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Abstract. The Ideal-Cipher Model of a blockcipher is a well-known and
widely-used model dating back to Shannon [25] and has seen frequent use
in proving the security of various cryptographic objects and protocols.
But very little discussion has transpired regarding the meaning of proofs
conducted in this model or regarding the model’s validity. In this paper,
we briefly discuss the implications of proofs done in the ideal-cipher
model, then show some limitations of the model analogous to recent
work regarding the Random-Oracle Model [2]. In particular, we extend
work by Canetti, Goldreich and Halevi [5], and a recent simplification by
Maurer, Renner, and Holenstein [15], to exhibit a blockcipher-based hash
function that is provably-secure in the ideal-cipher model but trivially
insecure when instantiated by any blockcipher.
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1 Introduction

The Standard Model. Before we can prove the security of a cryptographic
system or object, we must specify what model we are using. The most common
model used in modern cryptography is the so-called “standard model.” Here we
use no special mathematical objects such as infinite random strings or random
oracles [2], and we abstract our communications system typically as a reliable but
insecure channel. We have not been able to achieve most common cryptographic
goals in the standard model without making additional complexity-theoretic
hardness assumptions, because we still have no proof that any of our standard
cryptographic building blocks have computational lower bounds. The common
assumptions are typically that factoring the product of large primes is hard,
or that discrete log is intractible in certain sufficiently large groups, or that
AES is a good pseudo-random permutation (PRP) [16]. The standard model
is usually well-accepted in our community despite the fact that proofs done in
this model rest upon unproven assumptions and that already much relevant
real-world context has been abstracted away (timing, power consumption, error



messages, and other real-world effects are typically not included as part of the
model in spite of the demonstrated fact they are often relevant to security).

The Random-Oracle Model. When proofs in the standard model are unap-
pealing or are provably impossible (eg, see [19]), we often resort to proofs using
an alternative model. By far the best-known is the “Random-Oracle Model.”
The random-oracle model was used for some time before being formalized by
Bellare and Rogaway [2], and continues to see widespread use today (there are
more than a hundred instances; for a few examples see [2, 11, 18, 21, 24]). In the
random-oracle model we have a public random function, accessible to all parties,
which typically accepts any string from {0, 1}

∗
and outputs n bits. For each ele-

ment in its domain, the corresponding n-bit output is uniform and independent
from all other outputs. Proofs conducted in the random-oracle model often admit
schemes which are provably-secure and more efficient than schemes which have
been proven secure in the standard model, and for this reason the random-oracle
model has been widely-adopted.

Of course random oracles do not exist in practice, and if the schemes proven
secure in the random-oracle model are going to be put into use, we must choose
some object to implement the random oracle. This step is called “instantiation.”
Most often, random oracles are instantiated with cryptographic hash functions
such as SHA-1 [20]. The following question then arises: now that we have instan-
tiated our random oracle with a concrete function, what security guarantees do
we have? Does our proof in the random-oracle model have any bearing on the
security of the instantiated system?

For quite some time there has been concern in our community that the
random-oracle model should be treated with suspicion, and proofs in the stan-
dard model should be preferred. As a recent example, the main selling point
of the Cramer-Shoup cryptosystem [7] is that it is provably-secure in the stan-
dard model and still practical (and, as with most proofs in the standard model,
comes with an assumption: the Decisional Diffie-Hellman assumption [4]). Fur-
ther doubt has been recently cast on the random-oracle model due to a string of
results exhibiting schemes which are provably-secure in the random-oracle model
but are completely insecure when instantiated by any hash function [1, 5, 6, 15].
Schemes of this type are called “uninstantiable.”

It has been noted [2] that proofs done in the random-oracle model do guar-
antee one thing: if the adversary treats the instantiated random oracle as a black
box, promising not to think about its inner workings, promising not to exploit
any unnatural behavior related to the fact that we have instantiated with some
algorithm that has a compact description, then the proof remains valid in the
standard model. Of course there is no guarantee that real adversaries would abide
by such restrictions, and indeed they would be remiss if they did. Nonetheless,
no scheme has thus far been proven secure in the random-oracle model and then
broken once instantiated, unless this was the goal from the start.

The Ideal-Cipher Model. Blockciphers are a common building block for
cryptographic protocols. In the standard model the associated assumption for



blockciphers is that they are “pseudo-random permutations” (PRPs). By this we
mean (informally) that an n-bit blockcipher under a secret randomly-chosen key
is computationally indistinguishable from a randomly-chosen n-bit permutation.
Proofs conducted using this assumption typically give reductions showing that
if an adversary breaks some scheme, then there exists an associated adversary
that can efficiently distinguish the underlying blockcipher from random.

There are countless examples where the PRP assumption in the standard
model is sufficient, but there are also plenty of cases where we cannot get a
proof to go through. In certain cases it can be shown that blockcipher-based
schemes we believe to be secure cannot have a proof of security using only the
PRP assumption in the standard model [26]. In this case we are faced with either
abandoning attempts at a proof, or using an alternate model.

The blockcipher analog for the random-oracle model is variously called the
“Shannon Model,” the “Black-Box Model,” or the “Ideal-Cipher Model.” We
will prefer the latter name in this paper.

Though not as widely-used as the random-oracle model, the ideal-cipher
model dates back to Shannon [25] and has been used in a variety of settings
(see, for example [3, 9, 10, 12, 13, 17, 27]). In the ideal-cipher model we think of
a blockcipher E with k-bit key and n-bit blocksize as being chosen uniformly
from the set of all possible blockciphers of this form. For each key, there are
2n! permutations, and since any permutation may be assigned to a given key,

there are (2n!)2
k

possible blockciphers. When we instantiate our black box, it
becomes some particular blockcipher. AES with a 128-bit key is one choice from
the nearly 22263

blockciphers we could have chosen (though in the spirit of Kol-
mogorov complexity and in line with the main result of this paper, we should
note that the vast majority of these blockciphers will not have an efficient and
compact C implementation).

The ideal-cipher model is analogous to the random-oracle model with three
notable exceptions:

– The ideal cipher has a permutivity requirement that random oracles obvi-
ously do not.

– Adversaries interacting with an ideal-cipher oracle are typically given access
to both the cipher and its inverse.

– The blocksize n of the ideal cipher is typically fixed a priori. This means
that an ideal cipher is a finite object while the random oracle is an infinite
one.

The ideal-cipher model has been used in a variety of settings, and like the
random-oracle model, some researchers question the wisdom of its use. The ar-
gument is completely analogous: if a scheme is proved secure in the ideal-cipher
model, what exactly are we guaranteed once the ideal cipher is instantiated by
a real blockcipher? And if the answer is essentially “not much,” then what is
the value of such proofs? A common argument against the ideal-cipher model is
that most real-world blockciphers have distinguishing patterns which would exist
with exceedingly small probability in a collection of random permutations. The



key complementation property of DES is a typical example of this [16]. Although
no such properties are currently known for AES, some blockcipher experts who
are comfortable with the assumption that AES is a good PRP are reluctant to
model AES as ideal because of practical concerns: the AES key schedule, for
instance, is quite simple and it perhaps contains related-key properties we have
not yet discovered.

As compensation to the adversary for his respecting the blockcipher as a black
box, we often endow him with limitless computational resources. In this respect,
many proofs done in the ideal-cipher model are information theoretic. This too
is unrealistic, but here we are giving the adversary more power rather than
enhancing the objects themselves. Nonetheless, it is saying something about the
strength of our model that it allows us to achieve information-theoretic security.

The main result of this paper is to exhibit a blockcipher-based hash function
that is secure in the ideal-cipher model against information-theoretic adversaries
but which is trivially insecure once instantiated with any blockcipher. In order to
state this result more clearly, we take a short detour to review blockcipher-based
hash functions.

Blockcipher-Based Hash Functions. One area of recently-renewed inter-
est involves constructing hash functions from blockciphers. This approach, dat-
ing back at least to Rabin [23], uses some blockcipher E with an n-bit key
and an n-bit blocksize, and builds a compression function from it. Iterating
this function then hopefully produces a collision-resistant hash function. Pre-
neel, Govaerts, and Vandewalle [22] conducted a systematic study of a class
of 64 blockcipher-based hash functions. They focused on compression functions
of the form f(hi−1, mi) = Ea(b)⊕ c where a, b, c ∈ {hi−1, mi, hi−1⊕mi, v}
for some fixed constant v. We can now hash any M ∈ ({0, 1}n)+ by writing
M = M1 · · ·M` and then setting h0 to some constant (typically 0n) and set-
ting hi = f(hi−1, m). We return h` as the digest. The PGV analysis consisted
of testing a series of attacks on each of these iterated hash functions. Black,
Rogaway and Shrimpton [3] considered these same 64 constructions exhibiting
either an attack or a proof of security (in the ideal-cipher model) for each. They
determined that 20 of the 64 schemes were provably collision-resistant up to the
birthday bound. For one example, see Figure 1.

Although a proof of security for a blockcipher-based hash function in the
standard model would be prefered, it has been shown that the PRP assumption
is insufficient for building a collision-resistant hash function [26]. Indeed, one can

easily imagine a blockcipher Ẽ : {0, 1}
n
×{0, 1}

n
→ {0, 1}

n
that is a good PRP,

but which fails when used in the MMO construction of Figure 1. For example,
let blockcipher E : {0, 1}

n
× {0, 1}

n
→ {0, 1}

n
be a good PRP and consider

blockcipher Ẽ defined as follows:

Ẽ(K, X) =





K if X = K
E(K, K) if X = E−1(K, K)
E(K, X) otherwise



E
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n

mi

hi−1 > f(hi−1, mi)

Fig. 1. The Matyas-Meyer-Oseas (MMO) compression function [14], called H1 in [3].
E : {0, 1}n × {0, 1}n → {0, 1}n is a block cipher; the hatch mark denotes the location of
the key. Iterating this compression function results in a provably-secure blockcipher-based
hash function in the ideal-cipher model.

So Ẽ is the same blockcipher as E with one change: we now have the invariant
that E(K, K) = K for all K ∈ {0, 1}

n
. Clearly Ẽ is a good PRP since E was:

for a randomly-chosen key K, Ẽ(K, ·) is computationally indistinguishable from

a random permutation. However, using Ẽ in MMO would be inadvisable: it is
trivial to find collisions. Specifically, let H be MMO built on Ẽ with h0 = 0n.
Then H(a ‖ Ẽ(0, a)⊕a) = 0n for all a ∈ {0, 1}

n
.

Main Result. Given the recent string of results calling into question the valid-
ity of the random-oracle model, it is natural to ask if there are similar results
which can be shown for the ideal-cipher model. Specifically, is it possible to ex-
hibit some cryptographic scheme which is provably secure in the ideal-cipher
model and yet breaks when instantiated with any blockcipher? Given that ideal
ciphers are finite objects whereas random oracles are infinite objects, this fact
might lead one to ask whether results for the random-oracle model (in particular
uninstantiability results) might break down in the ideal-cipher setting given that
ideal ciphers can be described with a finite string. We will show that the answer
to the above question is “yes”: we exhibit a blockcipher-based hash function
which is provably collision-resistant in the ideal-cipher model and for which it is
trivial to find collisions once the ideal cipher has been instantiated.

We follow the approaches of [5, 15], adapting them to blockciphers and hash
functions, and moving into the concrete (rather than asymptotic) setting. The

main idea is to create a blockcipher-based hash function H̃ that acts normally
on most inputs, but acts insecurely when given a description of its oracle as an
input. In the latter case, H̃ tests the oracle description embedded in its input
against the oracle it already has by submitting some number of test values. If the
oracles agree on all values, H̃ outputs a user-specified value which was also given
in the input. The difficulty here is showing that H̃ remains secure even when
behaving this way, and the crucial point is that there a far more possible ideal
ciphers with specified input-output pairs than there are encodings to represent
them. All of this is formalized and rigorously proven in Section 3.

Related Work. Virtually no discussion of the ideal-cipher model has tran-
spired prior to this work. As already mentioned, much relevant work has ap-



peared in the analogous random-oracle setting. Random oracles were used im-
plicitly at least 18 years ago by Fiat and Shamir in their seminal work on iden-
tification schemes [11]. Bellare and Rogaway formalized the notion and argued
that the model afforded a path to efficient protocols; as examples, they gave
efficient non-malleable and chosen-ciphertext-secure encryption schemes, a sig-
nature scheme secure against adaptive chosen-message attack, and an efficient
zero-knowledge proof protocol [2]. Canetti, Goldreich, and Halevi gave the first
uninstantiable protocol for the random-oracle model: they exhibited a signature
scheme which was provably-secure in the random-oracle model but which acted
insecurely (gave up its key) when instantiated [5]. Their proof is quite complex,
involving techniques similar to Micali’s CS-proofs [18]. The same authors later
extended their result to show that there exists a signature scheme, limited to
short messages, which is also uninstantiable [6]. Maurer, Renner, and Holenstein
generalized the results of [5]; they introduced a generalization of indistinguisha-
bility called “indifferentiability” which captures the notion of shared random
objects (like random oracles) [15]. They state general theorems which imply the
result of [5] as a special case, and give an explicit simplified proof of that re-
sult. Their proof is very much in the spirit of classical Kolmogorov complexity
theory as is ours in the present paper. Nielsen [19] exhibited a protocol that
had a simple solution in the random-oracle model, but which had no provable
instantiation in the standard model. Bellare, Boldyreva, and Palacio exhibited
the first “natural” scheme, a hybrid encryption scheme, secure in the random-
oracle model but uninstantiable [1]. Dent adapted techniques from [5] to show
an uninstantiable signature scheme in the generic group model (generic groups
are finite objects like ideal ciphers) [8].

2 Definitions

Basic notions. Let κ, n ≥ 1 be numbers. A blockcipher is a map E : {0, 1}
κ
×

{0, 1}n → {0, 1}n where, for each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is
a permutation on {0, 1}

n
. Parameter n is called the blocksize of E, and n will

be understood to be this quantity throughout the paper. If E is a blockcipher
then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y.
Let Bloc(κ, n) be the set of all block ciphers E : {0, 1}

κ
× {0, 1}

n
→ {0, 1}

n
.

Choosing a random element of Bloc(κ, n) means that for each k ∈ {0, 1}κ one
chooses a random permutation Ek(·).

A (blockcipher-based) hash function is a map H : Bloc(κ, n)×D → R where
κ, n, c ≥ 1, D ⊆ {0, 1}∗, and R = {0, 1}c. The function H must be given by a
program that, given M , computes HE(M) = H(E, M) using an E-oracle. Hash

function f : Bloc(κ, n)×D → R is a compression function if D = {0, 1}
a
×{0, 1}

b

for some a, b ≥ 1 where a + b ≥ c. Fix h0 ∈ {0, 1}
a
. The iterated hash of

compression function f : Bloc(κ, n) × ({0, 1}
a
× {0, 1}

b
) → {0, 1}

a
is the hash

function H : Bloc(κ, n) × ({0, 1}
b
)∗ → {0, 1}

a
defined by HE(m1 · · ·m`) = h`

where hi = fE(hi−1, mi). Set HE(ε) = h0. We often omit the superscript E to f
and H .



We write x
$

← S for the experiment of choosing a random element from the
finite set S and calling it x. An adversary is an algorithm with access to one or
more oracles. We write these as superscripts. The notation |x| denotes the size of
the string x, in bits, and the notation x[i . . . j] denotes the substring of string x
starting at the i-th bit of x and terminating at the j-th bit, inclusive. All bits
are numbered starting from 1, and ascending left-to-right. Finally, x ‖ y denotes
the concatenation of strings x and y.

Collision resistance. To quantify the collision resistance of a blockcipher-
based hash function H we instantiate the blockcipher by a randomly chosen E ∈
Bloc(κ, n). An adversary A is given oracles for E(·, ·) and E−1(·, ·) and wants to
find a collision for HE—that is, M, M ′ where M 6= M ′ but HE(M) = HE(M ′).
We look at the number of queries that the adversary makes and compare this
with the probability of finding a collision.

Definition 1 (Collision Resistance). Let H be a blockcipher-based hash
function, H : Bloc(κ, n) × D → R, and let A be an adversary. Then the ad-
vantage of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$

← Bloc(κ, n); (M, M ′)
$

←AE,E−1

:

M 6= M ′ ∧ HE(M) = HE(M ′)
]

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is
taken over all adversaries that ask at most q oracle queries (ie, E-queries + E−1

queries).

3 An Uninstantiable Blockcipher-Based Hash Function

In [3] we find 20 blockcipher-based hash function constructions that are provably
secure in the ideal-cipher model. Specifically, it is shown that Advcoll

H (q) =
Θ(q2/2n) for 20 blockcipher-based hash functions H . This bound is about the
best we can hope for: a truly random function would have the same bound due
to the birthday phenomenon.

The proofs in [3] are carried out in the ideal-cipher model and the adver-
saries are information theoretic. In this section we will show that any scheme
H from this set can be transformed into a related scheme H̃ such that H̃ is
uninstantiable. We first outline the method and then give the details.

Main Idea. Our goal is to produce an uninstantiable blockcipher-based hash
function. We will do this by transforming some scheme which is provably secure
in the ideal-cipher model. For concreteness, select any of the 20 secure schemes
from [3] and call it H .

We will describe a related blockcipher-based hash function H̃ which is unin-
stantiable. The idea has its roots in Kolmogorov complexity. We adapt the ap-
proach of Maurer, Renner, and Holenstein [15]; when H̃ processes input M , it



first decomposes M into three parts: M = (π, c, v) where the details of this
decomposition are left for later. The first parameter, π is considered to be the
encoding of a Universal Turing Machine (UTM), encoded in some well-defined

manner. The second parameter c ∈ {0, 1}
σ

is a counter that is ignored by H̃ ,
and the final parameter v ∈ {0, 1}

n
is the value that the adversary would like to

have output by H̃ .

Now H̃ uses its blockcipher oracle O to compute O(i, 0n) for all 1 ≤ i ≤ |π|.
(Why we choose this range will become apparent in the proof below.) It also
computes π(i, 0n) for the same set of i-values. If O(i, 0n) = π(i, 0n) for all 1 ≤

i ≤ |π|, H̃ outputs v. If not, H̃ outputs H(M).

Now consider two cases: in the first case, the oracle to H̃ was an ideal cipher I .
This means that it is highly unlikely there is a sufficiently-short Turing-machine
encoding, π, such that π(·, 0n) would correctly match I on all |π| points, and
therefore it is extremely unlikely that we would have I(i, 0n) = π(i, 0n) for all

1 ≤ i ≤ |π|. This means that in all likelihood H̃ would output H(M), and
we know this construction is provably collision resistant. And so in this case
Advcoll

eH
(q) is Θ(q2/2n) by [3].

Now consider the case where the oracle to H̃ is some blockcipher E; in other
words we have instantiated oracle O with blockcipher E. There therefore exists
some Turing machine π that implements E. Therefore an adversary may simply
output two queries M1 = (π ‖ 0σ ‖ v) and M2 = (π ‖ 1σ ‖ v) for any fixed

string v ∈ {0, 1}
n

he desires. Since H̃ will discover that E(i, 0n) = π(i, 0n) for
all 1 ≤ i ≤ |π|, it will output v for both queries, and this adversary will have
trivially found a collision.

Note that things could not be worse for H̃ , in fact: not only can we find
collisions, but we can find preimages for any output value, second preimages for
any output value, and 2σ inputs which collide on any chosen value.

A Detailed Description. We now proceed to formalize and prove correct the
informal discussion just given. Throughout the remainder of this section, n will
denote the blocksize of our blockciphers.

Definition 2. Blockcipher E is said to be k-efficient if it can be implemented

as a Turing machine never requiring more than k steps to produce its output.

For example, all modern blockciphers are 220-efficient. For the remainder of
this section, k is assumed to be some fixed value. We next exhibit an uninstan-
tiable blockcipher-based hash function. Here, by “uninstantiable” we mean that
a given hash function H has Advcoll

H (q) = O(q2/2n), and is therefore secure
in the ideal-cipher model, but any instantiation of its blockcipher oracle with a
blockcipher E results in a trivially insecure hash function.

For the remainder of this section we will let H denote some blockcipher-based
hash function which is known to be secure in the ideal-cipher model (such as

MMO, in Figure 1). We now give the algorithm H̃ which is an uninstantiable
variant of H , then we prove its various properties.



Algorithm eH(M)
10 if |M | ≤ n + σ then return HO(M)
20 v ←M [|M | − n + 1 . . . |M |]
21 π ←M [1 . . . |M | − n− σ]
30 if ¬TuringValid(π) then return HO(M)
40 for i← 1 to |π|
41 Run π on input (i, 0n) for at most k steps

42 if π does not output n bits then return HO(M)
43 if π(i, 0n) 6= O(i, 0n) then return HO(M)
50 return v

Fig. 2. An uninstantiable variant of the provably-secure blockcipher-based hash function H.
If the input encodes a valid UTM, we evaluate |π| values on this UTM and check against
our oracle O. If they match, we simply output v, the last n bits of M . There are σ bits of M

which are ignored in order to help the attacker produce 2σ colliding inputs with digest v.
The UTM π is run for at most k steps, where k is a fixed parameter of the scheme.

Algorithm H̃ accepts messages M from the domain ({0, 1}n)+ and outputs n
bits. As usual, the domain could be extended to M ∈ {0, 1}

∗
with an unambigu-

ous padding rule. We fix two parameters to the algorithm: H , the provably-secure
blockcipher-based hash function just mentioned, and a counter-size σ > 0. We
assume the domain of H has been extended to {0, 1}

∗
so we can dispense with

concerns about message sizes in our construction of H̃. We further fix some
binary encoding scheme for Universal Turing Machines (UTMs) such that any
UTM can be encoded into a binary string. Furthermore, we assume there is an
efficient function TuringValid that returns true when given a string π that is a
valid UTM encoding under our fixed convention. Finally, we let O denote the
blockcipher-oracle which is used by H̃ . The algorithm to compute H̃O(M) is
given in Figure 2.

We are now faced with arguing that H̃ is uninstantiable. First notice that H̃
is efficient: we assume that oracle calls are constant-time, so therefore HO runs
in time linear in the length of the input M . Since we run π for at most k steps,
the whole algorithm runs in time O(k|π|) = O(|M |).

Theorem 1. [H̃ is uninstantiable] Fix some provably-secure blockcipher-
based hash function H and some σ > 0. Let O be a blockcipher oracle. Then
function H̃ as described above is uninstantiable.

Proof. There are two things we must prove: first, that H̃ is secure in the ideal-
cipher model. That is, Advcoll

eHO
(q) = O(q2/2n). Second, that H̃E is insecure for

any efficient blockcipher E.
We begin by showing H̃O is secure when O is modeled by an ideal cipher.

Fix q and suppose adversary A makes q oracle queries to O. (Throughout the
proof, we will assume q ≤ 2n/2 since q-values in excess of this render the bound



vacuous.) At the end of this process, A must output a pair of distinct messages M

and M ′ in the hope that H̃O(M) = H̃O(M ′). The probability that he succeeds
is the advantage we wish to bound.

There are two types of collisions A may construct given the outputs from
his q queries to O. The first collision is event C1: there exist two distinct
messages M1, M2 such that they collide under the original hash function (ie,
H(M1) = H(M2)). We have selected H such that Pr[C1] = O(q2/2n). The other
type of collision A might construct given his q oracle-query outputs results in
event C2 which we describe next.

Extract π as in line 21, and observe the for loop at lines 40 through 43. If at
any time, π does not output n bits, or if the n bits it does output do not agree
with O, we relegate the computation to H . Therefore we are concerned with the
condition that π correctly computes the |π| values required by the test on line
43. If π(i, 0n) = O(i, 0n) for all 1 ≤ i ≤ |π|, we say π is a “qualifying” program.
We define event C2 as true if there exists a qualifying program with length at
most q bits. If C2 occurs, A will certainly have set v (computed at line 20) to a
colliding value, and so we therefore wish to bound Pr[C2].

Adversary A has made q queries to O and would like to now encode some
qualifying program π into M , with |π| ≤ q. To this end, there are two possibili-
ties: (1) A outputs a program π where C2 is guaranteed because he has queried O
at all points from 1 to |π| and there was a qualifying program, or (2) A outputs
a program π where there exists some point j with 1 ≤ j ≤ |π| that A did not

query, yet C2 occurs by chance. In the second case, H̃ will ask π(j) and the
probability over choices of O that π(j, 0n) = O(j, 0n) is 1/2n. Therefore in this
case Pr[C2] ≤ 1/2n.

We therefore concern ourselves with the first case, where C2 occurs because A
has queried O(·, 0n) at all points from 1 to |π|. The encoding scheme is of course
fixed a priori. Therefore Pr[C2] is computed over choices of O. Let Q` be the
event that there exists a qualifying program of size `. So C2 = Q1 ∨ · · · ∨ Qq .
For fixed ` there are at most 2` possible Turing-Valid encodings π with |π| = `.
We evaluate, at line 43, O(i, 0n) for 1 ≤ i ≤ |π|. Since we are iterating on the
key value for O, there is no permutivity, and therefore outputs will be uniform
on {0, 1}

n
. This means that, for a fixed i, the probability that π(i, 0n) = O(i, 0n)

is 2−n. The probability this will happen ` times is therefore 2−n`, and given there
are 2` possible encodings, we see

Pr
O

[Q`] ≤ 2`/2n` = 1/2`(n−1) ≤ 1/2n−1.

So the chance of finding a qualifying program within q queries is

Pr
O

[C2] = Pr
O

[Q1 ∨ · · · ∨ Qq ] ≤

q∑

`=1

1/2n−1 =
q

2n−1
.

Finally, the chance that A can find any collision in q queries is bounded by
Pr[C1 ∨ C2] ≤ Pr[C1] + Pr[C2] = O(q2/2n) + q/2n−1 = O(q2/2n), as required.



The second case is quite straightforward. We wish to show that H̃E is inse-
cure for any efficient blockcipher E. Since E does have a concise Turing-Valid
encoding π, we may simply write two messages

M = π ‖ 0σ ‖ 0n and M ′ = π ‖ 1σ ‖ 0n.

Since the oracle to H̃ is E, and since π agrees with E on every point, the if
condition in line 43 will never hold and we will return v = 0n for each message.
Thus we have H̃E(M) = H̃E(M ′) = 0n, yielding a collision with zero oracle
queries required.

Preimage, Second Preimage, and Multicollisions. Since the instantiated
form of H̃ allows us full control over the output, we can clearly find 2σ preimages
for any digest of our choice, and we can similarly find 2σ − 1 second preimages
for any given value. Similarly, we can find multicollisions for any value, and 2σ

collisions for each of the 2n possible outputs. In this sense, H̃E is much worse
than just failing to be collision resistant: it fails to have any security properties
at all.

On a technical note, the alert reader will notice that we at no time defined
what “insecure” means for a blockcipher-based hash function that has been
instantiated. This is because all concrete hash functions are “insecure” if security
requires the nonexistence of any efficient program that outputs a colliding pair
of inputs! (Since collisions must exist for any non-injective map f , there exists
a program that simply outputs a colliding pair for any given f .) Nonetheless,
there exists an intuitive notion of security for fixed functions like SHA-1, and
clearly the instantiated version of hash function H̃ is insecure in this sense.

Artificiality. Like all other uninstantiable schemes, H̃ is quite artificial. It
is uninstantiable only because it was designed to be, and upon inspection no
one would use such a scheme. It remains to be seen whether there is a more
natural construction (where “natural” is necessarily subjective). Thus far, as in
the random-oracle model analog, no scheme proven secure in the ideal-cipher
model has been broken after instantiation, unless that was the goal from the
start.

4 Conclusion and Open Questions

Although the scheme just presented is quite unnatural, it does arouse suspicion
as to the wisdom of blindly using the ideal-cipher model in proofs of security.
More evidence to support this suspicion could be provided by showing that

HAES is insecure for a hash scheme H from [3] that is provably-secure in the
ideal-cipher model. Such an attack would necessarily exploit specific features of
AES, but since AES is generally thought to be well-designed, it would add fuel
to the fire.

Probably the short-signature results of [6] could be extended to this setting,
but a more interesting question is whether there exists a “natural” scheme that



is provably-secure in the ideal-cipher model but uninstantiable. Hash functions
probably are not the right place to look for these, but there are many other
objects whose proofs rely on the ideal-cipher model that might provide settings
where natural examples of uninstantiable schemes could be constructed.
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