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Abstract. In this paper we propose a new block cipher, DESL (DES
Lightweight), which is based on the classical DES (Data Encryption
Standard) design, but unlike DES it uses a single S-box repeated eight
times.1 On this account we adapt well-known DES S-box design criteria,
such that they can be applied to the special case of a single S-box. Fur-
thermore, we show that DESL is resistant against certain types of the
most common attacks, i.e., linear and differential cryptanalyses, and the
Davies-Murphy attack. Our hardware implementation results of DESL
are very promising (1848 GE), therefore DESL is well suited for ultra-
constrained devices such as RFID tags.
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1 Introduction

A flawless and remote identification of products, people or animals plays an
important role in many areas of daily life. For example, farmers often have
to keep track of the fertility rate of their cattle and hence, identify calf-bearing
cows. Other examples are the permanent identification of industrial goods, which
improves the supply chain in factories and countersteers thievery, or the need of
reliable access control devices, e.g. in form of ski passes or train tickets.

An automatic identification can be achieved with RFID (Radio Frequency
Identification) tags. Basically, RFID tags consist of a transponder and an an-
tenna and are able to remotely receive data from an RFID host or reader device.
In general, RFID tags can be divided into passive and active devices: active
tags provide their own power supply (i.e. in form of a battery), whereas passive
tags solely rely on the energy of the carrier signal transmitted by the reader
device. As a result, passive RFID devices are not only much less expensive, but
also require less chip size and have a longer life cycle [Fin03]. Our proposed
DESL algorithm and its low-power, size-optimized implementation aims at very
constrained devices such as passive RFID tags.
1 Part of this work has already been presented at RFIDSec ’06, a non-proceeding

workshop.



Very often it is desired to use RFID tags as cryptographic tokens, e.g. in
a challenge response protocol. In this case the tag must be able to execute a
secure cryptographic primitive. Contactless microprocessor cards [RE02], which
are capable to execute cryptographic algorithms, are not only expensive and,
hence, not necessarily suited for mass production, but also draw a lot of current.
The high, non-optimal power consumption of a microprocessor can usually only
be provided by close coupling systems, i.e. a short distance between reader and
RFID device has to be ensured [Fin03]. A better approach is to use a custom
made RFID chip, which consists of a receiver circuit, a control unit2, some kind of
volatile and/or non-volatile memory and a cryptographic primitive. In [FWR05],
Feldhofer et al. propose a very small AES implementation with 3400 gates, which
draws a maximum current of 3.0µA @ 100kHz. Their AES design is based on
a byte-per-byte serialization, which only requires the implementation of a single
S-box [DR02] and achieves an encryption within 1032 clock cycles (= 10.32ms @
100kHz). Unfortunately, the ISO/IEC 18000 standard requires that the latency
of a response of an RFID tag does not exceed 320µs, which is why Feldhofer et
al. propose a slightly modified challenge-response protocol based on interleaving.

The remainder of this work is organized as follows: In Section 2 we stress
why DES was chosen as the basis for our new family of lightweight algorithms,
which we present in Section 3. Subsequently, in Section 4 we show the design
criteria for DESL and its lightweight implementation in Section 5. Finally, in
Section 6 we summarize our results and conclude this work.

2 Design Considerations for Lightweight Block Ciphers

The pretext of our algorithm family is the desire to find a design for a cipher for
extremely lightweight applications such as passive RFIDs. Thus far, there have
been two approaches for providing cryptographic primitives for such situations:
1) Optimized low-cost implementations for standardized and trusted algorithms,
which means in practice in essence block ciphers such as AES, see e.g., [FDW04].
And 2) design new ciphers with the goal of having low hardware implementation
costs (see, e.g., the profile 2 algorithms of the eStream project). Even though
both approaches are valid and yielding results, we believe both are not optimum.
The problem with the first approach is that most modern block ciphers were
primarily designed with good software implementation properties in mind, and
not necessarily with hardware-friendly properties. We strongly believe that this
was the right approach for today’s block ciphers since on the one hand the vast
majority of algorithms run in software on PCs or embedded devices, and on the
other hand silicon area has become so inexpensive that very high performance
hardware implementations (achieved through large chip area) are not a problem
any more. However, if the goal is to provide extremely low-cost security on
devices where both of those assumptions do not hold, one has to wonder whether
modern block ciphers are the best solution.

2 i.e. a finite state machine



There are also problems with the second approach, designing low cost ciphers
anew. First it is well known that it is painfully difficult to design new ciphers
without security flaws. Furthermore, as can be seen from the eStream profile
2 algorithms (which have low-cost hardware properties as a main objective), it
is far from straightforward to design a new cipher which has a lower hardware
complexity than standard DES.

It is fair to claim that an optimum approach would be to have a well inves-
tigated cipher, the design of which was driven by low hardware costs. The only
known cipher to this respect is the Data Encryption Standard, DES. (The obvi-
ous drawback of DES is that its key length is not adequate for many of today’s
applications, but this will be addressed in Section 3 below.) The promise that
DES holds for lightweight hardware implementation can easily be seen by the
following observation. If we compare a standard, one-round implementation3 of
AES and DES, the latter consumes about 6% (!) of the logic resources of AES,
while having a shorter critical path [VHVM88],[ASM01]. Of course, DES uses a
much shorter key so that a direct comparison is not completely accurate, but the
time-area advantage of more than one order of magnitude gives an indication.
We would also like to stress that it is not a coincidence that DES is so efficient
in hardware. DES was designed in the first half of the 1970s and the targeted
implementation platform was hardware. However, by today’s standard, digital
technology was extremely limited in the early 1970s. Hence, virtually all compo-
nents of DES were heavily driven by low hardware complexity: bit permutation
and small S-Boxes.

3 DESL and DESXL: Design Ideas and Security
Consideration

The main design ideas of the new cipher family, which are either original DES
efficiently implemented or a variant of DES, are:

1. Use of a serial hardware architecture which reduces the gate complexity.
2. Optionally apply key-whitening in order to render brute-force attacks im-

possible.
3. Optionally replace the 8 original S-Boxes by a single one which further re-

duces the gate complexity.

If we make use of the first idea, we obtain a lightweight implementation of
the original DES algorithm which consumes about 35% less gates than the best
known AES implementation [FWR05]. To our knowledge, this is the smallest
reported DES implementation, trading area for throughput. The implementation
requires also about 86% fewer clock cycles for encrypting of one block than the
serialized AES implementation in [FWR05](1032 cycles vs. 144) which makes it
easier to use in standardized RFID protocols. However, the security provided
is limited by the 56 bit key. Brute forcing this key space takes a few months
3 i.e. one plaintext block is encrypted in one clock cycle



and hundreds of PCs in software, and only a few days with a special-purpose
machine such as COPACOBANA [KPP+06]. Hence, this implementation is only
relevant for application where short-term security is needed, or where the values
protected are relatively low. However, we can imagine that in certain low cost
applications such a security level is adequate.

In situation where a higher security level is needed key whitening, which we
define here as follows:

DESXk.k1.k2(x) = k2⊕DESk(k1⊕ x)

can be added to standard DES, yielding DESX. The bank of XOR gates and
registers increase the gate count by about 14%4. The best known key search at-
tack uses a time-memory trade-off and requires 2120 time steps and 264 memory
locations, which renders this attack entirely out of reach. The best known math-
ematical attack is linear cryptanalysis [Mat94]. Linear cryptanalysis requires
about 243 chosen ciphertext blocks together with the corresponding plaintexts.
At a clock speed of 500 kHz, our DESX implementation will take more than 80
years, so that analytical attacks do not pose a realistic threat. Please note that
parallelization is only an option if devices with identical keys are available.

In situations where extremely lightweight cryptography is needed, we can
further decrease the gate complexity of DES by replacing the eight original S-
Boxes by a single new one. This lightweight variant of DES is named DESL and
has a brute-force resistance of 256. In order to strengthen the cipher, key whiten-
ing can be applied yielding the cipher DESXL. The crucial question is what the
strength of DESL and DESXL is with respect to analytical attacks. We are fully
aware that any changes to a cipher might open the door to new attacks, even if
the changes have been done very carefully and checked against known attacks.
Hence, we believe that DESL (or DESXL) should primarily not be viewed as
competitors to AES, but should be used in applications where established algo-
rithms are too costly. In such applications which have to trade security (really:
trust in an algorithm) for cost, we argue that it is a cryptographically sounder
approach to modestly modify a well studied cipher (in fact, the world’s best
studied crypto algorithm), rather than designing a new algorithm altogether.

4 Design Criteria of DESL

In this section we describe how a variant of DES with a single S-box can be made
resistant against the differential, linear, and Davis-Murphy attack. The work
is based on the original design criteria for DES as published by Coppersmith
[Cop94] and the work of Kim et al. [KPL93], [KLPL94], [KLPL95] where several
criteria for DES type S-boxes are presented to strengthen the resistance against
the above mentioned attacks.

Coppersmith states the following eight criteria as the ”only cryptographically
relevant” ones for the DES S-boxes (see [Cop94]).
4 This number only includes additional XOR gates, because we assume that all keys

have to be stored at different memory locations anyway.



(S-1) Each S-box has six bits of input and four bits of output.
(S-2) No output bit of an S-box should be too close to a linear function of the

input bits.
(S-3) If we fix the leftmost and rightmost input bits of the S-box and vary the

four middle bits, each possible 4-bit output is attained exactly once as the
middle input bits range over their 16 possibilities.

(S-4) If two inputs to an S-box differ in exactly one bit, the outputs must differ
in at least two bits.

(S-5) If two inputs to an S-box differ in the two middle bits exactly, the outputs
must differ in at least two bits.

(S-6) If two inputs to an S-box differ in their first two bits and are identical in
their last two bits, the two outputs must not be the same.

(S-7) For any nonzero 6-bit-difference between inputs, ∆I, no more than eight of
the 32 pairs of inputs exhibiting ∆I may result in the same output difference
∆O.

(S-8) Minimize the probability that a non zero input difference to three adjacent
S-boxes yield a zero output difference.

4.1 Improved Resistance against Differential Cryptanalysis and
Davis Murphy Attack

The criteria (S-1) to (S-7) refer to one single S-box. The only criterion which
deals with the combination of S-boxes is criterion (S-8). The designers’ goal
was to minimize the probability of collisions at the output of the S-boxes and
thus at the output of the f-function. As a matter of fact, it is only possible to
cause a collision, i.e. two different inputs are mapped to the same output, in
three adjacent S-boxes, but not in a single S-box or a pair of S-boxes due to the
diffusion caused by the expansion permutation. The possibility to have a collision
in three adjacent S-boxes leads to the most successful differential attack based
on a 2-round iterative characteristic with probability 1

234 .
Clearly better than minimizing the probability for collisions in three or more

adjacent S-boxes, is to eliminate them. This was the approach used in [KPL93],
[KLPL94], [KLPL95] and can easily be reached by improving one of the design
criteria.

We replace (S-6) and (S-8) by an improved design criterion similar to the
one given in [KPL93].

Condition 1 If two inputs to an S-box differ in their first bit and are identical
in their last two bits, the two outputs must not be the same.

This criterion ensures that differential attacks using 2-round iterative character-
istics, as the one presented by Biham and Shamir in [BS92], will have all eight
S-boxes active and therefore will not be more efficient than exhaustive search
anymore.

Moreover, the only criterion that refers to more than one S-box, i.e. (S-8),
is now replaced by a condition that refers to one S-box, only. Thus, most of the



security analysis remains unchanged when we replace the eight different S-boxes
by one S-box repeated eight times.

Note that as described by Biham in [BB97] and by Kim et at. in [KLPL95]
this condition also ensures resistance against the Davis Murphy attack [DM95].

4.2 Improved Resistance against Linear Cryptanalysis

To improve the resistance of our variant of DES with only one S-Box against
linear cryptanalysis (LC) is more complex than the protection against the dif-
ferential cryptanalysis. Kim et.al presented a number of conditions that, when
fulfilled by a set of S-boxes, ensure the resistance of DES variants against LC.
However several of these conditions focus on different S-boxes and this implies
that if one wants to replace all eight S-boxes by just one S-box, there are very
tight restrictions to the choice of the S-box. This one S-box has to fulfill all
conditions given in [KLPL95] referring to any S-box.

Let Sb = 〈b, S (x)〉 denote a combination of output bits that is determined
by b ∈ GF(2)4. Then, the Walsh-coefficient SWb (a) for an element a ∈ GF(2)6

is defined by
SWb (a) =

∑

x∈GF(2)6

(−1)〈b,S(x)〉+〈a,x〉. (1)

The probability of a linear approximation of a combination of output bits Sb by
a linear combination a of input bits can be written as

p =
# {x|Sb (x) = 〈a, x〉}

26
. (2)

Combining equations 1 and 2 leads to

p =
SWb (a)

27
+

1
2
.

The linear probability bias ε is a correlation measure for this deviation from
probability 1

2 for which it is entirely uncorrelated. We have

ε =
∣∣∣∣p−

1
2

∣∣∣∣ =
∣∣∣∣
SWb (a)

27

∣∣∣∣ .

Let us denote the maximum absolute value of the Walsh-Transformation by
SWmax. Then clearly

ε ≤
∣∣∣∣
SWmax (a)

27

∣∣∣∣
The smaller the linear probability bias ε is, the more secure the S-box is against
linear cryptanalysis. We defined our criterion (S-2”) by setting the threshold for
SWmax to 28.

Condition 2 |SWb (a)| ≤ 28 for all a ∈ GF(2)6, b ∈ GF(2)4.



Note that this is a tightened version of Condition 2 given in [KLPL95] where
the threshold was set to 32. In the original DES the best linear approximation
has a maximum absolute Walsh coefficient of 40 for S-box S5.

If an LC attack is based on an approximation that involves n S-boxes, under
the standard assumption that the round keys are statistically independent, the
overall bias ε is (see [Mat94])

ε = 2n−1
n∏

i=1

εi

where the values εi are the biases for each of the involved S-box.
A rough approximation of the effort of a linear attack based on a linear

approximation with bias ε is ε−2, thus if we require that such an attack is no
more efficient than exhaustive search we need ε < 2−28.

It can be easily seen that any linear approximation for 15 round DES involves
at least 7 approximations for S-boxes. But as

26
7∏

i=1

εi ≤ 26
7∏

i=1

7
32
≈ 2−9.35

this bound is clearly insufficient.
Thus in order to prove the resistance against linear attack, we have to make

sure that either enough S-boxes are active, i.e. enough S-Boxes are involved
in the linear approximation, or, if fewer S-boxes are active, the bound on the
probabilities can be tightened. In the first case we need more than 23 active
S-boxes as

221

(
SWmax

128

)22

> 2−28 > 222

(
SWmax

128

)23

(3)

For the second case several conditions have been developed in [KLPL94],[KLPL95].
Due to our special constraints we have to slightly modify these conditions. Fol-
lowing [KLPL95] we discuss several cases of iterative linear approximations. We
denote a linear approximation of the F function of DES by

〈I, Z1〉+ 〈K, Z3〉 = 〈O,Z2〉
where Z1, Z2, Z3 ∈ GF(2)32 specify the input, output and key bits used in the
linear approximation.

An n round iterative linear approximation is of the form

〈I1, ·〉+ 〈In, ·〉 = 〈K2, ·〉+ · · ·+ 〈Kn−1, ·〉
and consists of linear approximations for the rounds 2 until n− 1.

Similar as it was done in [KLPL94] it can be shown that a three round
(3R) iterative linear approximation is not possible with a non zero bias, due to
condition 1.

We therefore focus on the case of a 4 and 5 round iterative approximation
only.



4.3 4R Iterative Linear Approximation

A four round iterative linear approximation consists of two linear approximations
for the F function of the second and third round. We denote these approxima-
tions as

A : 〈I2, Z1〉+ 〈K2, Z3〉 = 〈O2, Z2〉
B : 〈I3, Y1〉+ 〈K3, Y3〉 = 〈O3, Y2〉

In order to get a linear approximation of the form

〈I1, ·〉+ 〈I4, ·〉 = 〈K2, ·〉+ 〈K3, ·〉
Using O2 = I1 + I3 and O3 = I2 + I4 it must hold that

Z2 = Y1 and Z1 = Y2

The 15 round approximation is

−AB −BA−AB −BA−AB

If the number of S-boxes involved in the approximation of A is a and for B is b
we denote by A = (a, b). First assume that A = (1, 1). Due to Z2 = Y1 and the
property of the P-permutation, which distributes the output bits of one S-box
to 6 different S-Boxes in the next round, it must hold that |Y1| = |Z2| = 1. For
the same reason we get |Z1| = |Y2| = 1. To minimize the probability of such an
approximation we stipulate the following condition

Condition 3 The S-box has to fulfill SWb (a) ≤ 4 for all a ∈ GF(2)6, b ∈ GF(2)4

with wt(a) = wt(b) = 1.

This condition is comparable to Condition 4 in [KLPL95], however, as we only
have a single S-box, we could not find a single S-box fulfilling all the restrictions
from condition 4 in [KLPL95]. If the S-box fulfils condition 3 the overall bias for
the linear approximation described above is bounded by

ε ≤ 29

(
4

128

)10

< 2−40.

As this is (much) smaller than 2−28 this does not yield to a useful approximation.
Assume now that A = (1, 2) (the case A = (2, 1) is very similar). If B involves

two S-boxes we have |Y1| = |Y2| = 2 and thus |Y2| = |Z1| = 2. In particular for
both S-boxes involved in B Condition 3 applies which results in a threshold

ε ≤ 214

(
4

128

)10 (
28
128

)5

< 2−46

for the overall linear bias.
Next we assume that A = (2, 2) . In this case we get (through the properties

of the P function) that each S-box involved in A and B has at most two input
and output bits involved in the linear approximation. In order to avoid this kind
of approximation we add another condition.



Condition 4 The S-box has to fulfill SWb (a) ≤ 16 for all a ∈ GF(2)6, b ∈ GF(2)4

with wt(a), wt(b) ≤ 2.

This condition is a tightened version of Condition 5 in [KLPL95] where the
threshold was set to 20 . In this case (remember that we now have 20 S-boxes
involved) we get

ε ≤ 219

(
16
128

)20

< 2−40.

In all other cases, more than 23 S-boxes involved and thus the general upper
bound (3) can be applied.

4.4 5R Iterative Linear Approximation

A five round iterative linear approximation consists of three linear approxima-
tions for the F function of the second, third and fourth round. We denote these
approximations as

A : 〈I2, Z1〉+ 〈K2, Z3〉 = 〈O2, Z2〉
B : 〈I3, Y1〉+ 〈K3, Y3〉 = 〈O3, Y2〉

C : 〈I4, X1〉+ 〈K4, X3〉 = 〈O4, X2〉.

In order to get a linear approximation of the form

〈I1, ·〉+ 〈I5, ·〉 = 〈K2, ·〉+ 〈K3, ·〉+ 〈K4, ·〉

it must hold that

Z1 = Y2 = X1 and Y1 + Z2 + X2 = 0

The 15 round approximation is

−ABC − CBA−ABC −DE

for some linear approximations D and E each involving at least one S-box.
Clearly, as the inputs of A and C are the same we have A = (a, b, a), i.e. the
number of involved S-boxes in A and C are the same.

Case b = 1: Assume that b = 1, i.e. only one S-box is involved in the linear
approximation B. If |Z1| ≥ 3 than we must have a ≥ 3 and so the number
of S-boxes involved is at least 23, which makes the approximation useless. If
|Z1| = 2 we have two active S-boxes for A and B. Moreover as b = 1 we must
have |Y1| = |Z2 + X2| = 1. Due to properties of the P function, the S-boxes
involved in A and B are never adjacent S-boxes, therefore exactly one input
bit is involved in the approximation for each of the two S-boxes. In order to
minimize the probability for such an approximation, we stipulate the following
condition



Condition 5 The S-box has to fulfill

|SWb1 (a)SWb2 (a)| ≤ 240

for all a ∈ GF(2)6, b1, b2 ∈ GF(2)4 with wt(a) = 1,wt(b1 + b2) = 1.

This is a modified version of Condition 7 in [KLPL95]. With an S-box fulfilling
this condition we derive an upper bound for the overall bias

ε ≤ 216

(
240
1282

)6 (
16
128

)3 (
28
128

)2

< 2−33

If |Z1| = 1 then a = 1 and we have |Y1| = |Z2 + X2| = 1 and |Z1| = 1. We
stipulate one more condition.

Condition 6 The S-box has to fulfill

SWb (a) = 0

for a ∈ {(010000), (000010)}, b ∈ GF(2)4 with wt(b) = 1.

This implies that the input to B is such that a middle bit is affected. Due to the
properties of the P function this implies that in the input of A and C a non-
middle bit is affected. As for any DES type S-box it holds that SWb (100000) =
SWb (000001) = 0 for all b the only possible input values for the S-box involved
in A and C are (010000) and (000010). To avoid the second one we define the
next condition.

Condition 7
|SWb1 (000010)SWb2 (000010)| = 0

for all b1, b2 ∈ GF(2)4 with wt(b1 + b2) = 1.

The other possible input value, i.e. 01000 occurs only when S-box 1 is active in
B and S-box 5 is active in A and C. In this case the input values for the S-box
in B is (000100) and the output value is (0100). The next condition makes this
approximation impossible.

Condition 8 The S-box has to fulfill

SW(0100)(000100) = 0

Case b = 2: Assume that b = 2, i.e. exactly two S-boxes are involved for B. If
a > 2 then at least 23 S-boxes are involved in total. If a = 2 we have for each
S-box involved in B at most 2 input bits and at most 2 output bits. Therefore
we can apply the bound from condition 4 to the two S-boxes from B. Applying
the general bound for all the other S-boxes we get

ε ≤ 219

(
16
128

)6 (
28
128

)14

< 2−29.



In the case where a = 1 the two S-boxes involved in B have one input and one
output bit involved each, thus we can apply the strong bound from condition 3
for these S-boxes (6 in total) and the general bound for the other S-boxes to get

ε ≤ 213

(
4

128

)6 (
28
128

)8

< 2−34.

Case b > 2: In this case we must have a, b ≥ 2 and thus at least 29 S-boxes are
involved in total.

4.5 nR Iterative Linear Approximation

For an n round iterative linear approximation with only one S-box involved in
each round (denoted as Type-I by Matsui) our condition 3 ensures that if more
than 7 S-boxes are involved in total the approximation will not be useful for an
attack as

ε ≤ 26

(
4

128

)7

= 2−29 (4)

4.6 Resistance against Algebraic Attacks

There is no structural reason why algebraic attacks should pose a greater threat
to DESL than to DES. The DESL S-box has been randomly generated in the
set of all S-boxes fulfilling the design criteria described above. Therefore we do
not expect any special weakness of the chosen S-box. Indeed we computed the
number of low degree equations between the input and output bits of the S-box.
There exist one quadratic equation and 88 equations of degree 3. Note that for
each 6 to 4 Bit S-box, there exist at least 88 equations of degree 3. Given the
comparison with the corresponding results for the original DES S-boxes in Table
1 we anticipate that DESL is as secure as DES with respect to algebraic attacks.

DES S-box S1 S2 S3 S4 S5 S6 S7 S8 DESL

#deg 2 1 0 0 5 1 0 0 0 1

#deg 3 88 88 88 88 88 88 88 88 88
Table 1. Number of Degree two and Degree three Equations

4.7 Improved S-box

We randomly generated S-boxes, which fulfill the original DES criteria (S-1), (S-
3), (S-4), (S-5), (S-7), the condition 1 and our modified conditions 2 to 8. Our
goal was to find one single S-box, which is significantly more resistant against
differential and linear cryptanalyses than the original eight S-boxes of DES. In
our DESL algorithm this S-box is repeated eight times and replaces all eight
S-boxes in DES.



S

14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

Table 2. Improved DESL S-box

5 Lightweight Implementation of DESL

We implemented DES in the hardware description language VHDL, where we
sacrificed time for area wherever possible. In this serialized DES ASIC design,
registers take up the main part of chip size (33.78%), followed by the S-boxes
(32.11%), and multiplexors (31.19%). Chip size of registers and multiplexors can
not be minimized any further, hence we thought about further possibilities to
optimize the chip size of the S-boxes.

While it does not seem to be possible to find better logic minimizations of
the original DES S-boxes, there have been other approaches to alter the S-boxes,
e.g. key-dependent S-boxes [BB94], [BS92] or the so-called siDES [KLPL94],
[KLPL95], [KPL93]. While all these approaches, despite the fact that some of
them have worse cryptographic properties than DES [Knu92], just change the
content and not the number of S-boxes. To the best of our knowledge, no DES
variant has been proposed in the past which uses a single S-box, repeated eight
times.

The main difference between DESL and DES lies in the f -function. We substi-
tuted the eight original DES S-boxes by a single but cryptographically stronger
S-box (see Table 2), which is repeated eight times. Furthermore, we omitted
the initial permutation (IP) and its inverse (IP−1), because they do not provide
additional cryptographic strength, but at the same time require area for wiring.
The design of our DESL algorithm is exactly the same as for the DES algorithm,
except for the (IP) and (IP−1) wiring and the sbox module.

We used Synopsys Design Vision V-2004.06-SP2 to map our DESL design to
the Artisan UMC 0.18µm L180 Process 1.8-Volt Sage-X Standard Cell Library
and Cadence Silicon Ensemble 5.4 for the Placement & Routing-step. Synopsys
NanoSim was used to simulate the power consumption of the back-annotated
verilog netlist of the ASIC.

Our serialized DESL ASIC implementation has an area requirement of 1848
GE (gate equivalences) and it takes 144 clock cycles to encrypt one 64-bit block
of plaintext. For one encryption at 100 kHz the average current consumption is
0.89 µA and the throughput reaches 5.55 KB/s. For further details on the imple-
mentational aspects of our DES and DESL architecture we refer to [PLSP07].



6 Results and Conclusion

In Section 2 we stated eight conditions which a single S-box has to fulfill in order
to be resistant against certain types of linear and differential cryptanalyses, and
the Davies-Murphy attack. We presented a strengthened S-box, which is used in
the single S-box DES variants DESL and DESXL. Furthermore, we showed, that
a differential cryptanalysis with characteristics similar to the characteristics used
by Biham and Shamir in [BS91] is not feasible anymore. We also showed, that
DESL is more resistant against the most promising types of linear cryptanalysis
than DES due to the improved non-linearity of the S-box.

Table 3 shows, that our DESL cipher needs 20% less gate equivalences and
uses 25% less average current than our DES implementation. In comparison with
the AES design presented by Feldhofer et al. [FWR05], our design needs 45%
less gate equivalents and 86% less clock cycles. Note that the AES design by
Feldhofer et al. was implemented in a 0.35µm standard cell technology, whereas
our design was implemented in a 0.18µm standard cell technology. Therefore a
fair comparison is only possible with regard to the gate equivalences. Regarding
area consumption, our DESL is competitive even to stream ciphers recently
proposed within the eSTREAM project [GB07]. More interesting, DESL would
be the second smallest stream cipher in terms of gate count compared to all
eSTREAM candidates (see Table 3). Due to the low current consumption and
the small chip size required for our DESL design, it is especially suited for
resource limited applications, for example RFID tags and wireless sensor nodes.

gate equiv. cycles / µA at Process
total rel. block 100 kHz µm

DESL 1848 1 144 0.89 0.18

DES 2309 1.25 144 1.19 0.18

DESX 2629 1.42 144 – 0.18

DESXL 2168 1.17 144 – 0.18

AES-128 [FWR05] 3400 1.84 1032 3.0 0.35

HIGHT [HSH+06] 3048 1.65 1 – 0.25

Trivium [GB07] 2599 1.41 – – 0.13

Grain-80 [GB07] 1294 0.70 – – 0.13
Table 3. Comparison of Efficient Ciphers based on Gate Count, Clock Cycles, and
Current Consumption

Finally, we can conclude, that DESL is more secure against certain types of
linear and differential Cryptanalyses and the Davies-Murphy attack, more size-
optimized, and more power efficient than DES. Furthermore, DESL is worth to
be considered as an alternative for stream ciphers.



Acknowledgments

The authors would like to thank Matt Robshaw for his insights and valuable
comments on various aspects of the S-boxes. The work presented in this pa-
per was supported in part by the European Commission within the STREP
UbiSec&Sens of the EU Framework Programme 6 for Research and Develop-
ment (www.ist-ubisecsens.org). The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the UbiSecSens
project or the European Commission.

References

[ASM01] Kohji Takano Akashi Satoh, Sumio Morioka and Seiji Munetoh. A Compact
Rijndael Hardware Architecture with S-Box Optimization. In ASIACRYPT
2001, volume 2248 of LNCS, pages 239 – 254. Springer-Verlag, 2001.

[BB94] Biham and Biryukov. How to Strengthen DES Using Existing Hard-
ware. In ASIACRYPT: Advances in Cryptology – ASIACRYPT: In-
ternational Conference on the Theory and Application of Cryptol-
ogy. LNCS, Springer-Verlag, 1994. available for download at cite-
seer.ist.psu.edu/biham94how.html.

[BB97] Eli Biham and Alex Biryukov. An Improvement of Davies’ Attack on
DES. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 10(3):195–205, Summer 1997. available for download
at citeseer.ist.psu.edu/467934.html.

[BS91] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology
— CRYPTO ’90, volume LNCS 537, pages 2–21, Berlin, Germany, 1991.
Springer-Verlag.

[BS92] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-Round
DES. In CRYPTO ’92, pages 487–496, 1992. available for download at
citeseer.ist.psu.edu/biham93differential.html.

[Cop94] D. Coppersmith. The Data Encryption Standard (DES) and its Strength
Against Attacks. Technical report rc 186131994, IBM Thomas J. Watson
Research Center, December 1994.

[DM95] D. Davies and Sean Murphy. Pairs and Triplets of DES S-Boxes. Journal
of Cryptology, 8(1):1–25, 1995.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer Verlag, Berlin,
2002.

[FDW04] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication
for RFID Systems. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems — CHES 2004, volume 3156, pages 357–
370. Springer-Verlag, 2004.

[Fin03] Klaus Finkenzeller. RFID-Handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification. John Wiley and Sons, 2003.

[FWR05] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a
Grain of Sand. Information Security, IEE Proceedings, 152(1):13–20, 2005.



[GB07] T. Good and M. Benaissa. Hardware Results for selected Stream Cipher
Candidates. State of the Art of Stream Ciphers 2007 (SASC 2007), Work-
shop Record, February 2007.

[HSH+06] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-
Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,
Hyun Kim, Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block
Cipher Suitable for Low-Resource Device. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems — CHES
2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59.
Springer, 2006.

[KLPL94] K. Kim, S. Lee, S. Park, and D. Lee. DES Can Be Immune to Linear
Cryptanalysis. In Proceedings of the Workshop on Selected Areas in Cryp-
tography SAC’94, pages 70–81, May 1994. available for download at cite-
seer.csail.mit.edu/kim94des.html.

[KLPL95] K. Kim, S. Lee, S. Park, and D. Lee. Securing DES S-boxes Against Three
Robust Cryptanalysis. In Proceedings of the Workshop on Selected Areas
in Cryptography SAC’95, pages 145–157, 1995. ”available for download at
citeseer.ist.psu.edu/kim95securing.html”.

[Knu92] Lars Ramkilde Knudsen. Iterative Characteristics of DES and s2-DES.
Advances in Cryptology: Proceedings of CRYPTO ’92, pages 497–511, 1992.

[KPL93] Kwangjo Kim, Sangjun Park, and Sangjin Lee. Reconstruction of s2-DES
S-Boxes and their Immunity to Differential Cryptanalysis. In Proceed-
ings of 1993 Korea-Japan Joint Workshop on Information Security and
Cryptology (JW-ISC’93), October 1993. available for download at cite-
seer.csail.mit.edu/kim93reconstruction.html.

[KPP+06] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred
Schimmler. Breaking Ciphers with COPACOBANA - A Cost-Optimized
Parallel Code Breaker. In Workshop on Cryptographic Hardware and Em-
bedded Systems — CHES 2006,Yokohama, Japan. Springer Verlag, 2006.

[Mat94] M. Matsui. Linear Cryptanalysis of DES Cipher. In T. Hellenseth, editor,
Advances in Cryptology — EUROCRYPT ’93, volume LNCS 0765, pages
286 – 397, Berlin, Germany, 1994. Springer-Verlag.

[PLSP07] A. Poschmann, G. Leander, K. Schramm, and C. Paar. New Ligh-Weight
Crypto Algorithms for RFID. In Proceedings of The IEEE International
Symposium on Circuits and Systems 2007 – ISCAS 2007. to appear, 2007.

[RE02] W. Rankl and W. Effing. Smart Card Handbook. Carl Hanser Verlag,
Mnchen, Germany, second edition, 2002.

[VHVM88] I. Verbauwhede, F. Hoornaert, J. Vandewalle, and H. De Man. Security
and Performance Optimization of a New DES Data Encryption Chip. IEEE
Journal of Solid-State Circuits, 23(3):647–656, 1988.


