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Abstract. Given (deterministic) ciphers E and E that can encipher mes-
sages of l and n bits, respectively, we construct a cipher E∗ = XLS[E , E]
that can encipher messages of l + s bits for any s < n. Enciphering such
a string will take one call to E and two calls to E. We prove that E∗ is
a strong pseudorandom permutation as long as E and E are. Our con-
struction works even in the tweakable and VIL (variable-input-length)
settings. It makes use of a multipermutation (a pair of orthogonal Latin
squares), a combinatorial object not previously used to get a provable-
security result.
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1 Introduction

Domain extension. Consider a cryptographic scheme with a message space
M =

⋃
l∈L {0, 1}l for some set L of permissible message lengths. The scheme

can handle any message of l ∈ L bits but it can’t handle messages of l∗ 6∈ L
bits. Often the set of permissible message lengths L is what worked out well
for the scheme’s designers—it made the scheme simple, natural, or amenable to
analysis—but it might not be ideal for the scheme’s users who, all other things
being equal, might prefer a scheme that works across arbitrary-length messages.
To address this issue, one may wish to extend the scheme to handle more message
lengths. Examples are extending CBC encryption using ciphertext stealing [21]
and extending a pseudorandom function F with message space ({0, 1}n)+ by
appropriately padding the message and calling F .

Our work is about extending the domain of a cipher. When we speak of
a cipher in this paper we mean a deterministic map E : K ×M → M where
M =

⋃
l∈L {0, 1}l and EK(·) = E(K, ·) is a length-preserving permutation. Such

an object is also called an enciphering scheme, a pseudorandom permutation, an
arbitrary-input-length blockcipher, or a deterministic cipher / encryption scheme.
Our goal is to extend a cipher E : K × M → M with permissible message
lengths L to a cipher E∗: K∗ × M∗ → M∗ with an enlarged set L∗ ⊇ L of



permissible message lengths. Being an extension of E , what E∗ does on a string
of length l ∈ L and key 〈K, K ′〉 must be identical to what E would do on key K.
Note that padding-based methods will not work: even if there is a point in the
message space of E that one can pad a plaintext to, padding M to M∗ and then
applying E would be length-increasing, and so not a cipher. Unlike signatures,
MACs, pseudorandom functions, and semantically secure encryption, there is no
obvious way to extend a cipher’s domain.

Our contribution. We show how, with the help of an n-bit blockcipher E,
to extend a cipher’s set of permissible message lengths from L ⊆ [n ..∞) to
L∗ = L+[0 .. n−1] = {`+i | ` ∈ L and i ∈ [0 .. n−1]}. In other words, we enlarge
the message space from M to M∗ = M || {0, 1}<n where M⊆ {0, 1}≥n.

We call our construction XLS (eXtension by Latin Squares). Its overhead is
two blockcipher calls, eight xor instructions, and two one-bit rotations. This is
the work beyond enciphering (or deciphering) a single l-bit string that is needed
to encipher (or decipher) an l + s bit one, where s ∈ [1 .. n − 1]. If the message
is in the original domain there is no overhead beyond determining this. As an
example, if E = E is an n-bit blockcipher then it will take three blockcipher calls
to encipher a 2n− 1 bit string.

The XLS method is described in Fig. 1. For a message M already in the
domain of E , just apply it. Otherwise, suppose that M has length l + s where
l ∈ L and s ∈ [1 .. n − 1]. To encipher M : apply the blockcipher E to the
last full n-bit block of M ; mix together the last 2s-bits; flip the immediately
preceding bit; encipher under E the first l bits; mix together the last 2s-bits;
flip the immediately preceding bit; then apply E to the last full n-bit block.
Our recommended instantiation of the mixing step uses three xors and a single
one-bit circular rotation.

We prove that XLS works. More specifically, if E is secure in the sense of
a strong pseudorandom permutation (a strong PRP) [17] then E∗ inherits this
property. This assumes that the blockcipher E is likewise a strong PRP. The
result holds even in the variable-input-length (VIL) setting [3]: if E is VIL-secure
then so is E∗. See Theorem 2. It also holds in the tweakable-enciphering-scheme
setting [16]: if E is tweakable then E∗ inherits this. See Section 7. If one makes
the weaker assumption that E and E are ordinary (not necessarily strong) PRPs,
then one can conclude that E∗ is a PRP. See Section 8.

While XLS is relatively simple, it is surprisingly delicate. We show that nat-
ural alternative ways of mixing do not work. We show that omitting the bit flip
does not work. And attempting to get by without any mixing—say by encipher-
ing the last n bits, the first l bits, then the last n bits—doesn’t work even if one
demands that the “overlap” in what is enciphered is n/2 bits: there is an attack
of complexity 2n/4.

All that said, we develop sufficient conditions on the mixing function that are
enough to guarantee security, and we provide a mixing function based on mul-
tipermutations (also called orthogonal Latin squares [7]). Though conceptually
elegant, implementing multipermutations in this setting is slightly complicated,
so we provide an alternate mixing function that approximates multipermuta-



tions via bit rotations. This comes at the (insignificant) cost of a slightly larger
constant in the security reduction. XLS is the first mode of operation to em-
ploy multipermutations or approximate multipermutations to yield a provable-
security guarantee. Indeed, such mixing functions may prove to be useful in
further provable-security contexts.

We comment that we cannot handle messages of length less than n bits (the
blocklength of the blockcipher that we use)—for example, we don’t know how
to encipher a 32-bit string using AES (in an efficient way and with a known and
desirable security bound). This is a long open problem [6, 12].

Related work. There are several known methods for turning a blockcipher
with message spaceM = {0, 1}n into a cipher with some message space {0, 1}≥n.
Halevi does this in his EME∗ and TET constructions [12, 13]; Fluhrer and
McGrew do it (without a provable-security guarantee) with XCB [20]; Wang,
Feng, and Wu do it in HCTR [30]; and Chakraborty and Sarkar do it in HCH [9].
All of these constructions are somewhat complex, and their methods for deal-
ing with “inconvenient-length” strings are non-generic. Constructions of ciphers
from n-bit blockciphers that result in a message space like ({0, 1}n)+ are of-
fered by Zheng, Matsumoto, and Imai [31], Naor and Reingold [22], Halevi and
Rogaway [14, 15], Patel, Ramzan, and Sundaram [24], and Chakraborty and
Sarkar [8]. One can even view Luby and Rackoff [17] in this light.

Anderson and Biham [2] and Lucks [18, 19] make a wide-blocksize cipher out
of a stream cipher and a hash function, and Schroeppel provides a cipher [28]
that works on an arbitrary message space de novo.

When E = E is an n-bit blockcipher, the XLS construction solves the elastic
blockcipher problem of Cook, Yung, and Keromytis [10, 11], where one wants to
extend a blockcipher from n bits to [n .. 2n− 1] bits. The Cook et. al solution is
heuristic—there is no proof of security—but with XLS we have, for example, an
“elastic AES” that provably preserves the security of AES.

When a cipher like CMC or EME [14, 15] plays the role of E in XLS, one gets
a cipher with efficiency comparable to that of a mode like EME∗ [12].

Bellare and Rogaway first defined VIL ciphers [3] and built one (although it
is not secure as a strong PRP). An and Bellare [1] offer the viewpoint that cryp-
tographic constructions are often aimed at adjusting the domain of a primitive.
This viewpoint is implicit in our work.

Applications. While primarily interested in the “theoretical” question of how
to accomplish domain extension for ciphers, arbitrary-input-length enciphering
is a problem with many applications. A well-known application is disk-sector
encryption, the problem being addressed by the IEEE Security in Storage Work
Group P1619. Another application is saving bandwidth in network protocols: if
one has a 53-byte payload to be enciphered, and no IV or sequence number to
do it, the best that can be done without increasing the size of the datagram is
to encipher this 53-byte string. A related application is the security-retrofitting
of legacy communications protocols, where there is a mandated and immutable
allocation of bytes in a datagram, this value not necessarily a multiple of, say,



16 bytes. Another application is in a database setting where it should be man-
ifest when two confidential database records are identical, these records having
arbitrary length that should not be changed, but nothing else about the records
should be leaked. Arbitrary-length enciphering enables bandwidth-efficient use
of the encode-then-encipher paradigm of Bellare and Rogaway [4], where one
gets authenticity by enciphering strings encoded with redundancy and semantic
security by enciphering strings that rarely collide.

2 Preliminaries

Basics and notation. For strings X, Y ∈ {0, 1}∗, we use X || Y or X Y to
denote concatenation. We write X[i] for i ∈ [1 .. |X|] to represent the ith bit of X
(thus X = X[1]X[2] · · ·X[s]). The complement of a bit b is flip(b). For a set C
and element X we write C ∪←X for C ← C ∪ {X}. We require that for any set of
bit strings S ⊆ {0, 1}∗, if X ∈ S then {0, 1}|X| ⊆ S.

A cipher is a map E : K×M→M where K is a nonempty set, M⊆ {0, 1}∗
is a nonempty set, and EK(·) = E(K, ·) is a length-preserving permutation. The
set K is called the key space and the set M is called the message space. We can
view the message space as ∪l∈L{0, 1}l where L = {l | ∃X ∈ M s.t. |X| = l}.
Let D be the cipher with the same signature as E and defined by DK(Y ) = X
iff EK(X) = Y . A blockcipher is a cipher with message space M = {0, 1}n

for some n ≥ 1 (the blocksize). For M ⊆ {0, 1}∗ let Perm(M) be the set of
all length-preserving permutations on M. By selecting K = Perm(M) we have
a cipher for which a uniformly chosen permutation on {0, 1}l is selected for
each l ∈ L. Let Func(M) be the set of all length-preserving functions on M.
Write Perm(`) and Func(`) for Perm({0, 1}`) and Func({0, 1}`), respectively.

Let S ⊆ {0, 1}≥1. Then define S2 = {XY |X, Y ∈ S ∧ |X| = |Y |}. Let
f : S2 → S2 be a length-preserving function. We define the left projection of f
as the function fL: S2 → S where fL(X) is equal to the first |X|/2 bits of f(X).
We define the right projection of f as the function fR: S2 → S where fR(X) is
equal to the last |X|/2 bits of f(X). Of course f(X) = fL(X) || fR(X).

When we say “Replace the last ` bits of M , Last, by F (Last)” we mean
(1) parse M into X || Last where |X| = |M | − ` and |Last| = `; (2) let Z
be F (Last); and (3) replace M by X || Z. We define the semantics of similar
uses of “Replace . . .” in the natural way.

The notation “XY Z ← M of lengths x, y, z” for any string M with |M | =
x + y + z means parse M into three strings of length x, y, and z and assign
these values to X, Y , and Z, respectively. The notation is extended to the case
of parsing M into two halves in the natural way.

Finally, an involution is a permutation g which is its own inverse: g(g(x)) = x.

Security notions. When an adversaryA is run with an oracleO we let AO⇒ 1
denote the event that A outputs the bit 1. Let E : K ×M → M be a cipher.



Then we define the following advantages for an adversary A:

Adv±prp
E (A) = Pr

[
K

$←K : AEK ,DK ⇒ 1
]
− Pr

[
π

$← Perm(M) : Aπ, π−1 ⇒ 1
]

Adv±prf
E (A) = Pr

[
K

$←K : AEK ,DK ⇒ 1
]
− Pr

[
ρ, σ

$← Func(M) : Aρ, σ ⇒ 1
]

where the probabilities are over the choice of K or choice of π (resp. ρ, σ) and
the coins used by A. The first experiment represents distinguishing E and its
inverse from a random length-preserving permutation and its inverse and the
second experiment represents distinguishing E and its inverse from two random
length-preserving functions. In both settings, we demand that the adversary A,
given oracles f, g, does not repeat any query, does not ask g(Y ) after receiving Y
in response to some query f(X), and does not ask f(X) after receiving X in
response to some query g(Y ). Such forbidden queries are termed pointless.

While the above formalization allows variable input length (VIL) adversaries,
we can also restrict adversaries to only query messages of a single length. We
call such adversaries fixed input length (FIL) adversaries.

Informally, a cipher is called a “strong pseudorandom permutation” if no
reasonable adversary A can distinguish the enciphering and deciphering func-
tions, randomly keyed, from a randomly selected permutation and its inverse:
Adv±prp

E (A) is small. Our theorems make concrete statements about this and so
we will not have to formalize “reasonable” or “small.” Resources we pay attention
to are the adversary’s maximum running time (which, by convention, includes
the length of the program); the number of queries it asks; and the lengths of the
queries. For any cipher E with inverse D, define TimeE(µ) = max{Tkey , TE , TD}
where Tkey is the maximum time required to generate a key L for the scheme,
TE is the maximum time to run EL on a message of at most µ bits, and TD is
the maximum time to run DL on a ciphertext of at most µ bits.

3 The XLS Construction

Fix a blocksize n. Let E : KE ×M→M be a cipher with M⊆ {0, 1}≥n and let
E: KE × {0, 1}n → {0, 1}n be a blockcipher. Finally, define a length-preserving
permutation mix: S2 → S2 where S ⊇ ∪n−1

i=1 {0, 1}i. Then we define a cipher
E∗ = XLS[mix, E , E] with key space K∗ = KE × KE and message space M∗ =
M || {0, 1}<n. For keys L ∈ KE and K ∈ KE we have E∗L,K(·) = E∗((L,K), ·).
See Fig. 1 for the definition.

Enciphering a message M with E∗ = XLS[mix, E , E] is straightforward. If
M ∈ M, then simply apply E . Otherwise, apply E to the last full n-bit block
of M and replace those bits with the result. Then ‘mix together’ the last 2s
bits, again replacing the appropriate bits with the resulting mixture. Flip bit
|M | − 2s, which is the first bit from the right not affected by mix. Apply E to
as many bits as possible, starting from the left. Finally, just repeat the first
three steps in reverse order. Deciphering is equally simple, and in fact, if one
implements mix with an involution, as we suggest, then the inverse of E∗ is just
D∗ = XLS[mix,D, D].



Algorithm E∗L,K(M)
00 If M ∈M then return EL(M)
01 Let l < |M | be largest number such that {0, 1}l ⊆M; s ← |M | − l
02 If s ≥ n or l < n then Return ⊥
03 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
04 Replace the last 2s bits of M , Last, with mix(Last)
05 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
06 Replace the first l bits of M , First, with EL(First)
07 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
08 Replace the last 2s bits of M , Last, with mix(Last)
09 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
10 Return M

M5

EK

M2

M6

C6

C5C4

C2

flip

M4!

C4!

n bits

l bits

n bits
EK

M3M4
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2s bits

M7

mix

C1

C1

C1 C3

C3

M7

mix

EL

M3

M1

M1

M1

2s bits

Fig. 1. Top: Enciphering algorithm E∗ = XLS[mix, E , E]. Bottom: Enciphering M =
M1 || M2 || M3 under E∗ where M is not in M; l < |M | is the largest value such that
{0, 1}l ⊆M; s = |M | − l; M1 ∈ {0, 1}l−n; M2 ∈ {0, 1}n; and M3 ∈ {0, 1}s.

Why, intuitively, should XLS work? “Working” entails that each output bit
strongly depends on each input bit. Since E presumably already does a good job
of this we need only worry about mixing in the “leftover” s bits for M /∈M. We
mix in these bits utilizing the mixing function mix. But since mix will be a simple
combinatorial object—it is unkeyed and will have no “cryptographic” property—
we need to “protect” its input with the blockcipher. The “symmetrizing” of the



protocol—repeating the blockcipher call and the mixing step in the reverse order
so that lines 03 → 09 are identical to lines 09 → 03—helps achieve strong PRP-
security: each input bit must strongly depend on each output bit, as queries can
be made in the forward or backward direction. Finally, the bit-flipping step is
just a symmetry-breaking technique to ensure that different-length messages are
treated differently.

If mix does a “good” job of mixing, then XLS will in fact be secure, as we
prove in Section 6. But what is the meaning of “good,” and how do we make a
mixing function that is simultaneously good, efficient, and easy to implement?
We now turn towards answering these questions.

4 The Mixing Function

We now look at several possible ways of implementing mix, to build intuition on
what properties are needed for the security of XLS. In the end we formally define,
quantitatively, the sufficient condition of interest. For ease of exposition we will
often silently parse the input to mix into its two halves, i.e., mix(AB) means
that A || B ∈ S2 and that |A| = |B|. Also we interchangeably write mix(AB)
and mix(A,B), which are equivalent.

A naive approach. Let’s start with a natural construction that, perhaps sur-
prisingly, does not lead to a secure construction. Suppose we define mixWrong by
saying that mixWrong(AB) = A⊕B || B for equal-length A,B: the mixing func-
tion xors the right half of the input into the left half, outputting the result and
the original right half. Clearly mixWrong is a length-preserving permutation. Fur-
thermore, it might seem sufficient for XLS because it will mix the “leftover” bits
into those handled by E . But this intuition is flawed: E∗ = XLS[mixWrong, E , E]
is easily distinguished from a length-preserving permutation on M∗. An adver-
sary can simply query 0n || 0n−1 and 1n || 0n−1. As one can easily verify, both
E∗(0n || 0n−1) and E∗(1n || 0n−1) will have output with the last n− 1 bits equal
to 0n−1. This would be true of a random permutation with probability at most
1/2n−1, and so the adversary’s advantage is close to one. In fact mixWrong does
not do a good job of mixing: the right half of the output is only a function of
the right half of the input. One can try various fixes, but ultimately it appears
that using just xors is inherently inadequate.

Using orthogonal latin squares. The failure above suggests that what is
needed is a mixing function with symmetry, in the sense that both the left and
right halves of the output are dependent on both the left and right halves of
the input. To achieve such a goal we can turn to the classical combinatorial
objects known as a pair of orthogonal Latin squares [7], also called a multiper-
mutation [27, 29]. This is a permutation mix: S2 → S2 such that, for any C ∈ S,
mixL(C, ·), mixL(·, C), mixL(C, ·), and mixR(·, C) are all permutations, where mixL

and mixR denote the projection of mix onto its first and second component. Let
us describe a concrete realization. Fix a finite field F2s for each s and view each
s-bit string as an element of this field. Then we can build a mixing function mix1
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Fig. 2. The mixing functions mix1 (left) and mix2 (right). Here A, B ∈ {0, 1}<n with
s = |A| = |B|. The operation dbl is a multiplication by 2 = 0s−210 = x in the finite
field F2s and rol is a circular left rotation by one bit.

by saying that

mix1(AB) = (3A + 2B) || (2A + 3B) = (A + 2(A + B), B + 2(A + B))

for equal-length strings A and B (we will assume the length to be at least 2).
Here addition and multiplication are over F2s and 2 = 0s−210 = x and 3 =
0s−211 = x + 1. Addition is bitwise xor and multiplication by 2, which we also
denote dbl, can be implemented by a shift and a conditional xor. The mixing
function mix1 has several nice properties. First, it is a permutation and, in fact,
an involution (meaning mix = mix−1). Moreover, for any C ∈ {0, 1}s we have
that mix1L(C, ·), mix1R(C, ·), mix1L(·, C), and mix1R(·, C) are all permutations
on {0, 1}s.

We show later that, when used in XLS, mixing function mix1 leads to a secure
construction. Moreover, it is fast and relatively simple. But implementing it in
XLS requires a table of constants corresponding to irreducible polynomials, one
for each s ≤ n− 1. As it turns out, we can do better.

The simplified mixing function. We now simplify the mixing function mix1.
Let rol(X) represent left circular bit-rotation, that is, for any string X of
length s let rol(X) = X[2]X[3] · · ·X[s]X[1]. Then define mix2 by

mix2(AB) = (A⊕ rol(A⊕B)) || (B⊕ rol(A⊕B))

where A and B are equal-length strings. See Fig. 2. Notice the similarity with
mix1: we replaced multiplication by two with a left circular rotation. The bit
rotation “approximates” a proper multiplication, eliminating, in an implemen-
tation, the conditional xor and the table of constants. As before, mix2 is an
involution.

Quantifying the quality of mixing functions. We now formalize the
properties of a mixing function that are needed in the proof of XLS.

Definition 1. Fix a set S ⊆ {0, 1}≥1, let mix: S2 → S2 be a length-preserving
permutation, and let ε: N → [0, 1]. We say that mix is an ε(s)-good mixing
function if, for all s such that {0, 1}s ⊆ S, we have that



(1) mixL(A, ·) is a permutation for all A ∈ {0, 1}s,
(2) mixR(·, B) is a permutation for all B ∈ {0, 1}s,

(3) Pr[R $←{0, 1}s : C = mixL(R,B)] ≤ ε(s) for all B,C ∈ {0, 1}s, and

(4) Pr[R $←{0, 1}s : C = mixR(A,R)] ≤ ε(s) for all A,C ∈ {0, 1}s . ¤

The best one can hope for is a 2−s-good mixing function. In fact mix1 is such a
function, while the mix2 function is just a factor of two off.

Lemma 1. The mixing function mix1 is a 2−s-good mixing function. The mixing
function mix2 is a 2−s+1-good mixing function. ¤

Proof: Since for any s ∈ [1 .. n−1] and any C ∈ {0, 1}s we have that mix1L(C, ·),
mix1R(C, ·), mix1L(·, C), and mix1R(·, C) are all permutations, the first half of
the lemma is clear.

That mix2 meets parts 1 and 2 of the definition is clear. For the third part,
we have that

mix2L(R,B) = R⊕ rol(R⊕B) = R⊕ rol(R)⊕ rol(B)

and so we bound the number of values R such that C ⊕ rol(B) = R⊕ rol(R).
Let C ′ = C ⊕ rol(B), which is a constant. Then we have that

R[1]⊕R[s] = C ′[1]
R[2]⊕R[1] = C ′[2]

...
R[s− 1]⊕R[s− 2] = C ′[s− 1]

R[s]⊕R[s− 1] = C ′[s]

Note that there only exists a string R that satisfies the above equalities if
C ′[1]⊕C ′[2]⊕ · · · ⊕C ′[s] = 0. If there exists a solution, then pick a value
for R[1]. That choice and the equations above combine to specify R[2], . . . , R[s].
This means that there are at most two possible values of R and so the prob-
ability that C = mix2L(R,B) is at most 2/2s. The proof of the fourth part is
symmetric.

We point out that the properties of circular rotations combined with xors as
utilized in mix2 have been used before in different settings, such as [23].

We have introduced two mixing functions for the following reason: mix1 is
conceptually more elegant, while mix2 is operationally more elegant. In addi-
tion, mix2 is in effect an approximation of mix1, making the latter an important
conceptual building block. Such mixing functions might prove useful in future
provable-security results.

Note that our definition of an ε(s)-good mixing function is general, but XLS
requires a mixing function for which S ⊇ ∪n−1

i=1 {0, 1}i. This is clearly the case for
mix1 and mix2. For the rest of the paper when we refer to an ε(s)-good mixing
function, we implicitly require that this function is well-defined for such an S.



5 The Bit Flips

In steps 05 and 07 of XLS (see Fig. 1) we flip a single bit. Flipping bits in
this manner is unintuitive and might seem unimportant for the security of XLS.
However, the bit flips are actually crucial for the security of the scheme when in
the VIL setting. Let E† be the cipher defined by running the algorithm of Fig. 1
except with lines 05 and 07 omitted. Then the following VIL adversary A easily
distinguishes E† from a family of random permutations. The adversary A makes
two enciphering queries on M = 0n+1 and M ′ = 0n+2, getting return values C
and C ′ respectively. If the first n bits of C and C ′ are equal, then A outputs 1
(the oracles are likely the construction) and otherwise outputs 0 (the oracles are
likely a random permutation). We have that Pr[K $←K∗ : AE†(·),D†(·) ⇒ 1] = 1.
This is so because for both queries the inputs to E are necessarily the same (as
one can verify quickly by following along in the diagram in Fig. 1; remember to
omit the flip steps). Clearly Pr[π $← Perm(M∗) : Aπ(·),π−1(·) ⇒ 1] = 2−n and
so A has large advantage.

6 Security of XLS

We are now ready to prove the security of XLS. The proof is broken into two
parts: first we show that XLS is secure in an information-theoretic setting (i.e.,
using actual random permutations as components). Afterwards we pass to a
complexity-theoretic setting to get our main result.

Theorem 1. Fix n and an ε(s)-good mixing function mix. Let M ⊆ {0, 1}≥n

and E∗ = XLS[mix,Perm(M), Perm(n)]. Then for any adversary A that asks
at most q queries we have that Adv±prf

E∗ (A) ≤ 5q2 ε(s)/2n−s + 3q2/2n for any
s ∈ [1 .. n− 1], and so, by Lemma 1,

Adv±prf
E∗ (A) ≤ 8q2

2n
and Adv±prf

E∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. ¤

Proof. Due to space constraints, we only present a self-contained chunk of the
proof together with a sketch of the other portion of the proof. See the full
version [25] for the complete proof. Fix n and let mix: S2 → S2 be an ε(s)-good
mixing permutation. Let E : Perm(M)×M→M be a cipher with message space
M and let E: Perm(n)×{0, 1}n → {0, 1}n be a blockcipher. Note that these last
two simply implement a family of random length-preserving permutations on M
and a random permutation on {0, 1}n, respectively. Let A be a ±prf adversary
against E∗ = XLS[mix, E , E]. We therefore must bound

Adv±prf
E∗ (A) = Pr

[
K

$←K∗ : AE
∗
K ,D∗K ⇒ 1

]
− Pr

[
ρ, σ

$← Func(M∗) : Aρ, σ ⇒ 1
]
.

Recall that we disallow A from making pointless queries. We utilize a game-
playing argument [5] and the first two games are G0 and G1, shown in Fig. 3.



procedure ChooseE( X )

Y
$←{0, 1}|X|

If Y ∈ RE then bad ← true , Y
$←RE

If X ∈ DE then bad ← true , Y ← E(X)

E(X) ← Y ; D(Y ) ← X

RE ∪← Y ; DE ∪←X; Return Y

procedure ChooseD( Y ) G0 G1

X
$←{0, 1}|Y |

If X ∈ DE then bad ← true , Y
$←DE

If Y ∈ RE then bad ← true , X ← D(Y )

E(X) ← Y ; D(Y ) ← X

RE ∪← Y ; DE ∪←X; Return X

procedure ChooseE( X )

Y
$←{0, 1}|X|

If Y ∈ RE then bad ← true , Y
$←RE

If X ∈ DE then bad ← true , Y ← E(X)

E(X) ← Y ; D(Y ) ← X

RE ∪← Y ; DE ∪←X; Return Y

procedure ChooseD( Y )

X
$←{0, 1}|Y |

If X ∈ DE then bad ← true , Y
$←DE

If Y ∈ RE then bad ← true , X ← D(Y )

E(X) ← Y ; D(Y ) ← X

RE ∪← Y ; DE ∪←X; Return X

procedure Enc( M )
j ← j + 1; M j ← M ; If M j ∈M then Return Cj ← ChooseE( M j )

Let s be smallest number s.t. {0, 1}|Mj |−s ∈M
m ← |M j | − n− s; M j

1 M j
2 M j

3 ← M j of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. M j

2 = M i
2

If i < j then M j
4 ← M i

4; M j
5 ← M i

5

Else M j
4 M j

5 ← ChooseE( M j
2 ) of lengths n− s, s

M j
6 M j

7 ← mix(M j
4 , M j

3 ) of lengths s, s
Cj

1 Cj
4! Cj

6 ← ChooseE( M j
1 || flip1(M j

4 ) || M j
6 ) of lengths m, n− s, s

Cj
5 Cj

3 ← mix(Cj
6 , M j

7 ) of lengths s, s
Cj

2 ← ChooseE( flip1(Cj
4!) || Cj

5 )
Return Cj

1 Cj
2 Cj

3

procedure Dec( C )
j ← j + 1; Cj ← C; If Cj ∈M then Return M j ← ChooseD( Cj )

Let s be smallest number s.t. {0, 1}|Cj |−s ∈M
m ← |Cj | − n− s; Cj

1 Cj
2 Cj

3 ← Cj of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. Cj

2 = Ci
2

If i < j then Cj
4 ← Ci

4, Cj
5 ← Ci

5

Else Cj
4 Cj

5 ← ChooseD( Cj
2 ) of lengths n− s, s

Cj
6 M j

7 ← mix(Cj
4 , Cj

3) of lengths s, s
M j

1 M j
4! M j

6 ← ChooseD( Cj
1 || flip1(Cj

4) || Cj
5 ) of lengths m, n− s, s

M j
5 M j

3 ← mix(M j
6 M j

7 ) of lengths s, s
M j

2 ← ChooseD( flip1(M j
4!) || M j

5 )
Return M j

1 M j
2 M j

3

Fig. 3. Games G0 (boxed statements included) and G1 (boxed statements dropped)
used in the proof of Theorem 1. Initially, j = 0 and DE ,RE , DE, RE are empty sets
and the partial functions E ,D, E, D are everywhere undefined. The function flip1(X),
for any bit string X = X[1] · · ·X[s], outputs the string with last bit complemented:
X[1] · · ·X[s− 1]flip(X[s]).



In G0 we build E and E lazily using the appropriate Choose procedures, and
so E and E are partial functions in this context. Note that DE ,RE , DE,RE are
initially empty and the functions E ,D, E,D are everywhere undefined. As usual,
D and D represent the inverses of E and E. While game G0, which includes
the boxed statements, enforces that E and E be length-preserving permutations,
game G1 dispenses with that requirement (the boxed statements are not included
in G1). A flag bad is initially false and set to true when, in the course of building
E and E, a duplicate domain or range point is initially selected. In G0 these
points are not used (enforcing that the functions are permutations), but in G1
we use them and thus duplicate points can be added to DE , RE , DE, and RE.
A collision is just a pair of equal strings in one of the sets. Note that for DE
and RE , only strings of the same length can collide.

Game G0 exactly simulates E∗ and its inverse while G1 always returns ran-
dom bits. This second statement needs to be justified for the case of a query
M /∈ M (or C /∈ M). Particularly, if the jth query is to encipher M j /∈ M,
then the last s bits returned are Cj

3 = mixR(Cj
6 , M j

7 ). Here Cj
6 is uniformly

selected, and by the definition of an ε(s)-good mixing function, we have that
mixR(Cj

6 ,M j
7 ) is a permutation of Cj

6 . So Cj
3 inherits its distribution. The same

reasoning justifies the distribution of deciphering queries C /∈M. We can there-
fore replace the oracles A queries with the two described games and apply the
fundamental lemma of game playing [5] to get

Adv±prf
E∗ (A) = Pr

[AG0 ⇒ 1
]− Pr

[AG1 ⇒ 1
] ≤ Pr

[AG1 sets bad
]
. (1)

The following lemma captures the bound on the ability of A to set bad.

Lemma 2. Pr
[AG1 sets bad

] ≤ 5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n − 1].
¤

Combining Lemma 2 with Equation 1 implies the theorem statement, and a full
proof of the lemma appears in [25]. Here we informally sketch one of the more
interesting cases for proving the lemma above. In particular, we reason about
the probability that A can set bad by causing a collision in the set DE , which
represents the domain of E . Note that in the full proof in [25], we go through
several game transitions before reasoning about this case—here we do it in the
context of game G1 and thus end up being a bit informal. For simplicity we’ll
just focus on enciphering queries. Suppose that the ith and jth (with i < j)
enciphering queries result in applying E to the same domain point. That is, if
we let Xi and Xj be the bit strings added to DE during queries i and j, then
a collision in DE occurs if Xi = Xj and l ≡ |Xi| = |Xj |. If such a collision
occurs with high probability, then A would be able to distinguish easily. There
are two main cases to consider, based on the lengths of the queried messages M i

and M j . The cases are marked by triangles.

B Suppose that |M i| /∈ M and |M j | /∈ M. Then the two domain points are
Xi = M i

1 || flip1(M i
4) || M i

6 and Xj = M j
1 || flip1(M j

4 ) || M j
6 . Let si = |M i

6|
and sj = |M j

6 | (necessarily we have that |M i| − si = |M j | − sj). We break down
the analysis into two subcases:



• If M i
2 6= M j

2 then M j
4 || M j

5 are selected uniformly and independently from
any random choices made during query i. We have then that flip1(M j

4 )
consists of n − sj randomly selected bits, which will collide with the ap-
propriate n − sj bits of Xi with probability 2−n+s. Furthermore, M j

6 =
mixL(M j

5 ,M j
3 ) where M j

5 is a string of sj random bits. We can apply the
definition of an ε(s)-good mixing function to get that the probability that
M j

6 collides with some other value is at most ε(s). Combining the two prob-
abilities, we see that the probability that Xi = M j

1 || flip1(M j
4 ) || M j

6 is
at most ε(s)/2n−s.

• If M i
2 = M j

2 then we can show that the probability that Xi = Xj is
zero. First consider if s ≡ si = sj . Then we have that M i

4 = M j
4 and

M i
5 = M j

5 . For a collision to occur it must be that M i
1 = M j

1 and M i
6 =

M j
6 . But because of the permutivity of mixL(A, ·), as given by Definition 1

part 1, this last equivalence implies that M i
3 = M j

3 . In turn this means
that M i = M j , which would make query j pointless. But since we disallow
A from making pointless queries, we have a contradiction. Second consider,
without loss of generality, that si < sj . Then we have that Xi can not equal
Xj (recall that |Xi| = |Xj | = l) because flip1 ensures that Xi

[
l − sj

] 6=
Xj

[
l − sj

]
. Thus, in either situation, the probability of a collision is zero.

B Now suppose that |M i| ∈ M and |M j | /∈ M. The two domain points are M i

and Xj = M j
1 || flip1(M j

4 ) || M j
6 . Let sj = |M j

6 |. We have that M j
4 and M j

5

are uniformly selected after the adversary has specified M i (since i < j). Thus,
flip1(M j

4 ) will collide with the appropriate bits of M i with probability 2−n+s.
Since M j

6 = mixL(M j
5 ,M j

3 ) we can apply the definition of a good mixing function.
This gives that the probability of M j

6 colliding with the appropriate sj bits of M i

is at most ε(s). Therefore the probability that M i = Xj is at most ε(s)/2n−s.
If on the other hand |M i| /∈ M while |M j | ∈ M, then we can only apply

similar reasoning if we show that A learns nothing about certain random choices
made in the course of answering query i. We do just that rigorously in the full
proof.

So in the cases above the probability of a collision is no greater than ε(s)/2n−s,
where s ∈ [1 .. n − 1]. Because each query adds one string to DE , we have that
|DE| = q. Thus, the total probability of bad being set due to a collision in the
domain of E is at most (

q

2

)
ε(s)
2n−s

≤ q2 ε(s)
2n−s+1

.

Combining this (via a union bound) with analyses of the other ways in which
bad can be set yields a sketch of the lemma.

The next theorem captures the security of XLS in a complexity-theoretic
setting. It’s proof is by a standard hybrid argument, which utilizes as one step
Theorem 1. See the full version for details [25].



Theorem 2. Fix n and an ε(s)-good mixing function mix. Let E : KE ×M →
M be a cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher. Let E∗ =
XLS[mix, E , E] and let A be an adversary that runs in time t and asks at most q
queries, each of at most µ bits. Then there exists adversaries B and C and
an absolute constant c such that Adv±prp

E∗ (A) ≤ Adv±prp
E (B) + Adv±prp

E (C) +
5q2 ε(s)/2n−s + 4q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1

Adv±prp
E∗ (A) ≤ Adv±prp

E (B) + Adv±prp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cµq log q and asks qB = q queries,
each of length at most µ, and C runs in time tC ≤ t + (q + 1) · TimeE(µ) + cµq
and asks qC ≤ 2q queries, each of length at most n. ¤

7 Supporting Tweaks

A tweakable cipher [15, 16] is a function Ẽ : KE × T ×M→M where KE 6= ∅ is
the key space, T 6= ∅ is the tweak space, and M is the message space. We require
that ẼT

K(·) is a length-preserving permutation for all K ∈ KE and T ∈ T . We
write the inverse of Ẽ as D̃. A tweakable blockcipher is a tweakable cipher with
M = {0, 1}n for some fixed n. Tweakable ciphers are useful tools for building
higher-level protocols. The tweak of a cipher can be used as, for example, a
sector index.

The security of a tweakable cipher is based on indistinguishability of the
scheme and a tweakable random permutation. More formally, we define the fol-
lowing advantages

Adv±p̃rp

Ẽ (A) = Pr
[
K

$←KE : AẼK ,D̃K ⇒ 1
]
− Pr

[
π̃

$← PermT (M) : Aπ̃,π̃−1⇒ 1
]

Adv±p̃rf

Ẽ (A) = Pr
[
K

$←KE : AẼK ,D̃K ⇒ 1
]
− Pr

[
ρ, σ

$← FuncT (M) : Aρ,σ ⇒ 1
]

where the probabilities are over the choice of K or π̃ (resp. ρ, σ) and the coins
used by A. Here PermT (M) is the set of all functions π̃: T ×M → M where
π̃(T, ·) is a length-preserving permutation and FuncT (M) is the set of all func-
tions ρ: T ×M→M where ρ(T, ·) is length-preserving.

XLS and tweaks. The XLS construction works for tweaks. By this we mean
that if the cipher E utilized in XLS is tweakable, then the resulting cipher with
the enlarged message space is also tweakable. More specifically, fix an ε(s)-good
mixing function. If we construct Ẽ∗ = XLS[mix, Ẽ , E] where Ẽ : KE×T ×M→M
is a tweakable cipher and E: KE×{0, 1}n → {0, 1}n is a conventional blockcipher
then the resulting scheme Ẽ∗ is tweakable with tweak space T and enlarged
message space M∗ = M || {0, 1}<n. Here XLS is implicitly changed by adding
the tweak T as a superscript to E on lines 00 and 06 of Fig. 1. The following
theorem statements, which are analogous to Theorem 1 and Theorem 2, establish
the security of XLS with tweaks.



Theorem 3. Fix n and an ε(s)-good mixing function mix. Let M ⊂ {0, 1}≥n,
let T be a nonempty set, and let Ẽ∗ = XLS[mix, PermT (M), Perm(n)]. Then

for any adversary A that asks at most q queries we have that Adv±p̃rf

Ẽ∗ (A) ≤
5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1

Adv±prf
E∗ (A) ≤ 8q2

2n
and Adv±prf

E∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. ¤

To prove this theorem, we can adjust the proof of Theorem 1 as follows. Re-
place E with Ẽ throughout. Modify games G0 and G1 so enciphering and deci-
phering queries take a tweak, and lazily build separate random length-preserving
functions Ẽ for each tweak queried (in G0 they are permutations while in G1
they are just functions). Lemma 2, and its proof, can be modified in the natural
way. See [25] for details. Combining Theorem 1 with a standard hybrid argument
proves the next theorem.

Theorem 4. Fix n and an ε(s)-good mixing function mix. Let Ẽ : KE×T ×M→
M be a tweakable cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher.
Let E∗ = XLS[mix, Ẽ , E] and let A be an adversary that runs in time t and
asks at most q queries, with maximal query length being µ bits Then there ex-
ists adversaries B and C and an absolute constant c such that Adv±p̃rp

Ẽ∗ (A) ≤
Adv±p̃rp

Ẽ (B) + Adv±prp
E (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n− 1], and

so, by Lemma 1

Adv±p̃rp
E∗ (A) ≤ Adv±p̃rp

Ẽ (B) + Adv±prp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cµq log q and asks qB = q queries,
none longer than µ, and where C runs in time tC ≤ t + (q + 1) · TimeẼ(µ) + cµq
and asks qC ≤ 2q queries, each of length at most n. ¤

Note that the concrete security bounds are the same in both the tweaked and
untweaked settings. Intuitively this is because having a tweakable family of per-
mutations is a stronger primitive than a normal family of permutations, and the
adversary might as well just focus its attack on a single tweak.

8 XLS with Ordinary PRPs

If we apply the XLS construction to cipher Ẽ and blockcipher E that are both
secure as (ordinary) pseudorandom permutations (i.e., adversaries are restricted
to chosen-plaintext attacks), then the resulting cipher with expanded message
space is also secure as a PRP. More formally, we define the following advantage

Advp̃rp

Ẽ (A) = Pr
[
K

$←KE : AẼK ⇒ 1
]
− Pr

[
π̃

$← PermT (M) : Aπ̃⇒ 1
]



where the probability is over the random choice of K or π and the random
coins used by A. While the theorems from Section 7 do not imply the security
of XLS using ordinary (tweaked) PRPs, their proofs can be (simplified) in a
straightforward manner to derive the PRP security of XLS as captured by the
next theorem statement.

Theorem 5. Fix n and an ε(s)-good mixing function mix. Let Ẽ : KE×T ×M→
M be a tweakable cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher.
Let E∗ = XLS[mix, E , E] and let A be an adversary that runs in time t and
asks at most q queries, with maximal query length being µ bits Then there ex-
ists adversaries B and C and an absolute constant c such that Advp̃rp

Ẽ∗ (A) ≤
Advp̃rp

Ẽ (B) + Advprp
E (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n− 1], and so,

by Lemma 1

Advp̃rp
E∗ (A) ≤ Advp̃rp

E (B) + Advprp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cµq log q and asks qB = q queries,
none longer than µ, and where C runs in time tC ≤ t + (q + 1) · TimeẼ(µ) + cµq
and asks qC ≤ 2q queries, each of length at most n. ¤

An immediate corollary of the theorem is security of XLS for ordinary, untweaked
PRPs (just set the tweak space T to a single value).
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