An Improved Security Bound for HCTR

Debrup Chakraborty and Mridul Nandi

Department of Computer Science
CINVESTAV-IPN
Mexico City, Mexico
email: debrup@cs.cinvestav.mx, mridul.nandi@gmail.com

Abstract. HCTR was proposed by Wang, Feng and Wu in 2005. It is a
mode of operation which provides a tweakable strong pseudorandom per-
mutation. Though HCTR is quite an efficient mode, the authors showed
a cubic security bound for HCTR which makes it unsuitable for applica-
tions where tweakable strong pseudorandom permutations are required.
In this paper we show that HCTR has a better security bound than what
the authors showed. We prove that the distinguishing advantage of an
adversary in distinguishing HCTR and its inverse from a random per-
mutation and its inverse is bounded above by 4"5(72/2"7 where n is the
block-length of the block-cipher and o is the number of n-block queries
made by the adversary (including the tweak).

1 Introduction

A block-cipher mode of operation is a specific way to use a block-cipher to en-
crypt messages longer than the block-length of the block-cipher. In the literature
there are different modes of operations which provide different kinds of security
services like confidentiality, authentication etc. A tweakable enciphering scheme
(TES) is a specific kind of mode of operation. They are based on the notion of
tweakable block ciphers introduced in [9]. TES are length preserving encryption
schemes which can encrypt variable length messages. The security that these
modes provide is that of a strong pseudorandom permutation (SPRP), i.e., a
TES is considered secure if it is infeasible for any computationally bounded cho-
sen plaintext chosen ciphertext adversary to distinguish between the TES and
a random permutation. A TES takes as input a quantity called a tweak other
than the message and the key. The tweak is supposed to be a public quantity
which enriches the variability of the cipher-text produced.

The first construction of a wide block SPRP was provided by Naor and Rein-
gold [14], but their construction was not a TES as the concept of tweaks came
after their construction. A fully defined TES for arbitrary length messages using
a block cipher was first presented in [6]. In [6] it was also stated that a possible
application area for such encryption schemes could be low level disc encryption,
where the encryption/decryption algorithm resides on the disc controller which
has access to the disc sectors but has no access to the high level partitions of
the disc like directories files, etc. The disc controller encrypts a message before

writing it to a specific sector and decrypts the message after reading it from the
sector. Additionally it was suggested in [6] that sector addresses can be used as
tweaks. Because of the specific nature of this application, a length preserving
enciphering scheme is required and under this scenario, a strong pseudorandom
permutation can provide the highest possible security.

In the last few years there have been numerous proposals for TES. These
proposals fall in three basic categories: Encrypt-Mask-Encrypt type, Hash-ECB-
Hash type and Hash-Counter-Hash type. CMC [6], EME [7] and EME* [4] fall
under the Encrypt-Mask-Encrypt group. PEP [3], TET [5] and HEH[15] fall
under the Hash-ECB-Hash type and XCB [11], HCTR [17], HCH, HCHfp [2],
ABL [12] fall under the Hash-Counter-Hash type.

The Encrypt-Mask-Encrypt type constructions require two layers of encryp-
tion with a light weight masking layer in between. The other two paradigms
require a single layer of encryption sandwiched between two universal hash lay-
ers. Thus, the only significant cost for Encrypt-Mask-Encrypt type constructions
are the block-cipher calls, whereas for the other two paradigms both block-
cipher calls and finite field multiplications are required. More specifically, the
Encrypt-Mask-Encrypt paradigm uses about 2m block cipher calls for encrypt-
ing a m block message and a the other two paradigms require m block-cipher
calls and 2m field multiplications. Recently, in [16] many different constructions
for the Hash-Encrypt-Hash paradigm were proposed using blockwise universal
hash functions. One of these proposals called HEH[BRW] uses m field multipli-
cations unlike other constructions of the same category. A detailed comparison
of different TES can be found in [2,5,15].

In a recent study [10], some performance data regarding various tweakable
enciphering schemes in reconfigurable hardware was reported. This study and
the comparisons presented in [2,5,15] indicate that HCTR is one of the most
efficient candidates among all proposed TES. But, the security guarantee that
the designers of HCTR claimed is insufficient in many practical scenarios. This
makes HCTR an uninteresting candidate.

In this paper we show that HCTR provides better security than that claimed
by the authors. In fact HCTR provides the same security as other other proposed
TES. We consider this result to be important in light of the current activities of
the IEEE working group on storage security which is working towards a standard
for a wide block TES [8].

The crux of this paper is a security proof for HCTR. The proof technique that
we use is a sequence of games as used in [2, 5, 15]. The previously reported game
based proofs for TES performs the final collision analysis on a non-interactive
game which runs on a fixed transcript and thus does not depend on the distri-
bution of the queries provided by the adversary. In our proof we do not require
the non-interactive game, as we can show that the final collision probabilities
are independent of the distribution of the adversarial queries. This observation
makes our proof different from the proof in [17] and helps to obtain a better
bound.

2 The Construction

In the discussion which follows we shall denote the concatenation of two strings
X and Y by X||Y. By |X| we shall mean the length of X in bits. bin, (¢) will
denote the n bit binary representation of £. For X, Y € GF(2"), X &Y and XY
will denote addition and multiplication in the field respectively.

HCTR uses two basic building blocks. A universal polynomial hash function
and a counter mode of operation. The hash used in case of HCTR is defined as:

Hp(X) = X1h™ @ Xoh™ @ ... @ pad,.(X,,)h? @ bin, (| X|)h (1)

Where h is an n-bit hash key and X = X;||X32||...||Xm, such that | X;| = n bits
(t1=1,2,...m—1), 0 < |X,,] <n. The pad function is defined as pad, (X,,) :=
Xm||0" where r = n — | X,,,|. Thus, |pad,(X,,)| =n. If X = A, the empty string,
we define Hp(A) = h. In addition to the hash function, HCTR requires a counter
mode of operation. Given an n-bit string .S, a sequence S, ...,S,, is defined,
where each S; depends on S. Given such a sequence and a key K the counter
mode is defined as follows.

CtrK7s(A1, . ,Am) = (Al D EK(Sl), e A B EK(Sm)) (2)

Where S; = S @ bin,, (7). In case the last block A,, is incomplete then A,, ®
Ex(Sp) in Eq. 2 is replaced by A,, @ drop,.(Ek(S,)), where r =n — |A,,| and
drop,.(Ex (Sp)) is the first (n—r) bits of Ex (Sy,). The encryption and decryption
operations using HCTR are described in Fig. 1, and a high-level description is
provided in Fig. 2. If m = 1 (when we have one block message), we ignore line
4 in both encryption and decryption algorithm.

Fig. 1. Encryption using HCTR. K is the block-cipher key, h the hash key and T the

tweak.

Algorithm E¥ , (Py,..., Pn) Algorithm D% ,,(C1,...,Cn)
1. MM «— P, ® Hp(Ps||...||Pnl||T); 1. CC « C1 @ Hn(Ca||C3]|...||Cml||T);
. CC «— Ex(MM); 2. MM «— EZ'(CC);
3. S— MM®aCC, 3. S— MM®a®CC,
4. (Cs,...,Cm-1,Cn) 4. (P2,...,Pm_1,Pn)

— Ctrg,s(Pa, ..., Pn); — Ctrg,5(Ca,...,Cn);

5. C1 « CC@® Hu(Co||Cs]|...||Cml|T); 5. Pr+— MM @® Hp,(Ps|...||Pn||T);
6. return (Ci,...,Cm); 6. return (Pi,...,Pn);

]
~NT
3T

T
Hy R
Ex —+ [Ctrg]
T
+ Hn .
< > Cn

Fig. 2. Encryption using HCTR. Here K is the key for the block cipher Ex () and h is
the key for the universal hash function Hp().

HCTR requires m block-cipher calls and 2m+2t+2 finite field multiplications
to encrypt a m block message with a t block tweak. It can be used on any fixed
length tweaks. The authors of HCTR prove that the maximum advantage of a
chosen plain text and chosen ciphertext adversary in distinguishing HCTR from
a random permutation is 0‘5q2+((22tt)02+03). Where t denotes the length of the
tweak and o denotes the number of blocks of queries made by the adversary.
This cubic bound makes HCTR less attractive than other tweakable enciphering
schemes all of which are known to have a security bound of the order of g—j

In a recent work [13] a general construction of tweakable SPRP was reported
by using universal hash functions, tweakable block-ciphers and a weak pseudo-
random function. The paper [13] also reports a variant of HCTR which comes
as an instantiation of their general construction. They claim that this variant of
HCTR has a quadratic security bound. But, this variant is quite different and
also inefficient from the original specification of HCTR. The variant reported in
[13] needs one more block-cipher call than the original HCTR.

3 Improved Bound for HCTR

3.1 Definitions and Notation

The discussion in this section is based on [6]. An n-bit block cipher is a function
E: K x{0,1}" — {0,1}", where K #) is the key space and for any K € K,
E(K,.) is a permutation. We write Fx () instead of E(K,.).

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
A®1:92 — 1 denotes the event that the adversary A, interacts with the oracles

01, O,, and finally outputs the bit 1. In what follows, by the notation X & S,
we will denote the event of choosing X uniformly at random from the finite set

S.

Let Perm(n) denote the set of all permutations on {0,1}". We require E(,)
to be a strong pseudorandom permutation. The advantage of an adversary A
in breaking the strong pseudorandomness of E(,) is defined in the following
manner.

Advﬁprp(A) — ‘PI‘ {K i K - AEK()sz;l() = 1] —
Pr |:7T & Perm(n) : ATO70 o 1} ‘ .

A tweakable enciphering scheme is a function E : I x 7 x M — M, where
K # () and 7 # () are the key space and the tweak space respectively. The
message and the cipher spaces are M. For HCTR we have M = U;~,,{0,1}*. We
shall write E%(.) instead of E(K,T),.). The inverse of an enciphering scheme is
D = E~! where X = DL (Y) if and only if EL(X) =Y.

Let Perm? (M) denote the set of all functions 7 : 7 x M — M where 7(T, .)
is a length preserving permutation. Such a w € PermT(M) is called a tweak
indexed permutation. For a tweakable enciphering scheme E : K x 7 x M —
M, we define the advantage an adversary A has in distinguishing E and its
inverse from a random tweak indexed permutation and its inverse in the following
manner.

AdvpPP(A) = [Pr [& K5 ABKCIEL) o]

—Pr {7!‘ il PermT(M) CATC)A TG o 1} ‘ . (3)

Here, & Perm? (M) means that for each £ such that {0,1} C M and T €
T we choose a tweakable random permutation 77 from Perm(¢) independently.

We define Adv%lO P(g,0) by max AAdvigprp(A) where maximum is taken over
all adversaries which makes at most ¢ queries having at most ¢ many blocks. For

a computational advantage we define Adviprp(q, o,t) by max AAdviprp(A). In

addition to the previous restrictions on A, he can run in time at most ¢.

Pointless queries: Let T, P and C represent tweak, plaintext and ciphertext
respectively. We assume that an adversary never repeats a query, i.e., it does
not ask the encryption oracle with a particular value of (7, P) more than once
and neither does it ask the decryption oracle with a particular value of (T, C)
more than once. Furthermore, an adversary never queries its deciphering oracle
with (T,C) if it got C in response to an encipher query (T, P) for some P.
Similarly, the adversary never queries its enciphering oracle with (T, P) if it got
P as a response to a decipher query of (T,C) for some C. These queries are
called pointless as the adversary knows what it would get as responses for such
queries.

The notation HCTR[E] denotes a tweakable enciphering scheme, where the
n-bit block cipher F is used in the manner specified by HCTR. We will use the
notation E; as a shorthand for HCTR[Perm(n)] and D, will denote the inverse

of E. Thus, the notation A¥~P~ will denote an adversary interacting with the
oracles E; and D.

3.2 Statement of Results
The following theorem specifies the security of HCTR.

Theorem 1. Fiz n,o to be positive integers and an n-bit block cipher E : IC x
{0,1}" — {0,1}™. Then

Ady PP - 4.502 A

VHCTR[Perm(n)](U) = 9on (4)
:|:~ 4.50’2 +

AdefggR[E] (0:t) < = + AdviP™P (o,) (5)

where t' =t + O(o).

The above result and its proof is similar to previous work (see for example [6,
7,3]). As mentioned in [6], Equation (5) embodies a standard way to pass from
the information theoretic setting to the complexity theoretic setting.

For proving (4), we need to consider an adversary’s advantage in distin-
guishing a tweakable enciphering scheme E from an oracle which simply returns
random bit strings. This advantage is defined in the following manner.

rnd
AdVIiICTR[Perm(n)] (4) =

Pr |:Tl' & Perm(n) : A¥=P~ = 1}
e 45500 | ©

where $(., M) or $(.,C) returns independently distributed random bits of
length |M| or |C| respectively. The basic idea of proving (4) is as follows.

+pIp _ $. AE~Dx
AdeCH[Perm(n)](A) = (Pr [71’ — Perm(n): A = 1]

e &m0 1)
— (Pr[r & Perm(n) : 4B 1]

_ Py [Ass(.,.),ss(.,.) N 1D

T (Pr [A$(.,.),$(.,,) N 1}

—Pr [7r & Perm” (M) : ATCIATG) o 1])

rn q\ 1
= AdvﬁCg[Perm(n)] (4) + <2) on (7)

where ¢ is the number of queries made by the adversary. For a proof of the last

inequality see [6]. Thus, the main task of the proof now reduces to obtaining an

upper bound on Advlj-EIr(El’%R[Perm(n)] (). In section 4 we prove that

Advlzsg"ﬁ{[l)erm(n)](g) < —. (8)

Using equation (8) and (7) we obtain equation (4).

4 The Game Sequence

We shall model the interaction of the adversary with HCTR by a sequence of
games. We shall start with the game HCTR1 which describes the mode HCTR,
and with small changes we shall reach the game RAND2 which will represent an
oracle which returns just random strings and we shall bound the advantage of an
adversary in distinguishing between the games HCTR1 and RAND1. Where G
represents a game by Pr[A% = 1] we shall mean the probability that A outputs
1 by interacting with the game G. Next we describe the games.

Game HCTRI1: In HCTRI, the adversary interacts with E; and D, where 7 is
a randomly chosen permutation from Perm(n). Instead of initially choosing ,
we build up 7 in the following manner.

Initially 7 is assumed to be undefined everywhere. When 7(X) is needed,
but the value of 7 is not yet defined at X, then a random value is chosen among
the available range values. Similarly when 7=1(Y") is required and there is no X
yet defined for which 7(X) =Y, we choose a random value for 7=(Y") from the
available domain values.

The domain and range of 7 are maintained in two sets Domain and Range,
and Domain and Range are the complements of Domain and Range relative
to {0,1}™. The game HCTRI is shown in Figure 3. The figure shows the sub-
routines Ch-m, Ch-7—!, the initialization steps and how the game responds to
a encipher/decipher query of the adversary. The i*" query of the adversary de-
pends on its previous queries, the responses to those queries and on some coins
of the adversary. When [® = n, we ignore the line 103 to line 109.

The game HCTRI1 accurately represents the attack scenario, and by our
choice of notation, we can write

Pr[AB=Dr = 1] = pr[aHCTRL o q) (9)

Game RAND1: We modify HCTR1 by deleting the boxed entries in HCTR1
and call the modified game as RAND1. By deleting the boxed entries it cannot
be guaranteed that 7 is a permutation as though we do the consistency checks
but we do not reset the values of Y (in Ch-m) and X (in Ch-7—1!). Thus, the
games HCTR1 and RANDI1 are identical apart from what happens when the
bad flag is set. By using the result from [1], we obtain

| Pr[AMCTRL = 1] — Pr[ARANDL -]| < Pr[ARANP! gets bad] (10)

Fig. 3. Games HCTR1 and RAND1

Subroutine Ch-7(X)

11. y & {0,1}"; if Y € Range then bad «— true;| YV & Range |; endif;
12. if X € Domain then bad « true; | Y « 7(X) |, endif
13. 7w(X) «Y; Domain «— Domain U {X}; Range <— Range U {Y }; return(Y);

Subroutine Ch-7—*(Y))

14. x & {0,1}"; if X € Domain, bad «— true;] X & Domain ; endif;

15. if Y € Range then bad « truej X «— 7~ *(Y) |; endif;
16. 7w(X) <« Y; Domain «— Domain U {X}; Range <— Range U {Y'}; return(X);

Initialization:
17. for all X € {0,1}" n(X) = undef endfor
18. bad = false

Respond to the s query as follows: (Assume I° = n(m® — 1) + %, with 0 < r° < n.)

Encipher query: Enc(T?; P{, Ps, ... Pys) |Decipher query: Dec(Cy,C5,...,Chs, T?)
101, MM* — Py & Hy(P3|]...|[PAIIT®);| CC* — Ct & Hy(C3l... CaIT*);
102. CC® «— Ch-n(MM?); MM? « Ch-r=H(CC*)
103. S® «— MM*®* @ CC?; S®— MM*® CC?
104. for i =1 to m® — 2, for i =1 tom® — 2,
105. Zf « Ch-n(S* @ bin,,(i)); Z§ « Ch-m(S® @ bin, ());
106. Cipy — P @ Z7; Py — Cipa @ Z7
107. end for end for
108. Z;,s « Ch-m(S® @ bin,(m® — 1)); Zmms < Ch-7(S° @ bin,(m® — 1));
109. Cis «— Ppys @ drop,,_ .« (Zs); Pjs — Cos @drop,, .« (Zs);

PP — MM* & Hn(P5]|...[|[Pn||T°);
110. Cf «— CC®° @ Hp(C3]| ... ||Cs|IT?);
111. return C7||C5||...||Ch.s return Ps||...||Pps

Another important thing to note is that in RAND1 in line 103, for a en-
cryption query CC?® (and M M?® for a decryption query) gets set to a random
n bit string. Similarly 105 and 108 Z7 gets set to random values. Thus the the
adversary gets random strings in response to both his encryption and decryption

queries. Hence,
Pr[ARANDT = 1] = Pr[A%0)80) =) (11)

So using Equations (6), (10) and (11) we get

d), 8(s
AQVE oy () = [PHAB D7 = 1] = PHASCISC) S (12)
= | Pr[AHCTRL = 1] — Pr[ARANDL o 7))
< Pr[ARANDL sets bad] (13)

Game RAND2: Now we make some subtle changes in the game RANDI to
get a new game RAND2 which is described in Figure 4. In game RANDI1 the
permutation was not maintained and a call to the permutation was responded by
returning random strings, so in Game RAND2 we no more use the subroutines
Ch-m and Ch-7~!. Here we immediately return random strings to the adversary
in response to his encryption or decryption queries. Later in the finalization step
we adjust variables and maintain multi sets D and R where we list the elements
that were supposed to be inputs and outputs of the permutation. In the second
phase of the finalization step, we check for collisions in the sets D and R, and
in the event of a collision we set the bad flag to true.

Game RANDI1 and Game RAND2 are indistinguishable to the adversary,
as in both cases he gets random strings in response to his queries. Also, the
probability with which RAND1 sets bad is same as the probability with which
RAND?2 sets bad. Thus we get:

Pr[ARANDL gets bad] = Pr[ARANP2 sets bad] (14)
Thus from Equations (13) and (14) we obtain

+rnd RAND2
AdeCTR[Perm(n)} (A) <Pr[A sets bad] (15)

Now our goal would be to bound Pr[ARAND2 gets bad]. We notice that in
Game RAND?2 the bad flag is set when there is a collision in either of the sets
D or R. So if COLLD and COLLR denote the events of a collision in D and R
respectively then we have

Pr[ARANDZ gets bad] < Pr[COLLR] + Pr[COLLD)]

In many previously reported game based proofs for strong pseudorandom
permutations including the proof given in [17], the final collision analysis is done
on a non-interactive game. The non-interactive game is generally obtained by
eliminating the randomness present in the distribution of the queries presented

Fig. 4. Game RAND2

Respond to the s adversary query as follows:

ENCIPHER QUERY Enc(T®; PY, Ps,..., Pps)
ty* = Enc; C5[|C5]| .. [|Ciue 1D < {0,137
Cos «—drop,,_,«(Dms) return C7||C3]] ... ||Chs;
DECIPHER QUERY Dec(T?%;C?,C5,...,Chs)
s s s s s $ nm?
ty® = Dec; PY||P3]| .. [|Pn, —1|[Vine = {0,1}"™
Pps «—drop,,_ .« (Vims) return P7||P5|| ... || Ps;

Finalization:

Case ty° = Enc:

MM* — P{ @ Hu(BS|... || PAIIT®);
CC* — €5 & Hu(C5].. |05 IT*);
S®— MM?®® CC?%
D—DU{MM°},
R — RU{CC"};
fori=2tom® —1,

YP < O e P

D —DU{S* P bin,(i —1)};

R —RU{Y’}
end for
Yi. e DS. @ Pl
D — DU{S®°®bin,(m* —1)};
R —RU{Yae b

Case ty® = Dec:

MM* — P{ @ Hu(BSl... || PAIIT®);
OC* — €5 & Hu(C5]. . |05 IT*);
S®«— MM*a CC?
D—DU{MM°},
R — RU{CC"};
fori=2tom® —1,

Y? < O e P

D —DU{S® P bin,(i —1)};

R — RU{Y’}
end for
Yoo Ve ®Clis
D — DU{S® @ bin,(m® —1)};
R~ RU{Ya b

SECOND PHASE
bad = false;

if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

by the adversary. To achieve this the final non-interactive game runs on a fixed
transcript which maximizes the probability of bad being set to true. In this
case as we will soon see, such a de-randomization is not required. Because of the
specific structure of the game RAND2 the probability COLLR and COLLD would
be independent of the distribution of the queries supplied by the adversary, hence
a final collision analysis can be done on the game RAND?2 itself.

4.1 Bounding collision probability in D and R

In the analysis we consider the sets D and R to consist of the formal variables
instead of their values. For example, whenever we set D « D U {X} for some
variable X we think of it as setting D < DU {“X”} where “X” is the name of
that formal variable. This is the same technique as used in [6]. Our goal is to
bound the probability that two formal variables in the sets D and R take the
same value. After ¢ queries of the adversary where the s* query has m® blocks
of plaintext or ciphertext and t block of tweak, then the sets D and R can be
written as follows:

Elements in D : MM?*® = P} & Q°,
53 = S* @bin, (j) = (P} @ C}) ® (Q° ® B* @ bin,(j)),
where Q° = Hp(Ps || - || P5s || T®) and
B =Hp(Cs5 || -+ || Cpe 1 T%),
1<s<q, 1<i<m®—1,

Elements in R : CC®* =C5 @ B?,
=C; o Py,
2<i<m® 1<s<gq

Before we present the collision analysis let us identify the random variables
based on which the probability of collision would be computed. In game RAND2
the hash key h is selected uniformly from the set {0,1}". The outputs that the
adversary receives are also uniformly distributed, and are independent of the
previous queries supplied by the adversary and the outputs obtained by the
adversary. The 3" query supplied by the adversary may depend on the previous
outputs obtained by the adversary, but as the output of GAME?2 is not dependent
in any way on the hash key h thus the queries supplied by the adversary are
independent of h.

We consider T as ¢ n-bit blocks. Thus, for any s, Hy(Ps||---||P2:||T?)
Hp(Cs]|---1|Cs,-||T*) has degree at most m® + t. We denote o = ¢t + zsm .
We denote 55" = max{m* m*} +t. Since £>% < m® + m* + t, we have the

following inequality

> E“’SG)H > (mt+m)

1<s<s’<q 1<s<s’'<q
< (D) - -a)
qt(q —1
< (q—1)0+7(5) —qt(g—1)
<(g—1)o.

We also note that the response of encryption or decryption query are completely
independent of h (the poly hash key). Thus, inputs of Hy(:) for each query
are independent with h. So we can use the fundamental theorem of algebra to
claim that the probability that h is a root of a d degree polynomial is at most
d/2™ where h is chosen uniformly and independently from the coefficient of the
polynomial (which is true in case of Hy, in RAND2 game).

First we consider the collisions in R.

— We first consider collision among CC*. Let s’ # s. Now, Pr[CC* = CC¥'| <
055 /2™ where the probability is computed under the uniform choice of h €
{0,1}". We know that CC®*@®CC* is a non-zero polynomial of h with degree
at most £, By using fundamental theorem of algebra we have the above
bound for the collision probability. Thus,

, es,s’
Pr[CC* = CC® :forsome 1 <s<s <q] < Z ~
1<s<s'<q

(g—1o
<42 (16)

Similarly we can compute collision probability between Y,* and CC¢'. For
each &, there are (0 — gt — q) many Y;*’s. For each such choice, Pr[CC* =

Y#] < (m* +t)/2". Thus,
Pr[CC* =Y : forsome 1< s#s <q,2<i<m’

<y (aqtzqg(m5'+t)

1<s’<gq
< o?/om, (17)

— Now we consider collision among Y;*, 2 < i < m?® 1 < s < q. For the pairs
(Yis,Yi‘?/) with s < s and (s,i) # (s',4’), the collision probability is 1/2,
since either P® or C* is chosen uniformly and independently from the rest

of the variables. There are (U_%t_q) pairs of this form. Thus,

Pr]Y =Y : forsome 1 <s<s <q1<ii <q,(si)# (s, i)

< (O B Cg - q) /2n. (18)

Combining equation (16), (17) and (18) we obtain

2

4o
Pr[COLLR] < PTESE

Now we consider collision in domain D.

— Similar to equations (16) and (17), we have

, 65’5/
Pr[MM?® = MM?® : forsome 1 <s<s <q] < Z 5
1<s<s'<q

<(g—1o/2". (20)

Pr[MMs/ =57 : forsome 1 <s#s <q,2<i<m’]< a? /2", (21)

— Now we consider collision among Sf = S° @ bin,, (i), 2 <i<m?*, 1 <s<q.
Note that, S§ = S5 implies that (P ® C§) @ (Q° @ B* @ bin,,(i)) = (P} @
C3) @ (Q¥ ® B¥ @bin, (). Let s’ < s and (s, i) # (s',4'). Thus, either C¢
(in case s*® query is encryption) or P} (in case s query is decryption) is
uniformly and independently distributed with all other variables stated in
the above equality. Thus, the collision probability is 1/2". Since there are
(”_%t_q) pairs of this form, we have

Pr[S8 =55 : forsome 1 <s<s <q,1<ii <gq,(s,i)#(s,i)

< (” S q) 2 (22)

The equations (20), (21) and (22) imply the following similar bound for
domain collision probability.

2
Pr{COLLD] < -2

< g (23)

Combining the domain and range collision probabilities, we obtain the probabil-
ity of bad being set to true in RAND2 to be at most 8¢2/2"1. Thus, by using
equations (19) and (23), we have

AV porm () (A) < 5 (24)

5 Discussions

Why our bound is different from [17]: The analysis that we perform is very
similar to that presented in [17]. As stated earlier, the authors in [17] presents
their collision analysis on a non-interactive game where the plain texts and
ciphertexts are fixed. Thus they obtain a different bound for the probability of
collisions between S} and Sf/'. As they consider the plaintext and ciphertexts to

be fixed thus they conclude that the probability of collision between each pair
is less than ¢/2"™, where ¢ is the maximum length of a query supplied by the
adversary. Thus according to their analysis they obtain

Pr[S; = f,/ : for some 1 <s<s' <gq,1<i,i <q,(s,4)# (s,i)]

< €<J - (;t - q) /om. (25)

This term contributes to the cubic security bound reported in [17].

The bound claimed in [13] : In [13] a improved bound provided of a variant of
HCTR. Firstly, the variant uses one more block-cipher call than HCTR making
it less efficient than the original construction. Secondly, they claim that the
security bound of modified HCTR is O(‘1;—52), where £ is the maximum query
length. This bound is uniformly larger than our bound.

6 Conclusion

We provided a improved security analysis of the HCTR mode of operation. This
work thus establish that HCTR provides same security guarantee as provided
by CMC, EME, EME*, XCB, PEP, HCH, TET, and HEH (to our knowledge
these are the only TES with a security proof).

References

1. Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the se-
curity of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004.
http://eprint.iacr.org/.

2. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-encrypt-hash approach. In Rana Barua and Tanja Lange,
editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages
287-302. Springer, 2006. Extended version in http://eprint.iacr.org/2007/028.

3. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a
tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw, editor,
FSE, volume 4047 of Lecture Notes in Computer Science, pages 293-309. Springer,
2006.

4. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315-327.
Springer, 2004.

5. Shai Halevi. Invertible universal hashing and the tet encryption mode. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 412-429.
Springer, 2007.

6. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482—
499. Springer, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292—-304. Springer, 2004.

IEEE Security in Storage Working Group (SISWG). PRP modes comparison IEEE
pl619.2. IEEE Computer Society, March 2007. Available at:http://siswg.org/.
Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 31-46. Springer, 2002.

Cuauhtemoc Mancillas-Lépez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. Efficient implementations of some tweakable enciphering schemes in
reconfigurable hardware. In INDOCRYPT, volume 4859 of Lecture Notes in Com-
puter Science, pages 414—424. Springer, 2007.

David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB)
mode of operation. Cryptology ePrint Archive, Report 2004/278, 2004.
http://eprint.iacr.org/.

David A. McGrew and John Viega. Arbitrary block length mode, 2004.
http://grouper.iece.org/groups/1619/email /pdf00005.pdf.

Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering schemes
from hash-sum-expansion. In INDOCRYPT, volume 4859 of Lecture Notes in
Computer Science, pages 252—267. Springer, 2007.

Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript
available from www.wisdom.weizmann.ac.il/naor.

Palash Sarkar. Improving upon the TET mode of operation. In INDOCRYPT,
volume 4817 of Lecture Notes in Computer Science, pages 180-192. Springer, 2007.
Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) uni-
versal hash functions. Cryptology ePrint Archive, Report 2008/004, 2008.
http://eprint.iacr.org/.

Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC,
volume 3822 of Lecture Notes in Computer Science, pages 175—-188. Springer, 2005.

