
Cryptanalysis of Grain

Côme Berbain1, Henri Gilbert1, and Alexander Maximov2

1 France Telecom Research and Development
38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France

2 Dept. of Information Technology, Lund University, Sweden
P.O. Box 118, 221 00 Lund, Sweden

{come.berbain, henri.gilbert}@francetelecom.com

movax@it.lth.se

Abstract. Grain [11] is a lightweight stream cipher proposed by M. Hell,
T. Johansson, and W. Meier to the eSTREAM call for stream cipher pro-
posals of the European project ECRYPT [5]. Its 160-bit internal state
is divided into a LFSR and an NFSR of length 80 bits each. A filtering
boolean function is used to derive each keystream bit from the internal
state. By combining linear approximations of the feedback function of
the NFSR and of the filtering function, it is possible to derive linear
approximation equations involving the keystream and the LFSR initial
state. We present a key recovery attack against Grain which requires 243

computations and 238 keystream bits to determine the 80-bit key.

Keywords: Stream cipher, Correlation attack, Walsh transform

1 Introduction

Stream ciphers are symmetric encryption algorithms based on the concept of
pseudorandom keystream generator. In the typical case of a binary additive
stream cipher, the key and an additional parameter named initialization vector
(IV) are used to generate a binary sequence called keystream which is bitwise
combined with the plaintext to provide the ciphertext. Although it seems rather
difficult to construct a very fast and secure stream cipher, some efforts to achieve
this have recently been deployed. The NESSIE project [24] launched in 1999 by
the European Union did not succeed in selecting a secure enough stream cipher.
Recently, the European Network of Excellence in Cryptology ECRYPT launched
a call for stream cipher proposals named eSTREAM [5]. The candidate stream
ciphers were submitted in May 2005. Those candidates are divided into software
oriented and hardware oriented ciphers.

0 The work described in this paper has been supported in part by Grant VR 621-
2001-2149, in part by the French Ministry of Research RNRT X-CRYPT project
and in part by the European Commission through the IST Program under Contract
IST-2002-507932 ECRYPT.

Hardware oriented stream ciphers are specially designed so that their im-
plementation requires a very small number of gates. Such ciphers are useful in
mobile systems, e.g. mobile phones or RFID, where minimizing the number of
gates and power consumption is more important than very high speed.

One of the new hardware candidates submitted to eSTREAM is a stream
cipher named Grain [11] which was developed by M. Hell, T. Johansson, and
W. Meier3 as an alternative to stream ciphers like GSM A5/1 or Bluetooth E0.
It uses a 80-bit key and a 64-bit initialization vector to fill in an internal state of
size 160 bits divided into a nonlinear feedback shift register (NFSR) and a linear
feedback shift register (LFSR) of length 80 bits each. At each clock pulse, one
keystream bit is produced by selecting some bits of the LFSR and of the NFSR
and applying a boolean function. It is well known that LFSR sequences satisfy
several statistical properties one would expect from a random sequence, but do
not offer any security. Their combination with NFSR sequences is expected to
improve the security. However, NFSR based constructions have not yet been as
well studied as LFSR based constructions. The claimed security level of Grain is
280, and it was conjectured by the authors of Grain that there exists no attack
significantly faster than exhaustive search.

In this paper, we describe two key recovery attacks against Grain. The pro-
posed attacks exploit linear approximations of the output function. The first
one requires 255 operations, 249 bits of memory, and 251 keystream bits, and the
second one requires 243 operations, 242 bits of memory, and 238 keystream bits.

This paper is organized as follows. We first describe the Grain stream cipher
(Section 2) and we derive some linear approximations involving the LFSR and
the keystream (Section 3). We then present two techniques for recovering the
initial state of the LFSR (Section 4). Finally, we present a technique allowing
to recover the initial state of the NFSR once we know the LFSR initial state
(Section 5).

2 Description of Grain

Grain [11] is based upon three main building blocks: an 80-bit linear feedback
shift register, an 80-bit nonlinear feedback shift register, and a nonlinear filtering
function. Grain is initialized with the 80-bit key K and the 64-bit initialization
value IV . The cipher output is an L-bit keystream sequence (zt)t=0,...,L−1.

The current LFSR content is denoted by Y t = (yt, yt+1, . . . , yt+79). The
LFSR is governed by the linear recurrence:

yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕ yt+13 ⊕ yt.

3 The design of Grain was also submitted and recently accepted for publication in the
International Journal of Wireless and Mobile Computing, Special Issue on Security
of Computer Network and Mobile Systems.

NFSR

g

LFSR

f

h

The current NFSR content is denoted by Xt = (xt, xt+1, . . . , xt+79). The
NFSR feedback is disturbed by the output of the LFSR, so that the NFSR
content is governed by the recurrence:

xt+80 = yt ⊕ g(xt, xt+1, . . . , xt+79),

where the expression of nonlinear feedback function g is given by

g(xt, xt+1, . . . , xt+79) = xt+63 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28

⊕ xt+21 ⊕ xt+15 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33

⊕ xt+15xt+9 ⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21

⊕ xt+63xt+45xt+28xt+9 ⊕ xt+60xt+52xt+37xt+33

⊕ xt+63xt+60xt+21xt+15 ⊕ xt+63xt+60xt+52xt+45xt+37

⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The cipher output bit zt is derived from the current LFSR and NFSR states
as the exclusive or of the masking bit xt and a nonlinear filtering function h as
follows:

zt = xt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
= h′(yt+3, yt+25, yt+46, yt+64, xt, xt+63)
= xt ⊕ xt+63pt ⊕ qt,

where pt and qt are the functions of yt+3, yt+25, yt+46, yt+64 given by:

pt = 1⊕ yt+64 ⊕ yt+46(yt+3 ⊕ yt+25 ⊕ yt+64),
qt = yt+25 ⊕ yt+3yt+46(yt+25 ⊕ yt+64)⊕ yt+64(yt+3 ⊕ yt+46).

The boolean function h is correlation immune of the first order. As noticed
in [11], “this does not preclude that there are correlations of the output of h(x) to
sums of inputs”, but the designers of Grain appear to have expected the NFSR
masking bit xt to make it impractical to exploit such correlations.

The key and IV setup consists of loading the key bits in the NFSR, loading
the 64-bit IV followed by 16 ones in the LFSR, and clocking the cipher 160
times in a special mode where the output bit is fed back into the LFSR and the
NFSR. Once the key and IV have been loaded, the keystream generation mode
described above is activated and the keystream sequence (zt) is produced.

3 Deriving Linear Approximations of the LFSR Bits

3.1 Linear Approximations Used to Derive the LFSR Bits

The purpose of the attack is, based on a keystream sequence (zt)t=0...L−1 corre-
sponding to an unknown key K and a known IV value, to recover the key K. The
initial step of the attack is to derive a sufficient number N of linear approxima-
tion equations involving the 80 bits of the initial LFSR state Y 0 = (y0, . . . , y79)
(or equivalently a sufficient number N of linear approximation equations involv-
ing bits of the sequence (yt)) to recover the value of Y 0. Hereafter, as will be
shown in Section 5, the initial NFSR state X0 and the key K can then be easily
recovered.

The starting point for the attack consists in noticing that though the NFSR
feedback function g is balanced, the function g′ given by g′(Xt) = g(Xt)⊕ xt is
unbalanced. We have:

Pr{g′(Xt) = 1} =
522
1024

=
1
2

+ εg′ ,

where εg′ = 5
512 . It is useful to notice that the restriction of g′ to input values Xt

such that xt+63 = 0 is totally balanced and that the imbalance of the function
g′ is exclusively due to the imbalance of the restriction of g′ to input values Xt

such that xt+63 = 1.
If one considers one single output bit zt, the involvement of the masking bit

xt in the expression of zt makes it impossible to write any useful approximate
relation involving only the Y t bits. But if one considers the sum zt ⊕ zt+80 of
two keystream bits output at a time interval equal to the NFSR length 80, the
xt⊕xt+80 contribution of the corresponding masking bits is equal to g′(Xt)⊕yt,
and is therefore equal to yt with probability 1

2 + εg′ . As for the other terms
of zt ⊕ zt+80, they can be approximated by linear functions of the bits of the
sequence (yt). In more details:

zt ⊕ zt+80 = g′(Xt)⊕ yt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
⊕ h(yt+83, yt+105, yt+126, yt+144, xt+143).

To find linear approximations of the term h(yt+3, yt+25, yt+46, yt+64, xt+63),
we can restrict our search, since the restriction of g′(Xt) to input values such
that xt+63 = 0 is balanced, to input values such that xt+63 = 1, which amounts
to finding linear approximations of pt ⊕ qt.

We found a set of two best linear approximations for this function, namely:

L1 = {yt+3 ⊕ yt+25 ⊕ yt+64 ⊕ 1; yt+25 ⊕ yt+46 ⊕ yt+64 ⊕ 1}.

Each of the approximations of L1 is valid with a probability 1
2 +ε1, where ε1 = 1

4 .
Now the term h(yt+83, yt+105, yt+126, yt+144, xt+143) is equal to either qt+80

or pt+80 ⊕ qt+80, with a probability 1
2 for both expressions. We found a set of 8

best simultaneous linear approximations for these two expressions, namely:

L2 = { yt+83 ⊕ yt+144 ⊕ 1; yt+83 ⊕ yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1;
yt+83 ⊕ yt+126 ⊕ yt+144; yt+83 ⊕ yt+105 ⊕ yt+126;
yt+83 ⊕ yt+105; yt+83 ⊕ yt+105 ⊕ yt+144 ⊕ 1;
yt+105 ⊕ yt+144; yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1; }.

Each of the 8 approximations of L2 has an average probability ε2 = 1
8 of

being valid.
Thus, we have found 16 linear approximations of zt ⊕ zt+80, namely all the

linear expressions of the form

yt ⊕ l1(yt+3, yt+25, yt+46, yt+64)⊕ l2(yt+83, yt+105, yt+126, yt+144),

where l1 ∈ L1 and l2 ∈ L2. Each of these approximations is valid with a proba-
bility 1

2 + ε, where ε is derived from εg′ , ε1, and ε2 using the Piling-up Lemma:

ε =
1
2
· 22 · εg′ · ε1 · ε2 =

5
4096

' 2−9.67.

The extra multiplicative factor of 1
2 takes into account the fact that the con-

sidered approximations are only valid when xt+63 = 1. The LFSR derivation
attacks of Section 4 exploit these 16 linear approximations.

3.2 Generalisation of the Attack Method

In this Section, we try to generalise the previous approximation method. The
purpose is not to find better approximations than those identified in Section 3.1,
but to derive some design criteria on the boolean functions g and h′. However
in the previous approximation, we used the fact that the bias of g depends
on the value of xt+63, so that the approximations of g and h′ are not correct
independently. We do not take this phenomenon into account in this Section.
Therefore, we only provide a simplified picture of potential generalised attacks.

The function g(Xt, Y t) operates on w(g) = wL(g) + wN (g) variables taken
from the LFSR and the NFSR, where wL(g) is the number of variables taken
from the LFSR and wN (g) the number of variables taken from the NFSR. Let
the function Ag(Xt, Y t) be a linear approximation of the function g, i.e.

Ag(Xt, Y t) =
wN (g)−1⊕
i=0

dixt+φg(i) ⊕
wL(g)−1⊕
j=0

cjyt+ψg(j), cj , di ∈ F2, (1)

such that the distance between g(·) and Ag(·) defined by:

dg =]{x ∈ Fw(g)
2 : Ag(x) 6= g(x)} > 0,

is strictly larger than zero. Then, we have

Pr{Ag(x) 6= g(x)} =
1

2w(g)
dg,

i.e.
Pr{Ag(x) + g(x) = 0} = 1/2 + εg,

where the bias is:
εg = 1/2− 2−w(g)dg.

Similarly, the function h′(Xt, Y t) can also be approximated by some linear
expressions of the form:

Ah′(Xt, Y t) =
wN (h′)−1⊕

i=0

kixt+φh′ (i)
⊕
wL(h′)−1⊕
j=0

ljyt+ψh′ (j)
, kj , li ∈ F2. (2)

Recall, zt
p
= Ah′(·)t with some probability p. Knowing the expressions (1)

and (2), one can sum up together wN (Ag(·)) expressions of Ah′(·) at different
times t, in such a way that all terms Xt will be eliminated (just because the
terms Xt will be cancelled due to the parity check function Ag(·), leaving the
terms Y t and noise variables only). Note also that any linear combination of
Ah′(·) is a linear combination of the keystream bits zt.

The sum of wN (Ag(·)) approximations Ah′(·) will introduce wN (Ag(·)) in-
dependent noise variables due to the approximation at different time instances.
Moreover, the cancellation of the terms Xt in the sum will be done by the par-
ity check property of the approximation Ag(·). If the function Ah′(·) contains
wN (Ah′) terms from Xt, then the parity cancellation expression Ag(·) will be
applied wN (Ah′) times. Each application of the cancellation expression Ag(·) will
introduce another noise variable due to the approximation Ng : g(·) → Ag(·).
Therefore, the application of the expression Ag(·) wN (Ah′) times will introduce
wN (Ah′) additional noise variables Ng. Accumulating all above and following the
Piling-up Lemma, the final correlation of such a sum (of the linear expression
on Y t) is given by the following Theorem.

Theorem 1. There always exists a linear relation in terms of bits from the state
of the LFSR and the keystream, which have the bias:

ε = 2(wN (Ah′)+wN (Ag)−1) · εwN (Ah′)
g · εwN (Ag)

h′ ,

where Ag(·) and Ah′(·) are linear approximations of the functions g(·) and h′(·),
respectively, and:

Pr{Ag(·) = g(·)} = 1/2 + εg, Pr{Ah′(·) = h′(·)} = 1/2 + εh′ .

This theorem gives us a criteria for a proper choice of the functions g(·)
and h′(·). The biases εg and εh′ are related to the nonlinearity of these boolean
functions, and the values wN (Ag) and wN (Ah′) are related to the correlation
immunity property; however, there is a well-known trade-off between these two
properties [27]. Unfortunately, in the case of Grain the functions g(·) and h′(·)
were improperly chosen.

4 Deriving the LFSR Initial State

In the former Section, we have shown how to derive an arbitrary number N of
linear approximation equations in the n = 80 initial LFSR bits, of bias ε ' 2−9.67

each, from a sufficient number of keystream bits. Let us denote these equations
by:

n−1⊕
i=0

αji · yi = bj , j = 1, . . . , N.

In this Section we show how to use these relations to derive the initial LFSR
state Y 0. This can be seen as a decoding problem, up to the fact that the code
length is not fixed in advance and one has to find an optimal trade-off between
the complexities of deriving a codeword (i.e. collecting an appropriate number
of linear approximation equations) and decoding this codeword.

An estimate of the number N of linear approximation equations needed for
the right value of the unknown to maximize the indicator

I =]

{
j ∈ {1, . . . , N}

∣∣∣∣ n−1⊕
i=0

αji · yi = bj
}

,

or at least to be very likely to provide say one of the two or three highest values
of I, can be determined as follows.

Under the heuristic assumption that for the correct (respectively incorrect)
value of Y 0, I is the sum of N independent binary variables xi distributed
according to the Bernoulli law of parameters p = Pr{xi = 1} = 1

2 − ε and
q = Pr{xi = 0} = 1

2 + ε (resp. the Bernoulli law of parameters Pr{xi = 1} = 1
2

and Pr{xi = 0} = 1
2 , mean value µ = 1

2 , and standard deviation σ = 1
2), N can

be derived by introducing a threshold of say T = N(1
2 + 3ε

4) for I and requiring:
(i) that the probability that I is larger than T for an incorrect value of Y 0 is less
than a suitably chosen false alarm probability pfa; (ii) that the probability that
I is lower than T for the correct value is less than a non detection probability
pnd of say 1%. For practical values of pfa, the first condition is by far the most
demanding. Setting the false alarm rate to pfa = 2−n ensures that the number
of false alarms is less than 1 in average.

Due to the Central Limit Theorem,
P
xi−Nµ√
Nσ

is distributed according to the
normal law, so that:

Pr

{
1
N

∑
xi − µ >

3ε

4

}
= Pr

{∑
xi −Nµ√

Nσ
>

3
√

Nε

4σ

}
(3)

can be approximated by 1√
2π

∫ +∞
λ

e−
t2
2 dt, where λ = 3

√
Nε
2 . Consequently, if N

is selected in such a way that 3
√
Nε
2 = λ, i.e.

N =
(

2λ

3ε

)2

,

where λ is given by:

1√
2π

∫ +∞

λ

e−
t2
2 dt = pfa = 2−n,

then inequality 3 is satisfied.
A naive LFSR derivation method would consist of collecting N approximate

equations, computing the indicator I independently for each of the 2n possible
values of Y 0 and retaining those Y 0 candidates leading to a value of I larger than
the N(1

2 + 3ε
4) threshold. This method would require a low number of keystream

bits (say N+80
16) but the resulting complexity N · 280 would be larger than the

one of exhaustive key search.
In the rest of this Section, we show that much lower complexities can be

obtained by using the fast Walsh transform algorithm and a few extra filtering
techniques in order to speed up computations of correlation indicators. Former
examples of applications of similar Fast Fourier Transform techniques in order
to significantly decrease the total complexity of correlation attacks can be found
in [4] [9] [16].

4.1 Use of the Fast Walsh Transform to Speed up Correlation
Computations

Basic Method. Let us consider the following problem. Given a sufficient num-
ber M of linear approximation equations of bias ε involving m binary variables
y0 to ym−1, how to efficiently determine these m variables? Let us denote these
M equations by

∑m−1
i=0 αji · yj = bj , j = 1, . . . ,M . For a sufficiently large value

of M , one can expect the right value of (y0, . . . , ym−1) to be the one maximizing
the indicator:

I(y0, . . . , ym−1) =]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yj = bj
}

=
M

2
+

1
2
· S(y0, . . . , ym−1),

where:

S(y0, . . . , ym−1) =]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yi = bj
}

−]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yi 6= bj
}

.

Equivalently one can expect (y0, . . . , ym−1) to be the value which maxi-
mizes the indicator S(y0, . . . , ym−1). Instead of computing all of 2m values of
S(y0, . . . , ym−1) independently, one can derive these values in a combined way
using fast Walsh transform computations in order to save time.

Let us recall the definition of the Walsh transform. Given a real function of m
binary variables f(x1, . . . , xm−1), the Walsh transform of f is the real function
of m binary variables F = W (f) defined by:

F (u0, . . . , um−1) =
∑

x0,...,xm−1∈{0,1}m

f(x0, . . . , xm−1)(−1)u0x0+...+um−1xm−1 .

Let us define the function s(α0, . . . , αm−1) by:

]
{
j ∈ {1, . . . ,M}

∣∣ (αj0, . . . , α
j
m−1) = (α0, . . . , αm−1) ∧ bj = 1

}
−]

{
j ∈ {1, . . . ,M}

∣∣ (αj0, . . . , α
j
m−1) = (α0, . . . , αm−1) ∧ bj = 0

}
.

The function s can be computed in M steps. Moreover, it is easy to check
that the Walsh transform of s is S, i.e.

∀(y0, . . . , ym−1) ∈ {0, 1}m,W (s)(y0, . . . , ym−1) = S((y0, . . . , ym−1)).

Therefore, the computational cost of the estimation of all the 2m values of S
using fast Walsh transform computations is M + m · 2m; the required memory
is 2m.

Improved Hybrid Method. More generally, if m1 < m, one can use the
following hybrid method between exhaustive search and Walsh transform in
order to save space.

For each of the 2m−m1 values of (ym1 , . . . , ym−1), define the associated re-
striction S′ of S as the m1 bit boolean function given by:

S′(y0, . . . , ym1−1) =]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m1−1∑
i=0

αji · yi =
m∑

i=m1

αji · yi ⊕ bj
}

−]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m1−1∑
i=0

αji · yi 6=
m∑

i=m1

αji · yi ⊕ bj
}

.

It is easy to see that if we define s′(α0, . . . , αm1−1) as

]

{
j ∈ {1, . . . ,M}

∣∣∣∣ (αj0, . . . , α
j
m1−1) = (α0, . . . , αm1−1) ∧

m∑
i=m1

αji · yi ⊕ bj = 1
}

−]

{
j ∈ {1, . . . ,M}

∣∣∣∣ (αj0, . . . , α
j
m1−1) = (α0, . . . , αm1−1) ∧

m∑
i=m1

αji · yi ⊕ bj = 0
}

,

then S′ is the Walsh transform of s′.
Therefore, the computational cost of the estimation of all the 2m values of S

using this method is 2m−m1(M + m1 · 2m1). If we compare this with the former
basic Walsh transform method, we see that the required memory decreases from
2m to 2m1 , whereas the time complexity increase remains negligible as long as
m1 << log2(M).

4.2 First LFSR Derivation Technique

In order to reduce the LFSR derivation complexity when compared with the
naive method of complexity N · 2n, we can exploit more keystream to produce
more linear approximation equations in the unknowns y0 to yn−1, and retain only
those equations involving the m < n variables y0 to ym−1, i.e. which coefficients
in the n−m variables ym to yn−1 are equal to 0.

Thus a fraction of about 2m−n of the relations are retained and we have to
collect about N2n−m approximate relations to retain N relations. This requires
a number of keystream bits of:

N2n−m + 80
16

.

As seen in the former Section, once the relations have been filtered, the
computational cost of the derivation of the values of these m variables using fast
Walsh transform computations is about m2m for the basic method, and more
generally 2m−m1(N + m12m1) if fast Walsh transform computations are applied
to a restricted set of m1 < m variables.

Thus, the overall time complexity of this method is:

N2n−m + m2m,

and more generally:

N2n−m + 2m−m1(N + m12m1).

Once the m variables y0 to ym−1 have been recovered, one can either reiterate
the same technique for other choices of the m unknown variables, which increases
the complexity by a factor of less than 2 if m ≥ n

2 , or test each of the 2n−m

candidates in the next step of the attack (NFSR and key derivation).
An estimate of the number N of equations needed is given by

N =
(

2λ

3ε

)2

,

where λ is determined by the condition 1√
2π

∫ +∞
λ

e−
t2
2 dt = 2−m. This condition

ensures that the expected number of false alarm is less than 1.
The minimal complexity is obtained for m = 49. For this parameter value,

we have λ = 7.87 and N = 224. The attack complexity is about 255, the number
of keystream bits needed is around 251, and the memory needed is about 249.

4.3 Second LFSR Derivation Technique

An alternative method is to derive new linear approximation equations (of lower
bias) involving m < n unknown variables y0 to ym−1 by combining the R avail-
able approximate equations of bias ε pairwise, and retaining only those pairs of

relations for which the n − m last coefficients collide. One obtains in this way
about N ′ = R2 · 2m−n−1 new affine equations in y0 to ym−1, of bias ε′ = 2ε2.
The allocation of the m variables maximizing the number of satisfied equations
can be found by fast Walsh computations as explained in the former Section.

The number N ′ of relations needed is about
(

2λ
3ε′

)2
, where λ is determined

by the condition 1√
2π

∫ +∞
λ

e−
t2
2 dt = 2−m. The required number R of relations

of bias ε is therefore R = (N ′2n−m+1)
1
2 , and the number of keystream bits

needed is about R+80
16 . The complexity of the derivation of the N ′ relations is

max(R,N ′) = max((N ′2n−m+1)
1
2 , N ′).

Once the N ′ relations have been derived, the computational cost of the
derivation of the values of these m variables using fast Walsh transform compu-
tations is about m · 2m for the basic method, and more generally if fast Walsh
transform computations are applied to a restricted set of m1 < m variables it
costs 2m−m1(N ′ + m1 · 2m1).

Thus the total complexity of the derivation of the m LFSR bits is:

max((N ′2n−m+1)
1
2 , N ′) + m2m,

and more generally:

max((N ′2n−m+1)
1
2 , N ′) + 2m−m1(N ′ + m12m1).

The minimal complexity is obtained for m = 36. For this parameter value,
we have λ = 6.65 and N ′ = 241. The attack complexity is about 243, the number
of keystream bits needed is about 238 and the memory required is about 242.

5 Recovering the NFSR Initial State and the Key

Once the initial state of the LFSR has been recovered, we want to recover the ini-
tial state (x0, . . . , x79) of the NFSR. Fortunately, the knowledge of the LFSR re-
moves the nonlinearity of the output function and we can express each keystream
bit zi by one of the following four equations depending on the initial state of the
LFSR:

zi = xi, zi = xi ⊕ 1,
zi = xi ⊕ x63+i, zi = xi ⊕ x63+i ⊕ 1.

Since functions p and q underlying h are balanced, each equation has the
same occurrence probability. We are going to use the non linearity of the out-
put function to recover the initial state of the NFSR by writing the equations
corresponding to the first keystream bits.

The 16 first equations are linear equations involving only bits of the initial
state of the NFSR because 63 + i is lower than 80.

To recover all the bits of the initial state, we introduce a technique which
consists of building chains of keystream bits. The equations for keystream bits
z17 to z79 involve either one bit of the NFSR (zi = xi or zi = xi ⊕ 1) or two
bits (zi = xi ⊕ x63+i or zi = xi ⊕ x63+i ⊕ 1). An equation involving only one

bit allows us to instantly recover the value of the corresponding bit of the initial
state. This can be considered as a chain of length 0. On the other hand, an
equation involving two bits does not allow this because we do not know the
value of x63+i (for i > 16).

However, by considering not only the equations for zi but also all the equation
for zk·63+i for k ≥ 1, we can cancel the bits we do not know and retrieve the value
of xi. With probability 1

2 , the equation for z63+i involves one single unknown
bit. Then it provides the value of x63+i and consequently the value of xi. Here
the chain is of length 1, since we have to consider one extra equation to retrieve
xi. The equation for z63+i can also involve two bits with probability 1

2 . Then we
have to consider the equation of z2·63+i, which can also either involve only one bit
(we have a chain of length 2) or two bits and we have to consider more equations
to solve. Each equation has a probability 1

2 to involve 1 or 2 bits. Consequently
the probability that a chain is of length n is 1

2n+1 and the probability that a
chain is of length strictly larger than n is 1

2n+1 .
We want to recover the values of x17, . . . , x79. We have to build 64 different

chains. Let us consider L = 63 ·n bits of keystream. The probability that one of
the chains is of length larger than n is less than = 64 · 2−n−1 and therefore less
than 2−n+5. If we want this probability to be bounded by 2−10, then n > 15 and
L > 945 suffices. Consequently a few thousands of keystream bits are required
to retrieve the initial state of the NFSR and the complexity of the operation is
bounded by 64 · n.

Since the internal state transition function associated to the special key and
IV setup mode is one to one, the key can be efficiently derived from the NFSR
and LFSR states at the beginning of the keystream generation by running this
function backward.

6 Simulations and Results

To confirm that our cryptanalysis is correct, we ran several experiments. First
we checked the bias ε of Section 3.1 by running the cipher with a known initial
state of both the LFSR and the NFSR, computing the linear approximations,
and counting the number of fulfilled relations for a very large number of relations.
For instance we found that one linear approximation is satisfied 19579367 times
out of 39060639, which gives an experimental bias of 2−9.63, to be compared
with the theoretical bias ε = 2−9.67.

To check the two proposed LFSR reconstruction methods of Section 4, we
considered a reduced version of Grain in order to reduce the memory and time
required by the attack on a single computer: we shortened the LFSR by a factor
of 2. We used an LFSR of size 40 with a primitive feedback polynomial and we
reduced by two the distances for the tap entries of function h: we selected taps
number 3, 14, 24, and 33, instead of 3, 25, 46, and 64 for Grain.

The complexity of the first technique for the actual Grain is 255 which is out
of reach of a single PC. For our reduced version, the complexity given by the
formula of Section 4.2 is only 235. We exploited the 16 linear approximations

to derive relations colliding on the first 11 bits. Consequently the table of the
Walsh transform is only of size 229. We used 15612260 ' 223 relations, which
corresponds to a false alarm probability of 2−29. Our implementation needed
around one hour to recover the correct value of the LFSR internal state on a
computer with a Intel Xeon processor running at 2.5 GHz with 3 GB of memory.
The Walsh transform computation took only a few minutes.

For the actual Grain, the second technique requires only 243 operations which
is achievable by a single PC. However it also requires 242 of memory which
corresponds to 350 GB of memory. We do not have such an amount of memory
but for the reduced version the required memory is only 229. Since the complexity
given by the formula of Section 4.3 is dominated by the required number of
relations to detect the bias, our simulation has a complexity close to 243. In
practice, we obtained a result after 4 days of computation on the same computer
as above and 2.5 · 1012 ' 241 relations where considered and allowed to recover
the correct LFSR initial state.

Finally, we implemented the method of Section 5 to recover the NFSR. Given
the correct initial state of the LFSR, and the first thousand keystream bits, our
program recovers the initialization of the NFSR in a few seconds for a large
number of different initializations of both the known LFSR and unknown NFSR.
We also confirmed the failure probability assessed in Section 5 for this method
(which corresponds to the occurrence probability of at least one chain of length
larger than 15).

7 Conclusion

We have presented a key-recovery attack against Grain which requires 243 com-
putations, 242 bits of memory, and 238 keystream bits. This attack suggests that
the following slight modifications of some of the Grain features might improve
its strength:

– Introduce several additional masking variables from the NFSR in the key-
stream bit computation.

– Replace the nonlinear feedback function g in such a way that the associated
function g′ be balanced (e.g. replace g by a 2-resilient function). However
this is not necessarily sufficient to thwart all similar attacks.

– Modify the filtering function h in order to make it more difficult to approx-
imate.

– Modify the function g and h to increase the number of inputs.

Following recent cryptanalysis of Grain including the key recovery attack re-
ported here and distinguishing attacks based on the same kind of linear approx-
imations as those presented in Section 3 [19] [26], the authors of Grain proposed
a tweaked version of their algorithm [12], where the functions g and h′ have
been modified. This novel version of Grain appears to be much stronger and is
immune against the statistical attacks presented in this paper.

We would like to thank Matt Robshaw and Olivier Billet for helpful com-
ments.

References

1. M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of A5/1.
Available at http://jya.com/a51-pi.htm, Accessed August 18, 2003, 1999.

2. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In B. Preneel, editor, Advances in Cryptology—
EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
573–588. Springer-Verlag, 2000.

3. V. Chepyzhov and B. Smeets. On a fast correlation attack on certain stream
ciphers. In D. W. Davies, editor, Advances in Cryptology—EUROCRYPT’91, vol-
ume 547 of Lecture Notes in Computer Science, pages 176–185. Springer-Verlag,
1991.

4. M. W. Dodd. Applications of the Discrete Fourier Transform in Information The-
ory and Cryptology. PhD thesis, University of London, 2003.

5. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/, Accessed September 29, 2005, 2005.

6. P. Ekdahl and T. Johansson. Another attack on A5/1. In Proceedings of Interna-
tional Symposium on Information Theory, page 160. IEEE, 2001.

7. P. Ekdahl and T. Johansson. Another attack on A5/1. IEEE Transactions on
Information Theory, 49(1):284–289, January 2003.

8. H. Englund and T. Johansson. A new simple technique to attack filter generators
and related ciphers. In Selected Areas in Cryptography, pages 39–53, 2004.

9. H. Gilbert and P. Audoux. Improved fast correlation attacks on stream ciphers
using FFT techniques. personnal communication, 2000.

10. J.D. Golić. Cryptanalysis of alleged A5 stream cipher. In W. Fumy, editor, Ad-
vances in Cryptology—EUROCRYPT’97, volume 1233 of Lecture Notes in Com-
puter Science, pages 239–255. Springer-Verlag, 1997.

11. M. Hell, T. Johansson, and W. Meier. Grain - A Stream Cipher for Con-
strained Environments. ECRYPT Stream Cipher Project Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

12. M. Hell, T. Johansson, and W. Meier. Grain - A Stream Cipher for Constrained
Environments, 2005. http://www.it.lth.se/grain.

13. T. Johansson and F. Jönsson. Fast correlation attacks based on turbo code tech-
niques. In Advances in Cryptology—CRYPTO’99, volume 1666 of Lecture Notes
in Computer Science, pages 181–197. Springer-Verlag, 1999.

14. T. Johansson and F. Jönsson. Improved fast correlation attacks on stream ciphers
via convolutional codes. In Advances in Cryptology—EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 347–362. Springer-Verlag, 1999.

15. F. Jönsson. Some Results on Fast Correlation Attacks. PhD thesis, Lund Uni-
versity, Department of Information Technology, P.O. Box 118, SE–221 00, Lund,
Sweden, 2002.

16. A. Joux, P. Chose, and M. Mitton. Fast Correlation Attacks: An Algorithmic
Point of View. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 209–221.
Springer-Verlag, 2002.

17. B. S. Jr. Kaliski and M. J. B. Robshaw. Linear Cryptanalysis Using Multiple Ap-
proximations. In Yvo G. Desmedt, editor, Advances in Cryptology – CRYPTO ’94,
volume 839 of Lecture Notes in Computer Science, pages 26–39. Springer-Verlag,
1994.

18. M. Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, edi-
tor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in
Computer Science, pages 386–397. Springer-Verlag, 1993.

19. A. Maximov. Cryptanalysis of the “Grain” family of stream ciphers. In ACM
Transactions on Information and System Security (TISSEC), 2006.

20. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In C.G.
Günter, editor, Advances in Cryptology—EUROCRYPT’88, volume 330 of Lecture
Notes in Computer Science, pages 301–316. Springer-Verlag, 1988.

21. W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.
Journal of Cryptology, 1(3):159–176, 1989.

22. W. Meier and O. Staffelbach. The self-shrinking generator. In A. De Santis,
editor, Advances in Cryptology—EUROCRYPT’94, volume 905 of Lecture Notes
in Computer Science, pages 205–214. Springer-Verlag, 1994.

23. M. Mihaljevic and J.D. Golić. A fast iterative algorithm for a shift register initial
state reconstruction given the noisy output sequence. In J. Seberry and J. Pieprzyk,
editors, Advances in Cryptology—AUSCRYPT’90, volume 453 of Lecture Notes in
Computer Science, pages 165–175. Springer-Verlag, 1990.

24. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. Avail-
able at http://www.cryptonessie.org, Accessed August 18, 2003, 1999.

25. W.T. Penzhorn and G.J. Kühn. Computation of low-weight parity checks for
correlation attacks on stream ciphers. In C. Boyd, editor, Cryptography and Coding
- 5th IMA Conference, volume 1025 of Lecture Notes in Computer Science, pages
74–83. Springer-Verlag, 1995.

26. M. Hassanzadeh S. Khazaei and M. Kiaei. Distinguishing Attack
on Grain. ECRYPT Stream Cipher Project Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

27. T. Siegenthaler. Correlation-immunity of non-linear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, 30:776–780,
1984.

28. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers, 34:81–85, 1985.

