
Cryptanalysis of FORK-256

Krystian Matusiewicz1, Thomas Peyrin2, Olivier Billet2, Scott Contini1, and
Josef Pieprzyk1

1 Centre for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Macquarie University

{kmatus,scontini,josef}@ics.mq.edu.au
2 France Telecom Research and Development

Network and Services Security Lab
{thomas.peyrin,olivier.billet}@orange-ftgroup.com

Abstract. In this paper we present a cryptanalysis of a new 256-bit
hash function, FORK-256, proposed by Hong et al. at FSE 2006. This
cryptanalysis is based on some unexpected differentials existing for the
step transformation. We show their possible uses in different attack sce-
narios by giving a 1-bit (resp. 2-bit) near collision attack against the
full compression function of FORK-256 running with complexity of 2125

(resp. 2120) and with negligible memory, and by exhibiting a 22-bit near
pseudo-collision. We also show that we can find collisions for the full
compression function with a small amount of memory with complexity
not exceeding 2126.6 hash evaluations. We further show how to reduce
this complexity to 2109.6 hash computations by using 273 memory words.
Finally, we show that this attack can be extended with no additional cost
to find collisions for the full hash function, i.e. with the predefined IV.

Keywords: hash functions, cryptanalysis, FORK-256, micro-collisions

1 Introduction

Most of the dedicated hash functions published in the last 15 years follow
more or less closely ideas used by R. Rivest in the design MD4 [13, 14] and
MD5 [15]. Using terminology from [16], their step transformations are all based
on source-heavy Unbalanced Feistel Networks (UFN) and employ bitwise boolean
functions. Apart from MD4 and MD5 other examples include RIPEMD [12],
HAVAL [21], SHA-1 [10] and also SHA-256 [11]. A very nice feature of all these
designs is that they are very fast in software implementations on modern 32-bit
processors and only use a small set of basic instructions executed by modern
processors in constant-time like additions, rotations, and boolean functions [4].

However, traditional wisdom says that monoculture is dangerous, and this
proved to be also true in the world of hash functions. Ground-breaking attacks
on MD4, MD5 by X. Wang et al. [19, 17] were later refined and applied to attack
SHA-0 [20] and SHA-1 [18] as well as some other hash functions. Since source-
heavy UFNs with Boolean functions seem to be susceptible to attacks similar to
Wang’s because only one register is changed after each step and the attacker can

manipulate it to a certain extent, one could try designing a hash function using
the other flavour of UFNs, namely target-heavy UFNs where changes in one
register influence many others. This is the case with the hash function Tiger [1]
tailored for 64 bit platforms and designed in 1995, and a recently proposed
FORK-256 [3] which is the focus of this paper.

The paper is organized as follows. In the next section, we briefly describe
FORK-256. Then, in Section 3, we discuss some properties of the step transfor-
mation of the compression function. In Section 4 we investigate a special kind of
rather pathological differentials in the step transformation. We analyse those dif-
ferentials in details and derive an efficient necessary and sufficient condition for
their existence. Effectiveness of this test allows a fast research of suitable config-
urations. Section 5 studies simple paths using those differentials and shows how
to use them to efficiently find near-collisions for the compression function. In
Section 6, we then show how to exploit local differentials studied in Section 4 to
construct a high-level differential path for the full function as well as for its vari-
ous simplified variants. Finally, in Section 7 we present two algorithms for finding
collisions against FORK-256’s compression function, and show in Section 8 how
this method can be extended to find collisions for the full hash function.

Notation. Throughout the paper we use the following notations. Unless stated
otherwise, all words are 32-bit words and are sometimes though of as elements
of Z232 or Z2

32.

x+ y addition in Z or Z232 depending on the context,
x− y subtraction in Z or Z232 ,
x⊕ y bitwise xor of two words,
x<<<a rotation of bits of the word x by a positions to the left,
Rj,i value of register R ∈ {A, . . . ,H} in branch j = 1, . . . , 4 at step i,
hw(x) Hamming weight of word x.

2 Description of FORK-256

FORK-256 is a new dedicated hash function proposed by Hong et al. [3, 2]. It is
based on the classical Merkle-Damg̊ard iterative construction with a compression
function that maps 256 bits of state cvn and 512 bits of message M to 256 bits
of a new state cvn+1. For the complete description we refer to [3].

The compression function uses a set {branchj}j=1,2,3,4 of four branches
running in parallel, each one of them using a different scheduling of sixteen 32 bit
message blocks Mi, i = 0, . . . , 15 by permuting them through σj . The same set
of chaining variables cv = (A0, B0, C0,D0, E0, F0, G0,H0) is used in the four
branches. After computing outputs of parallel branches hj = branchj(cv,M)
the compression function updates the set of chaining variables according to the
formula

cv := cv + [(h1 + h2) ⊕ (h3 + h4)] ,

where ‘+’ and ‘⊕’ are performed word-wise. This construction can be seen as fur-
ther extension of the design principle of two parallel lines used in RIPEMD [12].

Each branch function branchj , j = 1, 2, 3, 4 consists of eight steps. In each
step k = 1, . . . , 8 the branch function updates its own copy of eight chaining
variables using the step transformation depicted in Fig. 1. Rj,i denotes the value
of the register R ∈ {A, . . . ,H} in j-th branch after step i and all Aj,0, . . . , Hj,0

are initialised with corresponding values of eight chaining variables A0, . . . , H0.

g

f

≪ 9

≪ 21

≪ 5

≪ 17

δ
π

j
(2

k
−

2
)

Aj,k−1 Bj,k−1 Cj,k−1 Dj,k−1

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j
(2

k
−

1
)

Ej,k−1 Fj,k−1 Gj,k−1 Hj,k−1

Mσj(2k−2) Mσj(2k−1)

QL QR

Aj,k Bj,k Cj,k Dj,k Ej,k Fj,k Gj,k Hj,k

Fig. 1. Step transformation of branch j of FORK-256. Q-structures are marked with
frames.

The functions f and g are defined as f(x) = x+
(

x<<<7 ⊕ x<<<22
)

and g(x) =

x⊕
(

x<<<13 + x<<<27
)

, respectively. Finally, the constants δ0, . . . , δ15 are given in
Table 6 and permutations σj and πj are defined in Table 7 of Appendix A.

3 Preliminary Observations on FORK-256

As seen in the previous section, FORK-256 uses four parallel branches operating
on the same initial state and using the same blocks of messages but in a different
order. This seems to be the strength of FORK-256 since the first reported efforts
to break it was limited to two of the four branches [8]. In other words, the
main difficulty in cryptanalysing FORK-256 comes from the fact that the same
message blocks are input in each of the four branches in a permuted fashion.
Thus, while one or maybe two branches may be easily dealt with, the effect of
the difference is difficult to cancel in the remaining branches. There are however
some specific differential characteristics of interest.

The first one, as noted by [9] and [8], overcomes the issue by applying the
same modular difference d to every message block. Hence, just after the fourth
step has been completed, if the internal state has the same difference d on all of
its eight 32-bit words, there is a collision after the eighth step. This behavior,

Table 1. A four steps differential pattern to force an inner collision for FORK-256.
The table shows the pattern in one branch and its probability to occur for each step.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

in d d d d d d d d −d −d

1 d 0 d d d 0 d d −d −d Pd
6

2 d 0 0 d d 0 0 d −d −d Pd
4

3 d 0 0 0 d 0 0 0 −d −d Pd
2

out 0 0 0 0 0 0 0 0 1

summarized in Table 1, renders the use of four branches with message reorder-
ing as a mean to protect against differential analysis ineffective since the same
difference is applied to every message block and the same differential pattern is
occurring simultaneously in the four branches. The probability Pd is the prob-
ability that the difference d propagates without modification in one step. This
comes from the fact that the modular difference has to pass through a ‘⊕’.
Indeed, modular differences do not propagate without modification whenever
‘⊕’ are used in the design of the hash function (just as xor differences do not
propagate without modification whenever ‘+’ are used). This probability can be
computed exactly for any given difference d, and this computation is given in
Appendix B. Note that it does propagate without modification when it enters
the step in the register A or the register E of the internal state, but with proba-
bility Pd otherwise. The overall probability for the differential pattern of Table 1
to occur is thus P 12

d for each branch.

Table 2. A seven steps differential pattern to get an inner near-collision for FORK-256.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

in 0 d 0 0 0 0 0 0 0 0
1 0 0 d 0 0 0 0 0 0 0 Pd

2 0 0 0 d 0 0 0 0 0 0 Pd

3 0 0 0 0 d 0 0 0 0 0 Pd

4 0 0 0 0 0 d 0 0 0 0 P ′

5 0 0 0 0 0 0 d 0 0 0 Pd

6 0 0 0 0 0 0 0 d 0 0 Pd

out d 0 0 0 0 0 0 0 Pd

Another way to deal with the four branches simultaneously is to apply a
difference on the IV instead of the message M . This type of collisions is called a
pseudo-collision. For the compression function h of any iterated hash function, a
pseudo-collision can be expressed as h(IV,M) = h(IV ′,M ′), where (IV′,M ′) 6=
(IV,M). In the case of FORK-256, differences in the words of the internal state
register do not diffuse identically, see the description of the states of FORK-
256’s step function in Fig. 1. More precisely, only the differences in the words A
and E will spread to the other registers in the next step. The other differences
(in the words B, C, D, F , G, H) only shift one word to the right. Hence, by
applying a difference to the second word of IV, the difference propagates without
spreading during three steps. Note that it propagates without being modified
with probability Pd only, just as for the first differential pattern. During the

fourth step however, the difference most likely spreads to the three internal
registers F , G, and H in all four branches. However, we show in the next section
that there is a way to prevent the spread of the difference from registers A and E.

4 Micro-collisions in QL and QR

The step transformation described in Section 2 can be logically split into three
parts: addition of message words, two parallel mixing structures QL and QR and
a final permutation of registers (see Fig. 1). The key role is played by the two
structures QL and QR as they are the main source of diffusion in the compression
function.

In the next paragraphs, we describe a way of finding differentials of the form
(∆A, 0, 0, 0) → (∆A, 0, 0, 0) in QL and show that it works for QR as well. The
idea is to look for pairs of inputs to the register A and appropriate input values
of registers B, C and D such that the output differences in registers B, C, D
are equal to zero in spite of non-zero differences at the outputs of functions f
and g. Such situation is possible if we have three simultaneous micro-collisions

i.e. differences in g cancel out differences from f in all three registers B, C, D.

4.1 Necessary and Sufficient Condition for Micro-collisions

Let us denote y = f(x), y′ = f(x′) and z = g(x+ δ), z′ = g(x′ + δ). We have a
micro-collision in the first line if the equation

(y +B) ⊕ z = (y′ +B) ⊕ z′ (1)

is satisfied for given y, y′, z, z′ and some constant B. Our aim is to find the set
of all constants B for which (1) is satisfied. Let us first introduce three different
representations of differences between two numbers x and x′ of Z232 .

• The first representation is the xor difference. We treat it as a vector of Z2
32

representing bits of x⊕ x′ and denote it as ∆⊕(x, x′) ∈ {0, 1}32.
• The second one is the integer difference between the two numbers x and x′,

which we denote by ∂x := x− x′. Note that −232 < ∂x < 232.
• The third one is the signed binary representation which uses digits from the

set {−1, 0, 1}. A pair (x, x′) has signed binary representation ∆±(x, x′) =
(x0 − x′0, x1 − x′1, . . . , x31 − x′31), i.e. the i-th component is the result of the
subtraction of corresponding i-th bits of x and x′.

A simple but important observation is that a difference with signed repre-
sentation (r0, r1, . . . , r31) has a xor difference of (|r0|, |r1|, . . . , |r31|), that is the
xor difference has ones in those places where the signed difference has a non-zero
digit, either −1 or 1. The relationship between integer and signed binary repre-
sentations is more interesting. An integer difference ∂x corresponds to a signed
binary representation (r0, . . . , r31) if ∂x =

∑31
i=0 2i · ri where ri ∈ {−1, 0, 1}. Of

course this correspondence is one-to-many because of the value-preserving trans-
formations of signed representations (∗, 0, 1, ∗) ↔ (∗, 1,−1, ∗) and (∗, 0,−1, ∗) ↔

(∗,−1, 1, ∗) that can stretch or shrink chunks of ones. Consider an example: as-
sume we work with 4-bit words and let ∆±(11, 2) = (1, 0, 0, 1), ∆±(14, 5) =
(1, 0, 1,−1), and ∆±(12, 3) = (1, 1,−1,−1). All these binary signed representa-
tions correspond to the integer difference ∂x = 9. Note that we can go from
one pair of values to another by adding an appropriate constant, e.g. (12, 3) =
(11+1, 2+1). This addition preserves the integer difference but can modify the
signed binary representation.

We are now equipped with the necessary tools and go back to our initial
problem. Rewriting (1) as (y+B)⊕ (y′ +B) = z⊕ z′, we can easily see that the
signed difference ∆±(y+B, y′ +B) can have non-zero digits only in those places
where the xor difference∆⊕(z, z′) has ones. This narrows down the set of possible
signed binary representations that can “fit” into the xor difference of a particular
form to 2hw(∆⊕(z,z′)). But since a single signed binary representation corresponds
to a unique integer difference, there are also only 2hw(∆⊕(z,z′)) integer differences
∂y that “fit” into the given xor difference ∆⊕(z, z′) and what is important,
integer differences are preserved when adding a constant B.

Thus, to check whether a particular difference ∂y = y− y′ may “fit” into xor
difference we need to solve the following problem: given ∂y = y − y′, −232 <
∂y < 232 and a set of positions I = {k0, k1, . . . , km} ⊂ {0, . . . , 31} (that is
determined by non-zero bits of ∆⊕(z, z′)), decide whether it is possible to find
a binary signed representation r = (r0, . . . , r31) corresponding to ∂y such that:

∂y =

m
∑

i=0

2ki · rki
where rki

∈ {−1, 1} . (2)

Replacing ti by (rki
+1)/2, this equation can be rewritten in the equivalent form:

∂y +

m
∑

i=0

2ki = 2k0+1t0 + 2k1+1t1 + · · · + 2km+1tm , (3)

where ti ∈ {0, 1}. Deciding if there are numbers ti that satisfy (3) is an instance of
the knapsack problem and since it is superincreasing—weights are powers of two,
we can do this very efficiently. This gives us a computationally efficient necessary
condition for a micro-collision in a line: if ∂y = y − y′ cannot be represented
as (2), no constant B exists and there is no solution to (1). Moreover, we can
show that this condition is also sufficient: if we can find a solution of (2), then
there exists a constant B that modifies the signed difference so that it “fits” the
prescribed xor pattern.

Observe that since the solution of the superincreasing knapsack problem (3)
is unique, so is the solution of (2). This means that we know the unique signed
representation ∆±(u, u+∂y) = (r0, . . . , r31) that is compatible with the xor dif-
ference ∆⊕(z, z′) and yields the integer difference ∂y. However, a unique signed
representation corresponds to a number of concrete pairs (u, u + ∂y). If at a
particular position j ∈ I we have rj = −1, we know that in this position the
value of j-th bit of u has to change from 1 to 0. Similarly, if we have rj = 1, the
j-th bit of u should change from 0 to 1. The rest of the bits of u (corresponding

to positions with zeros in ∆±(u, u + ∂y)) can have arbitrary values. That way,
we can easily determine the set U of all such values u. It is clear that U always
contains at least one element.

Now, since u = y+B for all u ∈ U , the set B of all constants B satisfying (1)
is simply B = {u − y : u ∈ U}. This reasoning also shows that if we can have
a micro-collision in a line, there are |B| = 232−hw(z⊕z′) constants that yield the
micro-collision if the most significant bit of z⊕z′ is zero and |B| = 232−hw(z⊕z′)+1

if the MSB of z ⊕ z′ is one. The difference is caused by the fact that if 31 ∈ I,
we do not need to change u31 in a particular way (i.e. either 1 → 0 or 0 → 1) as
any change is fine because we do not introduce carries.

Finally, since we didn’t use any properties of functions f and g, the same ar-
gument applies not only to micro-collisions in QR but also to the same structure
with any functions in place of f and g.

5 A First Attempt With a Simple Differential Path

In Section 3 we have seen that the seven step differential pattern of Table 2
with a modular difference d happens simultaneously in the four branches with
probability P 12

d as soon as we have a micro-collision in each branch. For this,
we need the registers (E,F,G,H) to reach a prescribed value at the fourth
step in the four branches, which can be easily computed thanks to the method
given in Section 3. Note that Pd is the probability that the modular difference
is unchanged when a ‘⊕’ is involved. Also, we do not care about the difference
after the fourth step, because it never spreads again. So the exponent 12 comes
from the fact that the difference has to go unchanged through the first three
steps in the four branches. We show here how to force these registers to take on
prescribed values.

5.1 Near-collision at the Seventh Round

Our main tool here is a good scheduling in the determination of each message
block so as to be able to force the four quadruplets of each branch to their
required values.

To do this, we study the relationships between message blocks and IV blocks
with this last quadruplet. Before getting into details of the attack, let us em-
phasize the following fact that simplifies the study of these relationships in the
branch j. Forcing the value of the quadruplet (Ej,3, Fj,3, Gj,3,Hj,3) is equiva-
lent to setting the value of the quadruplet (Ej,3, Fj,3, Fj,2, Fj,1). This fact can
be easily checked by going backwards in the threads of the FORK-256’s step
transformation, which can be translated in the following sequence of equations:

Fj,2 =
(

Gj,3 ⊕ f(Fj,3)
)

− g(Fj,3 − δπj(5)),

Gj,2 =
(

Hj,3 ⊕ f(Fj,3)
<<<5

)

− g(Fj,3 − δπj(5))
<<<9,

Fj,1 =
(

Gj,2 ⊕ f(Fj,2)
)

− g(Fj,2 − δπj(3)).

(4)

Table 3 summarizes those relationships. In the left column, there are words
of the quadruplets that we would like to force to some predetermined values, and
each row shows the dependence of one word on the message blocks and the IV
registers.

Table 3. Relationship between the words of the quadruplets in each branch and the
message blocks and IV. The symbols ‘*’ and ‘x’ denote a degree of freedom in setting the
value of a word W by adjusting the corresponding parameter P when all the remaining
parameters of the row have already been fixed. The ‘x’ is used to emphasize that the
parameter P can be used directly to set word W to its target value.

IV message block Mi

A B C D E F G H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E4,3 * x * * * * * * * x * *
E3,3 * x * * * * * * * x * *
E2,3 * x * * * * x * * * * *
E1,3 * x * * * * * * * * * x

F4,3 * x * * x * * *
F3,3 * x * * x * * *
F2,3 * x * * x * * *
F1,3 * x * * * * * x

G4,3 ↔ F4,2 * x * x
G3,3 ↔ F3,2 * x * x
G2,3 ↔ F2,2 * x x *
G1,3 ↔ F1,2 * x * x

H4,3 ↔ F4,1 x x
H3,3 ↔ F3,1 x x
H2,3 ↔ F2,1 x x
H1,3 ↔ F1,1 x x

Considering Table 3, we propose the following algorithm to sequentially as-
sign values to the message blocks and IV values so that the four quadruplets in
all four branches take on the prescribed values. We can refine our algorithm to
help the difference to propagate without a change. For instance, we can force
the input of the function g to zero in order to be sure that the difference is
unchanged.

1. Initialize. Choose A0 randomly.

2. Adjust. Do the following four assignments: M0 := −(A0 + δπ1(0)), M14 :=
−(A0 + δπ2(0)), M7 := −(A0 + δπ3(0)), M5 := −(A0 + δπ4(0)).

3. Force words Gj,3. Choose D0 so that F3,2 gets the correct value. Then,
choose M3, M9, and M8 in turn so that F1,2, F2,2 and F4,2 get their correct
values, respectively.

4. Force words Hj,3. (If this step has been run 232 times, return to step 1.)
Randomly choose H0. Adjust M11 and M1 to prevent the difference from
being modified in the second step of FORK-256 in the branches 2 and 4,
respectively. Then, set the words E0, M15, M6, and M12 so that F1,1, F2,1,
F3,1, and F4,1 get their correct values, respectively.

5. Force words Fj,3. Set C0 so that F4,3 gets its correct value. Then, set M10

and M2 in turn so that F2,3 and F3,3 get their correct values, respectively.
Now, F1,3 is assigned a random value. If this value is the correct one, continue
to the next step, otherwise, return to the Step 4.

6. Force words E1,3, E2,3, and E4,3. (If this step has been run 232 times, return
to Step 1.) Choose a random value for G0. Fix B0 so that E4,3 takes the
correct value. Fix M4 so that E2,3 takes the correct value. Check the random
value taken by E1,3: if this is the expected value, go to Step 7, else go back
to Step 6.

7. Force word E3,3. (If this step has been run 232 times, go to Step 1.)
Choose M13 at random. Check the random value taken by E3,3: if this is
the expected value, output all messages Mi and all IV blocks. Otherwise, go
back to step 7.

Notice that the algorithm makes a few independent exhaustive searches in
spaces of size 232. Almost no memory is required, and the average time complex-
ity is 232 applications of one fourth of FORK-256, that is about 230 computations
of the hash function. Now, for the attack to succeed, the difference d has to prop-
agate unmodified up to step 3. Since the probability to propagate in one branch
is Pd, and taking into account the fact that we took care of it in the first step
(Step 2 of the algorithm) and in two of the four branches of the second step
(Step 4 of the algorithm), the overall probability is P 6

d .
We eventually remark that the word F0 of the IV does not modify the four

targeted quadruplets. Hence, in the output of our algorithm, we can make F0

to take any of the 232 possible values and the result remains valid. That is, our
algorithm outputs 232 pairs {(M, IV), (M, IV′)} such that after the seventh step
differences only appear in registers Aj,7 in all four branches.

Finally, our algorithm outputs 232 solutions with a complexity equivalent to
230 · P−6

d hash computations, and the average cost of computing a solution pair
is thus about 1/4 · P−6

d .

5.2 Choosing the Difference

In the two previous paragraphs, we saw that a useful difference has to fulfill
two constraints. The first one is that micro-collisions must happen in all four
branches of FORK-256 in the fourth step. The second one is that the probabil-
ity Pd of propagating without modification should be as high as possible. Since
differences with small Hamming weight yield bigger probabilities Pd, we checked
all differences with Hamming weights one and two, and we finally chose the dif-
ference d = 0x00000404. For this choice of difference we have Pd of about 2−3,
and a possible set of target values for each branch is:

E1,3 = 0x030e9c3f, E2,3 = 0x7e24de5c, E3,3 = 0x00fa4d1e, E4,3 = 0x20b7363f,

F1,3 = 0xa4115fb0, F2,3 = 0x10276030, F3,3 = 0x35edee6e, F4,3 = 0xefc6172f,

G1,3 = 0x22c18168, G2,3 = 0x4db27e00, G3,3 = 0xd81cdc6c, G4,3 = 0x8c2c7c00,

H1,3 = 0x1816822c, H2,3 = 0x27e004db, H3,3 = 0xcdc6bd82, H4,3 = 0xc7bff8c3.

5.3 Near-collisions for FORK-256’s Compression Function

Seven step reduced version. We focus on a seven step reduced version
of FORK-256: the two additions, the xor, and the feed-forward are kept but
the eighth step is removed except for the final permutation of registers. It may
appear that we can find a collision against this seven steps reduced version
of FORK-256, but this is not true. Indeed, we have seen that a difference re-
mains in the internal registers Aj,7. Those differences have their lowest bit set
to 1 exactly at the same position as the lowest bit of the difference d initially
introduced, in our case the third lowest significant bit. These bits are shifted
to the left by the addition in the first two branches and the last two branches,
and the xor cancels them. However, a differential bit reappears at the previous
position due to the feed-forward, and we can not get rid of it.

We thus seek 1-bit near collisions, the probability of which has been estimated
as follows. We chose a random internal state before the seventh step (i.e. the
values Aj,6, Bj,6, Cj,6, andDj,6 in each of the four branches), and ran the seventh
step transformation, plus the recombination mechanism. After 232 experiments,
there was, on the average, 8.96 non zero bits. The probability of a 1-bit near-
collision has been evaluated to 2−15 (127665 outputs out of the 232 experiments
were 1-bit near-collisions). Since the algorithm given in the previous section
outputs 232 correct values in 230/P 6

d = 249 hash computations, the complexity
to find a set of 217 distinct 1-bit near-collisions is about 249 hash computations.

Near-collision for the full compression function. The algorithm studied in
the previous paragraphs outputs 232 pairs for which FORK-256’s outputs collide
on four of the eight 32-bit words with a complexity of 249 hash computations.
It remains one bit of difference (at a fixed position) in the second word and
three 32-bit words to cancel. The probability of a 1-bit near collision on the
second word was experimentally found to be 2−15, and cancelling any of the
three remaining 32-bit words was experimentally found to require an average of
231 trials for d = 0x0000404. Hence the overall complexity to find a 1-bit near
collision is about 249+93+15−32 = 2125. Similarly, the probability to find a 2-bit
near collision was experimentally found to be less than 2−10 so that the overall
complexity to find such a collision is about 249+93+10−32 = 2120.

Experimental results. We exhibit a 22-bit near collision on FORK-256’s com-
pression function that was obtained by running our algorithm given in Section 5.1
together with the difference and the set of targets specified in Sect. 5.2. (Note
that this also leads to a 2-bit near collision for the seven steps reduced version.)

cvn: 0x8406e290 0x5988c6af 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

cv
′
n: 0x8406e290 0x5988cab3 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

M : 0x396eedd8 0x0e8c2a93 0xb961f8a4 0xf0a06fc6 0x9935952b 0xe01d16c9 0xddc60aa4 0x0ac1d8df

0xc6fef1d8 0x4c472ca6 0x58d9322d 0x2d087b65 0x7c8e1a26 0x71ba5da1 0xba5d2bfc 0x1988f929

cvn+1: 0x9897c70a 0x4e18862d 0xb4725ac1 0xcfc9f92c 0x9aa0637d 0xae772570 0x74dd4af1 0xcd444dd7

cv
′
n+1: 0x9897c70a 0x4e1880f9 0x1e677302 0x4c650966 0xf4792bf4 0xae772570 0x74dd4af1 0xcd444dd7

6 Finding High-level Differential Paths in FORK-256

In this section we return to the question of finding differential paths in four
branches of FORK-256 to present a general solution to that problem. If we can
avoid mixing introduced by the structures QL and QR (i.e. we know how to
find micro-collisions) and we can assume that differences in registers B,C,D
and F,G,H remain unchanged (Pd = 1), the only places where differences can
change are registers A and E, after the addition of a message word difference.
Thus, the values of registers in steps can be simply seen as linear functions of
registers of the initial vector (A0, . . . ,H0) and message words M0, . . . ,M15.

If we consider the most general case and assume (very optimistically) that any
two differences can cancel each other, we are in fact working over F2 and differ-
ences in all registers are F2-linear combinations of differences ∆A0, . . . ,∆H0 and
∆M0, . . . ,∆M15 (which are now seen as elements of F2). Now, output differences
(∆A, . . . ,∆H) of the whole compression function (with feed-forward) are also
linear combinations of differences from S = (∆A0 . . . ,∆H0,∆M0, . . . ,∆M15)
and this can be represented by an F2-linear mapping (∆A, . . . ,∆H) = Lout(S).
This means we can find the set Sc of all vectors S of input differences that yield
zero output differences at the end of the function simply as the kernel of this
map, Sc = ker(Lout).

To minimise the complexity of the attack, we want to find high-level paths as
short as possible. Since each register difference in each step is a linear function of
differences ∆A0 . . . ,∆H0,∆M0, . . . ,∆M15 and there are only 224 of them, the
straightforward approach is to enumerate them all and for any desirable subset
of registers (e.g. for collisions in two or three branches) count the number of
registers containing non-zero differences and pick those input differences S that
give the smallest one. Using simple algebra and coding theory techniques we can
make this process very efficient. Details can be found in [7].

Differences in registers other than A and E do not contribute to the complex-
ity of the attack that much because they do not require finding micro-collisions.
The measure based on the number of differences in registers A and E only corre-
sponds to the number of “difficult” differentials we need to handle that require
finding micro-collisions. Experiments show that there is a close correlation be-
tween the number of required micro-collisions and the overall length (number of
all registers containing differences) of the differential path so it seems sufficient
to use the measure based on differences in A and E only. Results of a search
for such paths are presented in more details in [7], here we want to discuss an
extension of this method.

6.1 More General Variant of Path Finding

We can generalize this approach further. Depending on whether we force a micro-
collision to happen in a particular line or not, we have eight different models for
each Q-structure. Using the linear model that assumes that all differences cancel

each other, we can express output differences of each QL-structure as

∆Ai+1 = ∆Ai , ∆Ci+1 = ∆Ci + qC · ∆Ai ,

∆Bi+1 = ∆Bi + qB · ∆Ai , ∆Di+1 = ∆Di + qD · ∆Ai .

where qB , qC , qD ∈ F2 are fixed coefficients characterizing the QL-structure. The
same is true for QR-structures. This means that we have 864 possible linear
models of FORK-256 when we allow such varied micro-collisions to happen.
Allowing for micro-collisions in only selected lines decreases the number of active
Q-structures, however, at the expense of additional conditions required to cancel
differences coming from different parts of the structure.

Results of our search for such paths are summarized in Table 4. They show
that by introducing such an extended model of Q-structures we can significantly
decrease the number of necessary micro-collisions compared to the case when we
require micro-collisions in all three lines simultaneously. Of special interest is the
result showing that under favourable conditions, collisions can be achieved by
using a single difference in M12 with six micro-collisions in the path. We show
how to use this scenario to generate near-collisions but also collisions for the full
compression function in Section 7.

Table 4. Minimal numbers m of Q-structures with micro-collisions for different sce-
narios of finding generalized high-level differential paths. Q-structures are numbered
from 1 to 64 where 1 corresponds to QL in the first step of branch 1 and 64 to QR in
the last step of branch 4. Notation N:110 means that in Q-structure number N input
difference to A (resp. E) propagates to the second and third register but not to fourth
(e.g. to B, C or F , G resp.) For example, differential path from Fig. 2 is encoded as
13:110, 31:111, 40:000, 47:111, 50:000, 57:000.

Scenario Branches m Differences in active Q-structures

Pseudo-collisions 1,2,3,4 5 H0, M2, M11 12:000, 25:000, 35:001,
41:001, 51:010

Collisions 1,2,3,4 6 M12 13:000, 31:001, 40:000,
47:100, 50:000, 57:000

Pseudo-collisions 1,2,3 2 B0, M12 8:100, 24:0
1,2,4 3 H0, M11 3:000, 51:010, 60:000
1,3,4 3 H0, M2 35:001, 44:000, 51:000
2,3,4 3 D0, M9 36:010, 43:000, 52:000

Collisions 1,2,3 3 M0, M3, M9 1:001, 20:010, 39:100
1,2,4 4 M1, M2 2:001, 9:000, 25:100, 51:000
1,3,4 5 M9 10:000, 39:001, 42:001

43:010, 59:000
2,3,4 5 M3, M9 20:010, 27:000, 39:000

57:000, 59:010

7 Collisions for the Full Compression Function

In this section we show how to use a high-level path with differences in M12 only
presented in Section 6 in order to find very low weight output differences of the

FORK-256’s compression function. We then show two different strategies to find
full collisions faster than the bound given by the birthday paradox.

The key observation is that if we introduce a difference in M12 only and are
able to find micro-collisions in the first and fifth step of the fourth branch as
well as in the fourth step of the third branch, and prevent the propagation of
the difference from A1,6 to E1,7 in the first branch, then the output difference
is confined to registers B, C, D, and E of the output, i.e. to at most 128 bits.
This behavior is illustrated in Fig. 2. The number of affected bits can be further
decreased by a careful selection of the modular difference i.e. differences that are
set on few most significant bits guarantee that the difference in output register B
is confined to those most significant bits as well.

In the next paragraph, we develop our first strategy which does not require
large memory. We show that pairs of messages satisfying the aforementioned
constraints can be efficiently found and thus, assuming that the output differ-
ences closely follow the uniform distribution, we can expect to find very low
weight differences and ultimately a collision. Finally, in the second paragraph,
we use another strategy relying on precomputed tables to speed up the process
of finding collisions.

7.1 Finding Collisions with Low Memory Requirements

The attack consists of two phases. During the first one, we find simultaneous
micro-collisions at the first and fifth steps of the fourth branch as well as at
the fourth step of the third branch for a modular difference injected in M12. In
the second phase we use free message words M4 and M9 that do not interfere
with already fixed messages and micro-collisions found in the third and fourth
branches in order to find messages yielding no difference in the register E1,7. This
is a reduced micro-collision in the single thread D1,6 → E1,7 during the seventh
step of the first branch. The description below is brief – for more details, see our
implementation from [6].

Finding micro-collisions in third and fourth branches. Here we assume
that a suitable modular difference d has already been chosen. We proceed as
follows:

1. Fourth branch, first step. Pick x1 s.t. the pair (x1, x1+d) gives simultaneous
micro-collisions in QR at the first step of the branch four, set M12 := x1−E0

and assign the correct values to F0, G0, and H0 for this micro-collision to
happen.

2. Fourth branch, fifth step. Assign random values to M5, M1, M8, M15, M0,
M13, and M11. Then compute the first half of the branch, up to the fifth step
and find a pair of values (x2, x2 + d∗) (where d∗ is the modular difference
in register A4,4) yielding simultaneous micro-collisions in QL. Compute the
corresponding constants ρ1, ρ2, and ρ3. If no solution exists, repeat this step,
otherwise

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

4 5

6 7

8 9

10 11

12 13

14 15

15

11 9

8 10

3 4

2 13

0 5

6 7

12 1

7 6

10 14

13 2

9 12

11 4

15 8

5 0

1 3

5 12

1 8

15 0

13 11

3 10

9 2

7 14

4 6

Fig. 2. High level path used to find collisions for FORK-256. Thick lines show the prop-
agation of differences. Q-structures requiring micro-collisions are greyed out. Numbers
indicate message ordering.

– Set M3 := x2 −A4,4.
– Fix M13 := ρ1 −A4,3 − δ8 so that B4,4 gets its correct value ρ1.
– Fix M15 := [ρ2 ⊕ g(B4,4)] − f(B4,4 − δ8) −A4,2 − δ10 so that C4,4 = ρ2.
– Similarly, fix M1 so that D4,4 = ρ3.

Adjustments need to be made to M0 and M11 to compensate for the changes
in M1 and M15.

3. Third branch. Find a pair of values (x3, x3 + d) that causes simultaneous
micro-collisions inQR in the fourth step and find the corresponding constants
λ1, λ2, and λ3. Similar to above, fix M2 so that F3,3 = λ1, M14 so that
G3,3 = λ2, and M6 so that H3,3 = λ3. An adjustment needs to be made to
M10 to compensate for the change in M6. Similarly, we have to compensate
for the change in M14 but we cannot change M13 since it is set in the branch
four. Instead, we change B0 so that E3,3 gets the correct value x3.

4. Fourth branch. The only modification made in the third branch that can
spoil the arrangement of the fourth branch is B0. It can only change the
value A4,4. Thus, adjusting M11 (again) is enough to put everything back
into order.

At the end of this procedure, we have obtained a differential path in the third
and fourth branches presented in Fig. 2. For the remaining part of the attack,
the key fact is that the values of message words M4 and M9 do not alter this
path. These 64 bits of freedom are used to perform the second part of the attack.

Single micro-collision in the first branch. We are left with taking care of
the first and second branches. Fortunately, the second branch actually does not
require any attention: M12 appears in the very last step and so only induces
differences in the output registers B, C, D, and E. The first branch however
requires a single micro-collision in the thread D1,6 → E1,7 during the seventh
step, and it seems to us that there is no better way of finding messages causing
that micro-collision than by randomly testing message words M4 and M9. The
success probability of this search heavily depends on the modular difference being
used. The two best modular differences we found are displayed in Table 5.

Table 5. Best modular differences d we could find and their probabilities of inducing a
single micro-collision in thread D1,6 → E1,7 during the seventh step in the first branch.
The number of input values A1,6 that may result in the micro-collision is denoted by η.

difference d η observed probability

0xdd080000 221.7 2−24.6

0x22f80000 221.7 2−24.6

Let us analyse the computational complexity of finding this single micro-
collision in terms of numbers of full FORK-256 evaluations. Let η denote the
number of allowable values for the chosen modular difference in use. By allowable
value we mean an input x for which there exist three constants that cause a
micro-collision for the pair (x, x + d). For the modular difference d =22f80000

we have η = 221.7 allowable input values.
Our algorithm to arrange the first branch correctly runs as follows:

1. Initialize. Fix M4 to zero.

2. Pre-compute table. Compute all the internal registers up to the seventh step.
Then, for each allowable value x, set A1,6 = x and go one step backwards to
get the corresponding H1,5, and store the result into a hash table T .

3. Search for M9. For every possible value of M9 compute the corresponding
value of H1,5 and look for a match in T . If there is a match, go to Step 4.
When all M9 are exhausted, increment M4 and go back to Step 2.

4. Check. If current value of M9 leads to a single micro-collision in thread
D1,6 → E1,7 then output the pair (M4,M9). Continue Step 3.

Step 2 requires 1/64 of a full FORK-256 computation for each of the η allowable
values. The complexity of this step is thus η/64 = 215.7 FORK-256 evaluations.

Step 3 requires 1/64 of full FORK-256 computation for each of the 232 values
for M9. The complexity of this step is thus 226 FORK-256 evaluations. Since
Step 4 succeeds with probability 2−24.6 (see Table 5), we get 27.4 solutions for a
work effort of 226. Hence the cost of finding a single solution with our algorithm
is about 218.6 FORK-256 evaluations.

Experiments. Our C implementation of the algorithm is available for download
from [6]. We conducted experiments and verified that for the difference d =
0xdd080000, the distribution of output differences on 108 affected bits (there
are 109 bits that may contain differences, but we know that the differences in
bit 19 of register B will always cancel out) is very close to uniform [7]. Moreover,
after a few days of computations on a Pentium 4 running at 2.8 GHz, we were
able to find an output difference of weight 28 [6].

Complexity of the attack. Since at most 108 bits are affected and the dis-
tribution of differences is close to uniform, we expect to find a collision after
generating 2108 pairs. With a work factor of 218.6 FORK-256 computations per
pair, the total complexity required to find a collision is thus 2108 · 218.6 = 2126.6,
which is better than the bound given by the birthday paradox. Additionally, this
attack only requires about 2·222 32-bit words of memory for storing precomputed
inputs for micro-collisions and a hash table of similar size. It also parallelizes
perfectly on many computers, each one performing independent computations
starting with different seed.

The above complexity estimate is rather conservative, because if we multiply
empirical probabilities of single bit differences being zero we get the value of
2106.4 rather than 2108 and thus also a lower complexity of the attack of 2125 but
one has to be cautious as there is no guarantee that the bits are uncorrelated
enough to make this figure accurate. We refer to [7] for details.

7.2 Finding Collisions Faster with Precomputed Tables

In this paragraph we show how to speed up the collision search with the use
of precomputed tables. To this end, let us study the spreading process when
no difference is involved. During the step transformation, the eight registers
are split into two subsets, namely (A,B,C,D) and (E,F,G,H). If we restrict
our attention to one of them, let us say (E,F,G,H), we immediately see that
the message block M acting on the input register E allows to set the output
register F to any value. But what about the action of this message block on
one of the three other registers, say, the output register H? The answer is that,
on the average, for any input register G, there exists a value of the message
block such that the output register H takes any prescribed value. This comes
from the observation that for a fixed value of δ and G, the function ψG : y 7→
(

g(y)<<<9+G
)

⊕f(y+δ)<<<5 is very often a bijection. Hence, for any fixed value of
the output register H a table TH can be built that stores values (G, y) such that
ψG(y) = H. This table can be built during a pre-computation step in time 232

with 232 memory. By building 232 such tables (one for every possible value of H),
it is then possible, for any given pair (G,H), to find a message so that G is
indeed transformed into H during one half of the step transformation. The cost
of the pre-computation is now 264 both in time and memory, but access time
is comparable to a single operation. Obviously, as already seen in the previous
paragraph, such a table and the freedom given by the incoming message block
can be used to fix the value of one of the thread F → G, G → H, and H → A
only.

In the following attack, we use a number of such tables. The first one,
T10, is used to control the thread C3,1 → D3,2 through M10, that is M10 =
T10(C3,1,D3,2). Another family of tables, T9,a, is used to determine what value
of M9 produces the expected transition E1,4 → A1,6 given a fixed M11, that is
M9 = T9,a(E1,4,M11) so that A1,6 = a, where a is some fixed value. (There are
36 such values for which the probability of a single micro-collision is 2−8, 1236
values with probability 2−9 and many more with smaller probabilities.)

As in the previous attack, our goal is to use the high level path of Figure 2
by injecting a modular difference in M12 only, and to cause micro-collisions in
grayed areas of this figure. To this end, we construct a sequencing allowing to
set the message blocks fitting these constraints, but contrary to what is done
in the previous attack, we choose the three micro-collisions of the branch three
and four in advance. But now, we must ensure that the modular difference in
the register A4,4 is the same as the one injected in M12. Additionally, we note
that for the difference d = 0xdd080000 we are going to use, we consider around
29 values of a for which the difference d does not spread from A1,6 to E1,7 with
highest probability, i.e. a single micro-collision is most likely to happen.

1. Initialize. Set M12, F0, G0, and H0 in order to get a micro-collision in the
first step of the fourth branch.

2. Fourth branch. Set M1 to fix B4,2 to its correct value. Choose a random M5.
Adjust M8 so that difference d propagates unchanged. Set M15 to fix B4,3

to its correct value. Adjust M0 so that difference d propagates unchanged.
Set M13 to fix B4,4 to its correct value. Adjust M11 so that difference d
propagates unchanged, and set M3 to fix A4,4 to its correct value.

3. Third branch. Set M6 to fix F3,1 to its correct value. Choose M7 randomly.
Set M14 to fix F3,2 to its correct value. Use the hash table T10 to set M10

so that E3,3 gets its correct value. (This is possible because M5, M7, M13,
and M14 are already fixed.) Set M2 to fix F3,3 to its correct value.

4. First branch. Choose M4 randomly. Using the hash table T9,a for some value
of a, decide which value M9 will lead to the value of A1,6 equal to a. This
value prevents the difference ofM12 from spreading into E1,7 with probability
at least 2−9. If the difference spreads into E1,7, restart Step 4 with another
value of a. After testing around 29 such values, difference in the first branch
does not spread to E1,7 with a high probability.

The complexity of this algorithm is close to 21.6 FORK-256 evaluations if we
assume access to tables in a single processor operation, with a pre-computation

step of complexity about 264 in time and 273 words of memory. Since at most
108 bits of the output differ for the modular difference 0xdd080000, the algorithm
finds a collision in about 2109.6 FORK-256 computations.

8 Compression function’s collisions turned into hash ones

Here we show that the last algorithm can be turned into collision finding algo-
rithm for the full hash function, i.e. with a given IV. Our algorithm indeed relies
on the fact that three values of IV—namely F0, G0, H0—have specific values.
By prepending a well chosen 512-bit message block to the colliding inputs for
the compression function we get the expected result for the whole hash function.

Now since the targeted values are three 32-bit words, the probability to reach
these value by prepending a random 512-bit message block is 2−96, so we need
around 296 FORK-256 computations. This can be done after the execution of
our algorithm and thus the overall complexity is dominated by 2109.6 of the
FORK-256 evaluations.

9 Conclusion

In this paper we exposed a number of weaknesses of the compression function
of FORK-256. We studied in detail the properties of Q-structures and described
very efficient algorithms to finding micro-collisions for them. We further showed
how this can be exploited to mount various attacks against FORK-256’s com-
pression function. Finally, we showed that the chosen-IV collision-finding attack
for the compression function can be extended to find collisions for the full hash
function, i.e. with a given IV. We expect that more computational power would
allow to investigate slight variations of the attacks we presented, and might
improve them significantly.

Although we are intrigued by the design of FORK-256, we think it should
not be used in applications that require a high level of security against collision
attacks.

Acknowledgements

The second and third authors would like to thank Sebastien Kunz-Jacques for
his kind lending of cpu time as well as Gilles Macario-Rat for his help with
precomputed tables in paragraph 7.2.

The project was supported by ARC grant DP0663452.

References

1. R. Anderson and E. Biham. Tiger: A fast new hash function. In Fast Software

Encryption – FSE ’96, volume 1039 of LNCS, pages 121–144. Springer-Verlag,
1996.

2. D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, and S. Chee. A
New Dedicated 256-bit Hash Function: FORK-256. In Fast Software Encryption –

FSE ’06, volume 4047 of LNCS, pages 195–209. Springer, 2006.
3. D. Hong, J. Sung, S. Hong, S. Lee, and D. Moon. A new dedicated 256-bit hash

function: FORK-256. First NIST Workshop on Hash Functions, 2005.
4. Intel Corporation. Intel 64 and IA-32 architectures optimization reference man-

ual, 2006. Appendix C, Instruction latency and throughput. Available from
http://developer.intel.com/design/processor/manuals/248966.pdf.

5. H. Lipmaa, J. Walln, and P. Dumas. On the additive differential probability of
exclusive-or. In Fast Software Encryption – FSE ’04, volume 3017 of LNCS, pages
317–331. Springer-Verlag, 2004.

6. K. Matusiewicz, S. Contini, and J. Pieprzyk. Cryptanalysis of FORK-256. Web
page, http://www.ics.mq.edu.au/∼kmatus/FORK/.

7. K. Matusiewicz, S. Contini, and J. Pieprzyk. Weaknesses of the compression
function of FORK-256. IACR e-print Archive, report 2006/317, available from
http://eprint.iacr.org/2006/317.

8. F. Mendel, J. Lano, and B. Preneel. Cryptanalysis of reduced variants of the
FORK-256 hash function. In Topics in Cryptology – CT-RSA ’07, volume 4377 of
LNCS, pages 85–100. Springer, 2007.

9. F. Muller. Personal communication, 2006.
10. National Institute of Standards and Technology. Secure hash standard (SHS).

FIPS 180-1, April 1995. Replaced by [11].
11. National Institute of Standards and Technology. Secure hash standard (SHS).

FIPS 180-2, August 2002.
12. B. Preneel, A. Bosselaers, and H. Dobbertin. RIPEMD-160: A strenghtened Ver-

sion of RIPEMD. In Fast Software Encryption – FSE ’96, volume 1039 of LNCS,
pages 71–82. Springer-Verlag, 1997.

13. R. L. Rivest. The MD4 Message Digest Algorithm. In Advances in Cryptology –

CRYPTO ’90, volume 537 of LNCS, pages 303–311. Springer-Verlag, 1991.
14. R. L. Rivest. The MD4 Message Digest Algorithm. RFC 1320, IETF, April 1992.
15. R. L. Rivest. The MD5 Message Digest Algorithm. RFC 1321, IETF, April 1992.
16. B. Schneier and J. Kesley. Unbalanced Feistel networks and block cipher design.

In Fast Software Encryption – FSE ’96, volume 1039 of LNCS, pages 121–144.
Springer-Verlag, 1996.

17. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Advances in Cryptology – EUROCRYPT ’05, volume 3494
of LNCS, pages 1–18. Springer, 2005.

18. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances

in Cryptology – CRYPTO ’05, volume 3621 of LNCS, pages 17–36. Springer, 2005.
19. X. Wang and H. Yu. How to break MD5 and other hash functions. In Advances

in Cryptology – EUROCRYPT ’05, volume 3494 of LNCS, pages 19–35. Springer,
2005.

20. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0.
In Advances in Cryptology – CRYPTO ’05, volume 3621 of LNCS, pages 1–16.
Springer, 2005.

21. Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL – A One-Way Hashing Algorithm
with Variable Length of Output. In Advances in Cryptology – AUSCRYPT ’92,
volume 718 of LNCS, pages 83–104. Springer-Verlag, 1993.

A Additional details of the specification of FORK-256

Table 6. Constants δ0, . . . , δ15 used in FORK-256. They are defined as the first 32 bits
of fractional parts of binary expansions of cube roots of the first 16 primes.

δ 0 1 2 3 4 5 6 7

0 428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

8 d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

Table 7. Message and constant permutations used in four branches of FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

B Propagation of modular differences through ‘⊕’

When studying the internal step transformation of FORK-256, the problem ap-
pears of computing the probability that a given modular difference d propagates
through a ‘⊕’ without being modified. An even more general version of this prob-
lem has already been studied at FSE 2004 by Lipmaa, Wallén, and Dumas [5].
Here we give a much weaker version of their result that fits our needs:

Property 1. Given any 32-bit word d, the probability

Pd = Prx,y

[(

(x+ d) ⊕ y
)

=
(

x⊕ y
)

+ d
]

where elements x and y are 32-bit words can be expressed as the following matrix
product:

Pd = L×Md31
×Md30

× · · · ×Md0
× C,

where di denotes the i-th bit of d and L, C, M0, and M1 are defined as:

M0 =
1

4

4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

, M1 =
1

4

1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 4 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0

,

L = (1 0 0 0 0 0 0 0) ,
T
C = (1 1 1 1 1 1 1 1) .

