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Abstract. In Wang’s attack,message modifications allow to determinis-
tically satisfy certain sufficient conditions to find collisions efficiently. Un-
fortunately, message modifications significantly change the messages and
one has little control over the colliding blocks. In this paper, we show how
to choose small parts of the colliding messages. Consequently, we break
a security countermeasure proposed by Szydlo and Yin at CT-RSA ’06,
where a fixed padding is added at the end of each block.
Furthermore, we also apply this technique to recover part of the pass-
words in the Authentication Protocol of the Post Office Protocol (POP).
This shows that collision attacks can be used to attack real protocols,
which means that finding collisions is a real threat.
Key words: Hash function, MD4, MD5, message modification, mean-
ingful collisions, APOP security

1 Introduction

At EUROCRYPT ’05 and CRYPTO ’05, Wang et al. described a new class of
attacks on most of the hash functions of the MD4 family, MD4, MD5, HAVAL,
RIPEMD, SHA-0 and SHA-1 in [21,23,24,22], which allows to find collisions for
these hash functions very efficiently. However, the practical impact is unclear
as many real-life applications of hash functions do not just rely on collision
resistance.

One drawback with Wang’s attacks when used against practical schemes is
that due to the message modification technique, the colliding blocks cannot be
chosen and look random. However, these attacks work with any IV, so one can
choose a common prefix for the two colliding messages, and the Merkle-Damgård
construction allows to add a common suffix to the colliding messages. Therefore,
an attacker can choose a prefix and a suffix, but he must somehow hide the
colliding blocks (1 block in MD4 and SHA-0, and 2 blocks in MD5 and SHA-1).
The poisoned message attack [6] exploits this property to create two different
PostScript files that display two different chosen texts but whose digests are
equal. In this construction, the two different texts are in both PS files and the
collision blocks are used by an if-then-else instruction to choose which part
to display. This attack was extended to other file formats in [8]. Lenstra and



de Weger also used the free prefix and free suffix property to create different
X.509 certificates for the same Distinguished Name but with different secure
RSA moduli in [12]. Here, the colliding blocks are hidden in the second part of
the RSA moduli.

Recently, more concrete attacks have appeared: Stevens, Lenstra and de
Weger in [19] found colliding X.509 certificates for two different Distinguished
Name. In this work, the technique used is far more complex and allows to find
messages colliding under MD5 with two different chosen prefixes. They used
an approach suggested by Wang to find a near-collision for different IVs and
used different differential paths to absorb the remaining differences. However,
the messages B, B′ are not controlled, and this randomness must still be hidden
in the moduli.

Other applications of Wang collisions have been proposed to attack HMAC
with several hash functions in [3,9]. The techniques use Wang’s differential path
as a black box but with particular messages to recover some keys in the related-
key model or to construct advanced distinguishers.

Our results. In the paper we try to extend Wang’s attack to break more hash
function uses. More precisely, we address the question of message freedom inside
the colliding blocks, and we show that this can be used to attack APOP, a
challenge-response authentication protocol.

The first contribution of this paper is a technique to gain partial control
over the colliding blocks; this can be combined with previous work to make
the colliding blocks easier to hide. More concretely, we show that we can select
some part at the end of the messages which will collide. Our attack can use any
differential path, and only requires a set a sufficient conditions. We are able to
choose the last three message words in a one-block MD4 collision, and three
specific message words in a two-block MD5 collision with almost no overhead.
We are also able to choose the 11 last words of a one-block MD4 collision with
a work factor of about 231 MD4 computations.

An important point is that the technique used is nearly as efficient as the
best message modifications on MD4 or MD5, even when we choose some parts
of the messages. This contradicts the usual assumption that Wang’s collisions
are mostly random. As a first application of this new message modification tech-
nique, we show that a countermeasure recently proposed by Szydlo and Yin at
CT-RSA ’06 in [20] is almost useless for MD4 and can be partially broken for
MD5. This can also be used to handle the padding inside the colliding blocks.

The second contribution is a partial password-recovery attack against the
APOP authentication protocol, based on the message freedom in MD5 collisions.
We are able to recover 3 characters of the password, therefore greatly reducing
its entropy. Even though we do not achieve the full recovery of the password,
we reduce the complexity of the exhaustive search and it is sufficient in practice
to reduce this search to a reasonable time for small passwords, i.e. less than 9
characters.



Related work. The first MD4 collision was found by Dobbertin [7], and his
attack has a time complexity of about 220 MD4; it combines algebraic techniques
and optimization techniques such as genetic algorithms. His attack also allows
to choose a large part of the colliding blocks at some extra cost: one can choose
11 words out of 16 with a complexity of about 230 MD4 computations (little
details are given and only an experimental time complexity).

Our work is based on Wang’s collision attack [21,23], which have the following
advantages over Dobbertin’s:
– it can be adapted to other hash functions (Dobbertin’s method can give

collisions on the MD5 compression function, but has not been able to provide
MD5 collisions);

– it is somewhat more efficient.
More recently, Yu et al.[25] proposed a differential path for MD4 collisions

with a small number of sufficient conditions. This allows to build a collision
(M, M ′) which is close to a given message M̄ (about 44 different bits). This
is quite different from what we are trying to do since the changed bits will be
spread all over the message. We are trying to choose many consecutive bits,
which is useful for different applications. However we studied their work and
propose some improvements in Appendix C.

De Cannière and Rechberger announced at the rump session of CRYPTO ’06
that they can find reduced-SHA-1 collisions and chose up to 25% of the message.
However, they gave few details on their technique, and the conference version
does not talk about this aspect of their work. Their idea seems to be to compute
a differential path with the chosen message as conditions.

Organization of the paper. This paper is divided in three sections: in the first
part we describe APOP, how the attack works, and give background on MD4,
MD5 and Wang’s attack; then we describe our new collision finding algorithm
and how to choose a part of the message; and eventually we describe some
applications of these results, including the practical attack against APOP.

2 Background and notation

2.1 APOP

APOP is a command of the Post Office Protocol Version 3 [13] implementing
a simple challenge-response authentication protocol; it was introduced in the
POP protocol to avoid sending the password in clear over the network. Servers
implementing the APOP command send a challenge (formatted as a message
identifier, or msg-id) in their greeting message, and the client authenticates itself
by sending the username, and the MD5 of the challenge concatenated with the
password: MD5(msg-id||passwd). The server performs the same computation on
his side, and checks if the digests match. Thanks to this trick, an eavesdropper
will not learn the password, provided MD5 is a partial one-way function. As
there is no integrity protection and no authentication of the server, this protocol



is subject to a man-in-the-middle attack, but the man-in-the-middle should not
be able to learn the password or to re-authenticate later. Quoting RFC 1939 [13]:

It is conjectured that use of the APOP command provides origin identi-
fication and replay protection for a POP3 session.

This challenge-response can be seen as a MAC algorithm, known as the suffix
method: MACk(M) = MD5(M ||k). This construction is weak for at least two
reasons: first, it allows off-line collision search so there is a generic forgery attack
with 2n/2 computations and one chosen-text MAC; second, the key-recovery
attack against the envelope method of Preneel and van Oorschot [15] can be
used on the suffix method with 267 offline computations and 213 chosen text
MACs.

This is a hint that APOP is weak, but these attacks require more com-
putations than the birthday paradox, and the first one is mostly useless in a
challenge-response protocol. However, we can combine these weaknesses with
the collision attack against MD5 to build a practical attack against APOP.

The APOP attack. In this attack, we will act as the server, and we will send
some specially crafted challenges to the client. We will use pairs of challenges,
such that the corresponding digest will collide only if some part of the password
was correctly guessed.

Let us assume we can generate a MD5 collision with some specific format:
M = “<‽‽‽...‽‽‽>x” and M ′ = “< ‽‽‽

...
‽‽‽

>x”, where M and M ′ have both
size 128 bytes (2 MD5 blocks). The ‘‽’ and ‘ ‽’ represent any character chosen by
the collision finding algorithm. We will send “<‽‽‽...‽‽‽>” and “< ‽‽‽

...

‽‽‽

>”
as a challenge, and the client returns MD5(“<‽‽‽...‽‽‽>p0p1p2...pn−1”) and
MD5(“< ‽‽‽

...

‽‽‽

>p0p1p2...pn−1”), where “p0p1p2...pn−1” is the user password
(the pi’s are the characters of the password).

Fig. 1: APOP password recovery through MD5 collisions
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As we can see in Figure 1, if p0 = ‘x’, the two hashes will collide after the
second block, and since the end of the password and the padding are the same,
we will see this collision in the full hashes (and it is very unlikely that the two
hashes collide for p0 6= ‘x’). Therefore we are able to test the first password



character without knowing the others. We will construct pairs of challenge to
test the 256 possible values, and stop once we have found the first password
character.

Then we generate a new collision pair to recover the second character of the
password: M = “<‽‽‽...‽‽‽>p0y” and M ′ = “< ‽‽‽

...

‽‽‽

>p0y”, so as to test if
p1 = ‘y’. Thus, we can learn the password characters one by one in linear time.

This motivates the need for message freedom in MD5 collisions: we need to
generate collisions with a specific format, and some chosen characters. We will
see in section 4.1 that this attack can be used in practice to recover the first
3 characters of the password. We believe most passwords in real use are short
enough to be found by exhaustive search once we know these first characters,
and this attack will allow us to re-authenticate later. We stress that this attack
is practical: it needs less than one hour of computation, and a few hundreds
authentications.

Since people often read their mail from different places (including insecure
wireless networks and Internet cafés), we believe that this man-in-the-middle
setting is rather realistic for an attack against APOP. Moreover most mail clients
automatically check the mailbox on a regular basis, so it seems reasonable to
ask for a few hundred authentications.

2.2 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgård construction. Their compression
functions are designed to be very efficient, using 32-bit words and operations
implemented in hardware in most processors:
– rotation ≪;
– addition mod 232 ¢;
– bitwise boolean functions Φi.
The message block M is first split into 16 words 〈Mi〉15i=0, then expanded to

provide one word mi for each step of the compression function. In MD4 and
MD5 this message expansion is simple, it just reuses many times the words Mi.
More precisely, the full message is read in a different order at each round: we
have mi = Mπ(i) (π is given below).

The compression function uses an internal state of four words, and updates
them one by one in 48 steps for MD4, and 64 steps for MD5. Here, we will assign
a name to every different value of these registers, so the description is different
from the standard one: the value changed on step i is called Qi (this follows the
notations of Daum [5]).

Then MD4 is given by:

Step update: Qi = (Qi−4 ¢ Φi(Qi−1, Qi−2, Qi−3) ¢ mi ¢ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ¢ Q44||Q−1 ¢ Q47||Q−2 ¢ Q46||Q−3 ¢ Q45

π( 0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
π(32..47): 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15



And for MD5, we have:

Step update: Qi = Qi−1 ¢ (Qi−4 ¢ Φi(Qi−1, Qi−2, Qi−3) ¢ mi ¢ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ¢ Q60||Q−1 ¢ Q63||Q−2 ¢ Q62||Q−3 ¢ Q61

π( 0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32..47): 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48..64): 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

The security of the compression function was based on the fact that the
operations are not “compatible” and mix the properties of the input.

We will use x[k] to represent the k+1-th bit of x, that is x[k] = (x ≫ k) mod 2
(note that we count bits and steps starting from 0).

2.3 Wang’s Attack against MD4 and MD5

Wang et al. attacks against the hash functions of the MD4 family are differential
attacks, and have the same structure with two main parts:

1. A precomputation phase:
– choose a message difference ∆
– find a differential path
– compute a set of sufficient conditions

2. Search for a message M that satisfies the conditions;
then H(M) = H(M + ∆).

The differential path specifies how the computations of H(M) and H(M +∆)
are related: it tells how the differences introduced in the message will evolve in
the internal state Qi. If we choose ∆ with a low hamming weight, and some extra
properties, we can find some differences in the Qi’s that are very likely. Then
we look at each step of the compression function, and we can express a set of
sufficient conditions that will make the Qi’s follow the path. These conditions are
on the bits of Qi, so we can not directly find a message satisfying them; however
some of them can be fulfilled deterministically through message modifications,
and the rest will be statistical by trial and error.

3 A new approach to collision finding

In this paper we assume that we are given a set of sufficient conditions on the
internal state variables Qi that produces collisions. We will try to find a message
M such that when one computes a hash of this message, the conditions on the
Qi’s hold. We will first describe the general idea that applies to both MD4 and
MD5, and we will then study in more details those two hash functions.

In contrast to previous works [14,11,2], we will not focus on a particular path
and give message modification techniques for every single condition, but we will
give a generic algorithm that can take any path as input, like Klima in [10] and
Stevens in [18]. Our method is based on two important facts:



1. We can search a suitable internal state rather than searching a suitable
message, because the step update function is invertible: if Qi+1, Qi+2 and
Qi+3 are known, then we can compute any one of Qi, Qi+4 or mi from the
two others (see Algorithm 2 in Appendix B for explicit formulas).

2. We do not need to search for the internal state from the beginning to the
end. If we start from the middle we can satisfy the conditions in the first
round and some conditions in the second round at the time; additionally we
can choose the end of the message before running the search with little extra
cost.

3.1 Previous works

Wang’s method to find a message satisfying a set of conditions is roughly de-
scribed in Algorithm 3 in Appendix B: one basically picks many messages at
random, modifies them to fulfill some of the conditions, and checks if the other
conditions are fulfilled.

The best message modifications known allow to satisfy every condition up to
round 22 in MD4 (which gives a collision probability of 2−2) and up to round
24 in MD5 (which gives a collision probability of 2−29). Basically, message mod-
ifications for the conditions in the first round are very easy, but in the second
round it becomes much more difficult because we cannot freely change message
words without breaking the Qi in the first round (and therefore also in the
second round). At the beginning of the second round it is still possible to find
message modifications, but it becomes increasingly difficult as we go forward.
Wang’s differential paths are chosen with this constraint in mind, and most of
their conditions are in the first round and at the beginning of the second.

The algorithm can be rewritten more efficiently: instead of choosing a random
message and modify it, we can choose the Qi in the first round and compute
the corresponding message. Since all the conditions in MD4 and MD5 are on the
Qi’s, this will avoid the need for message modifications in the first round.

To further enhance this algorithm, Klima introduced the idea of tunnels
in [11], which is closely related to Biham and Chen’s neutral bits used in the
cryptanalysis of SHA-0 [1]. A tunnel is a message modification that does not
affect the conditions up to some step pv − 1 (point of verification). Therefore, if
we have one message that fulfill the conditions up to pv − 1 and τ tunnels, we
can generate 2τ messages that fulfills conditions up to step pv−1. This does not
change the number of messages we have to try, but it greatly reduces the cost
of a single try, and therefore speeds up collision search a lot. This is described
in Algorithm 4 in Appendix B.

In MD4 and MD5, the point of verification will be in the second round, and
we put it after the last condition in the second round (step 22 in MD4, 24 in
MD5). We have message modifications for almost every condition before the
point of verification, and it seems impossible to find message modifications for
round 3 and later.



3.2 Our method

Our method is somewhat different: we will not fix the Qi from the beginning to
the end, but we will start from the middle, and this will allow us to deal with
the first round and the beginning of the second round at the same time.

First we choose a point of choice pc of and a point of verification pv. The
point of verification is the step where we will start using tunnels, and the point
of choice is the first step whose conditions will not be satisfied deterministically.
The value of pc depends on the message expansion used in the second round: we
must have π(16) < π(17) < ... < π(pc − 1) < 12, so we will choose pc = 19 in
MD4 (π(18) = 8), and pc = 19 in MD5 (π(18) = 11).

The key idea of our collision search is to first choose the end of the first round,
i.e. Q12 to Q15. Then we can follow the computations in the first round and in
the second round at the same time, and choose mi’s that satisfy the conditions
in both rounds. There is no difficulty when the first round meets the values we
fixed in the beginning: since we only fixed the Qi’s, we just have to compute
the corresponding mi’s. More precisely, we will choose the Qi from step 0 to
π(pc − 1), and when we hit a message mi that is also used in the second round
with i = π(j), we can modify it to generate a good Qj since we have already
fixed Qj−4, Qj−3, Qj−2 and Qj−1. Thus, we can fulfill conditions up to round
pc − 1 almost for free.

In the end, we will make random choices for the remaining steps (Qπ(pc−1)+1

to Q11), until we have a message that follows the path up to step pv − 1, and
finally we use the tunnels. For a more detailed description of the algorithm, see
Algorithm 1 in Appendix B, and take t = 0 (this algorithm is more generic and
will be described in the next section).

Since we do not choose the Qi’s in the natural order, we have to modify a
little bit the set of sufficient conditions: if we have a condition Q

[k]
12 = Q

[k]
11 , we

will instead use Q
[k]
11 = Q

[k]
12 because we choose Q12 before Q11.

Compared to standard message modifications, our algorithm has an extra
cost when we try to satisfy conditions in steps pc to pv − 1. However, this is not
so important for two reasons:

– Testing one message only requires to compute a few steps, and we will typi-
cally have less than 10 conditions to satisfy, so this step will only cost about
a hundred hash computations.

– This cost will be shared between all the messages which we find with the
tunnels. In the case of MD5, we have to use a lot of tunnels to satisfy the
29 conditions in round 3 and 4 anyway, and in MD4 we will use a lot of
tunnels if we look for many collisions (if one needs a single MD4 collision,
the collision search cost should not be a problem).

3.3 Choosing a part of the message

This method can be extended to allow some message words to be fixed in the
collision search. This will make the search for a first message following the path



up to the point of verification harder, and it will forbid the use of some tunnels.
Actually, we are buying some message freedom with computation time, but we
can still find collisions very efficiently. We will show which message words can
be chosen, and how to adapt the algorithm to find a first message following the
path up to the step pv − 1 with some message words chosen.

Choosing the beginning. If the first steps in the first round are such that in
the second round m0...mi are only used after the step pc or in a step j with no
condition on Qj , then we can choose m0...mi before running the algorithm. The
choice of m0...mi will only fix Q0...Qi (if there are some conditions on Q0...Qi,
we must make sure they are satisfied by the message chosen), and the algorithm
will work without needing any modification.

On MD5, this allows to choose m0. Using Wang’s path, there are no condi-
tions on Q0 for the first block, so m0 is really free, but in the second block there
are many conditions. On MD4, we have π(16) = 0, so this can only be used if
we use pc = 16, which will significantly increase the cost of the collision search.

Choosing the end. The main advantage of our algorithm is that it allows
to choose the end of the message. This is an unsuspected property of Wang’s
attack, and it will be the core of our attack against APOP. Our idea is to split
the search in two: first deal with fixed message words, then choose the other
internal state variables. This is made possible because our algorithm starts at
the end of the first round; the conditions in those steps do not directly fix bits
of the message, they also depend on the beginning of the message.

More precisely, if we are looking for collisions where the last t words are
chosen, we begin by fixing Q12−t, Q13−t, Q14−t and Q15−t, and we compute
Q16−t to Q15 using the chosen message words. We can modify Q12−t if the
conditions on the first state Q16−t are not satisfied, but for the remaining t− 1
steps this is impossible because it would break the previous steps. So, these
conditions will be fulfilled only statistically, and we might have to try many
choices of Q12−t, Q13−t, Q14−t, Q15−t (note that each choice does not cost a full
MD4 computation, but only a few steps).

Once we have a partial state that matches the chosen message, we run the
same algorithm as in the previous section, but we will be able to deal with less
steps of the second round due to the extra fixed states Q12−t to Q11. The full
algorithm is given in Algorithm 1 in Appendix B.

3.4 MD4 message freedom

Using Wang’s EUROCRYPT path [21]. If we use Wang’s EUROCRYPT
path, we will choose pv = 23 so as to use tunnels only for the third round.
Therefore, the tunnels will have to preserve the values of m0, m4, m8, m12, m1,
m5 and m9 when they modify the Qi’s in the first round.

There are two easy tunnels we can use, in Q2 and Q6. If we change the value
of Q2, we will have to recompute m2 to m6 as we do not want to change any other



Qi, but if we look at step 4, we see that Q2 is only used trough IF(Q3, Q2, Q1).
So some bits of Q2 can be changed without changing Q4: if Q

[k]
3 = 0 then we can

modify Q
[k]
2 . The same thing happens is step 5: Q2 is only used in IF(Q4, Q3, Q2),

and we can switch Q
[k]
2 if Q

[k]
4 = 1. So on the average, we have 8 bits of Q2 that

can be used as a tunnel. The same thing occurs in Q6: if Q
[k]
7 = 0 and Q

[k]
8 = 1,

then we can change Q
[k]
6 without altering m8 and m9. If we add some extra

conditions on the path we can enlarge these tunnels, but we believe it’s not
necessary for MD4.

We can use our collision finding algorithm with up to 5 fixed words; Table 1
gives the number of conditions we will have to satisfy probabilistically. Of course,
the cost of the search increases with t, but with t = 3 it should be about one
29 MD4 computations, which is still very low. Note that this cost is only for the
first collision; if one is looking for a bunch of collisions, this cost will be shared
between all the collisions found through the tunnels, and we expect 214 of them.
Another important remark is that this path has a non-zero difference in m12;
therefore when choosing more than 3 words, the chosen part in M and M ′ will
have a one bit difference.

Table 1: Complexity estimates for MD4 collision search with t fixed words, and
comparison with Dobbertin’s technique [7]. We assume that a single trial costs
2−3 MD4 on the average due to early abort techniques.

message words chosen: t 0 1 2 3 4 5 0 11 0 11
path used [21] [25] [7]

point of choice: pc 19 19 19 18 18 18 19 17
point of verification: pv 23 23 23 23 23 23 23 17

conditions in steps 17− t to 15 0 0 6 12 18 24 0 17
conditions in steps pc to pv − 1 8 8 8 11 11 11 11 0

conditions in steps pv to N 2 2 2 2 2 2 17 34
complexity (MD4 computations log2) 5 5 5 9 15 21 14 31 20 30

Using Yu et al.’s CANS path [25]. To push this technique to the limit, we
will try to use t = 11: this leaves only m0 to m4 free, which is the minimum
freedom to keep a tunnel. In this setting, the conditions in steps 6 to 15 can only
be satisfied statistically, which will be very expensive with Wang’s path [21] (its
goal was to concentrate the conditions in the first round). Therefore we will use
the path from [25], which has only 17 conditions in steps 6 to 15.

Since we fix almost the full message, the second phase of the search where
we satisfy conditions in the first and second round at the same time will be
very limited, and we have pc = 17. Then we use the tunnel in Q0, which is
equivalent to iterating over the possible Q16’s, computing m0 from Q16, and
then recomputing Q0 and m1, m2, m3, m4. There are 34 remaining conditions,



so we will have to use the tunnel about 234 times. Roughly, we break the message
search in two: first find m0..m4 such that the message follows steps 0 to 16, then
modify it to follow up to the end by changing Q0. This path is well suited for
this approach, with few conditions well spread over the first two rounds.

This gives us a lot of freedom in MD4 collisions, but the collision search
becomes more expensive. Another interesting property of this path is that it
only introduces a difference in m4, so the 11 chosen words will be the same in
M and M ′.

3.5 MD5 message freedom

Using Wang’s MD5 path [23], we will choose pv = 24 so as to use tunnels only
for the third round. Therefore, when we modify the Qi’s in the first round to use
the tunnels, we have to keep the values of m1, m6, m11, m0, m5, m10, m15 and
m4. We will not describe the available tunnels here, since they are extensively
described in Klima’s paper [11].

We use the set of conditions from Stevens [18], which adds the conditions
on the rotations that were missing in Wang’s paper [23]. We had to remove
the condition because it is incompatible with some choices of m15, so we check
instead the less restrictive condition on Φ15 (Φ[31]

15 = 0). We also found out that
some conditions mark as optimization conditions were actually needed for the
set of conditions to be sufficient.

As already stated, we can choose m0 in the first block, and we will see how
many words we can choose in the end of the message. With t = 0, we set pc = 19,
so we have 7 conditions in steps pc to pv−1, and after pv, there are 29 conditions
for the first block, and 22 for the second block. With t = 1, we use pc = 18,
which increase the number of conditions between steps pc and pv − 1 to 9, but
since we will use a lot of tunnels, this has very little impact on the computing
time. We can also try to set t = 2, but this adds a lot of conditions when we
search the states in the end of the first round. According to our experiments,
the conditions on the Qi’s also imply some conditions on m14, so m14 could not
be chosen freely anyway.

As a summary, in a two-block MD5 collision (M ||N,M ′||N ′), we can choose
M0, M15 and N15, and the complexity of the collision search is roughly the same
as a collision search without extra constraints.

We only implemented a little number of tunnels, but we find the first block
in a few minutes with m0 and m15 chosen, and the second block in a few seconds
with m15 chosen. This is close to Klima’s results in [11].

4 Applications

Freedom in colliding blocks can be used to break some protocols and to create
collisions of special shape. The applications we show here requires that the chosen
part is identical in M and M ′, i.e. the differential path must not use a difference
there.



Fixing the padding. We can use this technique to find messages with the
padding included in the colliding block. For instance, this can be useful to build
pseudo-collision of the hash function: if there is a padding block after the pseudo-
colliding messages, the pseudo-collision will be completely broken.

We can also find collisions on messages shorter than one block, if we fix the
rest of the block to the correct padding. An example of a 160 bit MD4 collision
is given in Table 2 in Appendix A.

Zeroed collisions. Szydlo and Yin proposed some message preprocessing tech-
niques to avoid collisions attacks against MD5 and SHA-1 in [20]. Their idea
is to impose some restrictions on the message, so that collision attacks become
harder. One of their schemes is called message whitening : the message is broken
into blocks smaller than 16 words, and the last t words are filled with zeroes.
Using our technique we can break this strengthening for MD4 and MD5: in Ap-
pendix A we show a 11-whitened MD4 collision in Table 3 and a 1-whitened
MD5 collision in Table 4.

4.1 The APOP attack in practice.

To implement this attack, we need to efficiently generate MD5 collisions with
some chosen parts; we mainly have to fix the last word, which is precisely what
we can do cheaply on MD5.

Additionally, the POP3 RFC [13] requires the challenge to be a msg-id, which
means that:
– It has to begin with ‘<’ and end with ‘>’
– It must contain exactly one ‘@’, and the remaining characters are very re-

stricted. In particular, they should be ASCII characters, but we can not find
two colliding ASCII messages with Wang’s path.

In practice most mail clients do not check these requirements, leaving us a lot of
freedom. According to our experiments with Thunderbird1 and Evolution2 there
are only four characters which they reject in the challenge:
– 0x00 Null: used as end-of-string in the C language
– 0x3e Greater-Than Sign (‘>’): used to mark the end of the msg-id
– 0x0a Line-Feed: used for end-of-line (POP is a text-based protocol)
– 0x0d Carriage-Return: also used for end-of-line

Thunderbird also needs at least one ‘@’ in the msg-id.
We will use Wang’s path [23], which gives two-block collisions. The first block

is more expensive to find, so we will use the same for every msg-id, and we will
fix the first character as a ‘<’, and the last character as a ‘@’. Then we have to
generate a second block for every password character test; each time the last
word is chosen, and we must avoid 4 characters in the message. Using the ideas
from Section 3.5 we can do this in less than 5 seconds per collision on a standard
desktop computer.
1 available at http://www.mozilla.com/en-US/thunderbird/
2 available at http://www.gnome.org/projects/evolution/



Unfortunately, this path uses a difference δM14 = 232 and this makes a
difference in character 60. In order to learn the i-th password character pi−1, we
need to generate a collision where we fix the last i + 1 characters (i password
characters, plus a ‘>’ to form a correct msg-id). Therefore, we will only be able to
retrieve 3 characters of the password with Wang’s path. This points out a need
for new paths following Wang’s ideas, but adapted to other specific attacks; here
a path less efficient for collision finding but with better placed differences could
be used to learn more characters of the password.

Complexity. To estimate the complexity of this attack, we will assume the
user’s password is 8-characters long, and each character has 6 bits of entropy.
This seems to be the kind of password most people use (when they don’t use
a dictionary word...). Under these assumptions, we will have to generate 3× 25

collisions, and wait for about 3 × 26 identifications. Each collision takes about
5 seconds to generate; if we assume that the client identifies once per minute
this will be the limiting factor, and our attack will take about 3 hours. In a
second phase we can do an offline exhaustive search over the missing password
characters. We expect to find them after 230 MD5 computations and this will
take about half an hour according to typical OpenSSL benchmarks.

Recent developments. The attack against APOP had been independently
found by Sasaki et al. almost simultaneously; they put a summary of their work
on the eprint [16]. Moreover, Sasaki announced at the rump session of FSE ’07
that he had improved the attack; he can recover 31 password characters using a
new differential path.

Recommendations. We believe APOP is to be considered broken, and we
suggest users to switch to an other authentication protocol if possible. Since the
current attack needs non-RFC-compliant challenges, an easy countermeasure in
the mail user agent is to strictly check if the challenge follows the RFC, but
maybe this could be defeated by an improved attack.
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A Collision Examples

Table 2: A 160-bit MD4 collision.

Message M

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa

Message M ′

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac

Message M padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

Message M ′ padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

MD4
46 6d cb bd 04 66 2c 43 75 12 18 f6 f4 e5 68 71



Table 3: A 11-whitened MD4 collision.

Whitened Message M

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 18 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Whitened Message M ′

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 1a 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MD4 without padding
1d ba e9 89 02 22 9f a6 a9 bb 88 f8 30 c1 38 ab

MD4 with padding
e1 54 1e 65 46 d8 4b 79 db b3 5b b2 13 00 06 9b

Table 4: A 1-whitened MD5 collision.

Whitened Message M

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 bf ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 83 b2 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 77 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b 37 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 ac d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 f2 00 00 00 00

Whitened Message M ′

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 3f ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 03 b3 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 f7 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b b7 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 2c d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 72 00 00 00 00

MD5 without padding
98 28 90 7a 75 75 ae 7a 25 f9 80 94 62 ea 52 76

MD5 with padding
7c c4 3c db a7 a6 f6 9e c5 10 8e 46 95 00 fd 82



Table 5: APOP MD5 collision. These two msg-id’s collide if padded with “bar”

Message M

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀACn]EBØ\4UBSµiQP1 6d 58 c0 9f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc’áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 27 e1 d2
ÝìVSôGECû49¾VHJxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 89 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4$½MH-:y6ÇÊ©ÜFS c4 94 34 24 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DCþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 90 fe be
ïL´ïªØ#»ì])ü> ef 4c b4 ef aa d8 23 bb ec 5d 29 fc 3e

Message M ′

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀUSn]EBØ\4UBSµiQP1 6d 58 c0 1f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc§áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 a7 e1 d2
ÝìVSôGECû49¾VHTxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 09 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4¤½MH-:y6ÇÊ©ÜFS c4 94 34 a4 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DLþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 10 fe be
ïL´ïªØ#»ì])|> ef 4c b4 ef aa d8 23 bb ec 5d 29 7c 3e

MD5(M ||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ′||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ||“ban”) 40 c6 ee cc 6f e1 e5 2b 53 74 a0 e8 3e f7 4f 54
MD5(M ′||“ban”) 02 c1 8c 29 49 91 04 99 8f 88 33 77 a1 eb 81 be

Table 6: A MD4 collision close to 1512.

Message M

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff fd ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

Message M ′

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff ff ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

MD4 without padding
ff a3 b5 2d 51 63 59 36 11 e5 9a d0 a6 cf 8b 33

MD4 with padding
59 93 19 84 d0 6f 55 9f f3 d0 87 4b c6 24 f4 8d



B Algorithms

All the algorithms take the set of condition as an implicit input, and will modify
a shared state containing the mi’s and the Qi’s.

Algorithm 1 Our collision finding algorithm
1: procedure FindMessage(pv, pc, t)
2: repeat
3: choose Q12−t, Q13−t, Q14−t, Q15−t

4: if t 6= 0 then
5: StepForward(16− t)
6: FixState(16− t)
7: StepBackward(16− t)
8: if not CheckConditions(12− t) then
9: goto 3
10: for 17− t ≤ i < 16 do
11: StepForward(i)
12: if not CheckConditions(i) then
13: goto 3
14: i ← 0
15: for 16 ≤ j < pc do
16: while i < π(j) do
17: choose Qi

18: StepMessage(i)
19: i ← i + 1

20: StepForward(j)
21: FixState(j)
22: StepMessage(j)
23: StepForward(i)
24: if not CheckConditions(i) then
25: goto 16
26: for π(pc − 1) + 1 ≤ i < 12− t do
27: choose Qi

28: StepMessage(i)
29: StepMessage(12-t ... 15-t)
30: for pc ≤ i < pv do
31: StepForward(i)
32: if not CheckConditions(i) then
33: goto 26
34: for all tunneled message do
35: for pv ≤ i < N do
36: StepForward(i)
37: if not CheckConditions(i) then
38: use the next message
39: until all conditions are fulfilled



Algorithm 2 Step functions
1: function MD4StepForward(i)
2: Qi ← (Qi−4 ¢ Φi(Qi−1, Qi−2, Qi−3) ¢ mi ¢ ki) ≪ si

3: function MD4StepBackward(i)
4: Qi−4 ← (Qi ≫ si) ¯ Φi(Qi−1, Qi−2, Qi−3) ¯ mi ¯ ki

5: function MD4StepMessage(i)
6: mi ← (Qi ≫ si) ¯ Qi−4 ¯ Φi(Qi−1, Qi−2, Qi−3) ¯ ki

7: function MD5StepForward(i)
8: Qi ← Qi−1 ¢ (Qi−4 ¢ Φi(Qi−1, Qi−2, Qi−3) ¢ mi ¢ ki) ≪ si

9: function MD5StepBackward(i)
10: Qi−4 ← (Qi ¯ Qi−1) ≫ si ¯ Φi(Qi−1, Qi−2, Qi−3) ¯ mi ¯ ki

11: function MD5StepMessage(i)
12: mi ← (Qi ¯ Qi−1) ≫ si ¯ Qi−4 ¯ Φi(Qi−1, Qi−2, Qi−3) ¯ ki

Algorithm 3 Wang’s message finding algorithm
1: procedure FindMessageWang
2: repeat
3: choose a random message
4: for 0 ≤ i < N do
5: StepForward(i)
6: if not CheckConditions(i) then
7: try to modify the message
8: until all conditions are fulfilled

Algorithm 4 Klima’s message finding algorithm
1: procedure FindMessageKlima
2: repeat
3: for 0 ≤ i < 16 do
4: choose Qi

5: StepMessage(i)
6: for 16 ≤ i < pv do
7: StepForward(i)
8: if not CheckConditions(i) then
9: modify the message
10: for all tunneled message do
11: for pv ≤ i < N do
12: StepForward(i)
13: if not CheckConditions(i) then
14: use the next message
15: until all conditions are fulfilled



C Collisions with a High Number of Chosen Bits

In this paper, we considered the problem of finding collisions with some chosen
words but some other works addressed the problem of choosing bits (mainly [25]).
We believe it is more useful to choose consecutive bits and the applications we
give in Section 4 all need this property. Specifically, the APOP attack requires
to choose consecutive bits in the end of the block; it will fail if one of these bits is
uncontrolled. However let us say a few words about collisions with many chosen
bits.

Following the ideas of Yu et al.[25], we will use a collision path with very
few conditions. Such paths are only known in the case of MD4, and we found
out that the path from [25] can be slightly enhanced: if we put the difference in
the bit 25 instead of the bit 22, we get only 58 conditions (instead of 62). Now
the basic idea is to take a message M , and apply message modifications in the
first round: this will give a message M∗ that has about 10 bit difference from M
(there are 20 conditions in the first round) and it gives a collision (M∗,M∗+∆)
with probability 2−38. Therefore we will generate about 238 messages Mi close
to M and the corresponding M∗

i , and one of them will give a collision.
Little detail is given in Yu et al. paper, but we can guess from their collision

example that they generated the Mi’s by changing m14 and m15. This makes
the attack more efficient since the M∗

i will all have the same first 14 words, but
it will modify about 32 extra bits. Actually, one only needs to iterate over 38
bits, which gives on the average 19 modified bits, but Yu et al. used the whole
64 bits.

In fact, if the goal is to have a high number of chosen bits, it is better
to choose the Mi in another way: instead of iterating over some bits, we will
switch a few bits in the whole message, and iterate over the positions of the
differences. We have

(
512
5

) ≈ 238, so it should be enough to select 5 positions,
but we will have to run the full message modifications in the first round for every
message, which is quite expensive (about 237 MD4 computations). Instead, one
can choose 4 positions in the first 480 bits, and two in the last 32 bits: we have(
480
4

)(
32
2

) ≈ 240, and the message modification on the first 15 words will only be
run every 29 messages; the main cost will be that of testing 238 messages for the
second and third rounds: using early abort techniques, this cost will be about
233 MD43.

On the average, we expect to have 6 bit differences coming from this iteration,
plus 10 coming from the message modification in the first round. An example
of such message is given in Table 6, it has 18 bit differences from the target (a
block consisting only of 1’s), which is much better than achieved by Yu et al.
(43 bit differences).

3 There are two conditions on step 15, three on step 16 and one on step 17: so 3 · 236

messages will stop after 1 step, 7·233 after 2 steps, 232 after 3 steps, and the remaining
232 messages will need at most 16 steps. This gives less than 95 ·232 MD4 steps, that
is less than 233 full MD4.


