
Some Attacks on the Bit-Search Generator

Martin Hell and Thomas Johansson

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin, thomas}@it.lth.se

Abstract. The bit-search generator (BSG) was proposed in 2004 and
can be seen as a variant of the shrinking and self-shrinking generators.
It has the advantage that it works at rate 1/3 using only one LFSR
and some selection logic. We present various attacks on the BSG based
on the fact that the output sequence can be uniquely defined by the
differential of the input sequence. By knowing only a small part of the
output sequence we can reconstruct the key with complexity O(L320.5L).
This complexity can be significantly reduced in a data/time tradeoff
manner to achieve a complexity of O(L320.27L) if we have O(20.27L) of
keystream. We also propose a distinguishing attack that can be very
efficient if the feedback polynomial is not carefully chosen.

1 Introduction

Lately, we have seen many new proposals for stream ciphers. The aim of binary
additive stream cipher is to produce a random looking sequence and then xor
this sequence with the plaintext sequence to produce the ciphertext. There are
several possible approaches when designing a stream cipher. A Linear Feedback
Shift Register (LFSR) with primitive feedback polynomial generates sequences
that possess many of the properties which we would expect from a random
sequence. Because of this it is common to use an LFSR as a building block
in a stream cipher. The problem with just using an LFSR is that any output
bit of the LFSR can be written as a linear function in the initial state bits.
This problem is solved by introducing some nonlinearity into the cipher. There
are many ways to do this and some classical approaches include letting the
output of several LFSRs or some state bits of one LFSR serve as input to a
nonlinear Boolean function. Another common way to introduce nonlinearity is to,
by some algorithm, decimate the LFSR output sequence in some irregular way.
Two well known keystream generators based on this principle are the shrinking
generator [1] and the self-shrinking generator [16]. Another generator related to
these is the alternating step generator [11]. This generator uses one LFSR to
decide the clocking of two other LFSRs.

The bit-search generator (BSG) is a keystream generator intended to be used
as a stream cipher. It was introduced in 2004 by Gouget and Sibert [10] and the
construction is similar to the generators mentioned above. The output of the
BSG is produced by a simple algorithm, taking a pseudorandom sequence as
input.

In this paper we investigate some possible attacks on the bit-search generator.
Throughout the paper we assume that the pseudorandom sequence is generated
by a maximum length LFSR and that the (primitive) feedback polynomial is
known to the attacker.

We give an alternative description of the BSG based on the differential of
the input sequence and then we describe a simple but efficient algorithm to re-
construct the differential sequence with knowledge of only a few keystream bits.
By reconstructing the differential sequence we can reconstruct the original input
sequence and also the key. This attack works regardless of the form of the feed-
back polynomial and has complexity O(L320.5L). If we know more keystream bits
we show that the complexity will be significantly decreased. More specifically,
with O(20.27L) bits of keystream we can mount the attack with time complexity
O(L320.27L) according to our simulations. Moreover, we describe the basis for
a distinguishing attack on the BSG. This attack can be made very efficient if
the feedback polynomial is of low weight or if it is possible to find a low degree
multiple of the feedback polynomial with low weight.

The outline of the paper is the following. In Section 2 we describe the BSG
and we compare the construction with similar generators. Then, in Section 3 we
present an attack that reconstructs the input sequence to the BSG algorithm.
By doing this we can recover the initial state of the LFSR. Section 4 gives the
framework for a possible distinguishing attack and in Section 5 we summarize
some previous attacks on the shrinking, self-shrinking and the alternating step
generators. We also compare these attacks with the attacks on the BSG shown
in this paper. In Section 6 we give our conclusions.

2 Description of the Bit-Search Generator

In this section we describe the bit-search generator in two different but equiva-
lent ways. First we give the original description that uses a sequence s as input,
as presented in [10]. Then we give an alternative description that uses the dif-
ferential sequence d of s as input. We also compare the construction to similar
keystream generators.

The principle of the BSG is very simple. It consists only of an LFSR and
some small selection logic, see Fig. 1. Consider a sequence s = (s0, s1, s2 . . .)
generated by the LFSR. The output sequence z = (z0, z1, z2 . . .) is constructed
from s by first letting b = s0 be the first bit to search for. If the search ends
immediately, i.e. s1 = b = s0 we output 0, otherwise we continue to search the
sequence s until the bit we search for is found. When the correct bit is found
we output 1 and we let the following bit be the next to search for. An output
bit is produced after 2 input bits with probability 1/2, after 3 input bits with
probability 1/4 etc. In general, an output bit is produced after i + 1 input bits
with probability 2−i so the average number of input bits needed to produce one
output bit is

∑

∞

i=0(i + 1) · 2−i = 3. This shows that the rate of the BSG is
asymptotically 1/3.

LFSR - -
Selection

Logic

si zi

Fig. 1. Block model of the bit-search generator.

To motivate why this generator is interesting we compare it to some other
well known generators based on the idea of only using LFSRs and some selection
logic. We base the comparison on the number of LFSRs used and the rate of the
cipher. As we can see in Table 1 the BSG has lower rate than the alternating
step generator and the shrinking generator but it uses only one LFSR. The
self-shrinking generator has also only one LFSR but it has lower rate.

Table 1. Comparison between the BSG and some well known generators.

Generator Number of LFSRs needed Rate

Alternating Step 3 1

Shrinking 2 1/2

Self-Shrinking 1 1/4

BSG 1 1/3

We now consider the differential sequence d of s. The differential sequence
is defined as di = si ⊕ si+1. If the sequence s is generated by an LFSR it is
well known, see e.g. [14], that the differential sequence can be generated by the
same LFSR. The two sequences differ only by some shift. When reconstructing
s from d we need to guess the first bit in s, then the remaining bits are uniquely
determined from d.

The output of the BSG can be uniquely described by knowledge of the dif-
ferential sequence. Hence, if we can reconstruct the differential sequence we can
predict the future outputs uniquely and we can also recover the key used to ini-
tialize the LFSR. The BSG operates on the differential sequence in the following
way. If di = 1 we know that si 6= si+1 so we will output 1. Then we search
the sequence d until we find the next dj = 1. If instead di = 0 we know that
we have two consecutive bits which are the same, hence we output 0. Now we
know we have found the bit we search for in the original BSG and we skip the
next bit since it does not matter which value it has. It is clear that the output
of the BSG can be generated from either the original LFSR sequence or from
the differential sequence. The following is an example of a sequence s and the
corresponding differential sequence d. Applying the algorithms, we can see that
they produce the same output.

s = 010100100111011101011010 . . .⇒ z = 110010101 . . .
d = 11110110100110011110111 . . . ⇒ z = 110010101 . . .

A summary of the two algorithms can be found in Fig. 2.

Output generated from s

i = –1; j = –1;
while (1)

i++; j++;
b = s[i];
i++;
if (s[i] == b) z[j] = 0;
else z[j] = 1;
while (s[i] != b) i++;

Output generated from d

i = 0; j = 0;
while (1)

z[j] = d[i];
if (d[i] == 1)

i++;
while (d[i] == 0) i++;

i += 2;
j++;

Fig. 2. The original BSG algorithm and an equivalent algorithm using the differential
sequence d of s as input.

3 Reconstructing the Input Sequence

In this section we will describe a known plaintext attack that tries to reconstruct
the differential sequence from the output sequence. In our attack we assume that
we have an LFSR generating the pseudorandom sequence and that the feedback
polynomial of the LFSR is known to the attacker. If we have an LFSR of length
L we need to guess L bits to be able to find a candidate initial state of the
LFSR. Each bit can be written as a linear function of the initial state bits and
by clocking the LFSR with a candidate initial state we can see if the candidate
output equals the given output.

It follows from the algorithm given in Fig. 2 that zi = 0 corresponds to a 0
followed by an unknown value in the differential sequence. It is also clear that
zi = 1 corresponds to a 1 followed by j ≥ 0 0s followed by a single 1 and an
unknown value. In short,

zi = 0 ⇒ (0,−)
zi = 1 ⇒ (1, 0j, 1,−)

The probability of having j zeros is 2−j−1, i.e. zi = 1 corresponds to (1,1,–) with
probability 1/2, (1,0,1,–) with probability 1/4, (1,0,0,1,–) with probability 1/8
etc. The expected number of inserted zeros is

∑

∞

i=0 i · 2−i−1 = 1.

In the following we will denote by a the number of ones that we observe
in an output sequence, b is the number of zeros in the output sequence and k
is the number of zeros that are inserted in the candidate differential sequence,
stemming from a set of a ones in the output sequence.

Now, assume that we have a set of a ones. There is one way to insert a total of
k = 0 zeros and this happens with probability 2−a. The number of ways to insert
a total of k = 1 zero is

(

a
1

)

and each has a probability of 2−a+1 ·2−2 = 2−a−1. The
number of ways to insert k zeros into a set consisting of a ones is a well known
combinatorial problem and can be written as

(

a−1+k
k

)

, Hence, the probability of
having a total of k zeros inserted will be

(

a− 1 + k

k

)

2−a−k.

We construct a simple search algorithm based on these observations. The
easiest way to find the correct differential sequence is to just guess the number
of inserted zeros.

When we try to insert k zeros we need to look at an output sequence that
satisfies 2a + b + k = L. This is clear since every one in the output will give
us two known bits and every zero will give us one known bit in the differential
sequence. If we insert k extra zeros we will have a total of L bits which is enough
to find the initial state. This leads us immediately to the algorithm in Fig. 3.

We start by just picking a part z′ of the output sequence such that the length
of z′ satisfies 2a+ b = L. Then we insert k = 0 zeros. If this candidate is not the
correct differential sequence, we delete the last bit in z′. If a 0 is deleted we try
k = 1 next time since b← b− 1 and we still require 2a + b + k = L to hold. For
the same reason, if a 1 is deleted we try k = 2 next time. Every time k ← k + 2
we will miss some possible combinations and, hence, not the full space will be
searched.

Search algorithm

Pick a part z′ of z s.t. 2a+b=L;
k=0;
while (k <= kmax)

Try all ways to insert k zeros in z′;
Delete last bit in z′;
if (Deleted bit == 0) k = k + 1;
else k = k + 2;

Fig. 3. The algorithm used to find the correct differential sequence.

3.1 Analysis of the Algorithm

The complexity of the algorithm and the probability of success will depend on
two factors. First, the ratio between the number of zeros and the number of ones

in the sequence. If we have found a z′ which has many more zeros than ones,
the complexity will be lower. This will also give us a higher success probability
since we will delete a 0 more often than we will delete a 1. The second factor
is the maximum number of zeros we will try to insert into the sequence before
we give up. This is the value kmax in the algorithm in Fig 3. Choosing a high
value for kmax will increase the success probability but it will also increase the
complexity.

We consider the case when we choose a sequence z′ at random. We expect
the number of zeros in the sequence to be equal to the number of ones. We also
expect that the deleted bit is 1 every second time. Moreover, when z′ is of odd
length, we consider the pessimistic case when a = b + 1. We have the following
equations

2a + b + k = L
a = b

}

⇒ a =

⌈

L− k

3

⌉

The probability of success will be

kmax
∑

k=0

(

⌈

L−k
3

⌉

− 1 + k
⌈

L−k
3

⌉

)

2−
⌈

L−k
3

⌉

−k

and we have a total complexity of

kmax
∑

k=0

(

⌈

L−k
3

⌉

− 1 + k
⌈

L−k
3

⌉

)

.

Similar equations can easily be found also if a 6= b. We choose kmax as the
smallest integer such that the probability of success is > 0.5. Focusing on the
expected case when a = b, we summarize the complexity of an attack in Table 2
with respect to the length of the LFSR (keylength). It is clear that the complexity
of the attack is very close to 20.5L tests for all cases.

Table 2. The attack complexity when the number of zeros equals the number of ones
in z′.

Keylength kmax Complexity

64 19 231.74

96 27 247.50

128 36 263.96

160 44 279.82

192 52 295.71

224 61 2112.37

256 69 2128.29

We can approximate the least number of plaintext bits needed in the expected
case. With L/3 ones and L/3 zeros we will have knowledge of at least 2 · L/3 +

L/3 = L bits in the input sequence. With about 20.5L different sequences to test
we need to compare the candidate sequence with an extra 0.5L bits to see if the
candidate is correct. Hence, by knowing about 2L/3 + L/2 = 7L/6 bits of the
keystream sequence we can reconstruct the input sequence with a complexity of
O(20.5L) tests. In the 128 bit case we need approximately 150 bits of keystream.

3.2 A Data/Time Tradeoff

As mentioned in the previous section, it is clear that the complexity of the
attack depends on the number of ones that we observe in the keystream. With a
large amount of keystream we can find sequences with few ones and, hence, the
attack complexity is decreased. This provides a data/time tradeoff in the attack.
Assume that we want to find a part z′ of z that contains at most a ones and
at least b zeros, where b > a. Looking at a random sequence of a + b bits, the
probability that we find a sequence with at most a ones is given by

P (#ones ≤ a) =

∑a
i=0

(

a+b
i

)

2a+b

using the approximation that sequences are independent. The number of tries
needed before a desired sequence is found is geometrically distributed with an
expected value of

2a+b

∑a
i=0

(

a+b
i

) =
2L−a

∑a
i=0

(

L−a
i

) .

In the equality we use 2a + b = L. Table 3 demonstrates this data/time tradeoff
for the case when L = 128, i.e. the keylength is 128 bits. Simulations show that
the time complexity and the amount of keystream needed intersect at around
20.27L for all L between 64 and 1024 bits.

Table 3. The data/time tradeoff based on the number of ones and zeros in z′ using a
128 bit key.

Number of zeros (b)

and ones (a) in z′ kmax Complexity Keystream

b = 2a 29 251.09 210.46

b = 3a 24 242.21 221.59

b = 4a 21 236.31 231.32

b = 5a 19 232.14 239.75

b = 6a 17 228.46 248.70

The complexities in Table 2 and Table 3 are given as the number of tests. To
test if a candidate sequence is correct, a constant time is needed. This time can

be divided into two parts. First we need to find the initial state of the LFSR by
solving a system of L unknowns and L equations. This system can be solved in
time Lω. In theory ω ≤ 2.376, see [2], but the constant factor in this algorithm
is expected to be very big. The fastest practical algorithm is Strassen’s algo-
rithm [19], which requires about 7 · Llog2 7 operations. For simplicity we write
the time complexity for this step as L3. We also need to clock the LFSR a
sufficient number of times to compare our candidate output sequence with the
observed output sequence. This second constant would also be needed in an ex-
haustive key search. Thus, the total time complexity for our key recovery attack
is O(L320.5L) knowing only 7L/6 bits of the keystream. With the data/time
tradeoff the complexity of the attack is O(L320.27L) if we know O(20.27L) bits of
the keystream. Note that these complexities are not formally derived but sim-
ulations show that they are valid (at least) up to keylengths of 1024 bits. The
memory complexity of the attack is limited to the memory needed to solve the
system of linear equations.

4 Distinguishing Attack

In this section we describe a possible distinguishing attack on the BSG. A distin-
guishing attack does not try to recover the key or any part of the input sequence.
Instead, the aim is to distinguish the keystream from a purely random sequence.
In the attack we assume that we have found a multiple of the feedback polyno-
mial that is of weight w and degree h. Any multiple of a feedback polynomial will
produce the same output sequence as the original polynomial. The well known
fast correlation attack, see [15], depends on the existence of low weight multi-
ples of modest degree of the LFSR feedback polynomial. Due to the importance
of finding low weight multiples this subject has been studied in several papers,
see [6, 20]. In [6], Golić estimates that the critical degree when polynomial multi-
ples of weight w start to appear is (w−1)!1/(w−1)2L/(w−1), where L is the degree
of the polynomial. Hence, a feedback polynomial of degree L is expected to have

a multiple of weight w that is of degree approximately 2
L

w−1 . Now, assume that
we have found a multiple of weight w that is of degree h.

The linear recurrence of the LFSR can be written as

0 = di + di+τ1
+ di+τ2

+ . . . + di+τw−1
(1)

where τw−1 = h and τj < τk, j < k. A zero in the output sequence z corresponds
to a zero in the differential sequence and a one in the output corresponds to a
one in the differential sequence. Since the BSG has rate 1/3 we can consider the
following sums of symbols from the output sequence

Bi = zi + zi+
τ1
3

+ zi+
τ2
3

+ . . . + zi+
τw−1

3

. (2)

We know that Bi = 0 if we have the correct synchronization (di+τ1
appears

as zi+
τ1
3

, di+τ2
appears as zi+

τ2
3

etc.) in the positions. We give an approximate
value of the probability that we have synchronization in one position. With

a multiple of low weight and high degree h the distance between zi and any
zi+

τj
3

is in the order of h. Using the central limit theorem we say that the total

number of inserted zeros after h outputs is normally distributed with standard
deviation σ ·

√
h, where σ is the standard deviation for the number of inserted

zeros after one output. Now, we approximate the probability that we have the
correct synchronization as h−

1
2 .

Hence, the probability that zi+
τj
3

, 1 ≤ j ≤ w − 1 is synchronized with zi is

approximately h−
1
2 . The probability that all w − 1 positions are synchronized,

denoted P (sync), is

P (sync) = (h−
1
2)w−1 = h−

w−1
2

and the probability that Bi = 0 can be calculated as

P (Bi = 0) = P (Bi = 0 | sync) · P (sync)
+ P (Bi = 0 | no sync) · P (no sync)

= 1 · h−
w−1

2 + 1/2 · (1− h−
w−1

2)

= 1/2 + 1/2 · h−
w−1

2 .

(3)

With a bias of h−
w−1

2 we will need about hw−1 samples of the output se-
quence to distinguish it from random. The complexity of the distinguishing at-
tack depends on the degree of the multiple and if the degree is the expected

degree, h = 2
L

w−1 , our distinguisher needs about 2L samples. However, if the
feedback polynomial is not carefully chosen and we instead can find a multiple
of low weight that is of much lower degree than expected, then the attack can
be very efficient. This distinguisher can be improved in several ways. One way
is to consider blocks of bits instead of individual bits.

We can consider a feedback polynomial with h << 2
L

w−1 as being a weak
polynomial and ciphers using a weak polynomial can be efficiently attacked.
Another class of weak feedback polynomials and an attack on these can be
found in [5]. One can do a similar attack on the bit-search generator.

The values in the previous attack are approximated but for large h they
are quite accurate. In the case where the feedback polynomial itself is of low
weight, the values are not very accurate. We now describe how this attack can
be mounted if the LFSR uses a feedback polynomial of some low weight w.
Equation (1) will always hold for the differential sequence. To find the optimum
guess for z

i+
τj

3

, 1 ≤ j ≤ w − 1 in (2) we use the generating function for the

probability of the number of clockings after λ outputs. Recall that the BSG
will produce a keystream bit after two clockings with probability 1/2, after 3
clockings with probability 1/4 etc. The generating function can be written as

(

∞
∑

n=0

1

2n
zn+1

)λ

. (4)

The coefficient of zn is the probability that the LFSR has been clocked n times
when the BSG has generated λ keystream bits.

By choosing the λj for which the coefficient of zτj is highest we can determine
which guess will give us the best probability of synchronization and we will also
get the exact probability of a correct guess. We denote the probability that we
guess λj correctly by pλj

. If pλj
, 1 ≤ j ≤ w− 1 are independent the probability

that Bi = 0 can be written, similarly to (3), as

P (Bi = 0) = 1 ·∏w−1
j=1 pλj

+ 1/2 · (1−∏w−1
j=1 pλj

)

= 1/2 + 1/2 ·
∏w−1

j=1 pλj
.

With a bias of
∏w−1

j=1 pλj
we need about

1
∏w−1

j=1 p2
λj

samples for a successful distinguishing attack. We end this section with a small
numerical example showing the performance of this distinguisher on a low weight
feedback polynomial.

Example 1. Consider the weight 5 primitive feedback polynomial 1+x29 +x66 +
x95 + x128. Write the linear recurrence in the differential sequence as

0 = di + di+29 + di+66 + di+95 + di+128.

Using (4) we find that the highest coefficient for z29, z66, z95 and z128 is achieved
when we have λ1 = 10, λ2 = 22, λ3 = 32 and λ4 = 43 respectively. The best
possible approximation of (2) is then Bi = zi +zi+10 +zi+22 +zi+32 +zi+43. The
probability that each of these terms are synchronized with zi is the coefficient
for each term in (4), i.e.,

pλ1
= 2−3.43, pλ2

= 2−4.06, pλ3
= 2−4.31, pλ4

= 2−4.53.

This gives us a total bias of
∏w−1

j=1 pλj
= 2−16.33 and, hence, our distinguisher

needs approximately 232.66 bits to succeed.

This shows that low weight feedback polynomials can be easily and efficiently
attacked. Note that the attack described above can be further improved, using
slightly more advanced techniques.

5 Comparison with the Alternating Step, Shrinking and

the Self-Shrinking Generator

The shrinking generator, the self-shrinking generator and the alternating step
generator are similar to the BSG in that they only contain one or more LFSRs
and some selection logic. There is no Boolean function used as a nonlinear com-
biner or as a nonlinear filter. In section 2 we compared the number of LFSRs

used in and the rate of these generators. Here we summarize a small selection of
the attacks proposed for the 3 well known generators and we compare them to
our attacks on the BSG.

The alternating step generator is the oldest generator and based on 3 LF-
SRs in such a way that L3 controls the clocking of L1 and L2. In the original
paper [11] a divide-and-conquer attack with complexity O(2L3+2 log2 min(L1,L2))
was shown. 1997, in [8], Golić and Menicocci showed a correlation attack with
complexity O(2L1+L2+2 log2(L1+L2)) and the year after [9] they improved this
attack significantly to O(2max(L1,L2)+2 log2 max(L1,L2)).

The shrinking generator uses two LFSRs, denoted A and S. The sequence
generated by S is used to select bits in the A-sequence. These selected bits are the
output bits. In the original paper [1], an attack with known feedback polynomials
was proposed that has complexity O(2LS · L3

A). In 1998, Simpson, Golić and
Dawson [18] presented a correlation attack that can recover the initial state of
A with complexity O(2LA ·L2

A) using about 20 ·LA bits. In 1998, Johansson [12]
gave another correlation attack that is based on finding weak sequences. The
complexity of this attack is better than previous attacks but it is still exponential
in |A|. Distinguishing attacks on the shrinking generator have also been presented
in [3, 7].

The BSG is probably most related to the self-shrinking generator since they
both consist of only one LFSR. Because of this the attacks on the self-shrinking
generator are easy to compare to the attacks on the BSG. Several key recov-
ery attacks have been proposed for the self-shrinking generator. In the origi-
nal paper [16] a key recovery attack was proposed that has average complexity
O(20.75L). In 1996, Mihaljevic [17] presented an attack that has a complex-
ity that varies between O(20.5L) and O(20.75L) but the required length of the
keystream varies between O(20.5L) and O(20.25L) respectively. In 2001, Zenner,
Krause and Lucks [21] described an attack that uses a search tree. This attack
needs very few keystream bits and has complexity O(20.69L). The attack was
later improved by Krause [13] to a complexity of O(20.66L). The problem with
these two attacks is that they require a large amount of memory. In 2003, Ek-
dahl, Johansson and Meier [4] presented an attack that is much more efficient
than the previous attacks if the polynomial is of a certain form.

Our attack that reconstructs the input sequence of the bit-search generator
is equivalent to a key recovery attack. We can reconstruct the initial state of the
LFSR that produces the differential sequence d. From this sequence we can recon-
struct the original sequence. We propose an attack with complexity O(L320.5L)
that uses very few keystream bits. Knowing more keystream bits will reduce the
complexity significantly. Using a data/time tradeoff we show that we can mount
the attack using O(20.27L) keystream bits with a time complexity of O(L320.27L).
Finally, we suggest a distinguishing attack that can be very efficient if the feed-
back polynomial is not carefully chosen. It has the complexity O(hw−1) for a
degree h multiple of weight w. The framework of this distinguishing attack can
be used also to attack the other generators. Hence, for all the generators consid-

ered here it is important to choose a feedback polynomial that has no low weight
multiples of degree much lower than expected.

Finally, we would like to mention that the BSG, as well as the other genera-
tors in this section, can be vulnerable to various side channel attacks. Though,
we have not pursued any work in this direction.

6 Conclusion

The bit-search generator, recently proposed by Gouget and Sibert has been con-
sidered and an equivalent description based on the differential of the input se-
quence has been given. We propose an efficient attack that recovers the differen-
tial sequence, and hence, the key. The construction as well as the security of the
generator has been compared to similar generators. The self-shrinking generator
is very similar to the BSG and we find that the key recovery attacks presented
here are more efficient than any known key recovery attack on the self-shrinking
generator. The basis for a distinguishing attack is also described and we show
that if the feedback polynomial is not carefully chosen, the BSG may be prone
to efficient distinguishing attacks.

References

1. D. Coppersmith, H. Krawczyk and Y. Mansour. The Shrinking Generator. In
D. Stinson, editor, Advances in Cryptology–CRYPTO’93, pages 22–39. Springer-
Verlag, 1993. Lecture Notes in Computer Science Volume 773.

2. D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progres-
sions, J. Symbolic Computation (1990), 9, pp. 251–280.

3. P. Ekdahl, W. Meier and T. Johansson. Predicting the Shrinking Generator with
Fixed Connections. In E. Biham, editor, Advances in Cryptology–EUROCRYPT
2003, volume 2656 of Lecture Notes in Computer Science, pages 330–344. Springer-
Verlag, 2003.

4. P. Ekdahl, T. Johansson and W. Meier. A Note on the Self-Shrinking Generator. In
Proceedings of International Symposium on Information Theory, page 166. IEEE,
2003.

5. H. Englund, M. Hell and T. Johansson. Correlation Attack Using a New Class
of Weak Feedback Polynomials. In, B. Roy and W. Meier, editors, Fast Software
Encryption 2004, volume 3017 of Lecture Notes in Computer Science, pages 127–
142. Springer-Verlag 2004.

6. J. D. Golić. Computation of Low-Weight Parity Check Polynomials. Electronic
Letters 32(21):1981-1982, October 1996.

7. J. D. Golić. Correlation Analysis of the Shrinking Generator. In J. Kilian, editor,
Advances in Cryptology–CRYPTO 2001, volume 2139 of Lecture Notes in Com-
puter Science, pages 440–457. Springer-Verlag, 2001.

8. J. D. Golić and R. Menicocci. Edit Distance Correlation Attack on the Alternating
Step Generator. In, B. S. Kaliski, editor, Advances in Cryptology–CRYPTO’97,
Volume 1294 of Lecture Notes in Computer Science, pages 499–512. Springer-Verlag
1997.

9. J. D. Golić and R. Menicocci. Edit Probability Correlation Attack on the Alternat-
ing Step Generator. In C. Ding, T. Helleseth and H. Niederreiter, editors, Sequences
and their Applications–SETA’98. Discrete Mathematics and Theoretical Computer
Science, pages 213–227. Springer-Verlag 1999.

10. A. Gouget, H. Sibert. The Bit-Search Generator. In The State of the Art of Stream
Ciphers: Workshop Record, Brugge, Belgium, October 2004, pages 60–68, 2004.

11. C. G. Günther. Alternating Step Generators Controlled by de Bruijn Sequences.
In D. Chaum and W. L. Price, editors, Advances in Cryptology–EUROCRYPT’87,
pages 5–14. Springer-Verlag, 1988. Lecture Notes in Computer Science Volume 304.

12. T. Johansson. Reduced Complexity Correlation Attacks on Two Clock-
Controlled Generators. In K. Otha and D. Pei, editors, Advances in Cryptology–
ASIACRYPT’98, volume 1541 of Lecture Notes in Computer Science, pages 342–
357. Springer-Verlag, 1998.

13. M. Krause. BDD-Based Cryptanalysis of Keystream Generators. In L. R. Knudsen,
editor, Advances in Cryptology–EUROCRYPT 2002, Volume 304 of Lecture Notes
in Computer Science, pages 222–237. Springer-Verlag, 2002.

14. R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer Aca-
demic Publishers. 1987.

15. W. Meier and O. Staffelbach. Fast Correlation Attacks on Stream Ciphers. Ad-
vances in Cryptology-EUROCRYPT’88, volume 330 of Journal of Cryptology, pages
310-314. Springer-Verlag, 1988.

16. W. Meier and O. Staffelbach. The Self-Shrinking Generator. In A. De Santis, editor,
Advances in Cryptology–EUROCRYPT’94, pages 205–214. Springer-Verlag, 1995.
Lecture Notes in Computer Science Volume 950.

17. M. Mihaljevic. A Faster Cryptanalysis of the Self-Shrinking Generator. In
J. Pieprzyk and J. Seberry, editors, First Australasian Conference on Informa-
tion Security and Privacy ACISP’96, volume 1172 of Lecture Notes in Computer
Science, pages 182–189, Springer-Verlag, 1996.

18. L. Simpson, J. D. Golić and E. Dawson. A Probabilistic Correlation Attack on the
Shrinking Generator. In C. Boyd and E. Dawson, editors, Information security and
privacy ’98, volume 1438 of Lecture Notes in Computer Science, pages 147–158,
Springer-Verlag, 1998.

19. V. Strassen. Gaussian Elimination is Not Optimal, Numerische Mathematik, vol.
13, pages 354-356, 1969.

20. D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in
Cryptology–CRYPT0 2002, volume 2442 of Lecture Notes in Computer Science,
pages 288–303, Springer-Verlag, 2002.

21. E. Zenner, M. Krause and S. Lucks. Improved Cryptanalysis of the Self-Shrinking
Generator. In ACIPS’2001, Volume 2119 of Lecture Notes in Computer Science,
pages 21–35. Springer-Verlag, 2001.

0
The work described in this paper has been supported in part by the European Commission through the IST

Programme under Contract IST-2002-507932 ECRYPT. The information in this document reflects only the au-

thor’s views, is provided as is and no guarantee or warranty is given that the information is fit for any particular

purpose. The user thereof uses the information at its sole risk and liability

