
Padding Oracle Attacks on CBC-mode Encryption with
Secret and Random IVs

Arnold K. L. Yau?, Kenneth G. Paterson and Chris J. Mitchell

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK
{a.yau,kenny.paterson,c.mitchell}@rhul.ac.uk

Abstract. In [8], Paterson and Yau presented padding oracle attacks against a committee
draft version of a revision of the ISO CBC-mode encryption standard [3]. Some of the attacks
in [8] require knowledge and manipulation of the initialisation vector (IV). The latest draft
of the revision of the standard [4] recommends the use of IVs that are secret and random.
This obviates most of the attacks of [8]. In this paper we consider the security of CBC-mode
encryption against padding oracle attacks in this secret, random IV setting. We present new
attacks showing that several ISO padding methods are still weak in this situation.

Keywords: padding oracle; CBC-mode; ISO standards; side channel

1 Introduction

Vaudenay [9] introduced the notion of padding oracle attacks on CBC-mode encryption. His work
showed that several uses of CBC-mode encryption in well-known products and standards are
potentially vulnerable to attack whenever the attacker can submit ciphertexts for decryption and
has access to a side-channel which tells him only whether or not the corresponding plaintext is
correctly padded. Canvel et al. [7] applied and extended the ideas of [9] to show that a particular
implementation of SSL used to protect e-mail passwords could be attacked and the passwords
extracted. Further padding methods were examined in [6].

In [8], Paterson and Yau examined the security of the ISO standard for CBC-mode encryption
with respect to padding oracle attacks. The draft revision of the standard [3] analyzed in [8]
proposes the use of padding methods from ISO/IEC 9797-1 [1] and ISO/IEC 10118-1 [2]. Paterson
and Yau showed that several of these padding methods, when used with CBC-mode encryption,
are vulnerable to padding oracle attacks1. The work of [8] highlights the dangers of “cutting-and-
pasting” methods from one set of standards into another.

Partly as a consequence of the work of [8], a later draft of the revised ISO standard [4] omits all
mention of padding methods. Additionally, it recommends that “integrity-protected secret” and
“randomly chosen statistically unique” IVs be used. The motivation for using secret IVs given in
[4] is “to prevent information leakage”. The recommendation for random IVs is in-line with the
formal security analysis of [5] which shows (in a sense that can be made precise) that CBC-mode
is secure provided that the underlying block cipher is strong and that the IV is random. We also
note that [4] allows the use of multiple IVs (called starting variables, or SVs in [4]) and interleaving
of multiple cipher block chains; this allows for parallelism in encryption. We expect that in most
applications, a single IV will be used, and this is the situation we focus on here.

The attack model in [8] assumes that the IV can be chosen by the attacker and is submitted to
the padding oracle along with the ciphertext. To be successful, most of the attacks in [8] do in fact
? Supported by EPSRC and Hewlett-Packard Laboratories Bristol through CASE award 01301027.
1 In fact, [8] claims padding oracle attacks against the second edition of ISO/IEC 10116, though this

edition of the standard makes no mention of padding methods. Padding methods did not appear in
draft revisions of the standard until the committee draft stage in the proposed 3rd edition of ISO/IEC
10116.

require the attacker to have knowledge of the IV and the ability to manipulate it. For this reason,
the attacks in [8] would not apply to CBC-mode as defined in [4] if the padding methods of [1]
and [2] were used and if the new recommendations to use secret, random IVs were followed. More
specifically, the only attack in [8] that remains practicable is Attack 2 against padding method 3
of [2]. This attack on its own arguably has a small impact on the confidentiality of data because
it works only against the last one or two blocks of a target ciphertext and recovers relatively few
useful data bits.

Despite their omission from the draft ISO standard [4], padding methods are needed in order
to fully specify the CBC-mode of operation. It is not unreasonable to assume that, in the absence
of any other guidance, an implementer of CBC-mode according to [4] might borrow techniques
from other ISO standards, as was indeed proposed in [3]. Here, we demonstrate that padding
oracle attacks can still be effective against CBC-mode encryption even when IVs are secret and
random. In particular, we show that several padding methods from [1, 2] are still weak even in this
situation.

1.1 Attack Models

Before giving details of our attacks, we clarify the attack models under which these attacks will
take place.

When IVs are secret and random, a variety of practical methods could be used to ensure the IVs
are available to both encrypting and decrypting parties. For example, the IV could be encrypted
using ECB-mode and prefixed to the ciphertext. Alternatively, a value V could be prefixed to the
ciphertext and the IV generated by encrypting V using ECB mode. Or, as a third possibility, a
pre-agreed list of IVs could be used and an index sent with ciphertexts to indicate which entry
in the list was used as the IV. Because these approaches include information determining IVs
along with ciphertexts, they allow the adversary to influence which IV is used by the padding
oracle when decrypting, without the adversary necessarily knowing the actual value of the IV. In
particular, they allow the adversary to force the oracle to re-use an old IV. We can model this
kind of attack by assuming that, when submitting a ciphertext to the padding oracle, the attacker
specifies an additional string I which in some way determines the IV used by the padding oracle.
The contents of I will depend on the particular method used for establishing IVs: for example, in
the case of encrypted IVs, I will simply be the encrypted IV, while in the case of a pre-established
list, I would be an index in the list.

We expect that the above kind of approach for establishing secret, random IVs is most likely to
be used in practice. But it is also conceivable that a second approach, in which no information at all
about the IV is transmitted as part of ciphertexts, might be used. For example, the communicating
parties may be able to maintain a synchronised counter and then obtain IVs by applying a keyed
pseudo-random function to the counter. We also want to model attacks in this scenario, which
presents a tougher attack environment to the adversary. We can do this by assuming that the
padding oracle simply selects a fresh, random IV before every decryption and that no IV-related
information is included in ciphertexts.

Thus in this paper, we will consider two slightly different attack models. In the first model, IVs
are secret and random but are determined by additional information I available to the attacker
and submitted to the oracle. In the second model, IVs are secret and random and the attacker
has no control over the IV used by the padding oracle. Obviously, attacks in the second model are
more powerful, but attacks in the first model already capture many likely practical situations.

1.2 Our Results

In Section 3.2, we introduce a new padding oracle attack against CBC-mode when used with
padding method 3 of [1]. Our new attack applies for secret, random IVs in the first attack model.
The new attack uses a set of auxiliary ciphertexts corresponding to plaintexts of different lengths
as an aid to recovering the plaintext corresponding to a target ciphertext block. The complexity

of the attack depends on the spread of lengths of the auxiliary ciphertexts; it can be as low as n
queries to the padding oracle, where n is the block size.

We have been able to adapt the attacks of [8] against CBC-mode when used with padding
method 3 of [2] to the secret and random IV setting without significant penalties on complexity
or generality. These attacks are applicable in our second, tougher attack scenario. An attack
applicable to any ciphertext block is presented in Section 4.2. This attack first constructs a valid
ciphertext with the target block as the final block and then uses the attack of Section 4.3 to
decrypt that block. The first phase requires, on average, roughly 2r−1 calls to the padding oracle.
Here r is a parameter associated with the padding method. The attack of Section 4.3 is applicable
to the final block of any ciphertext and is always efficient, requiring only O(n) oracle queries to
recover all the plaintext bits in the last block.

We note that our results do not contradict the results of [5], since the security model of [5] does
not cater for the kind of side-channel information that a padding oracle provides to an attacker.
We also note that all of our attacks are independent of the particular block cipher used.

Our attacks can be further developed to handle the situation where multiple IVs are in use.
Again, we can obtain attacks against method 3 of [1] for multiple secret, random IVs in the first
attack model. We can also find attacks against method 3 of [2] for multiple secret, random IVs in
the second attack model. Since the modifications to our existing attacks are quite straightforward,
we do not include the details in this paper. Nor have we analyzed the other padding methods from
[1, 2] in the secret and random IV setting. Padding method 1 in both standards does not de-pad
uniquely and is only useful when plaintexts have fixed or known lengths. We expect that padding
oracle attacks may be possible against this method. As was noted in [6, 8], padding method 2 in
the two standards seems to be largely immune to such a side-channel analysis and indeed makes
a good candidate for recommendation as a padding method in the ISO standard for CBC-mode
encryption.

2 Symbols and Notation

We largely use the same notation as in [8], with only one major difference. In [8], the first block
of the ciphertext C0 submitted to the padding oracle was taken to be the IV. Here, the attacker
no longer submits the IV (since he does not know it), but he may or may not submit additional
information I, depending on whether the attack is in the first or second attack model. Therefore
in our new notation, the first block of the ciphertext will be the first encrypted block C1, and, in
making padding oracle queries, we will prepend additional information I to ciphertexts whenever
appropriate. The context will make clear when this is being done.

For a detailed description of CBC-mode encryption, see [8, Section 2.2]. We summarise our
other frequently used notation here for ease of reference.

C : ciphertext output after CBC-mode encryption; target ciphertext the attacker is trying to
decrypt.

C ′ : ciphertext to be submitted to the padding oracle during an attack.
dK(Y) : decryption of ciphertext block Y under key K.
D : unpadded data string to be CBC-mode encrypted.
eK(X) : encryption of plaintext block X under key K.
I : information determining the IV in our first attack model.
IV : the initialisation vector used in CBC-mode.
LD : the length (in bits) of the data string D.
n : the block size (in bits) of the block cipher.
P : the result of applying a given padding method to D.
q : the number of blocks in data string P after padding.
VALID and INVALID: padding oracle responses to, respectively, correct and incorrect padding after

receipt and decryption of ciphertext.
X||Y : the result of concatenation of strings X and Y .
X ⊕ Y : the result of exclusive-or (XOR) of strings X and Y .

(X)2 : the binary representation of the value X.
Xj : the jth block of the plaintext or ciphertext X (1 ≤ j ≤ q).
Xj,k : the kth bit of the plaintext or ciphertext block Xj , 0 ≤ k < n.

3 Analysis of Padding Method 3 of ISO/IEC 9797-1

3.1 Review of Padding Method and Previous Attack

We reproduce the original text of the padding method from [1]:

“The data string D to be input to the [. . .] algorithm shall be right-padded with as few
(possibly none) ‘0’ bits as necessary to obtain a data string whose length (in bits) is a
positive integer multiple of n. The resulting string shall then be left-padded with a block
L. The block L consists of the binary representation of the length (in bits) LD of the
unpadded data string D, left-padded with as few (possibly none) ‘0’ bits as necessary to
obtain an n-bit block. The right-most bit of the block L corresponds to the least significant
bit of the binary representation of LD.”

The attack in [8, Section 3.4] decrypts, one block at a time, arbitrary ciphertexts C1||C2|| . . . ||Cq

that are padded using the above method. The attack makes repeated use of a padding oracle and
has two phases.

The general case of the first phase applies to ciphertexts consisting of three or more blocks and
was presented as Algorithm 9797-1-m3-get-LD-general in [8]. The algorithm, when given a q-block
valid ciphertext as input, finds LD by manipulating the padding bits. The procedure requires the
re-use of old IVs. Since we will use it in our new attack, we reproduce this algorithm here as
Algorithm 1, with notation modified to reflect the use of additional information I to determine
IVs. In the algorithm (which, in common with all the algorithms presented here, can be found in
the Appendix), I denotes the IV-determining information that accompanied the target ciphertext.

The special case of the first phase applies to two-block ciphertexts and was presented as Algo-
rithm 9797-1-m3-get-LD-special in [8]. This algorithm does require the ability to directly manip-
ulate bits in the IV and so does not apply in either of our attack models.

The second phase of the attack on Method 3 of ISO/IEC 9797-1 in [8, Section 3.4] is the actual
decryption. Algorithm 9797-1-m3-decrypt in [8] returns the rightmost n − 1 bits of a plaintext
block but in so doing makes repeated updates to the IV. It is therefore unusable in our attack
models. Algorithm 9797-1-m3-decrypt-last-bit in [8] returns the leftmost bit of a plaintext block. It
is also unusable, since it requires a customised setting of the IV and a successful run of Algorithm
9797-1-m3-decrypt.

3.2 An Attack with Secret and Random IVs

We require some further mild assumptions in order to obtain an attack against padding method 3 of
[1] with secret and random IVs. The attack is in our first attack model. We assume that, in addition
to having a target ciphertext C which he wishes to decrypt, the attacker has also gathered a set
of m auxiliary ciphertexts labelled C1, C2, . . . , Cm, and associated IV-determining information
I1, . . . , Im. We write qj for the number of blocks in ciphertext Cj and require that qj ≥ 3 for each
j. The attacker can immediately use Algorithm 1 and the padding oracle to find the length Lj of
each ciphertext Cj . We write Fj = Lj mod n. We require that the Fj be distinct and that no Fj

is equal to zero. Without loss of generality, we can then write 1 ≤ F1 < F2 < . . . < Fm ≤ n − 1.
We also set Fm+1 = n.

Notice that auxiliary ciphertexts with the required properties can easily be selected from a
larger pool of ciphertexts. The auxiliary ciphertexts are not themselves decrypted in the course
of the attack (though they can individually be used as target ciphertexts if their decryption is
desired).

Our attack is presented in Algorithm 2 and described in words below.

The attack attempts to recover the plaintext block Pk matching the block Ck of the q-block
ciphertext C. In fact, we are only able to extract the rightmost n− F1 bits of Pk for each k ≥ 2.
The attack attempts to construct, for decreasing values of j, a valid qj-block ciphertext whose
last block is the target block Ck and whose first block is Cj

1 . Because of the padding rule, such a
ciphertext must correspond to a plaintext in which the last block P ′qj

consists entirely of ‘0’s in
the rightmost n − Fj positions. By carefully controlling the values in the penultimate ciphertext
block, we can ensure that only a relatively small number of trials is needed in order to achieve
this for each successive value of j. Eventually, when j = 1, we have a ciphertext with last block
Ck where the matching plaintext block P ′q1

has ‘0’s in the rightmost n − F1 positions. From this
information and Ck−1 it is easy to recover the rightmost n−F1 positions of the original plaintext
block Pk.

We now explain in more detail the operation of the attack. We begin by considering the
rightmost n− Fm positions. Consider submitting to the padding oracle a ciphertext of the form:

Im, Cm
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qm−3 blocks

||S||Ck

where S is a block taking on a random value in the rightmost n − Fm positions. Because Im

determines the original IV used in obtaining Cm, block Cm
1 indicates that n − Fm ‘0’ padding

bits should be found in the last plaintext block, and hence the oracle will return VALID with a
probability of 2Fm−n. An INVALID response indicates that another value of S should be tested. In
the algorithm we simply use an increasing (n−Fm)-bit counter for this purpose. After an average
of around 2n−Fm−1 and at most 2n−Fm trials, we will obtain a VALID response. In this case, we
learn that S ⊕ dK(Ck) is equal to ‘0’ in the rightmost n− Fm positions.

Notice that from this information and knowledge of Ck−1, we could immediately recover the
rightmost n−Fm bits of Pk. However, we now preserve the successful value of S by setting R = S,
and proceed to examine the rightmost n − Fm−1 bits. Now consider submitting to the padding
oracle a ciphertext of the form:

Im−1, Cm−1
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qm−1−3 blocks

||S||Ck

where now S is a block taking on a random (Fm − Fm−1)-bit value in positions Fm−1, Fm−1 +
1, . . . , Fm − 1, and equalling R in the rightmost n − Fm positions. Now block Cm−1

1 indicates
that n− Fm−1 ‘0’ padding bits should be found in the last plaintext block. By using R to set the
rightmost n − Fm bits of S, we have already arranged ‘0’ bits in the rightmost n − Fm positions
of the last plaintext block. So the oracle returns a VALID response with probability 2−(Fm−Fm−1).
Again, we use a counter to test the 2Fm−Fm−1 values in positions Fm−1, Fm−1+1, . . . , Fm−1. After
an average of about 2Fm−Fm−1−1 and at most 2Fm−Fm−1 trials, we will obtain a VALID response.
In this case, we learn that S ⊕ dK(Ck) is equal to ‘0’ in the rightmost n− Fm−1 positions.

It is now straightforward to see how Algorithm 2 proceeds in this manner to eventually con-
struct a valid ciphertext of the form:

I1, C1
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

q1−3 blocks

||R||Ck

so that the corresponding last plaintext block contains ‘0’ padding bits in the rightmost n − F1

positions. Then a simple calculation shows that the rightmost n − F1 bits of Pk are equal to the
rightmost n− F1 bits of the block R⊕ Ck−1.

3.3 Complexity and Impact

It takes an average of just over 2Fj+1−Fj−1 oracle queries to obtain a VALID response and recover
the bits at positions Fj to Fj+1−1 of Pk. So the average number of oracle queries needed to recover

n− F1 bits of plaintext is
∑m

j=1 2Fj+1−Fj−1. The worst-case complexity is twice this. Notice that
when F1 = 1 and Fj+1−Fj = 1 for each j, the average number of oracle queries needed to decrypt
all but the leftmost bit of an n-bit block is just n− 1. In this case, at most two oracle queries are
made for each j. In fact, since the outcome of the second oracle query is determined by the first,
it is trivial to modify the attack so that n− 1 queries also represents the worst-case performance.

As an example, suppose the block size n = 64 and the data is byte-oriented. Suppose we can
obtain 7 auxiliary ciphertexts whose lengths modulo 64 are 8, 16, 24, . . . , 56. Then we have m = 7
and the average number of oracle queries needed to obtain 56 out of 64 plaintext bits is roughly
900. If the plaintext has some sort of predictability (e.g. ASCII characters making up an English
text, or certain positions in a message within some known protocol), then the remaining byte
might be easily guessed.

3.4 Limitations

Unfortunately, we have not succeeded in finding a method to extract the leftmost F1 ≥ 1 bits of
the plaintext block Pk. The underlying reason is that, when the original data fits exactly within
blocks, the default padding rule is to add no padding bits at all. This makes it difficult to set up
a padding oracle test giving plaintext information.

Algorithm 1 can only find the contents of the length block for ciphertexts with at least 3
blocks. Whilst we are usually more interested in plaintext bits than length information, it would
be convenient if Algorithm 2 could be applied to block C1 of a two-block target ciphertext to
extract the length information LD. However, this would require knowledge of the IV (since block
Ck−1 is used at the last stage of our attack to recover the original plaintext bits). A lower bound
on this length can be found by running Algorithm 2 on target block C2 and finding the position
of the rightmost one in P2.

3.5 Comparison

The secret and random conditions on IVs have forced us to develop a completely new attack
strategy against padding method 3 of [1]. The corresponding attack in [8] makes near-optimal use
of the padding oracle and extracts all plaintext bits. To be efficient, our new attack requires the
collection of auxiliary ciphertexts with a good spread of data lengths. There might be scenarios
where this is unrealistic. Our new attack can never extract the leftmost data bits in each block.
In the best case, it can recover all but the leftmost bit of plaintext using an optimal number of
oracle queries (if we ignore the cost of finding the lengths of the auxiliary ciphertexts). Our attack
cannot be extended to yield efficient attacks in the second attack scenario in which the adversary
has no information about IVs at all. The reason is that the length information is placed in the first
plaintext block – as a result, a random setting of the IV is almost certain to produce an INVALID
response from the padding oracle.

In summary, in comparison to [8], the secret IV restriction has succeeded in increasing the
complexity and decreasing the effectiveness of an attack. However, the attack is still feasible in
many circumstances.

4 Analysis of Padding Method 3 of ISO/IEC 10118-1

4.1 Review of Padding Method and Previous Attacks

We reproduce below the original description of the padding method from [2], except that here,
and throughout, we use n in place of L1 to denote the block size:

“This padding method requires the selection of a parameter r (where r ≤ n), e.g. r = 64,
and a method of encoding the bit length of the data D, i.e. LD as a bit string of length r.
The choice for r will limit the length of D, in that LD < 2r.
“The data D [. . .] is padded using the following procedure.

1. D is concatenated with a single ‘1’ bit.
2. The result of the previous step is concatenated with between zero and n − 1 ‘0’ bits,

such that the length of the resultant string is congruent to n− r modulo n. The result
will be a bit string whose length will be r bits short of an integer multiple of n bits
(in the case r = n, the result will be a bit string whose length is an exact multiple of
n bits).

3. Append an r-bit encoding of LD using the selected encoding method, yielding the
padded version of D.”

No encoding method (for LD) is specified in the standard. We assume that base 2 encoding is
used. Our attacks here work no matter which encoding method is used, though the attacker needs
to know this method.

Using this padding method, the padding bits for data string D are appended in one of two
ways:

Same-block Here (LD mod n) ≤ (n− r− 1). The last block of D has enough space after the last
data bit to contain at least a single ‘1’ bit and the r bits encoding LD. The number of padding
bits (including the length information) is between r + 1 and n− 1.

Cross-block Here (LD mod n) ≥ (n − r). The last block of D does not have enough space to
contain a ‘1’ bit and the r bits encoding LD. The number of bits padded is between n and
n + r and the padding either fits exactly into an extra block or extends over two blocks. Note
that this will always be the case when r = n or r = n− 1.

In [8], the authors presented two inter-dependent attacks against this padding method. The
first attack creates a valid ciphertext with the target ciphertext block as the last block, while the
second attack decrypts the last block of any ciphertext.

In more detail, Attack 1 of [8] (named “directed IV search”) takes a ciphertext block Ck as
input, and outputs a valid ciphertext of the form IV ′||Ck. It operates by searching for an IV
setting that produces a valid ciphertext. This ciphertext is then fed into Attack 2 for decryption.
The need to vary the IV in a controlled manner means that the attack does not work when IVs
are secret.

Attack 2 of [8] (named “attacking the last block(s)”) takes as input a whole ciphertext and
operates in two phases. In the first phase, it finds LD; in some cases (including those resulting
from Attack 1 of [8]) this involves changing bits in the IV. So this phase does not work in general
for secret IVs. In the second phase plaintext bits are extracted. In the case of a same-block padded
ciphertext, this second phase does not require any control over the IV. So it will continue to
function with only minor modifications in the new setting. In the case of a cross-block padded
ciphertext, the second phase can be used to speed up Attack 1 of [8]. This will fail with secret IVs,
since Attack 1 of [8] requires their controlled modification.

Despite the failure of Attacks 1 and 2 of [8], a similar strategy can be followed and the original
attacks can be modified to work in the tougher of our two attack scenarios. Analogues of Attacks
1 and 2 of [8] are presented in Sections 4.2 and 4.3.

4.2 Attacking an Arbitrary Ciphertext Block

The attack we present in this section attempts to decrypt an arbitrary block Ck of a ciphertext
C1||C2|| . . . ||Cq. In fact, our attacks only work for k ≥ 2. It proceeds in two phases. In the first
phase, a valid ciphertext is constructed having Ck as the final block. In the second phase, the
attack of Section 4.3 is used to decrypt that final block. From this, Pk is easily found. Note that
if Cq is the target block, then one should proceed directly to the attack of Section 4.3.

Phase 1: Constructing a valid ciphertext In this phase, we construct a valid three-block or
four-block ciphertext having target block Ck as the last block. We aim for ciphertexts of these

lengths because they simplify the second phase of the attack: we will see in Section 4.3 that
ciphertexts containing q ≥ 3 blocks are the easiest ones to deal with.

This phase splits into two cases, dependent on the value of r.
In the first case, we have r < n. The algorithm for this case is given in Algorithm 3 and is next

described in words. The algorithm essentially submits three-block ciphertexts of the form:

00 . . . 0︸ ︷︷ ︸
n

||R2||Ck

to the padding oracle, for various values of R2 chosen in such a way that at least one choice is
guaranteed to produce a valid ciphertext. Our algorithm works no matter what IVs are used by
the padding oracle. Note that we suppress any information I in submissions to the padding oracle
here, and throughout this section, because we are operating in the second attack model.

In more detail, a counter i is used to determine the rightmost r+1 bits of R2, while the leftmost
n− r− 1 bits are set to ‘0’. This effectively means that ciphertexts with all possible values of the
length field in plaintext block P ′3 are submitted to the oracle as i runs between 0 and 2r − 1, the
first half of the search space. At least one choice of i in this range is guaranteed to result in a
VALID response from the oracle unless Ck and the selection of R2 mean that the leftmost n − r
bits of P ′3 are all ‘0’. If this last case occurs, then considering all i between 2r and 2r+1−1 ensures
that one of the leftmost n− r bits of P ′3 is a ‘1’ and that at least one choice of i results in a VALID
response. We will evaluate the average and worst-case complexity of this case of Phase 1 below.

In the second case, where r = n, a similar attack applies. We now submit four-block ciphertexts
of the form:

00 . . . 0︸ ︷︷ ︸
n

||R1||R2||Ck

to the padding oracle, where we try all possible settings of R2 and the rightmost bit of R1. We
are then guaranteed to encounter a valid ciphertext after a maximum of 2n+1 oracle calls. The
algorithm for this case is given in Algorithm 4; we analyse its complexity in detail below.

Phase 2: Decrypting Ck Once we have a valid three or four-block ciphertext, the attack
of Section 4.3 can be applied to obtain the plaintext block P ′3 (or P ′4 in the four-block case)
corresponding to the final block of C ′. From P ′3, the original plaintext block Pk can be recovered
using the relation Pk = P ′3 ⊕R2 ⊕Ck−1. (A similar procedure applies for the four-block case.) As
we shall see below, the attack of Section 4.3 is always efficient when attacking the last block of a
three-block (or four-block) ciphertext. So this approach allows efficient extraction of Pk.

A little more detail is appropriate at this stage. We focus on the three-block case. The first
phase of the attack in Section 4.3 finds the length LD of the data encrypted in C ′. If LD > 2n,
then the data is same-block padded, while if LD ≤ 2n it is cross-block padded. If it happens that
the data is cross-block padded, then all the bits in P ′3 (or P ′4 in the four-block case) are already
determined and are of the form:

00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

or 10 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

.

So in this case no actual decryption step is needed to recover Pk. Notice that this case will always
apply when r = n or r = n−1. When the data is same-block padded, we must proceed to the second
phase of the attack in Section 4.3. In the three-block case, this phase will efficiently recover the
entire plaintext block P ′3 consisting of (in general) data bits, padding bits and length information.
From P ′3, we can recover Pk using the relation Pk = P ′3 ⊕R2 ⊕Ck−1. A similar procedure applies
for the four-block case.

Complexity We begin by analyzing Phase 1 of the attack in the case where r < n. The analysis
is complicated by the fact that Algorithm 3 might output a valid three-block ciphertext C ′ for
which the corresponding plaintext P ′ = P ′1||P ′2||P ′3 is cross-block padded. This will have the effect

of slightly lowering the average-case complexity when compared to the corresponding attack in
[8]. Such a cross-block padded plaintext requires that blocks P ′2||P ′3 take the form:

P ′2,0P
′
2,1 . . . P ′2,LD−n−1 10 . . . 0︸ ︷︷ ︸

2n−LD

|| 00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

where each P ′2,i can be either a ‘0’ or ‘1’ bit and (2n − r) ≤ LD ≤ (2n − 1). There are r n-bit
patterns (corresponding to the r possible values of LD) for P ′3 that have the correct form. So the
probability that Phase 1 produces cross-block padding is at most r2r−n as we vary the rightmost
r bits of R2 in Algorithm 3. Of course, such cross-block padding may never occur during the
execution of Algorithm 3: given that R1 and the decryption key K are fixed, there may be no
choice of R2 that produces the required bit pattern in P ′2 = dK(R2)⊕R1.

In any case, we see that there is a probability of at least 1 − 2r−n that either there is a ‘1’
somewhere in the leftmost n− r bits of P ′3, or we obtain a cross-block padded ciphertext. In these
cases, Algorithm 3 takes on average 2r−1 oracle calls. On the other hand, there is a probability
of at most 2r−n that the leftmost n− r bits of P ′3 are all ‘0’ and Algorithm 3 tries all 2r possible
settings for the rightmost bits of P ′3 without a VALID response. Algorithm 3 will then take on
average a further 2r−1 oracle calls before obtaining a VALID response. A simple calculation now
shows that the average number of oracle calls needed by Algorithm 3 is at most 2r−1 + 22r−n,
while in the worst-case it is 2r+1. When r is small relative to n, the average-case complexity is
dominated by the term 2r−1.

Phase 1 of the attack in the case r = n uses Algorithm 4. This algorithm uses on average 2n

oracle calls to obtain a VALID response and 2n+1 in the worst case.
Phase 2 uses the attack in Section 4.3 for the same-block padded case, which has a complexity

of O(n) oracle calls. So Phase 2 does not contribute significantly to the overall complexity required
to decrypt a single block (unless r is very small).

Impact This attack applies to any ciphertext block Ck of a ciphertext C1||C2|| . . . ||Cq, except
for the first block C1. It is not possible to decrypt C1 because of the use of the relation Pk =
P ′3 ⊕ Ck−1 ⊕R2 at the end of the attack: this would necessitate an XOR with the secret IV. The
attack recovers all n bits within the block and does so many orders faster than exhaustive search
for many choices or r. When r = n our attack is still better than exhaustive key search for block
ciphers whose key size is greater than the block length. We restate the observation from [8] that
the seemingly innocuous parameter r has unexpected implications for security.

Comparison This attack is an adaptation of Attack 1 in [8] to the second of our attack models,
where IVs are secret, random and completely hidden from the adversary. These extra restrictions
do not seem to be a major hindrance to the effectiveness of the attack. Specifically, the complexity
of the attack has remained practically the same as the corresponding attack in [8], and, except
for the first ciphertext block, the impact remains unchanged. The attack uses three-block or four-
block ciphertexts instead of two-block ones when r < n; this is not expected to be of any practical
significance.

4.3 Attacking the Last Block(s)

The attack we present in this section attempts to decrypt the last block Cq of a ciphertext
C1||C2|| . . . ||Cq. It is an adaptation of Attack 2 in Section 4.3 of [8] to the secret and random
IV setting, and, like that attack, proceeds in two phases. Phase 1 determines the length LD of the
ciphertext, while Phase 2 will recover plaintext bits in the mixed block containing both padding
and data bits. (If there is such a block, then it is unique.) Recall that, as well as being directly
applicable to the last block Cq, our attack can also be used in conjunction with the attack in
Section 4.2 to decrypt arbitrary ciphertext blocks.

Phase 1: Finding LD This phase of our attack is derived from the corresponding phase in [8].
The case q = 2 requires special treatment and our methods fail completely when q = 1. We first
examine the general case q ≥ 3.

For ease of presentation we take r ≤ n − 2, but Algorithm 5 handles all values of r. Here, in
the same-block padded case, the last plaintext block Pq has the following format:

[DATA]︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
p

(LD)2︸ ︷︷ ︸
r

where t + p + r = n and p ≥ 1. In the cross-block padded case, the above format spans the last
two blocks Pq−1 and Pq and we put t + p + r = 2n. We note that the attacker does not, at first,
know which of the cases he is faced with.

Given our q-block ciphertext, the rightmost position at which a data bit could ever reside is
at Pq,n−r−2. Consider then submitting to the padding oracle the ciphertext:

C1||C2|| . . . ||Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸
n−r−2

1 00 . . . 0︸ ︷︷ ︸
r+1

||Cq.

The oracle will return either:

– VALID, meaning the padding has not been disturbed so the bit flipped in P ′q by modifying
Cq−1 is a data bit. Since this bit is at the rightmost possible data bit position, we can deduce
that the data length LD equals (q − 1)n + n− r − 1 = qn− r − 1.

– or INVALID, meaning a padding bit has been flipped so the padding is no longer valid. Therefore
the padding boundary is somewhere to the left of this bit.

We can generalise the above observation about Pq,n−r−2 to produce Algorithm 5, a binary
search algorithm to find LD. In this algorithm, we initialise two pointers l and u at the extremities
of the possible padding range and modify the ciphertext so as to invert the plaintext bit that lies
in the middle position h := b(l + u)/2c of the range. We then submit the ciphertext to the oracle.
A VALID response means the start of the padding is to the right of this test bit so we set the lower
pointer l to the position h + 1, whereas INVALID indicates it is to the left and we set the upper
pointer u to h. We must then reset the test bit before proceeding to the next test. This process is
repeated until the upper and lower pointers coincide, at which point they indicate the rightmost
data bit. It is then easy to determine LD. Clearly, the algorithm makes roughly log2 n calls to the
padding oracle and so is efficient.

This completes our discussion of the general case where q ≥ 3. Next we focus on the case
q = 2. This case requires special treatment because setting up a binary search as above requires
the ability to modifiy plaintext bits in the whole range of padding positions, which in this case
includes those in the rightmost r positions of the plaintext block P1. This in turns necessitates
the ability to modify bits in the corresponding positions in the IV, which is not possible in the
setting of secret and random IVs.

Our solution, presented in Algorithm 6, is to perform a binary search over the restricted range
of those padding positions in the second (and last) plaintext block P2. This is done by initializing
the lower and upper pointers to n and 2n + r − 1 respectively. If the search finishes pointing to
any position between P2,1 and P2,n−r−1 then this indicates the actual leftmost padding position
from which LD can be determined. On the other hand, if the search ends pointing at P2,0, then
we can deduce that the bit at that position is a padding bit and hence the boundary is somewhere
to the left of that position. From this we can deduce that the plaintext block P2 consists only of
padding bits and encoded length information, and that Ld ≤ n. We could go further and deduce
most of the contents of block P2, but these bits are not usually of much interest to the attacker.
In this case, we cannot continue with the attack.

We note that this q = 2 version of the length-finding algorithm is never invoked by the attack
in Section 4.2 (unless C2 is the last block and happens to be the initial target).

Finally we consider the case q = 1. Here we are not able to find LD by performing any kind
of search for the data/padding boundary since this would require manipulating the IV. Thus our
methods fail in this case.

Phase 2: Decrypting We assume that q ≥ 2 and that LD has been successfully obtained from
Phase 1. This will always be the case for q ≥ 3 and often the case for q = 2. Same-block and
cross-block padded messages are treated differently; recall that knowledge of LD indicates with
which case the attacker is faced.

Decrypting: Same-block Recall the structure of the last plaintext block Pq: t unknown data
bits, followed by p padding bits in the form 10 . . . 0 and finally r bits encoding the data length LD.
The only bits remaining to be found are the t data bits. We can assume that t ≥ 1 and recover
these as follows. Consider submitting to the oracle the ciphertext C ′ = R||Cq where:

R = Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
p

(n + t− 1)2︸ ︷︷ ︸
r

.

This ciphertext is constructed in such a way that, after decryption to obtain plaintext P ′1||P ′2, the
length block in P ′2 encodes the length n + t − 1, while the p padding bits are modified to be all
‘0’s. Moreover, data bits are copied intact from Pq to P ′2, so that Pq,i = P ′2,i for 0 ≤ i < t. From
the construction of C ′, we see that the oracle will output VALID if and only if P ′2,t−1 = 1. Since
we have Pq,t−1 = P ′2,t−1, we can obtain the last data bit of block Pq.

This idea can be extended to recover all t data bits in Pq in a similar manner: we reduce the
length field in P ′2 one step at a time whilst fixing the data in all recovered bit positions to be ‘0’
so that they become part of a valid padding. A single bit of P ′2 and hence of Pq is revealed at each
iteration, until all the data bits in Pq are recovered. This procedure is given in detail in Algorithm
7. Note that the algorithm makes use of the function Ω̄ defined by:

Ω̄(C) =

{
1 if the padding oracle returns VALID for input C,

0 if the padding oracle returns INVALID for input C.

Note that Ω̄ is the complement of the function Ω in [8].

Decrypting: Cross-block For cross-block padded plaintexts with q ≥ 3 blocks, Pq is determined
completely by LD and the padding. However, the padding often extends into the penultimate
plaintext block Pq−1 and we can exploit this fact when decrypting block Cq−1.

Suppose t = LD mod n and t 6= 0. Then u = n − t bits of padding of the form 10 . . . 0︸ ︷︷ ︸
u

are

present in Pq−1. We show how to decrypt Cq−1 using the attack in Section 4.2, but with a speed-up
factor of 2u−1. Consider ciphertexts of the form C ′ = 00 . . . 0||R2||Cq−1 where:

R2 = Cq−2 ⊕ 00 . . . 0︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
u

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(3n− r − 1)2︸ ︷︷ ︸
r

.

Upon decryption, this ciphertext will produce a plaintext block P ′3 of the form:

P ′3,0P
′
3,1 . . . P ′3,t−1y0y1 . . . yu−1

where y0y1 . . . yu−1 are the u least significant bits of the binary encoding of the length field 3n−r−1.
Now it is straightforward to see that running through all 2r−u+1 settings of the r − u + 1 bits
immediately to the left of the rightmost u bits (by varying the relevant bits of R2) will ensure that
at least one valid three-block ciphertext C ′ is obtained. Naturally, after obtaining such a valid C ′,
we can apply the attack of this section again, now using C ′ as the input ciphertext. Eventually,
that attack will output a candidate P ′3 for the decryption of block Cq−1 in ciphertext C ′; from
this we can deduce the decryption Pq−1 of Cq−1 in the original ciphertext C using the relation
Pq−1 = P ′3 ⊕R2 ⊕ Cq−2.

This strategy takes on average about 2r−u oracle calls which is roughly a fraction 2−(u−1) of
the number of oracle calls needed on average for the corresponding attack in Algorithm 3 without
the knowledge of the u padding bits.

Unfortunately this strategy does not work for two-block cross-block padded ciphertexts in our
attack model, because the very last step would need to use IV in place of Cq−2.

Complexity For q ≥ 3, Phase 1 of the attack takes roughly log2 n oracle calls to find the data
length LD. For same-block padded plaintexts, Phase 2 then takes one call per bit for decrypting.
So to recover the t data bits in the last block, t + log2 n oracle calls are required. For cross-block
padded plaintexts, the block Pq is completely determined by LD. Then Phase 2 needs on average
around 2r−u oracle calls to recover the whole of the penultimate plaintext block Pq−1. Here u is
the number of known padding bits in Pq−1 and we have ignored the comparatively small cost of
running the length-finding and last-block decryption algorithms of this section.

For two-block ciphertexts, Phase 1 will take on average log2(n − r) oracle calls to find either
the actual value of LD or to find that LD ≤ n. In the former case, the complexity of Phase 2 is
exactly as above. In the latter case, the data is cross-block padded but we are not able to recover
the penultimate plaintext block. Phase 1 of the attack is not successful for single-block ciphertexts
and no data bits can be extracted using our attack in this case.

It is important to note that, even though the two attacks presented here and in Section 4.2 are
inter-dependent, there is no possibility of the attack entering an infinite loop. This is not difficult
to show.

Impact The attack is highly efficient (in terms of oracle access) at extracting plaintext bits in
the last plaintext block Pq. A maximum of n − r − 1 bits of data can be recovered in this way
and the attack is therefore significant for short messages, especially in combination with a small
r. One might argue that r = n is a natural choice for the implementor. In this case, the padding is
always cross-block and the attacker must resort to the speeded-up version of the attack in Section
4.2.

Comparison One impact of assuming that IVs are secret and random on the attack in this section
is that Phase 1 of the attack is prevented from determining the exact data length of single-block
ciphertexts, and two-block ones when the plaintext is cross-block padded. This, in turn, stops us
from extracting any data bits in these cases. This is in contrast to the corresponding cases in [8],
where the ability to manipulate the IV can be used to advantage.

The complexity of the two phases remains unchanged when compared to the corresponding
attack in [8] (log2 n oracle calls to find LD and one oracle call per data bit extracted for same-block
padding). Short ciphertexts, typically two or three blocks long, are used throughout, so there is
little or no message expansion.

5 Conclusions

We have shown that the use of IVs that are secret and random does not prevent padding oracle
attacks on CBC-mode encryption. We have shown this to be the case in the context of two padding
methods previously analyzed in [8]. The use of secret, random IVs required us to develop new ideas
and to extend the analysis of [8]. The new attacks are, at best, of roughly equal complexity to
those of [8] and the assumptions we have made to obtain attacks seem reasonable. The attacks
recover most, if not all, plaintext bits many orders of magnitude faster than exhaustive key search.

The 2004 FCD text for the 3rd edition of ISO/IEC 10116 [4], which supersedes [3], contains
new text regarding padding methods in Clause 5 (Requirements). It now reads

. . . Padding techniques. . . are not within the scope of this International Standard, and
throughout this standard it is assumed that any padding, as necessary, has already been
applied.

This effectively off-loads the responsibility of choosing a padding method to the implementor of
this standard (if it is published with the text as it stands). In our view, not specifying a padding
method at all has the potential to be even more dangerous than specifying a method that is known
to be weak against certain attack types. After all, there is no guarantee that an implementor will
not choose a method that falls to some even more realistic form of attack. Methods that appear

to resist padding oracle attacks have been analysed [6]. For example, padding method 2 of [1], in
which the plaintext is padded with a single ‘1’ and as many ‘0’s as are necessary to complete a
block, seems like a good candidate. We currently know of no reason not to recommend it for use.
We argue that the more complete and unambiguous a specification is, the smaller the chance for
insecure approaches to be taken by an implementor.

Finally, we wish to repeat the point made in [6, 8] that padding oracle attacks can be easily
thwarted by the proper use of strong integrity checks. It is now widely held that encryption should
be accompanied by a data integrity mechanism whenever feasible and appropriate. Of course
there are situations (for example, constrained environments) where the use of a MAC algorithm
in addition to encryption is not possible. In these scenarios, the careful selection of a padding
method and the avoidance of padding oracles in implementations is of paramount importance.

References

1. ISO/IEC 9797-1: Information technology — Security techniques — Message Authentication Codes
(MACs) — Part 1: Mechanisms using a block cipher, 1999.

2. ISO/IEC 10118-1 (2nd edition): Information technology — Security techniques — Hash-functions —
Part 1: General, 2000.

3. ISO/IEC 2nd CD 10116 (revision): Information technology — Security techniques — Modes of opera-
tion for an n-bit block cipher, 2002. (Second committee draft of proposed 3rd edition of the standard).

4. ISO/IEC FCD 10116 (2nd edition): Information technology — Security techniques — Modes of opera-
tion for an n-bit block cipher, 2004. (Final committee draft of proposed 3rd edition of the standard).

5. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Analysis of Symmetric Encryption:
Analysis of the DES Modes of Operations. In 38th IEEE Symposium on Foundations of Computer
Science, pages 394–409. IEEE, 1997.

6. J. Black and H. Urtubia. Side-Channel Attacks on Symmetric Encryption Schemes: The Case for
Authenticated Encryption. In Proceedings of the 11th USENIX Security Symposium, San Francisco,
CA, USA, August 5-9, 2002, pages 327–338. USENIX, 2002.

7. B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password Interception in a SSL/TLS Channel.
In D. Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 583–599. Springer-Verlag, 2003.

8. K.G. Paterson and A. Yau. Padding Oracle Attacks on the ISO CBC Mode Padding Standard. In
T. Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture Notes in Computer
Science, pages 305–323. Springer-Verlag, 2004.

9. S. Vaudenay. Security Flaws Induced by CBC Padding — Applications to SSL, IPSEC, WTLS In
L. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 534–545. Springer-Verlag, 2002.

Appendix

We present here pseudo-code for the various algorithms developed in the text.

Algorithm 1

Input: I, C1||C2|| . . . ||Cq

Output: LD

function 9797-1-m3-get-LD-general
l := 0
u := n− 1
repeat

h := d(l + u)/2e
Cq−1,h := Cq−1,h ⊕ 1
if oracle(I, C1||C2|| . . . ||Cq) = VALID then

l := h
else

u := h− 1
end if
Cq−1,h := Cq−1,h ⊕ 1

until l = u
return LD := (q − 1)n + l + 1

end function

Algorithm 2

Input: auxiliary ciphertexts C1, C2, . . . , Cm, IV-determining information I1, I2, . . . , Im, length infor-
mation q1, . . . , qm and F1, . . . , Fm, target ciphertext blocks Ck−1, Ck

Output: rightmost n− F1 bits of Pk

function 9797-1-m3-decrypt
R := 00 . . . 0︸ ︷︷ ︸

n

Fm+1 := n
for j := m to 1 do

i := −1
repeat

i := i + 1
S := R⊕ 00 . . . 0︸ ︷︷ ︸

Fj

(i)2︸︷︷︸
Fj+1−Fj

00 . . . 0︸ ︷︷ ︸
n−Fj+1

until oracle(Ij , Cj
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qj−3 blocks

||S||Ck) = VALID

R := R⊕ 00 . . . 0︸ ︷︷ ︸
Fj

(i)2︸︷︷︸
Fj+1−Fj

00 . . . 0︸ ︷︷ ︸
n−Fj+1

end for
return rightmost n− F1 bits of R⊕ Ck−1

end function

Algorithm 3

Input: Ck, r, n
Output: A valid three-block ciphertext, the last block of which is Ck

Require: 1 ≤ r < n

function 10118-1-m3-general(Ck, r, n)
R1 := 00 . . . 0︸ ︷︷ ︸

n

R2 := 00 . . . 0︸ ︷︷ ︸
n

i := 0
while oracle(R1||R2||Ck) = INVALID do

i := i + 1
R2 := 00 . . . 0︸ ︷︷ ︸

n−r−1

(i)2︸︷︷︸
r+1

end while
return R1||R2||Ck

end function

Algorithm 4

Input: Ck, r, n
Output: A valid four-block ciphertext, the last block of which is Ck

Require: r = n

function 10118-1-m3-special(Ck, r, n)
R1 := 00 . . . 0︸ ︷︷ ︸

n

R2 := 00 . . . 0︸ ︷︷ ︸
n

i := 0
while oracle(00 . . . 0︸ ︷︷ ︸

n

||R1||R2||Ck) = INVALID do

i := i + 1
if i = 2r then

i := 0
R1 := 00 . . . 01︸ ︷︷ ︸

n

end if
R2 := (i)2︸︷︷︸

n

end while
return 00 . . . 0︸ ︷︷ ︸

n

||R1||R2||Ck

end function

Algorithm 5

Input: C1||C2|| . . . ||Cq, n, r
Output: LD

Require: q ≥ 3

function 10118-1-m3-find-LD-general(C1||C2|| . . . ||Cq, n, r)
C := C1||C2|| . . . ||Cq

l := (q − 2)n + n− r
u := (q − 1)n + n− r − 1
repeat

h := b(l + u)/2c
Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1
if oracle(C) = VALID then

l := h + 1
else

u := h
end if
Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1

until l = u
return LD := l

end function

Algorithm 6

Input: C1||C2, n, r
Output: LD or “Plaintext length at most n”

function 10118-1-m3-find-LD-special(C1||C2, n, r)
C := C1||C2

l := n
u := 2n− r − 1
repeat

h := b(l + u)/2c
Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1
if oracle(C) = VALID then

l := h + 1
else

u := h
end if
Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1

until l = u
if l > n then

return LD := l
else

return “Plaintext length at most n”
end if

end function

Algorithm 7

Input: LD, Cq−1, Cq, r, n
Output: Pq := Pq,0Pq,1 . . . Pq,t−1 10 . . . 0︸ ︷︷ ︸

p

(LD)2︸ ︷︷ ︸
r

Require: LD indicates that the plaintext is same-block padded

function 10118-1-m3-decrypt(LD, Cq−1, Cq, r, n)
t := LD mod n
p := n− r − t
R := Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸

t

10 . . . 0︸ ︷︷ ︸
p

(LD)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(n + t)2︸ ︷︷ ︸
r

for j := t− 1 to 0 do
R := R⊕ 00 . . . 0︸ ︷︷ ︸

n−r

(n + j + 1)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(n + j)2︸ ︷︷ ︸
r

Pq,j := Ω̄(R||Cq)
Rj := Rj ⊕ Pq,j

end for
return Pq := Pq,0Pq,1 . . . Pq,t−1 10 . . . 0︸ ︷︷ ︸

p

(LD)2︸ ︷︷ ︸
r

end function

