of the
constructed function fn+2 is d + 2.

Proof. We have to prove that any nonzero function gn+2 such that gn+2fn+2 = 0
has degree at least d+2. Suppose that such a function gn+2 with degree at most
d + 1 exists. Then, gn+2 can be decomposed as

gn+2 = gn||g′n||g′′n||hn,

where gn, g′n, g′′n ∈ AN(fn), and hn ∈ AN(f1
n). The algebraic normal form of

gn+2 is then

gn+2(x1, . . . , xn+2) = gn + xn+1(gn + g′n) + xn+2(gn + g′′n)
+xn+1xn+2(gn + g′n + g′′n + hn) .

If gn+2 has degree at most d + 1, then (gn + g′n) and (gn + g′′n) have degree at
most d. Because both functions lie in AN(fn) and AI(fn) = d + 1, we deduce
that gn + g′n = 0 and gn + g′′n = 0, which give, gn = g′n = g′′n. Therefore,
gn+2 = gn + xn+1xn+2(gn + hn). So, deg(gn + hn) ≤ d − 1. Now following the
Lemma 2 we have gn = hn = 0, that gives, gn+2 = 0.

Similarly one can check that there cannot be any nonzero annihilator of
1 + fn+2 having degree ≤ d + 1. This completes the proof. ut

Using this Construction 1, one can generate a function on n variables whose
algebraic immunity is the highest possible, i.e., dn

2 e. In this case one has to start
from 1 or 2-variable nonconstant function. Then after each step we will get a
function on two more variables and the algebraic immunity will increase by 1.

Example 1. First we present the case for odd n. One can start from f1 = x1.
Step 1: f1 = 01
Step 2: f3 = f1f1f1f1 = 01010110
Step 3: f5 = f3f3f301101001 = 01010110010101100101011001101001
Step 4: f7 = f5f5f501010110011010010110100110010110
Step 5: f9 = f7f7f7f50101011001101001011010011001011001010110

01101001011010011001011001101001100101101001011001101001
Then we present the case for even n. One can start from nonlinear function

f2 = x1x2 as the initial function.
Step 1: f2 = 0001
Step 2: f4 = f2f2f2f2 = 0001000100011110
Step 3: f6 = f4f4f4f2111011100001
Step 4: f8 = f6f6f6f4f2111011100001f21110111000011110000100011110
Step 5: f10 = f8f8f8f6f4f2111011100001f21110111000011110000100011110

f4f2111011100001f21110111000011110000100011110f211101110
0001111000010001111011100001000111100001111011100001



Note that the algebraic immunity stays the same if a function is subjected
to linear transformation on input variables. Thus, taking any function presented
in the above example, one can apply linear transformation to get number of
functions. Further the nonlinearity and algebraic degree also stays same after
linear transformation.

Now we will discuss some other cryptographic properties of the functions
generated using Construction 1 after k-th step.

Corollary 1. Let fd+2k ∈ Bd+2k is constructed by Construction 1 taking fd ∈
Bd as the initial function, i.e., fd+2k = fd + φ2k, the direct sum.

1. nl(fd+2k) = 2dnl(φ2k) + 22knl(fd)− 2nl(φ2k)nl(fd) > 4knl(fd).
2. Let fd be an r-resilient function. Then fd+2k is also r-resilient.
3. deg(fd+2k) = max{deg(fd),deg(φ2k)}.

Proof. The proof of item 1 follows from [20, Proposition 1(d)] and the proof of
item 2 follows from [20, Proposition 1(c)]. The result related to algebraic degree
is also easy to see. ut

In Item 1 of Corollary 1 we are using nl(φ2k). We have observed that nl(φ2k)
is equal to the number of 1’s in its truth table. We have checked that the values
of nl(φ2k) are 1, 5, 22, 93, 386, 1586, 6476, 26333 for k = 1, . . . , 8. Using this,
here we present the nonlinearity of the functions given in Example 1. The initial
function is the f1 = x1 which is a linear function. So, nl(f1) = 0. Therefore,
nl(f3) = 2, nl(f5) = 10, nl(f7) = 44, nl(f9) = 186, nl(f11) = 772, nl(f13) =
3172, nl(f15) = 12952, nl(f17) = 52666. Similarly if one starts with a 5-variable
1-resilient function with nonlinearity 12, one gets a 7-variable 1-resilient function
with nonlinearity 56 (as nl(φ2) = 1), then a 9-variable 1-resilient function with
nonlinearity 232 (as nl(φ4) = 5) and so on. We like to point out once again that
the nonlinearity remains very good in this construction and the order of resiliency
is also not disturbed as it is a direct sum construction of a function fd with good
properties in terms of nonlinearity and resiliency and a function φ2k which is
good in terms of algebraic immunity. When the weight (also nonlinearity) of the
function φ2k is odd, then clearly its algebraic degree is 2k. We have also checked
upto k = 6, that when the weight (also nonlinearity) is even then the algebraic
degree is 2k− 1. The exact nonlinearity and algebraic degree of φ2k is still open
at this stage and we are working on it. Certain ideas in this area have also been
provided by Carlet [9].

Note that if one starts with an initial function fn−2d ∈ Bn−2d having alge-
braic immunity D, it is not guaranteed that after d steps fn will have algebraic
immunity d + D; the only guarantee is that it will be ≥ d + 1 (following similar
arguement as in the proof of Theorem 1). It will be interesting to see what is
the exact algebraic immunity of fn.

4 Functions with low degree subfunctions

In this section we discuss why a Boolean function with low degree subfunction
is not good in terms of algebraic immunity. This result is a generalization of



the result presented in [18], where the authors have shown that certain kind of
Maiorana-McFarland constructions are not good in terms of algebraic immunity.

Proposition 1. Let f ∈ Bn. Let g ∈ Bn−r be a subfunction of f(x1, . . . , xn)
after fixing r many distinct inputs xi1 , . . . , xir

∈ {x1, . . . , xn}. If the algebraic
degree of g is d, then AIn(f) ≤ d + r.

Proof. Let xi1 , . . . , xir
are fixed at the values ai1 , . . . , air

∈ {0, 1}. Thus g is a
function on the variables {x1, . . . , xn} \ {xi1 , . . . , xir

}. It can be checked that
(1 + ai1 + xi1) . . . (1 + air

+ xir
)(1 + g) is an annihilator of f . The algebraic

degree of (1 + ai1 + xi1) . . . (1 + air + xir )(1 + g) is d + r. Thus the result. ut

The Maiorana-McFarland construction can be seen as concatenation of affine
functions on n−r variables to construct an n-variable functions. Clearly we have
affine subfunctions of the constructed function in this case and hence deg(g) = 1
following the notation of Proposition 1. Thus there will be annihilators of degree
1 + r. Note that if r is small, then one can get annihilators at low degree [18,
Theorem 2, Example 1]. This situation for Maiorana-McFarland construction is
only a subcase of our proposition. Our result works on any function, it need not
be of Maiorana-McFarland type only. We present an example below.

Example 2. Let us consider a 20-variable function, with a subfunction of degree
2 on 17-variables, i.e., we fix 3 inputs. In that case the 20-variable function will
have an annihilator at degree 2 + 3 = 5.

Maiorana-McFarland type of constructions are used in design of resilient
functions. One idea in this direction is to concatenate k-variable affine functions
(repetition may be allowed) non degenerate on at least m+1 variables to generate
an m-resilient function f on n-variables. For such a function f , it is easy to find
an annihilator g of degree n− k + 1 as described in [18]. However, it should be
noted that in construction of resilient functions, there are lot of techniques [20]
that use concatenation of k-variable affine functions where k < n

2 . In such a case,
the annihilators described in [18, Theorem 2] will be of degree greater than n

2 and
will not be of practical use as there are other annihilators of degree ≤ n

2 which
are not of the form given in [18, Theorem 2]. We will show that even in such a
case, Proposition 1 can provide further insight. We will show that a well known
construction of resilient function [20, Theorem 10(b)] on n-variables (n odd)
can never achieve the algebraic immunity dn

2 e. At the best, it can only achieve
the value bn

2 c. To explain this construction we briefly present some notations
from [20].

Take a bit b and a bit string s = s0 . . . sn−1. Then the string b AND s =
s′0 . . . s′n−1, where s′i = b AND si. Take two bit strings x = x0 . . . xn−1 and
y = y0 . . . ym−1. The Kronecker product x⊗ y = (x0 AND y) . . . (xn−1 AND y),
which is a string of length nm. The direct sum of two bit strings x, y is x$y =
(x⊗yc)⊕(xc⊗y), where xc, yc are bitwise complement of x, y respectively. As an
example presented in [20], if f = 01, and g = 0110, then f$g = 01101001. Now
we present the construction for (2p + 1, 1, 2p− 1, 22p − 2p) function as presented
in [20] for p ≥ 4.



Construction 2 [20, Theorem 10(b)] Let λ1, λ2, λ3, λ4 be the 3-variable lin-
ear functions non degenerate on two variables (i.e., the functions x1 + x2, x2 +
x3, x1 + x3, x1 + x2 + x3) and µ1, µ2, µ3 be the 3-variable linear functions non
degenerate on 1 variable (i.e., the functions x1, x2, x3). Let gi be the concate-
nation of the 3-variable function µi and its complement µc

i , for 1 ≤ i ≤ 3.
That is gi’s are basically 4-variable functions. Let h1, h2 be bent functions on
2p − 4 variables, and h3, h4, h5 be bent functions of 2p − 6 variables and h6, h7

be two strings of lengths 22p−6 + 1 and 22p−6 − 1 which are prepared by properly
adding and removing 1 bit from the truth table of (2p − 6)-variable bent func-
tions respectively. Let f be a concatenation of the following sequence of functions.
h1$λ1, h2$λ2, h3$g1, h4$g2, h5$g3, h6$λ3, h7$λ4. This is a (2p+1, 1, 2p− 1, 22p−
2p) function.

Proposition 2. The (2p+1)-variable function presented in Construction 2 has
a subfunction of degree at most p− 1 when x2p+1 = 0.

Proof. Consider the subfunction when x2p+1 = 0. The subfunction (call it g) in
concatenation form is h1$λ1, h2$λ2. Since h1, h2 are bent functions on 2p − 4
variables, they can have algebraic degree at most p − 2. Further λ1, λ2 are 3-
variable linear functions. The algebraic normal form of g is (1 + x2p)(h1 + λ1) +
x2p(h2 + λ2). So the degree of g is ≤ 1 + (p− 2) = p− 1. ut

Theorem 2. For a function f ∈ Bn (n odd) generated out of Construction 2,
AIn(f) ≤ bn

2 c.

Proof. Here n = 2p+1. We take g ∈ Bn−1, i.e., r = 1 according to Proposition 1.
Further from Proposition 2, deg(g) ≤ p− 1 = n−1

2 − 1. Thus, AIn(f) ≤ n−1
2 −

1 + 1 = bn
2 c. ut

Thus using our technique we can show that the construction proposed in [20,
Theorem 10(b)] can not achieve the maximum possible algebraic immunity dn

2 e.
The maximum value it can achieve is ≤ bn

2 c. This can be seen only by Propo-
sition 1 which generalizes the result of [18, Theorem 2, Example 1]. This also
answers a question presented in [15, Example 2] for n = 9. There Construction 2
has been exploited for p = 4 and the functions constructed are as follows.

1. h1 = 0000010100110110, h2 = 0000010100110110, h3 = 0001, h4 = 0001,
h5 = 0001, h6 = 00010, h7 = 001. In this case, one gets a (9, 1, 7, 240) func-
tion f1 with AI9(f1) = 3.

2. If one changes h2 = 0000010100110110 by h2 = 0000010100111001, then we
get a (9, 1, 7, 240) function f2 with AI9(f2) = 4.

The question raised in [15] was why the algebraic immunity of these two
function are different? The reason is in the first case the functions h1, h2 are same
with the ANF x1x3+x2x4. Thus the subfunction g (i.e., h1$λ1, h2$λ2) is a degree
2 function. So the maximum algebraic immunity, according to Proposition 1 can
be 2 + 1 = 3. That is the value achieved in [15]. In the second case, h1 is



different from h2 and the algebraic degree of g (i.e., h1$λ1, h2$λ2) becomes 3
and it achieves the value 3 + 1 = 4. Thus Proposition 1 helps in answering this
question. It is important to note that this technique can be employed to study the
upper bound of algebraic immunity for various constructions by analysing their
subfunctions and in particular, directly for the constructions proposed in [20, 6].

It should be noted that the converse of Proposition 1 is not always true. That
is, a function having low degree annihilator does not imply it always has some low
degree subfunction by fixing a few variables. As example, one may refer to the
5-variable function f = x1 +x2 +x2x4 +x3x4 +(x2 +x3 +x1x4 +x2x4 +x3x4)x5.
This function has algebraic immunity 2 and the only annihilator of degree 2 is
1+x1+x2+x1x4+x3x4+(x2+x3+x4)x5. If one verifies all possible subfunctions
of of f after fixing 1 and 2 variables, it is not possible to get subfunctions of
degree 1 and 0 respectively.

It will be interesting to extend our idea on the Boolean functions that can
be seen as concatenation of indicators of flats [8].

5 Conclusion

In this paper we study the algebraic immunity of Boolean functions since the
property becomes a necessary requirement in Boolean functions to be used as
cryptographic primitives. For the first time we present a construction where
one can get Boolean functions with maximum possible algebraic immunity. Also
the construction can be used in conjunction with Boolean functions with other
cryptographic properties to have functions which are suitable for different crypto-
graphic applications. Further we also point out that functions having low degree
subfunctions are not good in terms of algebraic immunity and study some well
known existing constructions from this approach.
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