
An Analysis of XSL Applied to BES

Chu-Wee Lim, Khoongming Khoo

DSO National Laboratories, 20 Science Park Drive, S118230, Singapore.
lchuwee@dso.org.sg, kkhoongm@dso.org.sg

Abstract. Currently, the only plausible attack on the Advanced En-
cryption System (AES) is the XSL attack over F256 through the Big
Encryption System (BES) embedding. In this paper, we give an analysis
of the XSL attack when applied to BES and conclude that the complex-
ity estimate is too optimistic. For example, the complexity of XSL on
BES-128 should be at least 2401 instead of the value of 287 from current
literature. Our analysis applies to the eprint version of the XSL attack,
which is different from the compact XSL attack studied by Cid and
Leurent at Asiacrypt 2005. Moreover, we study the attack on the BES
embedding of AES, while Cid and Leurent studies the attack on AES
itself. Thus our analysis can be considered as a parallel work, which to-
gether with Cid and Leurent’s study, disproves the effectiveness of both
versions of the XSL attack against AES.

Keywords. XSL algorithm, AES, BES, linearisation.

1 Introduction

In 2001, after a standardisation period of 5 years, NIST finally adopted the Ri-
jndael block cipher as the AES standard. A year later, Courtois and Pieprzyk
surprised the cryptographic community by proposing an algebraic attack [3, 4]
on Rijndael and Serpent, which could obtain the key faster than an exhaus-
tive search. This attack was named XSL for eXtended Sparse Linearisation [3,
4], which is a modification of the earlier XL (eXtended Linearisation) attack
proposed by Courtois et al [2]. In XSL, the authors exploited the algebraic sim-
plicity of Rijndael’s S-box and obtained a number of quadratic equations. Then
in order to apply linearisation, equations are multiplied by S-box monomials (as
compared to arbitrary monomials in the case of the XL attack). This enables
the number of occurring monomials to be kept within a manageable range, and
so upon linearisation, the system of linear equations can be solved faster than
an exhaustive key search.

At around the same time, Murphy and Robshaw [6] proposed a method of re-
interpreting the AES system by writing its equations over the field F256 instead
of the smaller field F2. Over F256, the input x and output y of the Rijndael S-box
satisfies the simple equation xy = 1. In this way, the number of equations of each
S-box remains the same while the number of monomials involved is reduced by
half. The authors later noted [7] that the BES embedding can lead to a dramatic

254

decrease in the complexity of XSL attack. For example, as Courtois observed in
§7 of [4], AES-128 can be broken with complexity 287.

However, Murphy and Robshaw also expressed skepticism at the practicality
of XSL in [7], and concluded that it was unlikely to work. T. T. Moh and D.
Coppersmith were similarly skeptical and remarked that XSL was unlikely to
work.

In Asiacrypt 2005, Cid and Leurent [1] gave an analysis of the compact XSL
attack [4] on AES-128 and proved that it is equivalent to a substitution-then-
XL (sXL) method. They concluded that XSL attack is essentially an XL attack
on a system of equations larger than that of the original AES. Thus compact
XSL is not an effective attack against the AES cipher. This partly answers some
uncertainties of the compact XSL attack and suggests that it may not be an
effective method against block ciphers.

However, it does not give us the full answer on whether XSL is effective
against AES. This is because:

1. In [1], only the compact XSL attack [4] is analysed. But the eprint version
of the XSL attack (eprint XSL) [3] is different from the compact XSL attack
as it uses a larger set of monomials. Moreover, the bounds derived from the
eprint XSL are better than that of the compact XSL.

2. In [1], only the complexity of the compact XSL attack on AES over F2 is
analyzed. However the best attack on AES in the current literature is the
eprint XSL attack on AES over the bigger field F256.

In this paper, we provide a more complete answer to the effectiveness of the
XSL attacks on AES by analyzing the above two points. We will focus on the
embedding of the AES in the Big Encryption System (BES) over F256. Because
of the nice algebraic structure of the equations of the Rijndael S-box over F256,
we can provide an exact analysis of the linear dependencies that exist between
the equations of BES. This allows us to give a more accurate estimate of the
number of linearly independent equations in the eprint XSL attack. Based on our
estimate, we deduce that the complexity of the eprint XSL attack on BES-128
is at least 2401 instead of 287 from the known literature. Similar complexity esti-
mates for BES-192 and BES-256 proves that the eprint XSL attack is ineffective
against them.

2 The XSL Attack on BES

There are currently two versions of XSL. In this paper, we shall consider the
version in [3]. Furthermore, in that paper, the authors described two forms of
XSL - the first and the second. We shall look at the second version, which
only requires at most two plaintext-ciphertext pairs. This section is essentially
a summary of [3], [6] and [7], but we need it to establish notations which will be
used in subsequent sections.

Note: we often mention linear equations from the AES cipher, when a tech-
nically more accurate name would be affine. This is in accordance with the
literature.

255

2.1 A Summary of the XSL Attack

First, recall the S-box in the AES cipher. This comprises of the inverse map1 on
the finite field F256, followed by an F2-affine map on the output. Thus, the only
nonlinear component of the cipher is the map x 7→ x−1 on the finite field F256.
The authors of [3] believe that this algebraic definition of the S-box presents an
opportunity for algebraic attacks on the cipher. They noted that if y = x−1 in
F256, then we get xy = 1, x2y = x and xy2 = y. The Frobenius map x 7→ x2 is
F2-linear on F256, so by taking the components, we get 3× 8 = 24 equations in
F2. There is a slight caveat though: since xy = 1 is only true most of the time,
it only produces 7 equations instead of 8. The eighth equation only holds 255

256 of
the time. Nevertheless, for the sake of our argument, we shall assume that we
get 24 equations. It can be easily verified that up to linear dependence, these
are the only equations we can get.

Thus, let x0, . . . , x7 and y0, . . . , y7 denote the input and output bits of an
S-box respectively, We get 24 equations which are linear combinations of the
monomials 1, xi, yj , xiyj (0 ≤ i, j ≤ 7); i.e. , we have 24 equations involving 81
monomials. Such a monomial is said to belong to the S-box. Furthermore, if S
and S′ are distinct S-boxes, then the set of monomials belonging to S and S′

are disjoint.
On the other hand, there are also F2-linear equations for the Shiftrows

and MixColumns algorithms. Hence, we can write down all the S-box and linear
equations and solve them in order to extract the key. We shall use the following
notation subsequently:

S = number of S-boxes in the cipher and key schedule,
L = number of linear equations in the cipher and key schedule,
r = number of equations in each S-box = 24,

t = number of terms used in the equations for each S-box = 81,

P = XSL parameter (to be described later).

The values for S and L for AES-128, -192 and -256 respectively are given in
Table 1 below:

AES-128 AES-192 AES-256

S 201 417 501
L 1664 3520 4128

Table 1. Parameters for Various AES Ciphers

Note that the values of S and L in Table 1 are based on one plaintext-
ciphertext pair for the second XSL attack on AES-128 and two plaintext-ciphertext
1 Strictly speaking, this is not true since the map x 7→ x−1 is not defined at 0. It

would be correct mathematically to write this map as x 7→ x254.

256

pairs for the second XSL attack on AES-192, AES-256. They are derived from
Section 7 and Appendix B of [3].

The XSL method can be summarised in the following steps, for a parameter
P :

1. Pick P distinct S-boxes, and select one of them to be active; the others are
declared passive. From the active S-box, select one equation out of the r
quadratic ones; from each of the P − 1 passive S-boxes, select a monomial ti
(i = 2, . . . , P). We then multiply the active S-box equation with t2t3 . . . tP
to obtain a new equation. Let us call such an equation an extended S-box
equation. Take the collection ΣS of all extended S-box equations. Also, we
call the monomials which occur in the equations of ΣS the extended S-box
monomials.

2. Pick a linear equation and select P − 1 distinct S-boxes. From each of the
selected S-boxes, choose a monomial ti (i = 2, 3, . . . , P). We then multiply
the linear equation by t2t3 . . . tP to obtain a new equation. Let us call such
an equation an extended linear equation. Take the collection ΣL of all
extended linear equations.

3. Take the equations in Σ := ΣS∪ΣL and solve them via linearisation. In other
words, replace each occurring monomial by a new variable and solve the set
of linear equations by (say) Gaussian elimination. Furthermore, these linear
equations are sparse so we can apply advanced techniques like the block
Lanczos algorithm [5] to solve them.

4. If there are not enough equations for a complete solution, we can apply the
T ′-method to produce more equations. This comprises of (i) fixing a variable,
say xi, and (ii) attempting to find equations whose degrees remain the same
upon multiplication by xi.

In [3], it was noted that the equations in ΣS have a lot of linear dependen-
cies after linearisation. For example, if we pick two active S-boxes and equations
eqn1 and eqn2 from them, as well as P − 2 passive S-boxes with monomials
t3, t4, . . . , tP , then by expanding the equation eqn1 ·eqn2 ·(t3 . . . tP) we obtain lin-
ear dependencies between extended S-box equations of the form eqn1·(t2t3 . . . tP)
and t1 · eqn2 · (t3 . . . tP). After removing some obvious dependencies like these,
we get

R =
(

S

P

)
(tP − (t− r)P) (1)

equations. Likewise, by fixing t−r linearly independent terms in each S-box and
expressing the remaining terms as linear combinations of them, the number of
extended linear equations2 is (after removing obvious linear dependencies):

R′ = L× (t− r)P−1

(
S

P − 1

)
. (2)

2 Note that in [3], the author used R′ and R′′ to denote the extended linear equations
from the cipher and the key schedule respectively. Here we denote all extended linear
equations by R′.

257

Hence, the total number of equations obtained is R + R′.
On the other hand, it was assumed that the monomials in ΣL are also ex-

tended S-box monomials. Hence, the total number of terms occurring in Σ is
the number of extended S-box monomials:

T = tP
(

S

P

)
. (3)

Finally, for the T ′-method, the authors of [3] remarked that to apply T ′, we
need at least 99.4%× T equations in the first place. In other words, T ′-method
can only be applied if the number of equations we have is very very close to being
sufficient; in which case, the method helps to increase the number of equations
slightly. Thus we shall leave it out in our discussion.

The objective of XSL is to select an appropriate P so that we get enough
equations. The following computations apply for AES-128, AES-192 and AES-
256.

1. AES-128: The smallest P where R + R′ > T is P = 7. The parame-
ters are R = 4.95 × 1025, R′ = 4.85 × 1024, T = 5.41 × 1025. We have
(R + R′)/T = 1.004 and the complexity of XSL attack is T 2.376 ≈ 2203.

2. AES-192: The smallest P where R + R′ > T is P = 7. The parame-
ters are R = 8.65 × 1027, R′ = 8.50 × 1026, T = 9.46 × 1027. We have
(R + R′)/T = 1.004 and the complexity of XSL attack is T 2.376 ≈ 2221.

3. AES-256: The smallest P where R+R′ > T is P = 7. The parameters are
R = 3.15× 1028, R′ = 3.02× 1027, T = 3.45× 1028. We have (R + R′)/T =
1.002 and the complexity of XSL attack is T 2.376 ≈ 2225.

2.2 A Summary of the BES Cipher

At Crypto 2002, Robshaw and Murphy introduced the Big Encryption System
(BES) embedding for the AES cipher [6]. In this embedding, the quadratic equa-
tions describing the S-box input-output become much simpler. This results in
a substantial reduction in the number of monomials occurring in the system of
equations, which can lead to an exponential reduction in the complexity of the
XSL attack [7].

While AES performs its operations in the field F2, BES achieves the same
purpose by performing operations in the field F256. The advantage of this rewrit-
ing lies in the simplicity of the S-box equation: we have xy = 1 immediately
instead of 8 quadratic equations in the input and output bits. This, of course,
conveniently ignores the case when x = y = 0. However this can be countered
by other means.

The problem occurs with some of the linear equations, which are F2-linear but
not F256-linear. This is overcome by introducing the conjugates of each variable
x ∈ F256, i.e. we have to consider xi := x2i

for 0 ≤ i ≤ 7. Upon introducing these
variables, all F2-linear equations can be expressed as F256-linear equations, by
virtue of the following result.

258

Lemma 1. Consider the finite field K = F2n . Then any F2-affine map K → K
can be written in the form:

f(x) = c + a0x + a1x
2 + · · ·+ an−1x

2n−1
,

for some constants c, a0, a1, . . . , an−1 ∈ K.

We will skip the proof, though it suffices to say that the result follows easily
from dimension counting (over F2).

In introducing the conjugates to the S-boxes, we have to express their re-
lationship as xi+1 = x2

i , where the subscript is taken from Z/8Z (the integers
modulo 8). This gives 24 equations for each S-box: indeed, if we denote the
input and output variables by x0, x1, . . . , x7 ∈ F256 and y0, y1, . . . , y7 ∈ F256

respectively, then

x0y0 = 1, x1y1 = 1, x2y2 = 1, . . . , x7y7 = 1,

x2
0 = x1, x2

1 = x2, x2
2 = x3, . . . , x2

7 = x0,

y2
0 = y1, y2

1 = y2, y2
2 = y3, . . . , y2

7 = y0.

For convenience, we make the following definition.

Definition 1. Let xi be an input variable of an S-box and yi be the corresponding
output variable such that xiyi = 1. We shall say xi and yi are dual to each other.

Although the number of equations per S-box remains r = 24, we now only
have 41 monomials! These are: 1, xi, yi, x

2
i , y

2
i , xiyi for 0 ≤ i ≤ 7. Hence, we can

apply the technique of XSL to this cipher, in which case formulae (1), (2) and
(3) in the previous section still hold, with t = 81 replaced with t = 41. With
this new value of t, it turns out that we can pick a smaller P and dramatically
reduce the complexity:

1. BES-128: The smallest P where R +R′ > T is P = 3. The parameters are

R = 85341866400, R′ = 9666009600, T = 91892369300.

So (R + R′)/T = 1.03 and the complexity of XSL attack is T 2.376 ≈ 287.
2. BES-192: The smallest P where R +R′ > T is P = 3. The parameters are

R = 767998707840, R′ = 88234798080, T = 826947240080.

So (R + R′)/T = 1.04 and the complexity of XSL attack is T 2.376 ≈ 294.
3. BES-256: The smallest P where R +R′ > T is P = 3. The parameters are

R = 1333494666000, R′ = 149422248000, T = 1435848423250.

So (R + R′)/T = 1.03 and the complexity of XSL attack is T 2.376 ≈ 296.

Finally, the T ′-method for BES was not mentioned in [7]. Although the
premise of the method should remain the same - find equations whose degree
remain the same upon multiplication by some variable - it’s not entirely clear
if this is effective. This is because the set of monomials involved in the S-box
equations forms a very small subset of the set of monomials, thus multiplying
an equation by a variable would almost certainly introduce new monomials even
if the degree of the equation does not increase.

259

3 An Analysis of This Attack

In this section, we shall provide an in-depth analysis of the XSL attack when
applied to the BES cipher [6]. Due to the nice structure of the BES S-box
equations, we can obtain accurate numbers in many cases. Throughout this
section, let us fix the XSL parameter P .

3.1 Analysing the Extended S-box Equations

First, let us consider the S-box equations, each of which is an equality of two
monomials. Hence, each extended S-box equation is also of the form (monomial1)
= (monomial2). Solving them linearly is rather easy: we get a collection of
equivalence classes of monomials, where two monomials are considered equivalent
if and only if we can obtain one from the other by a finite number of extended
S-box equations.

Example 1. Consider three S-boxes, given by S1, S2 and S3. The input and out-
put pairs of these S-boxes are given by (ai, bi), (ci, di) and (ei, fi) respectively,
for 0 ≤ i ≤ 7. To clarify the notation further, aibi = 1 and e2

i = ei+1 are exam-
ples of their equations. Then the monomials a3b3c

2
2e5 and c3e5 are considered

equivalent:
(a3b3)c2

2e5 = (1)c2
2e5 = (1)c3e5,

since the first equality follows from an extended S1-equation, while the second
follows from an extended S2-equation.

Inspired by this example, we make the following definition.

Definition 2. Let α = α1α2 . . . αQ be an extended S-box monomial, where each
αi is a variable belonging to some S-box. Then α is said to be reduced if no two
variables belong to the same S-box. The set of reduced S-box monomials of degree
Q is denoted by ΦQ.

It follows that a reduced monomial of degree Q is a product of monomials
from Q distinct S-boxes, and so Q ≤ P . Furthermore, we have the following
theorem:

Theorem 1. Every extended S-box monomial α is equivalent to a unique reduced
monomial β. Furthermore, it is possible to obtain the equivalence via:

α = γ1 = γ2 = γ3 = · · · = γr = β,

where each equality is an extended S-box equation, and the degree of each term
is strictly less than the previous one.

Proof. Let α = α1α2 . . . αQ be an extended S-box monomial, where each αi is
an S-box variable. If α were reduced, there is nothing to do. Otherwise, if αi and
αj belong to the same S-box then they are either identical or dual.

260

In the first case, we have αi = αj = xk for some input/output variable
xk; hence upon removing αi and αj and adding an xk+1, we get an equivalent
monomial of degree Q− 1. In the second case, we have αiαj = 1 and we get an
equivalent monomial of degree Q− 2. This gives us an extended S-box equation

α = γ1,

where deg γ1 < deg α. Repeating the above process with α replaced by γ1, we
get the desired result.

Finally, we need to prove uniqueness, i.e. two distinct reduced monomials are
not equivalent. This is quite easy: write α1α2 . . . αQ = β1β2 . . . βQ′ , where the
αi and βi are S-box variables. Now, the αi all belong to distinct S-boxes, as do
the βi. For equality to hold, some αi and βj must belong to the same S-box. It
immediately follows that αi = βj , so we may cancel them from the equation and
repeat. ut

Note that each Φi has cardinality
(
S
i

)
16i. Thus, upon solving the extended

S-box equations, the number of linearly independent terms is exactly

D0 =
P∑

i=0

|Φi| =
P∑

i=0

(
S

i

)
16i.

According to theoretical bound in [3], that should have been:

T −R =
(

S

P

)
(t− r)P =

(
S

P

)
17P .

Hence, we see that the estimate in [3] was rather close.

3.2 Adding the Extended Linear Equations

The second step is to multiply each linear equation by an extended S-box mono-
mial. However, by Theorem 1 it is equivalent to multiply each linear equation by
a reduced S-box monomial of degree at most P −1 (note: we cannot multiply by
a reduced monomial of degree P since we only multiply P − 1 monomials from
passive S-boxes). In a nutshell, the XSL method is equivalent to the following:

1. Obtain the set ΣS of extended S-box equations.
2. For each linear equation, we multiply it by a reduced monomial from Φ0 ∪

Φ1 ∪ · · · ∪ ΦP−1 and obtain the set Σ′
L of extended linear equations.

3. Solve ΣS ∪Σ′
L together via linearisation.

Consider hypothetically the case where we just do steps 2 and 3 (i.e. step
3 is performed with ΣS = ∅). In short, we took a bunch of linear equations,
multiply them by some monomials and attempt to solve them by linearisation.
The question is: how many linearly independent terms will we get from this
attempt?

261

It is not difficult to give a lower bound for this number. First, consider the
set of non-reduced S-box equations and linear equations. If we fix the 8 input
variables of an S-box, then its output is known. Thus the removal of each S-box
contribute 8 free variables. Then the removal of the S S-boxes results in the
introduction of 8S totally free variables, as the diagram in figure 1 shows.

� � �������� ��������� ���
� � �������� ���

������ ��������� ��������� ���
Fig. 1. Removal of the S-boxes gives 8S free variables

Without loss of generality, we take the 8S input variables of the S-boxes
to be the free variables. In other words, the equations in Σ′

L can be satisfied
regardless of the values these 8S variables take. Hence, the number of linearly
independent terms is at least the number of reduced monomials formed by these
8S free variables:

D1 =
P∑

i=0

(
S

i

)
8i.

Next, we ask ourselves: does step 1 provide sufficiently many equations to
remove this number of linearly independent terms?

By theorem 1, we can replace each monomial in Σ′
L by a corresponding re-

duced one. Furthermore, after such replacements, the extended S-box equations
are no longer of any use. This brings us to the next theorem.

Theorem 2. When solving Σ′
L with the extended S-box equations, we only need

to include those extended S-box equations of the form:

(v)(m1) = (m2),

where:

1. m1,m2 ∈ Φ0 ∪ Φ1 ∪ · · · ∪ ΦP−1, i.e. m1 and m2 are reduced monomials of
degree at most P − 1;

262

2. v is an S-box variable such that it or its dual occurs in m1;
3. the remaining variables in m1 are among the 8S free (input) variables.

Proof. Recall that each equation of Σ′
L is of the form: l · m = 0, where l is a

linear equation and m is a reduced monomial of degree at most P−1. Hence, after
linearisation, the only occurring monomials in Σ′

L are those of the form v ·m,
where v is an S-box variable and m is a reduced monomial of degree ≤ P − 1. If
neither v nor its dual occur in m, then this monomial itself is already reduced.
Otherwise, we can use an extended S-box equation satisfying conditions 1 and
2 to reduce the monomial further. By Theorem 1, these are the only extended
S-box equations we need.

Finally, note that any variable which is not one of the 8S free variables, can be
expressed as a linear combination of these 8S variables. Hence, if (v)(m1) = (m2)
is an equation satisfying conditions 1 and 2, we can replace each of the remain-
ing variables in m1 with a linear combination of the 8S variables and expand
the resulting monomial. Thus, the set of extended S-box equations satisfying
conditions 1-3 suffices. ut

We say that an extended S-box equations is “relevant” if it satisfies condi-
tions 1-3 in theorem 2.

Now let us compute the number of such equations. Take (v)(m1) = (m2),
and v′ occurs in m1 where v′ = v or the dual of v.

For the case v = v′, there are 16S choices for the pair (v, v′) = (v, v), where
v can be one of 16 input or output variables of an S-box. For the case where v′

is the dual of v, there are 8S choices for the unordered pair (v, v′), which is one
of 8 dual pairs of an S-box satisfying vv′ = 1. Thus there are 16S + 8S = 24S
choices for the unordered pair (v, v′) in the equation (v)(m1) = (m2).

For the remaining P − 2 variables in m1, there are
∑P−2

i=0

(
S−1

i

)
8i choices.

Thus, the number of “relevant” equations is

D2 = 24S ×
P−2∑

i=0

(
S − 1

i

)
8i.

For the equations in ΣS ∪ Σ′
L to be solved via linearisation, we must have

D2 ≥ D1. However, the values in Table 2 indicate that the stipulated values of
P which were supposed to work (see §2.2), actually don’t.

To be able to solve for the secret key, we need D2 > D1. From Table 2,
the smallest P where this condition is satisfied is when P = 23, 33, 36 for BES-
128, BES-192 and BES-256 respectively. In that case, we have the following
complexity for the XSL attack:

1. BES-128: S = 201, P = 23.

Complexity = D2.376
1 = (5.9× 1050)2.376 ≈ 2401.

2. BES-192: S = 417, P = 33.

Complexity = D2.376
1 = (5.857× 1078)2.376 ≈ 2622.

263

BES-128 BES-192 BES-256

P = 2
D1 = 1.288× 106

D2 = 4.824× 103
D1 = 5.554× 106

D2 = 1.001× 104
D1 = 8.02× 106

D2 = 1.202× 104

P = 3
D1 = 6.839× 108

D2 = 7.723× 106
D1 = 6.149× 109

D2 = 3.332× 107
D1 = 5.093× 1010

D2 = 4.811× 107

P = 4
D1 = 2.71× 1011

D2 = 6.152× 109
D1 = 5.093× 1012

D2 = 5.532× 1010
D1 = 1.063× 1013

D2 = 9.605× 1010

...
...

...
...

P = 23
D1 = 5.9× 1050

D2 = 6.245× 1050

...
...

P = 33
...

D1 = 5.857× 1078

D2 = 6.02× 1078

...

P = 36
...

...
D1 = 3.798× 1087

D2 = 3.849× 1087

Table 2. Number of linearly independent monomials D1 from the extended linear
equations and number of relevant extended S-box equations D2 for various P

3. BES-256: S = 501, P = 36.

Complexity = D2.376
1 = (3.798× 1087)2.376 ≈ 2691.

In comparison, the XL attack against the AES-128 cipher has complexity 2330

[3, Section 5.2].Thus we see that the XSL attack is not effective against the BES
cipher. In fact, it gives worse complexity than the XL attack against AES-128.

3.3 Further Analysis

The above results show that there are many hidden linear dependencies which
were not accounted for in the computations in §2. Here, we attempt to account
for some of this discrepancy.

(a) It is not true that all the monomials which occur are extended S-box monomi-
als. The problem occurs with the extended linear equations. It can happen
that l is a linear equation which involves (say) x2 from a certain S-box,
while the chosen passive S-boxes also include the term (say) y5 from the
same S-box; in which case, the term x2y5 is part of an occurring monomial.
This monomial is then not an extended S-box monomial. Heuristically, the
number of monomials unaccounted for is not very significant.

(b) The second and worse problem is the presence of inherent linear dependen-
cies among the extended linear equations. This is essentially identical to the
linear dependencies among the extended S-box equations mentioned in §2.1.
For example, suppose linear1 = 0 and linear2 = 0 are two different linear
equations. By taking terms from P − 2 distinct passive S-boxes, we get the
monomial t3 . . . tP ; expanding the equation (linear1)(linear2)(t3 . . . tP) = 0
results in a linear relation between the equations extended from linear1 = 0

264

and those extended from linear2 = 0. Notice that this linear dependency is
inherent among the extended linear equations. It is completely unrelated to
the S-box equations or their extended counterparts. Unfortunately, this has
been neglected in the original estimates.

While (a) appears to be a minor oversight, (b) has a much larger effect on
the estimates. As mentioned in [3], the removal of obvious linear dependencies
on the S-box equations causes the number of such equations to reduce from
Rold = rStP−1

(
S−1
P−1

)
to R =

(
S
P

)
(tP − (t − r)P), which is quite a significant

difference. It is likely that similar considerations on the extended linear equations
would also result in a significant reduction of useful equations.

4 Conclusion

The purpose of our paper is to analyse XSL when applied to BES, and determine
if it would work in practice. Due to the nice S-box equations of BES, we can
explicitly deduce the linear dependencies between the equations. Our conclusion
is that if XSL works on BES, then it is worse than brute foce. However, it leaves
open the question of whether XSL works for some P at all.

Furthermore, our computations do not carry over to the original Rijndael
(with equations over F2 instead of F256) or to the Serpent cipher. Due to the
complexity of the S-box equations, an explicit list of linearly independent terms
of the extended S-box equations cannot be easily described. Naturally, we ask if
XSL works in those cases.

First, it should be noted that the linear dependencies among the extended
linear equations - as mentioned in §3.3 - hold in general, so it is likely that the
number of linearly independent equations obtained after linearisation is actually
smaller than expected. Second, in the XSL method, the final ratio (number of
equations)/(number of terms) after linearisation is about 1.004, which is precar-
iously close to 1. Hence, the presence of a large number of linear dependencies
can have an adverse effect on the solvability of the system. Finally, note that we
had left the T ′-method out of the discussion totally. However we had noted that
the T ′-method is only effective if the number of linearly independent equations
is already extremely close to being sufficient (about 99.4% of what is needed).
Thus, even the application of the T ′-method is unlikely to help.

References

1. C. Cid and G. Leurent, “An Analysis of the XSL Algorithm”, LNCS 3788, Asi-
acrypt 2005, pp. 333-352, Springer-Verlag, 2005.

2. N. Courtois, A. Klimov, J. Patarin and A. Shamir, “Efficient Algorithms for Solving
Systems of Multivariate Polynomial Equations”, LNCS 1807, Eurocrypt 2000, pp.
392-407, Springer-Verlag, 2000.

3. N. Courtois and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations”, IACR eprint server, http://www.iacr.org, 2002/044,
March 2002.

265

4. N. Courtois and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations”, LNCS 2501, Asiacrypt 2002, pp. 267-287, Springer-Verlag,
2002.

5. P. L. Montgomery, “A Block Lanczos Algorithm for Finding Linear Dependencies
over GF(2)”, LNCS 921, Eurocrypt’95, pp. 106-120, Springer-Verlag, 1995.

6. S. Murphy and M. Robshaw, “Essential Algebraic Structure Within the AES”,
LNCS 2442, Crypto 2002, pp. 1-16, Springer-Verlag, 2002.

7. S. Murphy and M. Robshaw, “Comments on the Security of the AES and the XSL
Technique”, Electronic Letters, 39:26-38, 2003.

