
Security Analysis of a 2/3-rate Double Length

Compression Function in The Black-Box Model

Mridul Nandi1, Wonil Lee2, Kouichi Sakurai2, and Sangjin Lee3

1 Applied Statistics Unit,
Indian Statistical Institute, Kolkata, India

mridul r@isical.ac.in
2 Faculty of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, Japan
wonil@itslab.csce.kyushu-u.ac.jp

sakurai@csce.kyushu-u.ac.jp
3 Center for Information Security Technologies (CIST),

Korea University, Seoul, Korea sangjin@cist.korea.ac.kr

Abstract. In this paper, we propose a 2/3-rate double length com-
pression function and study its security in the black-box model. We
prove that to get a collision attack for the compression function requires
Ω(22n/3) queries, where n is the single length output size. Thus, it has
better security than a most secure single length compression function.
This construction is more efficient than the construction given in [8]. Also
the three computations of underlying compression functions can be done
in parallel. The proof idea uses a concept of computable message which
can be helpful to study security of other constructions like [8], [14], [16]
etc.

1 Introduction

A hash function is a function from an arbitrary domain to a fixed domain. Hash
functions have been popularly used in digital signatures schemes, public key
encryption, message authentication codes etc. To have a good digital signature
schemes or public key encryption, it is required that hash function should be
collision resistant or preimage resistant. Intuitively, for a collision resistant hash
functionH it is hard to find two different inputsX 6= Y such thatH(X) = H(Y).
In case of preimage resistant hash function, given a random image it is hard to
find an inverse of that image. Besides this condition, one should define hash func-
tion on an arbitrary domain. Usually, one first design a fixed domain hash func-
tion f : {0, 1}n+m → {0, 1}n (also known as a compression function) and then
extend the domain to an arbitrary domain by iterating the compression func-
tion several times. The most popular method is known as MD-method [2], [15]
with the classical iterations. We first pad the input message by some strings and
the string representing the length so that the length of the padded message be-
comes multiple of m and it avoids some trivial attacks. Now for some fixed initial
value h0 ∈ {0, 1}n and a padded input M = m1|| · · · ||ml ∈ ({0, 1}m)∗, where

|mi| = m, the hash functionHf (h0, ·) : ({0, 1}m)∗ → {0, 1}n is defined as follow :

Algorithm Hf (h0,m1|| . . . ||ml)
For i = 1 to l

hi = f(hi−1,mi)
Return hl

There are many constructions of the underlying compression functions e.g.
SHA-family i.e. SHA-0, SHA-1, SHA-256 [17], MD-family i.e. MD-4, MD-5,
RIPEMD [5] [19] etc. There are several collision attacks [3] [4] [10] [21] on some
of these compression functions. Also people tried to design a compression func-
tion from a block cipher known as PGV hash functions [18]. In [1], [13], the
security of the PGV hash functions were studied in the black box model of the
underlying block cipher.

Nowadays, people are also interested in designing a bigger size hash function
to make the birthday attack infeasible. One can do it by just constructing a
compression function like SHA-512. The other way to construct it from a smaller
size compression function. In the later case one can study the security level of
the bigger hash function assuming some security level of underlying compression
functions. People also try to use block ciphers to extend the output size. There
are many literatures where the double block length hash function were studied
e.g. [7], [8], [11], [12], [16], [20] etc.

1.1 Motivation and Our Results.

If a single length compression function has output size n then that of double
length compression function is 2n. For the smaller size hash function the birth-
day attack can be feasible. Thus to make birthday attack infeasible we need
to construct a compression function with larger size output. In this paper, we
construct a double length compression function from a single length compres-
sion function or a block cipher. We use three invocations of independent single
length compression functions or block ciphers to hash two message blocks. Thus,
the rate of the compression function is 2/3. We also prove the security level is
Ω(22n/3) and prove the bound is tight by showing an attack on this compression
function with complexity O(22n/3).

2 Preliminaries

2.1 Some Results on Probability Distribution.

In this paper we will be interested in random variables taking values on {0, 1}n

for some integer n > 0. A random variable X is uniformly distributed over the
set {0, 1}n if Pr[X = x] = 1/2n for all x ∈ {0, 1}n. We use the notation X ∼ Un

to denote a uniform random variable X. We say random variables X1, · · · , Xk are

independent if the joint distribution of (X1, · · · , Xk) is the product of marginal
distributions of Xi’s. So if X1, · · · , Xk are independent and Xi ∼ Un for all
i, then Pr[X1 = x1, · · · , Xk = xk] = 1/2

nk for all xi ∈ {0, 1}n. We describe
this case by the notation (X1, · · · , Xk) |= Un. In this case, it is easy to see
that X1|| · · · ||Xk ∼ Unk i.e. uniformly distributed over the set {0, 1}nk. The
n-bit string 0 · · · 0 (known as a zero string) is denoted by 0. For a binary vector
l = (l1, · · · , lk) ∈ Zk

2 , l
T denotes the transpose vector of l. Given a set of k

random variables X = (X1, · · · , Xk), X · lT = l1X1 ⊕ · · · ⊕ lkXk , where 0X = 0
and 1X = X. For a binary matrix Lk×r = [l

T
1 , · · · , lTr], X ·L denotes the random

vector (X ·lT1 , · · · , X ·lTr). Now we state a simple fact from the probability theory.

Proposition 1. If X = (X1, · · · , Xk) |= Un then for any vector l ∈ Zk
2 with

l 6= 0 , the random variable X · lT ∼ Un. For any matrix Lk×r with rank r(≤ k),
the random vector X · L |= Ur.

Example 1. Take r = 2 and k = 3. Let l1 = (0, 1, 1) and l2 = (1, 1, 0) then
X · L = (X2 ⊕ X3, X1 ⊕ X2) , where X = (X1, X2, X3) |= Un. By the above
Proposition 1, both X2 ⊕ X3 and X1 ⊕ X2 are independently and uniformly
distributed on {0, 1}n since the matrix L = [lT1 , l

T
2] has rank 2.

2.2 (Independent) Random Functions and Permutations.

A random function f : D → R taking values as random variable satisfy the
following conditions

1. for any x ∈ D, f(x) has uniform distribution on R.
2. for any k > 0 and k distinct elements x1, · · ·xk ∈ D, the random variables

f(x1), · · · , f(xk) are independently distributed.

More precisely, one can not construct a single function which is a random
function. Consider a class of functions FuncD→R which consists of all function
fromD to R. When one says that f is a random function it means that f is drawn
randomly from FuncD→R. However, to study some security property one assume
a single function as a random function. Although, it is not theoretically possible
this can be meaningful for some types of adversary who only query the function
f and do not explore the internal structure of f . We say two functions f1 and f2

from D to R are independent random functions if they are random functions and
for any k, l > 0 and k distinct elements x1

1, · · · , x1
k ∈ D and l distinct elements

x1
1, · · · , x1

l ∈ D the random variables f1(x
1
1), · · · , f1(x

1
k), f2(x

2
1), · · · , f2(x

2
l) are

independently distributed. Similarly one can define that f1, f2 and f3 are inde-
pendent random functions and so on.

Similarly one can define a random permutation. A permutation E : D → D
is said to be a random permutation if for any k > 0 and k distinct elements
x1, · · · , xk ∈ D, the random variable f(xk) condition on f(x1) = y1, · · · , f(xk−1) =
yk−1 is uniformly distributed over the setD−{y1, · · · , yk−1}. Obviously f(x1), · · · ,
f(xk) are not independently distributed. We say E : {0, 1}k × {0, 1}n → {0, 1}n

by a family of permutations if for each K ∈ {0, 1}k, E(K, ·) is a permutation on
n-bit strings. We say a family of permutations E : {0, 1}k ×{0, 1}n → {0, 1}n is
a random permutation if for each K ∈ {0, 1}k, E(K, ·) is a random permutation
and for each s > 0, and s distinct elements K1, · · ·Ks, E(K1, ·), · · · , E(Ks, ·) are
independent function.

2.3 Some Attacks on Hash/Compression Functions

In this paper, we mainly study the collision resistant hash function but for the
sake of completeness, we want to state the preimage resistance also. Given a
compression function f : {0, 1}N → {0, 1}n, it is called collision resistant if
it is hard to find two inputs x 6= y such that f(x) = f(y). It is said to be
a preimage resistant compression function if given a random y ∈ {0, 1}n, it
is hard to find x such that f(x) = y. In the case of a random function f ,
the best attack is birthday attack which takes O(2n/2) or O(2n) queries of f
for collision or preimage attack, respectively. For the hash function based on a
compression function, we can similarly define collision and preimage attack. But,
here the initial value of the hash function is fixed and given to the adversary
before starting the attack. There are also free-start collision and preimage attack
where the adversary can choose the initial value. It can be easily shown that the
free start attack on hash function is equivalent to the corresponding attack on
the underlying compression function.

3 A New Double Length Compression Function

Let fi : {0, 1}2n → {0, 1}n be independent random functions, i = 1, 2, 3. Define,
F : {0, 1}3n → {0, 1}2n, where F (x, y, z) = (f1(x, y) ⊕ f2(y, z)) || (f2(y, z) ⊕
f3(z, x)) with |x| = |y| = |z| = n. We also write F = F1 || F2, where F1(x, y, z) =
f1(x, y)⊕ f2(y, z) and F2(x, y, z) = f2(y, z)⊕ f3(z, x) (see Figure 1).

Theorem 1. (F (x1, y1, z1), F (x2, y2, z2)) |= U2n, (x1, y1, z1) 6= (x2, y2, z2). In

particular, ∀M 6= N and Z, Pr[F (M) = F (N)] = 1
22n

and Pr[F (M) = Z]
= 1

22n
.

Proof. Let M = (x1, y1, z1) 6= (x2, y2, z2) = N . Assume that x1 6= x2, y1 =
y2 = y (say), and z1 = z2 = z (say). For the other cases, we can prove the
result similarly. To prove that (F (M), F (N)) |= U2n, it is enough to prove
that (F1(M), F2(M), F1(N), F2(N)) |= Un. Since f1, f2 and f3 are indepen-
dent random functions, f1(x1, y), f1(x2, y), f2(y, z), f3(z, x1) and f3(z, x2) are
independently distributed. Thus, by Proposition 1 (in Section 2.1) we know that
f1(x1, y)⊕f2(y, z), f3(z, x1)⊕f2(y, z), f1(x2, y)⊕f2(y, z) and f3(z, x2)⊕f2(y, z)
are independently distributed. So we have proved the proposition. ut

3.1 The Model for Adversary and Computable Message.

In this subsection, we state briefly how an adversary works in the random oracle
model. Adversary can ask the oracles f1, f2 and f3 i.e. he can submit (a, b) to any

? ??

x y z

⊕

? ?

? ? ? ? ? ?

F1 F2

f1

- ¾ ⊕- ¾

f2 f3

x xy y z z

Fig. 1. A double length compression function

one of the oracles fi and he will get a response c such that fi(a, b) = c. We restrict
the number of queries for each fi by at most q. Finally he outputs a pairM 6= N
(for collision attack of F) such that both F (M) and F (N) can be computed
from the set of queries he made. We say adversary wins if F (M) = F (N).

Definition 1. (Computable message)
Let Q1 = {(x1

i , y
1
i)}1≤i≤q, Q2 = {(y2

i , z
2
i)}1≤i≤q and Q3 = {(z3

i , x
3
i)}1≤i≤q be the

three sets of queries for the random oracles f1,f2 and f3, respectively. We say a

message M = (x, y, z) is computable if (x, y) ∈ Q1, (y, z) ∈ Q2 and (z, x) ∈ Q3.

Thus it is easy to observe that a message M is computable if and only if
F (M) can be computed from the set of queries. Because of Theorem 1 of this
section if we can bound the number of computable message by some number say
Q then it is easy to check that the adversary will get a collision with probability
at most Q(Q− 1)/22n+1. In case of preimage attack, the probability is at most
Q/22n. Thus the question reduces how to get an upper bound of the number of
computable messages from any set of queries Q1,Q2 and Q3 where |Qi| ≤ q, 1 ≤
i ≤ 3. To have an upper bound we can convert our problem into a combinatorial
graph theoretical problem. In the next subsection we study that problem.

3.2 A Combinatorial Graph Theoretical Problem

Tripartite Graph. A graph G = (V,E) is known as a tripartite graph if
V = AtB tC (disjoint union) and for any edge {u, v} ∈ E either u ∈ A, v ∈ B

or u ∈ A, v ∈ C or u ∈ B, v ∈ C (see Figure 2). Thus there are no edges between
vertices in A or between vertices in B or between vertices in C. We use the
notation e(A,B,G) (or simply e(A,B)) for the set of edges between A and B.
Similarly we can define e(B,C) and e(A,C). Note that for every triangle 4 in
G, the vertices of 4 are from A,B and C with one vertex from each one. Now
we can state the following problem.

Problem : Given an integer q, what is the maximum number of triangles of a
tripartite graph G on A tB t C such that |e(A,B)|, |e(B,C)|, |e(A,C)| ≤ q.

w1 = w2

· · ·

u1 u2 ur

v1

vr wr

A

B C

· · ·

v2 · · ·

Fig. 2. A tripartite graph

We first prove a Proposition which will be useful for finding the upper bound
of the problem stated above.

Proposition 2. Let G be a tripartite graph on AtBtC such that |e(A,B)| ≤ q.
For a set of edges EBC = {v1w1, · · · , vrwr} ⊆ e(B,C) such that vi’s are distinct

vertices from B, the number of triangles in G whose one of the sides is from

EBC is at most q.

Proof. Let T be the set of triangles in G one of whose side is from EBC . Now
we can define an injective map ρ from the set T to the set e(A,B). Given a
triangle uvw ∈ T with vw ∈ EBC and v ∈ B, define ρ(T) = uv. Obviously the
map ρ : T → e(A,B) is well defined. To see it is an injective map we just note
that all vi’s are distinct (see Figure 2). So, ρ(uvw) = ρ(u′v′w′) with v, v′ ∈ B

and u, u′ ∈ A implies that u = u′ and v = v′. Since v = v′ and vw, v′w′ ∈ EBC

implies that w = w′. So the two triangle uvw and u′v′w′ are identical. ut

Thus if we can divide the set e(B,C) into r sets Ei
BC , 1 ≤ i ≤ r such that

each Ei
BC has the property stated in the Proposition 2 for B or C then the

number of triangles in G will be at most r × q. Assume q = n2. We will show
now that we can always divide e(B,C) into 2n many such sets. Thus upper
bound of triangles is 2n3. Let G = (V,E) be a bipartite graph on B t C with
|E| ≤ n2. We say a set of edges E′ = {u1v1, · · · , urvr} in G is good if all ui ∈ B
or C and ui’s are distinct.

Proposition 3. Given a bipartite graph G = (V,E) with V = AtB and |E| ≤
n2 we can divide E into at most 2n good sets of edges.

Proof. The proof is by induction on n. Assume |E| > (n − 1)2. Thus we can
find a set B or C where number of vertices with positive degree is at least n.
Without loss of generality we assume that the set B has n vertices u1, · · · , un

with degree at least one. Let uivi ∈ E , where vi ∈ C, 1 ≤ i ≤ n. Note that
vi’s are not necessarily distinct. So E1 = {u1v1, · · · , unvn} is a good set. Now
consider E − E1. Again, if |E − E1| ≤ (n − 1)2 then we can apply induction
hypothesis and we will get 2(n− 1) good sets for E−E1. So the result is true. If
|E −E1| > (n− 1)2. Again we can find a good set E2 of size at least n by using
similar argument. Now |E| − |E1| − |E2| ≤ n2 − 2n ≤ (n− 1)2. So by induction
hypothesis we can get 2(n − 1) good sets in E − (E1 ∪ E2). Thus we have 2n
good sets whose union is the whole set E. For n = 1 the result is trivial. ut

Theorem 2. Given a positive integer n, the number of triangles of any tripartite

graph G on A t B t C such that, |e(A,B)|, |e(B,C)|, |e(A,C)| ≤ n2 is at most

2n3.

The proof of the above theorem is immediate from Proposition 2 and 3. In
fact we have better and sharp bound which is n3. The proof is given by one of
the anonymous referee. He proved a general statement as follow :

Theorem 3. Given a positive integer n, the number of triangles of any tripartite

graph G on AtBtC is at most (XY Z)1/2 such that, |e(A,B)| ≤ X, |e(A,C)| ≤
Y and |e(B,C)| ≤ Z. In particular, when X = Y = Z = n2 the number of

triangle is at most n3.

Proof. Let xa be the number of edges from the vertex a ∈ A between A and
B. Similarly, ya is the number of edges between A and C from the vertex a.
Obviously,

∑

a∈A xa = X and
∑

a∈A ya = Y .

Now the number or triangles containing the vertex a is bounded by min{Z, xaya}.
Since a triangle containing the vertex a is determined by two edges containing a
or determined by the opposite edge of a. But we have, min{Z, xaya} ≤

√
Zxaya.

Thus the number of triangles is bounded by

∑

a

√
Zxaya =

√
Z

∑

a

√
xaya ≤

√
Z.

√
∑

a xa)(
∑

a ya) =
√
XY Z. ut

Here, we use the Cauchy-Schwartz inequality. If we take X = Y = Z = n2

then the number of triangle is bounded by n3. We have an example where the
number of triangles is exactly n3 namely we take a complete tripartite graph.
That is we have three disjoint set of vertices A, B and C each of size n. Consider
all possible edges between A and B, between A and C and between B and C.
Obviously the number of edges between A and B or B and C or A and C are
exactly n2. The number of triangles is n3 since any vertex from A, from B and
from C will contribute a triangle.

3.3 Security Study of The Double Length Compression Function.

We have three disjoint vertices set each of size 2n. In particular, take A =
{0, 1}n × {1}, B = {0, 1}n × {2} and C = {0, 1}n × {3}. We can correspond
each query by an edge of a tripartite graph on A t B t C as follow: given a
query (x, y) on f1 we add an edge {(x, 1), (y, 2)}. The number 1,2 and 3 are
used to make A,B and C disjoint. Similarly we can add edges for queries on
f2 and f3. Now it is easy to note that a computable message corresponds to a
triangle in the graph G. Thus the number of computable message is equal to
the number of triangles. Also the adversary can ask at most q queries to each fi

and hence the number of edges between A and B or B and C or A and C are
at most q. Thus by the Theorem 2 we have at most 2q3/2 computable inputs for
F . Thus the winning probability is bounded by 2q3/2(2q3/2 − 1)/22n+1. So the
number of queries needed to get a collision is Ω(22n/3). We will show an attack
which makes O(22n/3) queries to get a collision on F . So the security bound
is tight. For preimage attack the winning probability is bounded by q3/2/22n,
thus the number of queries needed to get a preimage is Ω(22n/3). This bound is
also tight and one can find an attack very similar to the following collision attack.

A Collision Attack on F . The attack procedure is very much similar with
the security proof. We first choose 2n/3 values of xi, yi and zi independently,
1 ≤ i ≤ 2n/3. Now we will query f1(xi, yj) for all 1 ≤ i, j ≤ 2n/3. Thus we have
to make 22n/3 queries of f1. Similarly, we query for f2 and f3. Now we have 2

n

computable inputs and check whether there is any computable collision pair.

Remark 1. It is easy to note that, in the security proof of F we do not use
the fact that |x| = |y| = |z| = n. In fact, if we have fi : {0, 1}3n → {0, 1}n,
1 ≤ i ≤ 3 and define F (x, y, z) = (f1(x, y||0n) ⊕ f2(y, z))||f2(y, z) ⊕ f3(x, z) ,
where |x| = |y| = n and |z| = 2n then we have same security level as in the
previous definition. The proof for that is exactly same with the previous proof.
Note that, F : {0, 1}4n → {0, 1}2n. So we use two message block in each round
function F and three parallel computations of fi’s are made. So rate of this
compression function is 2/3.

Remark 2. One can define a function F : {0, 1}4n → {0, 1}2n by F (x, y, z1, z2) =
(f1(x, y, z1)⊕f2(y, z1, z2))||(f2(y, z1, z2)⊕f3(x, z1, z2)) hoping for more security.
But an attack can be shown with complexity O(22n/3). First, fix some z1 and
then choose 2n/3 values of x, y and z2 independently. By the same argument like
previous attack, it still has 2n computable messages and hence we will expect to
have a collision on F .

3.4 Block-Cipher based Double length Compression function

Let E : {0, 1}2n × {0, 1}n → {0, 1}n be a block cipher with 2n-bit keys. Define
a function f : {0, 1}3n → {0, 1}n, as follow :

f(x, y, z) = Ex||y(z)⊕ z,

|x| = |y| = |z| = n, Here, we will assume E(·) as a family of random
permutations. More precisely, given any integer s > 0, and s distinct keys
k1, · · · , ks ∈ {0, 1}2n, the functions Ek1

, · · · , Eks
are independent random per-

mutations. It is easy to check that if we sacrifice two bits then we can get
three instances of f which will be independent to each other. That is we can
define, fi(x, y, z) = E<i>||x||y(z) ⊕ z, where < i > is the two bit binary rep-
resentation of i and |x| = n − 2, |y| = |z| = n. Then we can define sim-
ilarly the double length compression function F : {0, 1}4n−2 → {0, 1}2n i.e.
F (x, y, z, t) = (f1(x, y, z) ⊕ f2(x, z, t)) || (f2(x, z, t) ⊕ f3(x, y, t)) , where |x| =
n− 2, |y| = |z| = |t| = n (see Figure 3).
Here an adversary can ask both E and E−1 query. Let {(k, a, b)} be a query

response triple (in short q-r triple), where Ek(a) = b. We can assume that, the
first two bits of k not equal to 00 otherwise the query is useless to get a collision
attack. Now, if the first two bits of k is < i > with i 6= 0 and say k′ is the
remaining 2n− 2 bits then,

fi(k
′, a) = a⊕ b if and only if (k, a, b) is a q-r triple.

Thus given a set of q q-r triples we can have at most q computation of fi

for each i and hence we can have at most 2q3/2 computable messages. Now it is
enough to find a bound of Pr[F (M) = F (N)], where M 6= N .
Now consider M = (x1, y1, z1, t1) 6= (x2, y2, z2, t2) = N . We assume that

x1 = x2 = x, y1 = y2 = y, z1 6= z2 and t1 6= t2. For the other cases one can
study similarly. Now, the event F (M) = F (N) is equivalent to

f1(x, y, z1)⊕ f2(x, z1, t1) = f1(x, y, z2)⊕ f2(x, z2, t2),
f3(x, y, t1)⊕ f2(x, z1, t1) = f3(x, y, t2)⊕ f2(x, z2, t2).

To compute the probability of happening above we can first condition on
each term except f1(x, y, z1) and f3(x, y, t1). Thus the conditional event would
be f1(x, y, z1) = a and f3(x, y, t1) = b for some string a and b. We now have,

Pr[f1(x, y, z1) = a, f3(x, y, t1) = b|f2(x, z1, t1) = a1, · · · , f3(x, y, t2) = a4]
≤ 1/2n−1 × 1/2n−1

-

y

⊕

?

-

?

x

¾ ⊕- ¾

-

t

?

E

⊕

?

? ?

?
-

- ?

E

⊕

? ?
-

- ?

E

⊕

? ?

F1 F2

?

z x y tb1 x zb2 t x yb3

? ?

z

?

n− 2 n n n

?

Fig. 3. A double length compression function based on a double-key length block cipher
(bi :=< i >)

for some a1, · · · , a4. Thus, probability of collision for a given pair is bounded
by 1/22n−2 and hence success probability after q many queries is bounded by
2q3/22n−2. Note that 2q3/2 is the maximum number of computable messages
and hence the number of pairs of computable messages is at most 2q3/22n−2.
Thus we need Ω(22n/3) many queries to have non-negligible success probability.

4 Future Work and Conclusion

This paper deals with a new double length compression function which can uses
three parallel computations of a compression function or a double key block
cipher. Although the security of this compression function is not maximum pos-
sible (i.e. there is a better attack than birthday attack) the lower bound of the
number of queries is Ω(22n/3). So it has better security than a most secure
single length compression function. Also the security is proved for compression
function. So the hash function based on the compression function has same se-
curity level for free-start collision attack. So it would be interesting to study
the security level for collision attack. Also one can try to design an efficient (if
possible, rate-1) double block length hash function which is maximally secure
against collision attack even if the underlying compression function is not secure.

Acknowledgement. The authors would like to thank the anonymous referees of
FSE-05 who gave helpful comments and provide a solution of the graph theoret-
ical problem. This research was supported by the MIC(Ministry of Information
and Communication), Korea, supervised by the IITA(Institute of Information
Technology Assessment). The second author was supported by the 21st Century
COE Program ‘Reconstruction of Social Infrastructure Related to Information
Science and Electrical Engineering’ of Kyushu University.

References

1. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based

hash function constructions from PGV, Advances in Cryptology - Crypto’02, Lecture
Notes in Computer Science, Vol. 2442, Springer-Verlag, pp. 320-335, 2002.
2. I. B. Damgȧrd. A design principle for hash functions, Advances in Cryptology -
Crypto’89, Lecture Notes in Computer Sciences, Vol. 435, Springer-Verlag, pp. 416-
427, 1989.
3. H. Dobbertin.Cryptanalysis of MD4. Fast Software Encryption, Cambridge Work-
shop. Lecture Notes in Computer Science, vol 1039, D. Gollman ed. Springer-Verlag
1996.
4. H. Dobbertin.Cryptanalysis of MD5 Rump Session of Eurocrypt 96, May.
http//www.iacr.org/conferences/ec96/rump/index.html.
5. H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160: A strengthened version

of RIPEMD, Fast Software Encryption. Lecture Notes in Computer Science 1039,
D. Gollmann, ed., Springer-Verlag, 1996.
6. H. Finney. More problems with hash functions. The cryptographic mailing list. 24
Aug 2004. http://lists.virus.org/cryptography-0408/msg00124.html.
7. M. Hattori, S. Hirose and S. Yoshida. Analysis of Double Block Lengh Hash Func-

tions. Cryptographi and Coding 2003, LNCS 2898.
8. S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box

Model, to appear in ICISC-04.
9. A. Joux. Multicollision on Iterated Hash Function. Advances in Cryptology,
CRYPTO 2004, Lecture Notes in Computer Science 3152.
10. J. Kelsey. A long-message attack on SHAx, MDx, Tiger, N-Hash, Whirlpool and

Snefru. Draft. Unpublished Manuscritpt.
11. L. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length hash
functions. J.Cryptology, vol 11 no 1, winter 1998.
12. L. Knudsen and B. Preneel. Construction of Secure and Fast Hash Functions
Using Nonbinary Error-Correcting Codes. IEEE transactions on information theory,

VOL-48, NO. 9, Sept-2002.
13. W. Lee, M. Nandi, P. Sarkar, D. Chang, S. Lee and K. Sakurai A Generalization

of PGV-Hash Functions and Security Analysis in Black-Box Model. Lecture Notes in
Computer Science, ACISP-2003.
14. S. Lucks. Design principles for Iterated Hash Functions, e-print server :
http://eprint.iacr.org/2004/253.
15. R. Merkle. One way hash functions and DES, Advances in Cryptology - Crypto’89,
Lecture Notes in Computer Sciences, Vol. 435, Springer-Verlag, pp. 428-446, 1989.
16. M. Nandi. A Class of Secure Double Length Hash Functions.. e-print server :
http://eprint.iacr.org/2004/296.

17. NIST/NSA. FIPS 180-2 Secure Hash Standard, August, 2002.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
18. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ci-

phers:A synthetic approach, Advances in Cryptology-CRYPTO’93, LNCS, Springer-
Verlag, pp. 368-378, 1994.
19. R. Rivest The MD5 message digest algorithm. http://www.ietf.org/rfc/rfc1321.txt
20. T. Satoh, M. Haga and K. Kurosawa. Towards Secure and Fast Hash Functions.
IEICE Trans. VOL. E82-A, NO. 1 January, 1999.
21. B. Schneier. Cryptanalysis of MD5 and SHA. Crypto-Gram Newsletter, Sept-2004.
http://www.schneier.com/crypto-gram-0409.htm#3.

