
The Grindahl hash functions

Lars R. Knudsen1, Christian Rechberger2, and Søren S. Thomsen1 ?

1 Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{lars@ramkilde.com,crypto@znoren.dk}

2 Graz University of Technology, A-8010 Graz, Austria
christian.rechberger@iaik.tugraz.at

Abstract. In this paper we propose the Grindahl hash functions, which are
based on components of the Rijndael algorithm. To make collision search suf-
ficiently difficult, this design has the important feature that no low-weight
characteristics form collisions, and at the same time it limits access to the
state. We propose two concrete hash functions, Grindahl-256 and Grindahl-
512 with claimed security levels with respect to collision, preimage and sec-
ond preimage attacks of 2128 and 2256, respectively. Both proposals have
lower memory requirements than other hash functions at comparable speeds
and security levels.

Keywords: hash functions, Rijndael, AES, design strategy, proposal

1 Introduction

As a result of a large number of attacks [5, 6, 11, 19, 42, 44–46] on hash functions
such as MD5 [41] and SHA-1 [23] of the so-called MD4 family, and general at-
tacks [30, 31, 33] on the typical construction method [18, 37], there is an increasing
need for considering alternative construction methods and principles for future hash
functions.

In this paper we develop an alternative design strategy for hash functions, and
we propose a collection of hash functions named Grindahl3. We also propose the
two instances Grindahl-256 and Grindahl-512. The main motivation is as follows.
Among the many properties a cryptographic hash function is expected to have,
collision resistance seems to be the hardest to achieve. Shortcut collision attacks
faster than birthday attacks efficiently identify a subset of the message space with
the property that a random pair of messages from the subset collide with probability
higher than 2−n/2, where n is the output size of the hash function. A popular tool
is differential cryptanalysis. In addition to restricting the pairs that are chosen from
the subset of the message space to those having a certain difference, one might
impose restrictions on the relations between actual values of message bits. Usually,
the aim is to prevent differences from spreading uncontrollably. Most members of
the MD4 family as well as recent proposals like FORK-256 [29] allow this kind of
control.

Our aim is to obtain hash functions which do not allow this type of control by
using building blocks of the block cipher Rijndael [16]. These well analysed and well
understood building blocks are used to ensure that any difference introduced at
the input needs to spread over large parts of the state before a collision is possible.
? The first two authors have been supported by the European Commission through the IST

Programme under Contract IST-2002-507932 ECRYPT. The third author is supported
by the Danish Research Council for Technology and Production Sciences, grant no.
274-05-0151.

3 To be pronounced ’grijndael’.
grind /graind/: to break or crush sth into very small pieces [. . .] using a special machine.

While aiming for a security level up to the birthday bound for collision and (second)
preimage attacks, we obtain speeds comparable to members of the SHA-2 family
[24], but with a fundamentally different design and lower memory requirements for
an implementation. Additionally, the computational overhead for small messages
compares favourably to other design strategies.
Our design has a structure similar to some of those of J. Daemen (et al.) such
as SubHash and StepRightUp [14], Panama [15], and the recent proposal Ra-
dioGatún [4]. The similarity lies in the way small pieces of message via a round
function sequentially update a state in an invertible fashion.

Apart from being hash function proposals, we describe how our proposals can
be turned into compression functions accepting only a fixed-size input. In order
to test and develop cryptanalytic methods, variants with reduced cryptographic
strength are helpful. For the MD4 family of hash functions, changing the number of
rounds serves this purpose very well. Our design allows for such simple modifications
and we encourage the reader to analyse such simpler variants. See Appendix B for
suggestions.

2 The Grindahl design

In this section we present our proposal for a collection of hash functions. We start
off with a description of the general design strategy which we call “Concatenate-
Permute-Truncate”. This design principle was first proposed by R. Merkle and used
in his hash function Snefru [38], and it requires the existence of a non-linear permuta-
tion. We propose a highly parameterisable permutation hence in effect a collection
of non-linear permutations, in Section 2.3. The general design and our proposed
permutations together form the Grindahl hash functions. Concrete proposals are
presented in Section 3.

2.1 General strategy

The proposal of this paper was conceived from the following general design strategy
for an n-bit hash function. In the following, we denote by m the state size, and by
b the message size. We require m ≥ n and b > 0. We denote by trunck(x) the least
significant k bits of x. Let P : {0, 1}m+b → {0, 1}m+b be a non-linear permutation,
and let s0 be the initial state with |s0| = m.

The principle behind our design is “Concatenate-Permute-Truncate”; let d be
the message (appropriately padded) to be hashed, and split d into t blocks of b bits,
i.e. d = d1‖ · · · ‖dt, |di| = b. Then for 0 < i ≤ t do

Si ← di‖si−1 (Concatenate) (1)

Ŝi ← P (Si) (Permute) (2)

si ← truncm(Ŝi) (Truncate) (3)

Hence, a message block is concatenated with the state to form what we shall call the
extended state, on which some permutation P is applied. Subsequently, the extended
state is truncated down to the new state. The steps (1)–(3) form an input round.

We define an output transformation consisting of blank rounds and a truncation
step at the end. Blank rounds are defined as follows. For t < i ≤ t+νbr, νbr ≥ 0, do

Ŝi ← P (Ŝi−1) .

Hence, the blank rounds work only on the extended state, which means that in
the processing of the final message block dt, (3) above can be omitted. Finally, the
output of the hash function is truncn(Ŝt+νbr).

2.2 Invertibility

Assuming that the permutation P is invertible, the hash function is not one-way
in the sense that for a given output, some initial state and a message producing
that output can be easily found. However, this does not directly give rise to proper
(second) preimage attacks. If P has sufficient cryptographic properties then an
attacker will have no control over the initial state obtained.

The success probability of meet-in-the-middle attacks is affected in part by the
value of m above. If no weaknesses of P are exploited then internal collision attacks
(collisions before the blank rounds) and meet-in-the-middle attacks have complexity
2m/2. If one requires that no (second) preimage attacks better than a brute force
search exist, then one has to choose m ≥ 2n.

2.3 Design approach for the permutation

A well-known family of permutations is the block cipher algorithm Rijndael [16],
a subset of which was adopted as the Advanced Encryption Standard (AES) by
the US government in 2001 [25]. What follows is an approach that uses the design
principle of Rijndael to build a permutation to be used in our hash proposal. This
bears some resemblance to the leak-extraction method of the stream cipher LEX [8]
or the message authentication code framework Alred [17].

We operate with a more general description of the algorithm than Rijndael
itself. As in Rijndael, we view the (in our case extended) state as a matrix of bytes,
although here the extended state is a matrix α of νrw rows and νcl columns of
bytes. The entries of α are denoted by αi,j , meaning the entry in row i, column j
(numbering starts from zero, and indices are always to be reduced modulo νrw and
νcl, respectively). Hence, the extended state is the matrix

α =

α0,0 α0,1 · · · α0,νcl−1

α1,0 α1,1 · · · α1,νcl−1

...
...

. . .
...

ανrw−1,0 ανrw−1,1 · · · ανrw−1,νcl−1

 .

We assume that b is a multiple of 8, and we define νmb = b/8 as the number of bytes
in a message block. Hence, according to (3) and (1), in the process of truncation
followed by concatenation (with the following message block), νmb extended state
bytes are overwritten. These extended state bytes do not have to be computed in
all except the last input round.

The reader is expected to be familiar with the transformations defined in the
Rijndael specification [16]. Here we adopt the new names introduced in the actual
standard [25], i.e. SubBytes, ShiftRows, MixColumns and AddRoundKey.
We do not use AddRoundKey directly in this design. Instead, we introduce a related
transformation, AddConstant. We now comment on the four transformations used
in the Grindahl design. See also Fig. 1.

SubBytes. The non-linear substitution function SubBytes is defined exactly as in
the Rijndael specification, i.e. we use the same S-box.

ShiftRows. The ShiftRows transformation cyclically shifts bytes a number of posi-
tions along each row. We introduce the rotation constants as the νrw-tuple (ρ0, ρ1,
. . ., ρνrw−1) of integers, 0 ≤ ρi < νcl, with the meaning that in row i bytes should be
cyclically shifted ρi positions to the right. (Hence, with this definition the rotation
constants of Rijndael are (0, 3, 2, 1)).

MixColumns. The transformation MixColumns is defined as in the Rijndael spec-
ification whenever νrw = 4. For other values of νrw, the transformation must be

-
SubBytesa Σ[a]

-
ShiftRows

-
MixColumns

a

b

c

d

ab̄cd

abc̄d

abcd̄

ābcd

-
AddConstantaij aij+Mij

Fig. 1: The four transformations on the extended state. Here an example with an ex-
tended state of 4 rows and 7 columns. Σ is the S-box, and example rotation constants are
(1, 2, 3, 5).

redefined. The important property of maximal difference propagation should be
maintained: when a difference is introduced to k > 0 bytes in a column before
MixColumns, the effect should be that after MixColumns at least νrw − k + 1 bytes
have changed.

AddConstant. As mentioned we replace the AddRoundKey transformation known
from the Rijndael design by AddConstant, which introduces asymmetry to each
round: Let α be the extended state matrix, and let M be some matrix of the same
size. Then define AddConstant as

AddConstant(α) = M ⊕ α.

We note that if an extended state consists of νcl equal columns, then by defining
e.g., M = 0 the extended state will still consist of νcl equal columns after one round.
By flipping some bits of the extended state we can circumvent this property.

The four transformations operate on a matrix of bytes. However, given an in-
vertible mapping from an extended state to a bit string, we may also apply them
on bit strings. The mapping from a bit string to an extended state matrix is done
as follows. Let x be an (8νrwνcl)-bit string. Map this into an extended state α by
splitting x into νrwνcl 8-bit chunks x0, . . . , xνrwνcl−1, and then let αi,j = xi+νrwj ,
0 ≤ i < νrw and 0 ≤ j < νcl. This mapping has a natural inverse.

Given appropriate definitions of the four transformations we define the permu-
tation P as

P (α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

2.4 Birthday attacks

If P were an ideal permutation, then internal collisions and (second) preimages
would have complexity 2m/2. However, P is obviously not ideal. In fact, it is easy
to see that the complexity of e.g. an internal collision attack for this choice of P is
at most 2(m−b)/2: assume that the first column of the matrix is overwritten by the
message input. Compute the extended state before the blank rounds of a number
of different messages. Now append two constant blocks to all messages. The first
constant message block overwrites the first column of the extended state. Then the
permutation is applied, where ShiftRows moves νrw bytes into the first column of
the extended state, and subsequently MixColumns mixes the bytes in the column.
The second constant message block overwrites this column. This means that if
two extended states agree on all bytes except the first column and the bytes that
are moved into the first column by the first constant message block, then the two
extended states will agree on all bytes after the second constant message block. The
expected number of messages needed for this attack to succeed is 2(m−b)/2. In fact
this approach can be generalised to every way of mapping an input message to the
extended state.

Since the permutation is invertible, the entire hash function is invertible, and
hence meet-in-the-middle attacks can be applied: Compute the intermediate (ex-
tended) state for 2(m−b)/2 different messages all having the same last two blocks.
Given a target image of the hash function, compute in the backward direction the
intermediate state for the same number of message suffices. With good probability,
there is a match between the two sets of intermediate states. This yields a (second)
preimage with complexity about 2(m−b)/2.

2.5 Design parameters for the permutation

We now present some considerations with respect to the design parameters intro-
duced above.

Rotation constants. The rotation constants used in ShiftRows should be chosen
carefully. Most importantly, the rotation constants should ensure that the entire
state depends on the message input as quickly as possible when considering that
the first νmb bytes of the state are overwritten by message input in every round.
This means, for instance, that ρi, 0 ≤ i < νmb, cannot be 0, and that ρi 6= ρj

whenever i 6= j.
Several tuples of rotation constants ensure full diffusion after the same (mini-

mum) number of rounds µ. However, of these some are better than others in the
sense that a larger part of the state depends on every message byte after µ − 1
rounds, after µ − 2 rounds etc. In Appendix C we suggest a method for choosing
rotation constants given a particular geometry of the extended state.

State geometry. Parameters that affect the size m of the state should be chosen
with Section 2.4 in mind. Usually designers of hash functions aim for full (second)
preimage resistance, meaning these have expected complexity 2n. We have chosen
to accept a lower complexity, since it is already required that n is large enough to
resist birthday collision attacks, which have complexity 2n/2. Other hash functions
have been proposed and standardised, for which (second) preimage resistance is
lower than for an ideal hash function, e.g., the MDC-2 construction [39] which
has preimage complexity at most 23n/4 [40]. Appendix A discusses known generic
attacks that depend on the state size. By adjusting the state geometry accordingly,
resistance against these attacks can be achieved conveniently.

Choices for νrw and νcl are a trade-off between two distinct properties. If the two
numbers are about the same, diffusion happens faster than with more columns than
rows. On the other hand, with a wider state and only a single column being used
for message input, the birthday attack as described above has a higher complexity,
and hence the extended state need only be slightly larger than the output. For
implementation purposes it makes sense to choose νrw to be a multiple of 4, since
then on a 32-bit machine SubBytes and MixColumns can be performed in one by
table lookups.

2.6 Design parameters for the output transformation

The number νbr of blank rounds in the output transformation should be chosen
such that the last message block affects all output bytes.

It might be desirable that the output transformation have the property that
when given only black-box access to it, one is unable to distinguish the output
transformation from a pseudo-random function. It is unclear how useful this prop-
erty is in practice, since the output transformation is invertible (by guessing the
discarded state bytes), but it would seem to complicate attempts at finding exter-
nal collisions.

With νbr blank rounds, the actual number of invocations of P after the last
message block is concatenated with the state is νbr + 1. During these rounds, no
extended state bytes are overwritten by message input. Hence, if the requirement
above is fulfilled after µ rounds, then one should choose νbr ≥ µ − 1. Suggestions
for actual values for νbr are given in Sections 3.1 and 3.2.

3 Proposals for hash functions

We propose concrete instantiations of the design strategy presented in Section 2.
Hash functions with 256-bit and with 512-bit output size are given in Sections 3.1
and 3.2, respectively. For both proposals, the initial state is the all-zero state, and
padding is performed as described in Section 3.3. Additionally we give a preliminary
security analysis in Section 3.4.

In the following, constant bytes (or elements of F256) are written in hexadecimal
using this font, e.g., c5.

3.1 Grindahl-256

Grindahl-256 is defined as follows. Let the parameters have the following values:
νrw = 4, νcl = 13, νmb = 4, νbr = 8. Hence, the extended state has 4 rows and 13
columns, and the message input is 32 bits in size. In the truncation/concatenation
process these overwrite the contents of the first column of the extended state. The
proposal has 8 blank rounds in the output transformation.

The rotation constants used in the ShiftRows transformation are (1, 2, 4, 10),
chosen by the method described in Appendix C. For these rotation constants ev-
ery message byte affects the entire extended state after four rounds. SubBytes and
MixColumns are defined as in Rijndael, and AddConstant is defined simply as

α3,12 ← α3,12 ⊕ 01.

Security claim. We claim that the effort to find collisions, second preimages and
preimages is of the order of 2128 iterations.

3.2 Grindahl-512

We also propose the 512-bit hash function Grindahl-512. For this variant, we propose
the following parameter values: νrw = 8, νcl = 13, νmb = 8, νbr = 8. In other words,
the state has 8 rows and 13 columns, and the message input is 64 bits in size,
corresponding to the first column of the extended state. The output transformation
contains 8 blank rounds.

The proposed rotation constants for ShiftRows are (1, 2, 3, 4, 5, 6, 7, 8), which
cause full diffusion after three rounds (these were chosen according to Appendix C).
MixColumns has to be redefined since the extended state contains 8 rows. We define
this transformation as

MixColumns(α) = A · α,

with

A =

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

.

In this product, bytes are to be considered elements of the field F256, which is defined
as in Rijndael. This transformation ensures maximal difference propagation, since
the error-correcting code over F256 with generator matrix

[
I AT

]
is MDS (see e.g.,

[35]). SubBytes is defined as in Rijndael, and AddConstant is defined as

α7,12 ← α7,12 ⊕ 01.

Security claim. We claim that the effort to find collisions, second preimages and
preimages is of the order of 2256 iterations.

3.3 Padding rule

Padding for both proposals is performed as follows. Append a ’1’-bit to the message,
and then a number of ’0’-bits to fill the last message block. Finally, append a 64-bit
representation of the number of message blocks in the padded message. This means
that both hash functions can digest messages of size at most 264−1 message blocks
including the padding itself. (Note the difference between this and most existing
padding rules in that the number of message blocks is appended rather than the
number of message bits.)

3.4 Security analysis

We claim the same security level against collision, preimage and second preimage
attacks. We do not know of any (second) preimage attacks with complexity as low
as the birthday bound, and we expect the actual security level against these attacks
to be higher. However, here we focus on collision resistance.

Collision resistance. Collisions can either be internal or external collisions. In the
case of external collisions we believe the number of blank rounds is high enough to
rule out any differential with a low number of active bytes. For internal collisions,
the complete state which is considerably larger than the output size needs to collide

for different input messages. Additionally, we give more evidence that shortcut
collision finding methods are unlikely. For Grindahl-256, we give a lower bound for
the number of rounds to arrive at an internal collision.

Exhaustive search through all possible input difference patterns and difference
propagation patterns shows that Grindahl-256 has the following property.

Property 1 An internal collision for Grindahl-256 requires at least 6 input rounds.
Moreover, any characteristic starting or ending in the extended state with no dif-
ference contains at least one round where at least half the extended state bytes (ex-
cluding the first column) are active.

A characteristic leading from a zero-difference state to a collision via different
message inputs is given in Appendix D. This characteristic spans 6 rounds, and no
shorter characteristic was found in an exhaustive search.

We cannot completely rule out the possibility that high probability characteris-
tics exist, but we believe that a classical differential attack will not be successful.

For Grindahl-512, collisions after 4 input rounds cannot be ruled out with this
method. However, due to efficient mixing of the used building blocks, we believe
that no low-weight differentials lead to an internal collision.

It remains to be seen if and how methods that improved collision search methods
for other hash functions can be adapted to analyse the Grindahl design. Recently
developed candidate techniques are message modification as introduced in the crypt-
analysis of several members of the MD4 family [44–46], neutral bits as used to speed
up collision search for SHA-0 [5], internal meet-in-the-middle techniques as used in
the analysis of Tiger [32] or the greedy-like approach as pursued in the analysis of
SHA-1 in [10]. They all have in common that they exploit the attacker’s knowl-
edge of all intermediate states to improve the effectiveness of traditional differential
cryptanalysis. We argue that the building blocks used and the limited direct access
to the internal state in the Grindahl design make these techniques difficult to apply
efficiently.

A potential attack method. An anonymous reviewer proposed such a method
tailored to the Grindahl design. In the following, we give a brief sketch of the
proposed method. First, a chain of differentials in which in every round the number
of active bytes is low must be found. Given such a differential chain, the attack is
launched as follows. In the attack, we do not care about actual differences; we only
care about whether there is a difference or not.

For a column containing active bytes to satisfy the differential through the
MixColumns transformation, some linear constraints must be satisfied. If the actual
differences do not matter, these are the only constraints for a full round. Addi-
tionally, the fact that new input bytes do not affect some parts of the state for a
limited number of rounds can be exploited. This means that often a (small) number
of active bytes can be arbitrary (we call these “neutral bytes”), and the remaining
ones are fixed (“control bytes”). A neutral byte may later be used as a control byte
to ensure that a characteristic is followed. Given that every round introduces up to
four neutral bytes, this attack may or may not be applicable. It seems hard to make
use of a neutral byte that has been through several S-boxes, since (1) the S-box is
non-linear, and so one cannot deterministically select a given output difference by
a given input difference, and (2) after a number of S-boxes a message byte affects a
large part of the state, and hence it becomes less useful as a control byte. We leave
it as an open problem to investigate the feasibility of this attack.

4 Designing secure compression functions

Any proposal following the Grindahl design strategy of hash functions accepting
variable length inputs can easily be turned into a compression function for fixed
length inputs. Let H be an instance of the Grindahl hash functions with initial
state s0, where padding is omitted. Hence, H accepts only messages of size an
integer multiple of b in bits. Let the output size of H be n. Based on H, define a
compression function h : {0, 1}tb → {0, 1}n, where t is an integer greater than n/b,
as h(x) = H(x).

Note that here, the compression function is defined as taking only one input,
whereas usually one thinks of a compression function as taking two inputs, a chain-
ing value and a message block. We think it makes good sense to treat the two inputs
as one: in most modes of operation of the compression function an attacker is ex-
pected to have the same control over the chaining value as over the message. In
practice we would suggest that the two inputs are simply concatenated, and hence
if we instead describe the compression function as h : {0, 1}n×{0, 1}tb−n → {0, 1}n,
then we would define h as h(c, x) = H(c‖x).

The choice of t implies a certain trade-off between speed and security. By de-
creasing t security is increased, but speed is reduced since in effect the rate of blank
rounds to input rounds increases.

If an additional input (e.g., a salt, a key or a counter) to the compression function
is required, then we suggest that this is prepended to the chaining/message input.
This way, many of the newly proposed modes of operation which turn a secure
compression function into a secure hash function are directly applicable to our
proposal. We now describe instances of our design strategy acting as a compression
function to be used with modes like Merkle-Damg̊ard [18, 37], EMD [2], randomized
hashing [28], HAIFA [7] etc.

Compression function mode for concrete proposals. We suggest compression
function modes for both Grindahl-256 and Grindahl-512 by letting t above be equal
to 40+s. Here s denotes the number of input blocks used for an additional input,
with the possibility of s = 0. Hence, the compression functions both take (40+s)νmb-
byte inputs. This corresponds to 1280+32s bits and 2560+64s bits for Grindahl-256
and Grindahl-512, respectively. Of these, respectively 1024 and 2048 bits form the
message input, and the rest is reserved for chaining input and, if applicable, a
salt/key/counter.

5 Implementation

Implementations of Grindahl can directly inherit most of the extensive research
done to optimise implementations of the AES block cipher on different platforms.
Also side-channel attacks might be an issue if a hash function is used to process
secret key material, be it as a key-derivation-function (KDF) or as a hash-based
message authentication code (MAC). Here we refer to extensive work done to protect
implementations of the AES against these kinds of attacks, e.g. a very fast bit-sliced
AES implementation immune to timing attacks [36].

5.1 Software performance

One usually defines the rate of a hash function based on a block cipher as the number
of blocks that are processed for each block encryption. We may do the same here,
except that we have to take into account the extended state size, and the fact that
νmb bytes are processed per round, whereas in AES-128, 16 bytes are processed for

every 10 rounds. Hence, the rate of a Grindahl instance is 10νmb
νrwνcl−νmb

. Here we also
take into account that the νmb bytes that are overwritten by the following message
block do not have to be computed. As an example, the rate of both Grindahl-256
and Grindahl-512 is 5/6.

In an optimised software implementation of Grindahl-n on a 32-bit platform,
n/64 tables of 256 32-bit words are needed. In the discussion (Section 5.4) on mem-
ory requirements this is not taken into account as the need for these tables is a
consequence of the optimisation only.

Implementation report. Grindahl-256 has been implemented in C on a 32-bit
Pentium 4 processor. It runs at about 32 cycles/byte. This might be compared
with the Rijndael-128 implementation from the Crypto++ [13] package, which,
according to the website, performs at about 33 cycles/byte on a Pentium 4. As
expected, performance is similar. For additional comparison, on the same platform
SHA-256 is benchmarked at about 45 cycles/byte [13]. As with Rijndael, we expect
that hand-optimised implementations will improve performance by a factor up to
about 2. Grindahl-512 is more suited for 64-bit architectures, and here we expect
its speed to be similar to Grindahl-256 on a 32-bit architecture.

Program code and test vectors. The interested reader may find C implemen-
tations of and test vectors for Grindahl-256 and Grindahl-512 at [27].

5.2 On hardware implementations

For passively powered designs, the number of active registers/logic per clock cycle
should be small. In contrast to the MD4 family, the Grindahl hash function design
allows for hardware designs with a small data path width without penalties. Also,
compared to the MD4 family and other proposals a smaller number of registers is
needed in the Grindahl design, which allows for low-cost and low-power implemen-
tations. In addition, various trade-offs towards high speed are possible, utilising the
many implementation options already pioneered for the AES and benefiting from
the smaller number of needed registers.

Regarding low-cost hardware implementations, based on [21] we estimate area
requirements to about 5-6,000 gate equivalents for Grindahl-256. This compares
favourably with the smallest known SHA-256 implementation [20], which requires
more than 10,000 gate equivalents.

5.3 On hashing small messages

The blank rounds add fixed costs even for very small messages. However, in absolute
terms, for both Grindahl-256 and Grindahl-512 it is equivalent to only 32 bytes of
additional padding. Note that members of the SHA-2 family operate on input blocks
of size 64 or 128 bytes. Hence, given the much smaller input block size of 4 (or 8)
bytes, small messages are still handled more efficiently.

5.4 Memory requirements

Due to the small message blocks, the needed working memory for Grindahl-256
and Grindahl-512 is small. This certainly suits implementations in constrained en-
vironments. It is interesting to note that implementations of the Grindahl strategy
need only b + m bits of working memory. Implementations of the MD4 family, on
the other hand, require b + 2m bits of memory, where usually b = 512 and m is

128-bit security 256-bit security
name memory name memory

Grindahl-256 416 Grindahl-512 832
SHA-256 1024 SHA-512 2048
RadioGatún-14 812 RadioGatún-27 1566
FORK-256 1280 Whirlpool 1536
LASH-256 1536 LASH-512 3072

Table 1: Needed working memory in bits for different hash functions.

the same as the output size. The reason for the difference is the feed-forward of
the initial state which counters meet-in-the-middle attacks. However, even if this
feed-forward operation would be omitted, the general picture would not change.

We see the low memory requirements as an important feature of our proposal,
and in Table 1 we give a comparison with other hash functions [1, 3, 4, 24, 29] claim-
ing a comparable security level against collision search attacks. Note that we do not
consider memory needed to store temporary variables or constants.

6 Conclusion

We proposed the Grindahl hash functions which overcome several identified weak-
nesses of the commonly used MD4 family of hash functions. The identified weak-
nesses are addressed on two layers. By using the well analysed building blocks of
Rijndael we obtain a design for which we claim that no efficient differential collision
structures exist. In addition, we limit access to the internal state with the idea to
thwart advanced techniques that improve effectiveness for collision search methods.

We proposed two instantiations of the Grindahl hash collection, Grindahl-256
and Grindahl-512. The claimed security level with respect to collision, preimage and
second preimage attacks is 2128 and 2256, respectively. Grindahl-256 performs at
about the same rate as AES-128 without the key schedule, and on a 64-bit platform
we expect that implementations of Grindahl-512 can achieve similar speeds.

Other intriguing implementation aspects of the proposals are very low working
memory requirements which aid implementations in constrained environments, as
well as the efficient handling of small messages.

Acknowledgments. The authors would like to thank Charanjit Jutla and the
anonymous reviewers for many helpful comments.

References

1. P. S. L. M. Barreto and V. Rijmen. The Whirlpool hashing function. Available at
https://www.cosic.esat.kuleuven.be/nessie/tweaks.html, May 2003.

2. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and
the EMD Transform. In Lai and Chen [34], pages 299–314.

3. K. Bentahar, D. Page, M.-J. O. Saarinen, J. H. Silverman, and N. Smart. LASH.
Presented at Second Cryptographic Hash Workshop, Santa Barbara, August 24-25,
2006.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. RadioGatún, a belt-and-mill
hash function. Presented at Second Cryptographic Hash Workshop, Santa Barbara,
August 24-25, 2006. See http://radiogatun.noekeon.org/.

5. E. Biham and R. Chen. Near-Collisions of SHA-0. In Franklin [26], pages 290–305.

6. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions of
SHA-0 and Reduced SHA-1. In Cramer [12], pages 36–57.

7. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions – HAIFA.
Presented at Second Cryptographic Hash Workshop, Santa Barbara, August 24-25,
2006.

8. A. Biryukov. The Design of a Stream Cipher LEX. In Selected Areas in Cryptography,
Lecture Notes in Computer Science. Springer, 2006. To appear.

9. G. Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science. Springer, 1990.

10. C. D. Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results
and Applications. In Lai and Chen [34], pages 1–20.

11. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk, editor,
CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 56–71. Springer,
1998.

12. R. Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in
Computer Science. Springer, 2005.

13. The Crypto++ website. http://www.cryptopp.com/, 2007.

14. J. Daemen. Cipher and hash function design strategies based on linear and differential
cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, March 1995.

15. J. Daemen and C. S. K. Clapp. Fast Hashing and Stream Encryption with PANAMA.
In S. Vaudenay, editor, Fast Software Encryption, volume 1372 of Lecture Notes in
Computer Science, pages 60–74. Springer, 1998.

16. J. Daemen and V. Rijmen. The Block Cipher Rijndael. In J.-J. Quisquater and
B. Schneier, editors, CARDIS, volume 1820 of Lecture Notes in Computer Science,
pages 277–284. Springer, 1998.

17. J. Daemen and V. Rijmen. A New MAC Construction ALRED and a Specific Instance
ALPHA-MAC. In H. Gilbert and H. Handschuh, editors, Fast Software Encryption,
volume 3557 of Lecture Notes in Computer Science, pages 1–17. Springer, 2005.

18. I. Damg̊ard. A Design Principle for Hash Functions. In Brassard [9], pages 416–427.

19. H. Dobbertin. Cryptanalysis of MD4. Journal of Cryptology, 11(4):253–271, 1998.

20. M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions in
RFID Protocols. Presented at the Workshop on RFID Security 2006.

21. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of
Sand. IEE Proceedings on Information Security, 152(1):13–20, October 2005.

22. N. Ferguson and B. Schneier. Practical Cryptography. Wiley Publishing, 2003.

23. FIPS 180-1, Secure Hash Standard. Federal Information Processing Standards Pub-
lication 180-1, U.S. Department of Commerce/NIST, National Technical Information
Service, Springfield, Virginia, April 1995. Supersedes FIPS 180.

24. FIPS 180-2, Secure Hash Standard. Federal Information Processing Standards Pub-
lication 180-2, U.S. Department of Commerce/NIST, National Technical Information
Service, Springfield, Virginia, August 2002. Supersedes FIPS 180 and FIPS 180-1.

25. FIPS 197, Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, U.S. Department of Commerce/NIST, National Technical
Information Service, Springfield, Virginia, November 2001.

26. M. K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual Inter-
national CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings, volume 3152 of Lecture Notes in Computer Science. Springer, 2004.

27. The Grindahl web page. http://www.ramkilde.com/grindahl, 2007.

28. S. Halevi and H. Krawczyk. Strengthening Digital Signatures via Randomized Hash-
ing. In C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Sci-
ence, pages 41–59. Springer, 2006.

29. D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, and S. Chee. A
New Dedicated 256-Bit Hash Function: FORK-256. In M. Robshaw, editor, Fast
Software Encryption, volume 4047 of Lecture Notes in Computer Science, pages 195–
209. Springer, 2006.

30. A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In Franklin [26], pages 306–316.

31. J. Kelsey and T. Kohno. Herding Hash Functions and the Nostradamus Attack.
In S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer
Science, pages 183–200. Springer, 2006.

32. J. Kelsey and S. Lucks. Collisions and Near-Collisions for Reduced-Round Tiger. In
Robshaw [43], pages 111–125.

33. J. Kelsey and B. Schneier. Second Preimages on n-bit Hash Functions for Much Less
than 2n Work. In Cramer [12], pages 474–490.

34. X. Lai and K. Chen, editors. Advances in Cryptology – ASIACRYPT 2006, the 12th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, Shanghai, China, December 3-7, 2006, Proceedings, volume 4284 of Lecture
Notes in Computer Science. Springer, 2006.

35. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland Mathematical Library, 1977.

36. M. Matsui. How Far Can We Go on the x64 Processors? In Robshaw [43], pages
341–358.

37. R. C. Merkle. One Way Hash Functions and DES. In Brassard [9], pages 428–446.
38. R. C. Merkle. A Fast Software One-Way Hash Function. Journal of Cryptology,

3(1):43–58, 1990.
39. C. H. Meyer and M. Schilling. Secure program load with Manipulation Detection Code.

In Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM’88), pages 111–130, 1988.

40. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, January 1993.

41. RFC 1321, The MD5 Message-Digest Algorithm. Internet Request for Comments 1321,
R. Rivest, April 1992.

42. V. Rijmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, CT-RSA, volume
3376 of Lecture Notes in Computer Science, pages 58–71. Springer, 2005.

43. M. J. B. Robshaw, editor. Fast Software Encryption, 13th International Workshop,
FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047
of Lecture Notes in Computer Science. Springer, 2006.

44. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Cramer [12], pages 1–18.

45. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005.

46. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Cramer [12],
pages 19–35.

A Resistance of Concatenate-Permute-Truncate to known
attacks

The well-known Merkle-Damg̊ard construction [18, 37] is a construction method for
hash functions based on an underlying compression function f : {0, 1}n×{0, 1}b →
{0, 1}n. The output size of the hash function is n. The main differences in the
“Concatenate-Permute-Truncate” design are

– that we allow m > n, and hence attacking the internals of the hash function
may be different (and hopefully harder) than attacking the hash function itself,
and

– that we allow an output transformation, the blank rounds.

If m = n and νbr = 0, then the design can be seen as a special case of the Merkle-
Damg̊ard construction: we iterate “as usual” over a compression function of a certain
kind. However, the possibility of varying m and νbr makes it possible to obtain
different properties for our design than the properties of hash functions based on
the Merkle-Damg̊ard construction.

In the following we describe some known attacks on the Merkle-Damg̊ard con-
struction, and we argue whether or not our design protects against these attacks,
and, if applicable, how resistance to these attacks depends on the parameters n, m
and νbr. The analysis will assume that P is a black-box permutation, i.e. that the
internals of P are unknown.

A.1 The length-extension attack

Let H be a hash function based on the Merkle-Damg̊ard construction. Then H is
susceptible to the so-called length-extension attack [22]. Given a collision, i.e. two
messages d and d′, with |d| = |d′|, such that H(d) = H(d′), then for any suffix x it
holds also that H(d‖x) = H(d′‖x).

This attack can be applied to the design described above only if the collision
occurs before the blank rounds. If m > n and we only consider the birthday attack,
then an internal collision is harder to find than a collision for the full hash function.

A related property of the Merkle-Damg̊ard construction is that if the length of
an unknown message d, and hence the padding p of d, is known, and also H(d) is
known, then H(d‖p‖x) can be computed for any suffix x. This attack is particularly
a threat in some schemes that use a hash function for message authentication.

The attack can be mounted on a hash function following our design only if the
attacker correctly guesses the b + m−n bits that are truncated away. If he does so,
he can go backwards through the blank rounds and obtain the extended state after
the processing of the last message block.

A.2 Multi-collisions

An efficient method for constructing multi-collisions was described by A. Joux in
2004 [30]. A multi-collision is a set of (at least two) messages that all have the
same hash. The attack of Joux has complexity t2n/2 to find a 2t-way multi-collision
for an n-bit hash function in the Merkle-Damg̊ard construction. In our design, the
complexity would be t2m/2. This is to be compared with a brute-force search for
multi-collisions, which for even a modest t gets very close to 2n. Hence, if one wants
full resistance against the Joux multi-collision attack, one should choose m ≥ 2n.

A.3 The herding attack

The herding attack [31] by J. Kelsey and T. Kohno shows another slight weakness of
the Merkle-Damg̊ard construction. Here, a binary tree of collisions is used to form
a hash result h, which an attacker publishes. Subsequently he chooses a message,
finds a message linking to one of the leaves of the binary tree, and then he has a
complete, partially chosen message d with the hash h.

The complexity of the simplest version of this attack in the Merkle-Damg̊ard
construction is about 2(2n−5)/3. In our design, n can be replaced by m, and so with
m ≥ (3n + 5)/2, the complexity of the attack is the same as for a preimage, which
is what one would expect from a random hash function.

There is another important version of the attack for which the complexity de-
creases with increased size of the message d. If the size of d is about 2r, then the
complexity is about 2(2n−5)/3−r. Hence, for a given upper limit on the size of mes-
sages, m must be chosen accordingly if one wants to completely protect against this
kind of attack.

A.4 Second preimage attack

There is a second preimage attack [33] by J. Kelsey and B. Schneier on the Merkle-
Damg̊ard construction. This attack requires finding an expandable message, mean-
ing a set of messages of varying sizes such that all these messages collide internally
in the hash function, given some fixed initial value. To find this expandable mes-
sage one either makes use of fixed points or the ability to find (internal) collisions
between a one-block message and a t-block message for varying values of t. Finally,
the complexity of the attack depends on the complexity of finding the expandable
message, and on the length of the target message, i.e. the message for which one tries
to find a second message with the same hash. This complexity amounts to roughly
2n/2 +2n−k, where k is the number of blocks in the target message. In our design, n
can be replaced by m, and hence with no upper limit on the message size, m should
be at least 2n for this attack to have the same complexity as a brute-force search.
If the target message can have length at most 2r blocks, then m ≥ min(2n, n + r)
is required.

B Reduced variants

We now suggest some methods of reducing the cryptographic strength of the two
proposals Grindahl-256 and Grindahl-512, without reducing the output size. The
methods can be combined, but some reductions rule out others, or modify the way
that others can be applied.

– Increase the size of each message block to more than one column.
– Reduce the number of columns in the extended state. The number of columns

should be at least 8 plus twice the number of columns that are overwritten by
the message block. Otherwise, as described in Section 2.4, birthday attacks are
simplified.

– Reduce the number of blank rounds.

C A method for choosing rotation constants

We suggest the following method for choosing rotation constants in the Grindahl
hash collection, given a particular geometry of the extended state. Let R1 be the
set of νrw-tuples of rotation constants that ensure optimal diffusion, i.e. all state
bytes depend on all message bytes as quickly as possible. Let R2 ⊆ R1 be the subset
of R1 of rotation constants that ensure optimal diffusion in the blank rounds, i.e.
when no extended state bytes are overwritten by message bytes.
Now let fj(di) be the number of state bytes that message byte di affects after j
rounds. Let µ be the number of rounds needed for every state byte to be affected
by every message byte. Now let R3 ⊆ R2 be the subset of R2 of rotation constants
for which the sum

µ−1∑

j=1

νmb−1∑

i=0

fj(di)

is maximal. Sort R3 lexicographically, i.e. such that (r1, r2, r3, r4) comes before
(s1, s2, s3, s4) if and only if r1 < s1, or r1 = s1 and r2 < s2, or (r1, r2) = (s1, s2)
and r3 < s3, or (r1, r2, r3) = (s1, s2, s3) and r4 < s4. Choose as rotation constants
the first tuple in the sorted R3.

D A characteristic leading to a collision in Grindahl-256

Below is given a characteristic that leads from a zero-difference state to a zero-
difference state (a collision) via message inputs containing differences. Exact differ-
ences are not given, instead a single bit for each byte is given stating whether or
not there is a difference on that particular byte.

Round no. Initial state Message Mesg. input → ShiftRows → MixColumns →
1 0000000000000

0000000000000

0000000000000

0000000000000

1111 1000000000000

1000000000000

1000000000000

1000000000000

0100000000000

0010000000000

0000100000000

0000000000100

0110100000100

0110100000100

0110100000100

0110100000100

2 0110100000100

0110100000100

0110100000100

0110100000100

0111 0110100000100

1110100000100

1110100000100

1110100000100

0011010000010

0011101000001

0100111010000

0100000100111

0111101110111

0111011110111

0101111110111

0111111110111

3 0111101110111

0111011110111

0101111110111

0111111110111

1001 1111101110111

0111011110111

0101111110111

1111111110111

1111110111011

1101110111101

0111010111111

1111110111111

1100010010010

1000100100101

1010010010110

1011110001001

4 1100010010010

1000100100101

1010010010110

1011110001001

1100 1100010010010

1000100100101

0010010010110

0011110001001

0110001001001

0110001001001

0110001001001

1110001001001

1010000000000

1100000000000

1000000001001

1000001000000

5 1010000000000

1100000000000

1000000001001

1000001000000

0000 0010000000000

0100000000000

0000000001001

0000001000000

0001000000000

0001000000000

1001000000000

0001000000000

1000000000000

1000000000000

1000000000000

1001000000000

6 1000000000000

1000000000000

1000000000000

1001000000000

0000 0000000000000

0000000000000

0000000000000

0001000000000

0000000000000

0000000000000

0000000000000

1000000000000

1000000000000

1000000000000

1000000000000

1000000000000

7 1000000000000

1000000000000

1000000000000

1000000000000

0000 0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

Evidently, after 6 rounds the state contains no difference (the only difference in
the extended state is in the first column). Hence, this characteristic spans 6 rounds,
but an additional message block with no difference (e.g., a padding block) is needed
before the blank rounds in order for the difference to disappear entirely.

