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Abstract. The slide attack is applicable to ciphers that can be repre-
sented as an iterative application of the same keyed permutation. The
slide attack leverages simple attacks on the keyed permutation to more
complicated (and time consuming) attacks on the entire cipher.
In this paper we extend the slide attack by examining the cycle struc-
tures of the entire cipher and of the underlying keyed permutation. Our
method allows to find slid pairs much faster than was previously known,
and hence reduces the time complexity of the entire slide attack sig-
nificantly. In addition, since our attack finds as many slid pairs as the
attacker requires, it allows to leverage all types of attacks on the un-
derlying permutation (and not only simple attacks) to an attack on the
entire cipher.
We demonstrate the strength of our technique by presenting an attack
on 24-round reduced GOST whose S-boxes are unknown. Our attack
retrieves the unknown S-boxes as well as the secret key with a time
complexity of about 263 encryptions. Thus, this attack allows an easier
attack on other instances of GOST that use the same S-boxes. When the
S-boxes are known to the attacker, our attack can retrieve the secret key
of 30-round GOST (out of the 32 rounds).

1 Introduction

Most of the modern block ciphers are constructed as a cascade of repeated keyed
components, called rounds (or round functions). The security of such ciphers re-
lies on applying the round function sufficiently many times. This is mainly due
? This work was supported in part by the Israel MOD Research and Technology Unit.

?? The research presented in this paper was supported by the Adams fellowship.



to the fact that most attacks on block ciphers, e.g., differential cryptanalysis [3]
and linear cryptanalysis [16], are statistical in nature and their effectiveness re-
duces as the number of rounds increases. Even non-statistical techniques, such
as the SQUARE attack [7], are also affected by increasing the number of rounds
of the cipher.

There are only few attacks on block ciphers that are independent of the num-
ber of rounds. One of them is the related key attack [1] presented by Biham in
1993. The attack uses encryption under unknown but related keys to derive the
actual values of the keys.

In 1999, Biryukov and Wagner explored the framework of related key at-
tacks and introduced the slide attack [4]. The slide attack is applied against
ciphers that are a cascade of some identical “simple” functions, e.g., Ek = f l

k =
fk ◦ fk ◦ · · · ◦ fk, where fk is a relatively weak keyed permutation. The attacker
uses the birthday paradox to find slid pairs (P1, P2) such that P2 = fk(P1).
Due to the structure of Ek, the corresponding ciphertexts (C1, C2) satisfy that
C2 = fk(C1). Once a slid pair is found, the attacker uses the “simplicity” of
fk and the input/output pairs (P1, P2) and (C1, C2) to attack fk, and thus, to
attack Ek. The attack can be used only if fk is “simple”, i.e., can be broken
using only two known input/output pairs.

In 2000, Biryukov and Wagner presented new variants of the slide attack,
called complementation slide and sliding with a twist [5]. These variants allow
for treating more complex functions in the slide framework. Nevertheless, there
are no widely used ciphers that can be attacked using these techniques.

In addition to these new variants, the authors of [5] presented several tech-
niques aimed at finding several slid pairs simultaneously, thus enabling to use the
attack even if several input/output pairs are required to break fk. One of these
techniques, fully explored by Furuya [9], uses the fact that if (P1, P2) is a slid
pair then (Et

k(P1), Et
k(P2)) are also slid pairs for all values of t. This technique

allows the attacker to transform any known plaintext attack on fk that requires
m known plaintexts to an attack on Ek. The data complexity of the attack is
O(m · 2n/2) adaptively chosen plaintexts, where n is the block size, and the time
complexity of O(2n) applications of the known plaintext attack. Other attacks
on the underlying function, e.g., chosen plaintext attacks, can be also leveraged
to an attack on the entire cipher using the standard transformation to a known
plaintext attack. However, in this case both the data complexity and the time
complexity become very large, since the attack on the underlying function is
applied O(2n) times during the attack on the whole cipher.

In this paper we present a new variant of the slide attack which enables to
find slid pairs much more quickly. In our attack, instead of constructing slid
pairs by the birthday paradox, we use the cycle structures of Ek and fk for the
detection of a large set of slid pairs. Then, we can use these pairs in any attack



on fk, whether it is a known plaintext attack, or if enough pairs are found, a
chosen plaintext attack (or even an adaptive chosen plaintext and ciphertext
attack). Unlike previous attacks, in our attack, the attack on fk is repeated only
once (as the slid pairs are given), no matter what fk is.

The data complexity of our attack is high — it requires almost the entire
codebook. On the other hand, the time complexity is surprisingly low — the first
stage of the attack (finding the slid pairs) takes no more than 2n encryptions,
where n is the block size, while the second stage is a (much faster) attack on fk.
Despite the large data requirements, the attack can be useful, as we demonstrate
in our attack on 24-round reduced GOST with unknown S-boxes.

The block cipher GOST [10] is the Russian Encryption Standard. Since its
publication in 1989 it withstood extensive cryptanalytic efforts. GOST has 64-
bit blocks and keys of 256 bits. The main special feature of GOST is the S-boxes
that were not published. Every industry was issued a different set of secret S-
boxes. An example of a set that leaked is the set used in the Russian banking
industry [19], and few attacks have been published on variants of GOST with
these S-boxes [12, 15, 20]. There are also attacks on several variants of GOST
with unknown S-boxes, but these attacks are either applicable to only a small
number of rounds [20] or to relatively small classes of weak keys [4]. Another
attack retrieves the unknown S-boxes by choosing a key from a set of weak keys
for which it is possible to apply the slide attack [18].

In this paper we apply our technique to devise an attack on GOST reduced to
its 24 first rounds with unknown S-boxes that allows to retrieve both the S-boxes
and the secret key, a total of 768 key bits. The data complexity of our attack is
263 adaptively chosen plaintexts and the time complexity is 263 encryptions. A
known plaintext variant of the attack has data and time complexities of a little
less than 264 encryptions.

A possible application of our attack is by an authorized user that has legiti-
mate access to an instance of 24-round GOST that cannot be reverse engineered.
Such a user can apply our attack to find the unknown S-boxes. As these S-boxes
are shared by an entire industry, such an attack compromises the security of the
entire industry.

When the S-boxes are known, it is possible to apply our attack to 30-round
GOST (out of the 32 rounds), such that it is still faster than exhaustive key
search. In addition, we present a new class of weak keys consisting of 2128 keys,
for which our attack can break the entire GOST with unknown S-boxes with the
same data and time complexities as the 24-round attack.

This paper is organized as follows: In Section 2 we give a brief description of
the related key attacks and the slide attacks. In Section 3 we present our new
technique. In Section 4 we present an attack on 24-round GOST with unknown



S-boxes and on 30-round GOST with known S-boxes. Appendix A outlines a 7-
round truncated differential of GOST with probability 0.494. Finally, Section 5
summarizes this paper.

2 Related-Key Attacks and Slide Attacks

In this section we survey the previous results on related-key attacks. We start
with describing the related-key attacks suggested by Biham [1] and Knudsen [14].
Then, we describe the slide attacks by Biryukov and Wagner [4]. We also present
some of the extensions of the slide attack.

2.1 Related-Key Attacks

Related-key attacks, introduced in [1, 14], are attacks exploiting related-key
plaintext pairs. The main idea behind the attack is to find instances of keys
for which the encryption processes deploy the same permutation (or almost the
same permutation). To illustrate the technique, we shortly present the attack
from [1].

Consider a variant of DES in which all the rotate left operations in the key
schedule algorithm are by a fixed number of bits.1 For any key K there exists
another key K̂ such that the round subkeys KRi, K̂Ri produced by K and K̂,
respectively, satisfy:

KRi+1 = K̂Ri, for i = 1, . . . , 15.

For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P2 = fKR1(P1),
where fsk(P ) denotes one round DES encryption of P under the subkey sk, then
the corresponding ciphertexts, C1 and C2, respectively, satisfy C2 = f

K̂R16
(C1).

Given such a pair of plaintexts (called in the sequel “a related-key plaintext
pair”), the subkeys KR1 and K̂R16 can be easily extracted [1]. Due to the
Feistel structure of DES, the related-key plaintext pairs can be detected easily.
Therefore, this attack can be applied using only 216 chosen plaintexts encrypted
under K and 216 chosen plaintexts encrypted under K̂, with a time complexity
of 217 encryptions.

In the more general case, the related-key attack has three parts: Obtaining
related-key plaintexts, identifying the related-key plaintext pairs, and using them
to deduce the key. In many cases, identifying the related-key plaintext pairs
is best achieved by assuming for each candidate pair that it is a related-key
plaintext pair, and then using it as an input for the key recovery phase of the
1 Such a variant was proposed by Brown and Seberry [6].



attack. In other cases, the round functions’ weaknesses allow the attacker to
identify these pairs easily.

2.2 Slide Attacks

When a cipher has self-related keys, i.e., it can be written as Ek = f l
k = fk ◦

fk ◦ · · · ◦ fk, then it is susceptible to a variant of the related-key attack called
the slide attack [4]. In this case, it is possible to apply the related-key attack
to the cipher with K = K̂, thus eliminating the key requirement of having two
keys. The attacker looks for a slid pair, i.e., two plaintexts (P1, P2) such that
P2 = fk(P1). In this case, the pair satisfies C2 = fk(C1) as well. When the
round function fk is simple enough, it is possible to use these two pairs in order
to deduce information about the key.

In the slide attack the attacker obtains enough plaintext/ciphertext pairs to
contain a slid pair, and has to check for each possible pair of plaintexts whether
it is a slid pair by applying the attack on fk. When dealing with a general block
cipher this approach requires O(2n/2) known plaintexts and O(2n) applications
of the attack on fk, where n is the block size. For Feistel block ciphers, the attack
can be optimized using O(2n/4) chosen plaintexts and O(1) applications of the
attack. Note that as in the original related-key attacks, the main drawback of
this approach is that the attack can be used only if fk can be broken using only
two known input/output pairs, i.e., given one slid pair.

In 2000, Biryukov and Wagner [5] presented two variants of the slide attack,
named complementation slide and sliding with a twist. These variants allow for
treating more complex functions in a slide attack. Nevertheless, there are no
widely used ciphers that can be attacked using these techniques.

The authors of [5] also presented several techniques aimed at finding several
slid pairs simultaneously, enabling to use the attack even if several input/output
pairs are needed for attacking fk. One of these techniques, fully explored by
Furuya [9], uses the fact that when (P1, P2) is a slid pair then (Et

k(P1), Et
k(P2))

are also slid pairs for all values of t. This allows the attacker to transform any
known plaintext attack on fk that requires m known plaintexts to an attack
on Ek with a data complexity of O(m · 2n/2) adaptively chosen plaintexts. The
time complexity of this approach is O(2n) applications of the known plaintext
attack on fk. It is worth mentioning that the technique can be easily improved
when fk is one Feistel round, for which O(2n/4) chosen plaintexts and O(m)
adaptive chosen plaintexts are sufficient to achieve m slid pairs, which are easily
identified.

This approach can be also used if there is only a chosen plaintext attack on
fk. The attacker can repeatedly generate slid pairs until the “plaintext” parts of
the slid pairs contain a set of plaintexts satisfying the data requirements of the



attack on fk. However, the attack still requires O(2n) applications of the attack
on fk (unless there is a special property that allows easy identification of the
slid pairs).

3 Our New Technique

Before we start our discussion, let us recall the notations used in the previous
section. In our discussion, Ek = f l

k is a block cipher composed of l applications
of the same keyed permutation fk. The attacker looks for a slid pair, i.e., a pair
of plaintexts (P1, P2) such that P2 = fk(P1).

3.1 Studying the Cycle Structure

As noted earlier, in the previous variants of the slide attack there was no imme-
diate indication which of the possible pairs is a slid pair (for a general cipher).
Thus, an attacker had to try all possible pairs as candidates.

In our attack we use the cycle structure of Ek and of fk to find a large amount
of slid pairs. We emphasize that the attack uses only the cycle structure and is
independent of any other properties of the functions Ek and fk. As a result, the
attacker can detect the slid pairs even if there is no efficient attack on fk. After
finding the slid pairs, the attacker can use them to mount any attack she wishes
on fk, in order to retrieve the key material used in fk.

First we recall several facts regarding the cycle structure of permutations that
are used in our attack. Let g : GF (2n) → GF (2n) be a random permutation.
For every x ∈ GF (2n) we denote CycleLength(x) = min{k > 0|gk(x) = x}.
The lengths of the cycles of g are close to be uniformly distributed [8]. The
expectation of the cycle length is E[CycleLength(x)] = 2n−1. Therefore, we
expect that the largest cycle Cyclemax has a size of O(2n−1) and for every
x ∈ GF (2n), Pr[x ∈ Cyclemax] ≈ 1/2. Moreover, we expect that the second
largest cycle has a size of O(2n−2), and generally, the i-th largest cycle has a
size of O(2n−i). We note that for most of the permutations there are about n
cycles that are distributed according to a Poisson distribution (confirming the
above claims for most of the cases) [11].

The main observation used in our attack is the following: Let P be a ran-
domly chosen plaintext. We consider the cycles of P with respect to fk and
Ek, denoted by Cyclefk

(P ) and CycleEk
(P ), respectively. Denote the length of

Cyclefk
(P ) by m1, i.e., m1 = min{t > 0|f t

k(P ) = P}. Similarly, denote the
length of CycleEk

(P ) by m2. As Ek = f l
k the relation Em2

k (P ) = P can be writ-
ten as f l·m2

k (P ) = P . Thus, from the definition of cycle lengths m1|l ·m2. On the



other hand, m2 = min{t > 0|Et
k(P ) = P} = min{t > 0|f (t·l) mod m1

k (P ) = P}.
Combining these two statements, we get m2 = min{t > 0|tl = 0 mod m1}. We
conclude that

m2 = m1/gcd(m1, l).

In particular, if gcd(m1, l)=1, then m1 = m2.

If gcd(m1, l) = 1 we can find 1 ≤ d1 ≤ l− 1 and d2 such that d1 ·m1 = (−1)
(mod l) = d2 · l− 1 using Euclid’s extended algorithm. These two values d1 and
d2 satisfy both fd1·m1+1

k (P ) = fk(P ) and fd1·m1+1
k (P ) = fd2·l

k (P ) = Ed2
k (P ).

Therefore, the pair (P, Ed2
k (P )) is a slid pair for E. Moreover, as already observed

in [5], the pairs (Et
k(P ), Ed2+t

k (P )) are also slid pairs for every t.

When gcd(m1, l) 6= 1, there is no general way to identify slid pairs as this
case may be the product of several reasons. For example, when there is only one
cycle (of size 2n), then the slid counterpart of any given plaintext P is found in
the cycle, but in an unknown location (or more precisely, any information that
can be used to find the slid pair in the cycle, can be used without the need to
construct the cycle).

In other cases, using the cycle structure can help a little bit. Assume that
there are many cycles of different lengths, but a small group of cycles with the
same size. It is very likely that this group contains slid pairs with one element
in one cycle, and its slid counterpart in the other cycle. However, even if this is
the case, the order between the different cycles, or even which is the counterpart
of a given plaintext, is not necessarily disclosed by studying the cycle structure.

3.2 Using the Cycles in the Slide Attack

Our attack starts at some random plaintext P0. We apply Ek to it repeatedly
until we get P0 once again. When this happens, we have identified a cycle and
the value of CycleLengthEk

(P0). Note that the attack cannot obtain the cycle
of fk, nor its length.

However, when the corresponding values m1 and l satisfy gcd(m1, l) = 1 our
attack can find the cycle length of fk, as m1 = m2. Under this assumption we
can calculate d2, and then we get m2 slid pairs in the cycle of Ek. These slid
pairs can be used in any attack on fk.

For a random value of x, E[CycleLength(x)] = 2n−1, thus, we expect to
get about 2n−1 slid pairs. This amount is sufficient for most possible attacks,
including adaptive chosen plaintext and ciphertext attacks. In case the block
ciphers (fk or Ek) have a different behavior, they can be easily distinguished
from random permutations using this property.



In our attack, we assume that m1 = m2. In case this assumption is wrong,
our attack fails. The probability of a failure for a random permutation fk is
1−ϕ(l)/l, where ϕ(l) = |{1 ≤ d ≤ (l−1) : gcd(d, l) = 1}| is the Euler’s function.
In this case, we start with another plaintext P1 6∈ CycleEk

(P0) and repeat the
attack. If the attack fails again, we take a new plaintext P2 etc. Assuming that
all the cycles lengths are independent of each other, after t applications of the
attack, the total success probability is 1 − (1 − ϕ(l)/l)t. This assumption is
quite appropriate for random permutations, as long as t is smaller than the total
number of cycles.

The data complexity of the attack is very large — the attack requires O(2n−1)
adaptively chosen plaintexts. However, as we shall see in the attack on GOST,
there are scenarios in which such an attack can be used despite the large data
requirements.

We note that the attack can be transformed into a known plaintext attack
that requires almost the entire code book. In that case, using birthday arguments
we expect that few long cycles are found, suggesting a large amount of slid pairs.

4 Several Attacks on Reduced Round GOST

In this section we present a slide attack on 24-round GOST. The data complexity
of the attack is about 263 adaptive chosen plaintexts or 264 known plaintexts
(as required by our technique described in Section 3). The time complexity of
the best attack we suggest is dominated by the time required to encrypt the
plaintexts.

4.1 A Short Description of GOST

GOST [10] is a 64-bit block and 256-bit key cipher with a Feistel structure of 32
rounds. The round function accepts an input and a subkey of 32 bits each. The
input and the subkey are added (modulo 232), and the outcome is divided into
eight groups of four bits each. Each such group enters a different S-box, where the
least significant group enters S1, and the most significant group enters S8. The
actual S-boxes that are used are kept secret, and are assigned by the government
to a given set of users in each industry.2 The outputs of all S-boxes are combined
to 32 bits, which are then rotated to the left by 11 bits.

2 We note that according to the published documentation [10], the S-boxes are not
necessarily permutations. Hence, an S-box can be modeled as an unknown 64-bit
key.



The key schedule algorithm takes the 256-bit key and treats it as eight 32-bit
words, i.e., K = K1, . . . ,K8. The subkey SKr of round r is

SKr =
{

K(r−1) mod 8+1 r ∈ {1, . . . , 24};
K33−r r ∈ {25, . . . , 32}.

Thus, the 24 rounds of GOST we attack can be described as f3
k , where fk is the

first eight rounds of GOST.

There are few results on GOST with the S-boxes used in the banking indus-
try: A differential attack on 13-round GOST requiring 251 chosen plaintexts is
described in [20] along with a related-key attack on 21-round GOST that requires
256 related-key chosen plaintexts. A 24-round related-key attack (whose actual
complexity and success rate depend on the S-boxes used) is described in [12]. A
related-key attack on the full GOST with a data complexity of 235 related-key
chosen plaintexts and a time complexity of 236 encryptions is presented in [15].
Only few results on GOST when the S-boxes are unknown were published before:
A related-key distinguisher for the entire cipher that requires two related-key
chosen plaintexts is presented in [15]. In [5] a slide attack on a 20-round variant of
GOST in which the key additions are replaced by XOR with the key is described,
along with a weak key class of 2128 keys that exists for that variant. A weak key
class consisting of 232 keys identified using a slide attack is presented in [9]. A
chosen-key attack with a key in the weak key class that retrieves the unknown S-
boxes is described in [18]. The attack uses 16·232 chosen plaintexts and has a run-
ning time of 211 encryptions. The attack is a slide attack (that can be improved to
an attack that requires 217 chosen plaintexts), and the key can be any of the 232

values K = (K∗,K∗,K∗,K∗,K∗,K∗,K∗,K∗). However, we note that it is very
easy to protect GOST against this attack, by preventing the usage of such keys.

4.2 Description of the Attack

As noted earlier, we attack 24 rounds of GOST for which Ek = f3
k . Our attack

first finds a large set of slid pairs (Pa, Pb) and their corresponding ciphertexts
(Ca, Cb) such that fk(Pa) = Pb and fk(Ca) = Cb. These slid pairs are found
using the algorithm suggested in Section 3. Once these slid pairs are found,
we apply a differential attack to fk. We attack eight rounds of GOST using the
following seven round differential that is independent of the actual S-boxes used:

P ′ = 00 01 00 00 00 00 00 00x → T ′ =?? ?? ?? ?? ?U8 L9? ?? ??

where ? denotes an unknown value, L9 ∈ {0, 1x, . . . , 7x}, and U8 ∈ {0x, 8x}. The
complete description of the differential is presented in Figure 1 in Appendix A.
We note that as the differential is independent of the actual S-boxes used, we
can apply the attack to any instance of GOST.



Roughly speaking, the attack takes pairs of slid pairs (Pa, Pb) and (Pc, Pd)
for which the difference Pa ⊕ Pc equals the input difference of the differential,
i.e., pairs for which Pa ⊕ Pc = P ′. As Pb is the “encryption” of Pa through fk

and Pd is the “encryption” of Pc through fk, then we treat the two plaintexts
Pb and Pd, as the ciphertexts in a differential attack on fk. Once enough pairs of
slid pairs are encountered, we partially decrypt the “ciphertexts” to find whether
they satisfy the differential.

For the right guess of S-boxes and subkeys, the probability that a pair with
input difference P ′ has an output difference T ′ is 0.494. This is a lower bound
on the probability that the difference in the four bits 23–26 of the right half (left
half after the swap operation) is zero. For a randomly selected pair of values
this probability is 2−4. The way to check whether the differential holds, is to
partially decrypt the pairs one round, and check whether the difference in these
bits is 0 or not.

Our attack on GOST uses the following observations:

Observation 1 Each cycle suggests many pairs that can be used. Thus, we can
impose more conditions on the ciphertexts we analyze, in order to reduce the
time complexity of the attack.

Observation 2 In order to determine the difference in bits 23–26 of the right
half in round 7, it is sufficient to determine the output of S4 in round 8 (bits 12–
15).

Observation 3 It is possible to consider only ciphertexts that have predeter-
mined inputs to the relevant S-box.

Based on these observations, the attack algorithm is the following:

1. Obtain about 243.5 slid pairs (Pa, Pb) such that fk(Pa) = Pb.
2. Identify 222 pairs of slid pairs (Pa, Pb) and (Pc, Pd) such that Pa ⊕ Pc = P ′.
3. Consider the pairs of slid pairs ((Pa, Pb), (Pc, Pd)) such that

(a) The value of the right half of Pb is X0 in bits 8–15, (X is the value that
enters S4 in round 8), where X ∈ {0, . . . , Fx} is a predetermined value.

(b) The value of the right half of Pd is Z0 in bits 8–15, (Z is the value that
enters S4 in round 8), where Z ∈ {0, . . . , Fx}\{X} is a predetermined
value.

4. For each remaining pair ((Pa, Pb), (Pc, Pd)) of slid pairs:
(a) Guess the four bits leaving S4 in round 8 for the pair (Pa, Pb) (assuming

that the value is the same for all the examined pairs), and guess the four
bits leaving S4 in round 8 for the pairs (Pc, Pd) (assuming that the value
is the same for all the examined pairs).



(b) Partially decrypt Pb and Pd through S4, and check whether the difference
in round 7 in bits 23–26 of the left half is 0.

(c) If the difference in these bits after the partial decryption is 0, increment a
counter that corresponds to the specific guesses made (a total of 4+4=8
bits).

5. Output all the guesses whose corresponding counter has a value greater than
19.

4.3 Analysis of the Attack

For a wrong guess of the S-boxes outputs there is probability of 2−4 that a
partially decrypted pair has zero difference in bits 23–26, thus incrementing the
counter. For the correct guess, this probability is about 0.494.

Of the 243.5 slid pairs, we expect that (243.5)2/2 ·2−64 = 222 pairs of slid pairs
have “plaintext” difference of P ′. Out of these pairs, about 222 ·(2−8)2 = 26 pairs
are analyzed in Step 4 (due to the 8-bit condition on each of the ciphertexts).

In Step 4(a) and Step 4(b) the ciphertexts are partially decrypted through
round 8. If the actual inputs to S4 in round 8 are fixed, then so do their outputs
that compose the four output bits that are needed for the partial decryption.
Thus, we choose a value for bits 12–15 (those entering S-box S4) for each of
the two pairs, i.e., we require that one ciphertext has some arbitrary value X
in the S-box and that the second ciphertext has some other arbitrary value Z,
where X, Z ∈ {0, . . . , Fx}. Setting these conditions does not necessarily imply
that in all pairs the ciphertexts have the same four output bits (four from each
ciphertext) due to the carry that the key addition may cause. Thus, we also
require that in all the ciphertexts bits 8–11 have the value zero, and this reduces
the probability that a carry changes the values entering S-box S4.3

For a wrong guess, the expected value of the counter is 26 ·2−4 = 4, while for
the right guess it is 26 · 0.494 = 31.6. There are 28 guesses, and the probability
that one of them has a counter whose value is greater than 19 is less than 2−22,
while the correct guess is suggested with probability of 1− 2−7.6. We note that
the attack returns two outputs of the S-box S4 in round 8. Using more pairs
with different inputs to S4, enables mapping all the outputs of S4, up to the 16
combinations of key and S-box that are all equivalent (as the key bits are used to
decide on the actual entries that lead to the output). The exact combination can
be identified using different entries to the S-box and using auxiliary techniques.

3 There is a difference in the carry when the four key bits that enter S3 are all 1’s,
and in addition there is a difference in the carry operation in the most significant
bit that enters S2. If the attack fails, we deduce that this is the case, and we can
continue to impose conditions on the ciphertexts, until either the attack succeeds,
or we obtain the 12 least significant bits of K8.



We conclude that our attack uses 243.5 slid pairs. The time complexity of
Step 4 in the attack is less than 28 24-round GOST encryptions for the retrieval
of 8 bits of information about the key and S4. In this case, the time complexity
of the attack is dominated mostly by the first step of the attack, i.e., finding the
slid pairs, a step that requires 263 encryptions.

After finding the entire S4 (up to the exact order, due to the addition with
the key), we can use a rotated version of the differential (that may have a slightly
smaller probability) to retrieve other S-boxes. The remaining key words can be
found using auxiliary techniques (e.g., using the differential in the decryption
direction).

As the attack finds the S-boxes along with the key it can be used by an
authorized user who wishes to find the S-boxes used in a given implementation
of GOST. In this case, the attacker can even know the encryption key (which
can help in the process of the attack), and retrieve the unknown S-boxes in time
complexity of 263 encryptions (which as a valid user of GOST he can achieve).
We note that the work of Saarinen in [18] addresses the same problem for a
fixed key for which the slide properties are easily applied. However, it is easy
to protect GOST from this attack by preventing the usage of keys of the form
(k, k, k, k, k, k, k, k).

We note that the data complexity is about 263 adaptive chosen plaintexts,
or about 264− 218 known plaintexts. In the latter case, it is expected that three
cycles of expected lengths of at least 243.5 values are encountered. There is a
high probability that one of these three cycles can be used in our attack (if the
gcd of the cycle length with 3 is 1).

4.4 Other Results on GOST

Our attack can be extended for two cases: a weak key class of the full GOST
that can be detected even when the S-boxes are unknown, and a 30-round attack
when the S-boxes are known.

Our weak key class has 2128 keys of the form K1,K2,K3,K4,K4,K3, K2,K1,
i.e., K9−i = Ki. Thus, the last eight rounds define the same permutation as
the first eight rounds. Hence, it is possible to treat the full GOST of this form
as GOSTK = f4

K , and apply our attack (even when the S-boxes are unknown).
We note that this weak key class was suggested in [5] for a weakened variant of
GOST where the key is XORed and not added.

The attack on 30-round GOST with known S-boxes is of the following nature:

– Ask for almost the entire code book



– For each guess of K3,K4, . . . , K8:
• Partially decrypt all the ciphertexts through rounds 30–25
• Apply a variant of the 24-round attack described earlier
• If the attack succeeds, output the key guess of K3, . . . ,K8

– Exhaustively search over all possible values of K1,K2

The time complexity of this attack is equivalent to partially decrypting each
ciphertext 2192 times. As the attack requires almost the entire code book, then
the actual time complexity of the attack is almost 2256 partial decryptions which
are equivalent to 2253.7 30-round GOST encryptions.

5 Summary and Conclusions

In this paper we have presented a new variant of the slide attack. Our attack
uses the relation between the cycle structure of the entire cipher and that of
the underlying permutation, and allows to detect a large amount of slid pairs
in an efficient way. These pairs are then used to mount various attacks on the
underlying permutation.

The new technique allows us to attack 24-round GOST, even when the S-
boxes are unknown, and to retrieve both the key and the unknown S-boxes.
When the S-boxes are known, this attack can be extended to up to 30-round
GOST. In addition, for a weak key class of GOST containing 2128 weak keys,
the attack is applicable against the full GOST with unknown S-boxes. All the
attacks have a data complexity of a little less than 264 known plaintexts (or 263

adaptively chosen plaintexts) with time complexity of 264 (besides the 30-round
attack whose time complexity is 2253.7). The 24-round attack reveals the S-boxes
used in GOST, and thus it can be used by an authorized user who wishes to
declassify the S-boxes he was given.
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A A 7-Round Differential of GOST with Unknown
S-boxes

The input difference of the differential is of the form P ′ = 00 01 00 00 00 00 00 00x.
The zero difference enters the first round and has a zero output difference. In the
second round a difference of 00 01 00 00x enters the round function. As there is
an addition, with probability 15/16 the differences in the carry of the addition
operation (if there are such) do not affect other S-boxes. Thus, there is a non-
zero input difference to one of the S-boxes of round 2, while all the rest have a
zero input difference. The differential evolves, and after seven rounds there are
four bits whose difference is known to be zero.



P ′ = 00 01 00 00 00 00 00 00x

A′ = 00 00 00 00 a′ = 00 00 00 00 p = 1

B′ = L1U1 00 00 00 b′ = 00 01 00 00x p = 15/16

ROL11(00 0? 00 00)

C′ = 00 00 0L2 ?U2 c′ = L1U1 00 00 00 p = 1

ROL11(?? 00 00 00)

D′ = L4U4 L3? ?U3 00 d′ = 00 01 0L2 ?U2 p = 45/64

ROL11(00 0? 0? ??)

E′ =?? ?U6 0L6 ?? e′ = L5U5 L3? ?U3 00 p = 1

ROL11(?? ?? ?? 00)

F ′ =?U7 L8? ?? ?? f ′ =?? ?U1 0L7 ?? p = 3/4

ROL11(?? ?? 0? ??)

G′ =?? ?? ?? ?? g′ =?U8 L9? ?? ?? p = 1

ROL11(?? ?? ?? ??)

T ′ =?? ?? ?? ?? ?U8 L9? ?? ??

F

F

F

F

F

F

F

? denotes an unknown value.
Ui ∈ {0, 8x}, Li ∈ {0, 1x, . . . , 7x}, U1 ∈ {1x, 9x}

Fig. 1. A 7-Round Differential of GOST with Probability 15
16
· 45

64
· 3

4
= 0.494.


