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Abstract. MD4 is a hash function introduced by Rivest in 1990. It is
still used in some contexts, and the most commonly used hash func-
tions (MD5, SHA-1, SHA-2) are based on the design principles of MD4.
MD4 has been extensively studied and very efficient collision attacks are
known, but it is still believed to be a one-way function.
In this paper we show a partial pseudo-preimage attack on the compres-
sion function of MD4, using some ideas from previous cryptanalysis of
MD4. We can choose 64 bits of the output for the cost of 232 compression
function computations (the remaining bits are randomly chosen by the
preimage algorithm).
This gives a preimage attack on the compression function of MD4 with
complexity 296, and we extend it to an attack on the full MD4 with
complexity 2102. As far as we know this is the first preimage attack on a
member of the MD4 family.
Key words: MD4, hash function, cryptanalysis, preimage, one-way.

1 Introduction

Hash functions are fundamental cryptographic primitives used in many con-
structions and protocols. A hash function takes a bitstring of arbitrary length
as input, and outputs a digest, a small bitstring of fixed length n.

F : {0, 1}∗ 7→ {0, 1}n

When used in a cryptographic context, we expect a hash function to behave
somewhat like a random oracle. The digest is used as a kind of fingerprint: it
can be used to test whether two documents are equal, but should neither reveal
any other information about the input nor be malleable. More concretely, we ask
a cryptographic hash function to resist three major attacks:

Collision: Given F , find M1 6= M2 s.t. F (M1) = F (M2).
Second-preimage: Given F and M1, find M2 6= M1 s.t. F (M1) = F (M2).
Preimage: Given F and H, find M s.t. F (M) = H.

Due to the birthday paradox, we have a generic collision attack with complexity
2n/2, while brute force preimage or second-preimage attacks have complexity
2n: this defines the security requirements of a n-bit hash function. Collision
resistance is the strongest notion, so most constructions use a collision resistant



hash function, and most cryptanalysis target collision attack. For a more formal
definition of these properties, and the relations between them, see [18,17].

Unfortunately, many currently used hash functions have been broken by col-
lision attacks: MD4 [5,21,19] (the best attack has complexity 21), MD5 [23,10]
(best attack: 223), and SHA-1 [22,13] (best attack: 260). These functions are now
considered unsafe but in practice very few constructions or protocols are really
affected.

In this paper we consider preimage resistance, which is a weaker security
notion and is still believed to hold for these hash functions. In particular MD4
is broken by collision attacks since 1996 but it is still used in some applications
where speed is important and/or a one-way function is needed but collision
resistance is not important:

– to “encrypt” passwords in Windows NT and later (as the NTLM hash);
– for password derivation in the S/KEY one time password system [8];
– to compare file blocks in the incremental file transfer program rsync;
– for file identification and integrity in the eDonkey peer-to-peer network.

S/Key and rsync even use a truncated MD4 and rely on the partial one-wayness
of MD4.

Preimage attacks are rather rare in the world of hash function cryptanalysis;
the most notable example is the preimage attack against MD2 by Muller [15],
later improved by Knudsen and Mathiassen [11] which has a complexity of 297.
A preimage attack has much more impact than a collision attack: it can be
used to fool integrity checks, to forge signatures using only known messages, to
break “encrypted” password files,... Moreover, when the hash function follows the
Merkle-Damgård paradigm (this is the case for MD4) we can add any chosen
prefix: given a messageM and a target hash valueH, we can actually compute N
such that MD4(M ||N) = H. For instance, this can be used to create a malicious
software package with a given signature when trailing garbage is allowed (eg.
this is the case with zip, gzip, and bzip2 files).

1.1 Our results

Our main result is a preimage attack against MD4 with complexity 2102. This
attack uses messages of 18 blocks or slightly more (more precisely 9151 bits,
about one kilobyte), and we can add any chosen prefix.

This is based on a partial pseudo-preimage attack on the compression func-
tion: we can choose 64 bits of the output (the other bits being randomly chosen
by the preimage algorithm) and 32 bits of the input for the cost of 232 compres-
sion function (brute force would require 264).

Our attack uses many ideas from previous cryptanalysis of MD4 [5,20,6,21].
We consider MD4 as a system of equation, we use some kind of differential path
and use the Boolean functions to absorb some differences, we fix many values of
the internal state using some particularities of the message expansion.



1.2 Related work

MD4 has been introduced as a cryptographic hash function by Rivest [16], in
1990 and many cryptanalytic effort has been devoted to study its security. The
design principles of MD4 are used in MD5 and the SHA family, which are the
most widely used hash function today. Any result about MD4 is interesting by
itself, and also gives some insight to the security level of the other members of
the MD4 family.

Shortly after the introduction of MD4, collision attacks were found on re-
duced variants of MD4: den Boer and Bosselaers [4] found an attack against
the last two rounds, and Merkle had an unpublished attack against the first
two rounds. Another attack against the first two rounds was later found by
Vaudenay [20]. The first collision attack against the full MD4 is due to Dob-
bertin [5] in 1996. More recently, Wang et. al. found a very efficient collision
attack on MD4 [21], which was later improved by Sasaki et. al. [19] and only
costs 2 compression functions. Due to all these attacks MD4 is no longer used
as a collision-resistant hash function.

The main result concerning the one-wayness of MD4 is due to Dobbertin [6].
He showed that if the last round of MD4 is removed, preimages can be found
in the resulting hash function with a complexity of 232 compression function
calls. This work was studied and improved using SAT solvers by De et al. [2].
They managed to invert up to 2 rounds and 7 steps of MD4. To the best of
our knowledge, no preimage attack has been found on the full MD4 with three
rounds.

Recently, Yu et al. found a kind of second-preimage attack on MD4 [24].
However this kind of attack is not what we usually call a second-preimage attack
because it only works for a small subset of the message space. This attack has a
complexity of one compression function, but it works only with probability 2−56

and cannot be repeated when it fails. If we want to build an attack that works for
any message out of this, we will use a brute-force search when the attack fails: it
will have a workload of 1 with probability 2−56, and a workload of 1 + 2128 with
probability 1− 2−56; the average workload is still extremely close to 2128. More
interestingly, we can use this with long messages: if the message is made of 263

blocks (there is not limitation to the size of the message in MD4, as opposed to
SHA-1), we will be able to find a second-preimage for at least one of the blocks
with a probability of 1 − exp(−263−56) ≈ 1 − 2−184. Thus, the cases where we
have to run a brute-force search become negligible, and the average workload is
just the time needed to test each block until a good one is found, so we expect
it to be 256.

Another related work due to Kelsey and Schneier [9] introduced a generic
second-preimage attack against iterated hash functions using long messages. This
is a nice result showing the limitations of the Merkle-Damgård paradigm, but an
attack on messages of 264 bits is not really practical. Our attack typically uses
messages of 20 blocks (about 1 kilobyte in total).



1.3 Description of MD4

MD4 is an iterated hash function following the Merkle-Damgård paradigm. The
message is padded and cut into blocks of k bits (with k = 512 for MD4), and
the digest is computed by iterating a compression function cF , starting with an
initial value IV .

cF : {0, 1}n+k 7→ {0, 1}n

h0 = IV, hi+1 = cF (hi,Mi)
F (M0,M1, ...Mp−1) = hp

The padding of MD4 uses the MD strengthening: it is designed to be invertible,
and includes the size of the message. The message is first padded with a single
1 bit followed by a variable number of 0’s, so that the size of the message is
congruent to 448 modulo 512. This first step adds between 1 and 512 bits to the
message. Then the last 64 bits are filled with the size of the original message
modulo 264. Note that MD4 can hash any bitstring: it is not restricted to hash
bytes, and there is no limit to the size of the message.

We will use the following definitions for attacks on the compression func-
tion cF :

Pseudo-Preimage: Given cF and H, find IV,M s.t. cF (IV,M) = H.
Preimage: Given cF , IV and H, find M s.t. cF (IV,M) = H.

The compression function of MD4 is an unbalanced Feistel ladder with an
internal state of four 32-bit registers. It is made of 48 steps, where each step
updates one of these registers. The 48 steps are divided into 3 rounds of 16
steps; each round reads the 16 message words in a different order (this is a very
simple message expansion). To better describe our attack, we will assign the
name Qi to the value computed in the step i: we now have 48 internal state
variables, and each one is computed from the 4 preceding ones (we use Q−4 to
Q−1 to denote the IV):

Step update: Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3)�mπ(i) � ki)≪ si
Input: Q−4 || Q−1 || Q−2 || Q−3

Output: Q−4 �Q44 ||Q−1 �Q47 ||Q−2 �Q46 || Q−3 �Q45

First round: 0 ≤ i < 16 Φi = IF ki = K0 = 0
Second round: 16 ≤ i < 32 Φi = MAJ ki = K1 = 0x5a827999

Third round: 32 ≤ i < 48 Φi = XOR ki = K2 = 0x6ed9eba1

π( 0...15): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
π(16...31): 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
π(32...47): 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

We will use the fact that we can fix some values of the internal state instead
of only fixing values of the message words: since the step update function is
invertible, when Qi−1, Qi−2 and Qi−3 are known, we can compute any one of
Qi, Qi−4 or mi from the two others (see Algorithm 1 for explicit formulas).



Algorithm 1 Step functions
1: function MD4StepForward(i)
2: Qi ← (Qi−4 � Φi(Qi−1, Qi−2, Qi−3)�mπ(i) � ki)≪ si
3: end function
4: function MD4StepBackward(i)
5: Qi−4 ← (Qi≫ si)� Φi(Qi−1, Qi−2, Qi−3)�mπ(i) � ki
6: end function
7: function MD4StepMessage(i)
8: mπ(i) ← (Qi≫ si)�Qi−4 � Φi(Qi−1, Qi−2, Qi−3)� ki
9: end function

In our attack we consider MD4 as a big system of equations over the variables
Q−4 to Q47 and m0 to m15 (we consider only words, and never look at individual
bits); we have 48 step update equations, and 4 equations for the output value.
We consider the input chaining variables IV0, IV1, IV2, IV3 as free: this makes
the attack on the compression function easier (it’s a pseudo-preimage attack),
but we will have some work to do to turn it into a preimage attack on the full
hash function. We use X to denote the desired value of a variable X, which is
given as an input to our attack. The system we are trying to solve can be written
as:

Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3)�mπ(i) � ki)≪ si for i ∈ {0...47}
H0 = Q−4 �Q44 = H0

H1 = Q−3 �Q45 = H1

H2 = Q−2 �Q46 = H2

H3 = Q−1 �Q47 = H3

To make the equations more readable, we will use a grey background to show
the variables whose value has already been chosen in a previous step of the
algorithm.

We will use x[k] to represent the (k + 1)-th bit of x, that is x[k] = (x ≫
k) mod 2 (note that we count bits and steps starting from 0). We also use 0

and 1 to denote the 32-bit words whose bits are all zeroes and all ones (i.e.
0 = 0x00000000 and 1 = 0xffffffff).

1.4 Road map

First we will describe our attack against the compression function cMD4. Then
we will show how to extend it to an attack against the full MD4, with a better
complexity than the generic attack.

2 Pseudo-Preimage on the Compression Function

The general idea of the attack comes from a simple observation: we know that
MD4 is very sensitive to differential attacks — there is a collision attack that



costs less than 2 calls to the compression function [19]. However, in a preimage
attack, we are looking for a single message and differential tools seem unsuitable
for this task. Our idea is to start with an initial message (IV,M) with very
specific properties, and the digest cMD4(IV,M) of this message. Now we will use
differential paths to create a family of related messages (IV (i),M (i)) so that the
computation of cMD4(IV (i),M (i)) differs from the computation of cMD4(IV,M)
in a controlled way. This will allow us to choose a particular (IV (i0),M (i0)) so
that some bits of cMD4(IV (i0),M (i0)) agree with a target value. Alternatively,
we could try to mount a second preimage attack using differential tools, as done
in [24], but this will probably only work for a small fraction of the message space,
because differential paths à la Wang impose many constraints on the message.

Following this idea, we look for a set of constraints on the initial message
and a way to derive the related messages. We managed to easily select a related
message that agrees with 32 bits of the target hash. We can compute 232 good
related messages for a cost of 232 compression function calls: our attack has an
amortized cost of 1. When we run it 232 times, we will test 32 more bits of
the target hash, and we expect to find a partial pseudo-preimage on 64 bits.
Similarly, to find a full pseudo-preimage we expect to repeat it 296 times.

2.1 The Initial Message

The key part is to choose a set of constraints that allow to place many differential
paths in MD4, in order to have as many related messages as possible. Instead of
looking at single bits, we will consider the 32-bit words of MD4, and try to have
32 paths at once. We will use some properties of the Boolean functions in MD4,
and some properties of the message expansion.

The Boolean functions used in the first and second round of MD4 have the
nice property to be able to absorb some difference. This key property was used
in early cryptanalysis of MD4 [20,6] and is the starting point of the construction
of differential paths [7] à la Wang. Notably, we have the following properties,
where C is a constant, and x is variable:

Absorb 1st input Absorb 2nd input Absorb 3rd input
IF(x,C,C) = C IF(0, x,C) = C IF(1,C, x) = C

MAJ(x,C,C) = C MAJ(C, x,C) = C MAJ(C,C, x) = C

This can be used to let one message word be free in the first round or in the
second round, as shown by Figure 1. If we fix some internal state variables, a
change of mi will only change Qi, Qi+4, ... Qi+4k and can be corrected by a
change in mi+4k. Additionally, we are free to change mi+4,mi+8,... mi+4(k−1)

without breaking any extra internal state.
To choose the step i0 where we introduce the difference, and i1 where we

cancel it, we will look at the message expansion. We want i0 and i1 to be quite
far away so as to skip a big part of the compression function and to maximize
the number of free message words in between, but we do not want to use the
same message word twice between i0 and i1. This leave us with 3 possibilities:



1st round: m4 is free

Q2 = 1

Q3 = 1

Q4

Q5 = 0

Q6 = 1

Q7 = 1

Q8

Q9 = 0

Q10 = 1

Q11 = 1

IF(Q4, Q3, Q2) = 1

IF(Q5, Q4, Q3) = 1

IF(Q6, Q5, Q4) = 0

IF(Q7, Q6, Q5) = 1

IF(Q8, Q7, Q6) = 1

IF(Q9, Q8, Q7) = 1
. . .

2nd round: m20 is free
Q18 = C

Q19 = C

Q20

Q21 = C

Q22 = C

Q23 = C

Q24

Q25 = C

Q26 = C

Q27 = C

MAJ(Q20, Q19, Q18) = C

MAJ(Q21, Q20, Q19) = C

MAJ(Q22, Q21, Q20) = C

MAJ(Q23, Q22, Q21) = C

MAJ(Q24, Q23, Q22) = C

MAJ(Q25, Q24, Q23) = C
. . .

Fig. 1. Absorption of a difference. The step update function is:
Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3)�mπ(i) � ki)≪ si

– (i0, i1) = ( 0, 16): m0 , m4 , m8 and m12 are free
– (i0, i1) = (15, 31): m15, m12, m13 and m14 are free
– (i0, i1) = (16, 32): m0 , m1 , m2 and m3 are free

Note that Vaudenay [20] and Dobbertin [6] used the same idea in their attacks,
with (i0, i1) = (15, 31). Here we choose (i0, i1) = (16, 32) because the free mes-
sage words are used in the very beginning of the first round. To fix the first
round, we will correct a modification of the free message words using the IV,
and this correction will only involve the first 4 steps of the compression function.

We now have a very good differential path with m0 and m3: if we consider
the set of 232 pairs that keep Q32 constant, their effect on the final hash only
involves the first 4 steps and the last 4 steps of MD4. The other free variables
will be used to simplify the equations so as to make this path easier to use.
Schematically, the differential path looks like this:

m3 m3 m3m0 m0 m0

Q0 Q4 Q8 Q12 Q16 Q20 Q24 Q28 Q32 Q36 Q40 Q44

We can now choose what will be fixed by the initial message and what will
be free for the related messages. The message words m4 to m15 will be fixed by
the initial message, while m0 to m3 are part of the related message. The internal
state variables Q14, Q15, Q17, Q18, Q19, Q21, ...Q30 need to be equal and will be
part of the initial message. Q13 is in the initial message because it is fixed by
the step 17, and similarly Q31 is fixed by step 31. We will add Q12 in the initial
message to fix the internal state of the first round. See Figure 2 for a graphical
representation.

To select an initial message, we choose random values for C, Q12, Q13 and
m15; this allows us to compute Q31 and m4 to m14 in the second round, and
Q0 to Q11 in the first round. Thus we can build 2128 different initial messages.



Q−4

Q−3

Q−2

Q−1

Q0m0

Q1m1

Q2m2

Q3m3

Q4m4

Q5m5

Q6m6

Q7m7

Q8m8

Q9m9

Q10m10

Q11m11

Q12m12

Q13m13

Q14 = Cm14

Q15 = Cm15

Q12

Q13

Q14 = C

Q15 = C

Q16m0

Q17 = Cm4

Q18 = Cm8

Q19 = Cm12

Q20m1

Q21 = Cm5

Q22 = Cm9

Q23 = Cm13

Q24m2

Q25 = Cm6

Q26 = Cm10

Q27 = Cm14

Q28m3

Q29 = Cm7

Q30 = Cm11

Q31m15

Q28

Q29 = C

Q30 = C

Q31

Q32m0

Q33m8

Q34m4

Q35m12

Q36m2

Q37m10

Q38m6

Q39m14

Q40m1

Q41m9

Q42m5

Q43m13

Q44m3

Q45m11

Q46m7

Q47m15

fixed by the initial message

modified by the related messages

Fig. 2. Initial message and related message

Each initial message have 2128 related messages (by choosing the value of m0,
m1, m2, m3).

2.2 The Related Messages

When an initial message is fixed, we have to choose m0, m1, m2 and m3 in a way
that will give us some control on the hash value. We will first isolate the third
round from the second round, by choosing the value of Q32. Then the choice of
m2, m1 and m3 will give the final state Q44, ...Q47, and m0 will be chosen last:
we expect that one value of m0 will be consistent with the choice of Q32. Note
that since m0 is used in step 0, we can compute H1, H2 and H3 without knowing
m0. Thus, we can choose a good value of m2, m1 and m3 by looking only at the
last round and the first 4 steps of the first round, and compute m0 later in order
to correct the second round.

We now study the first steps and the last steps. Our goal is to find efficiently
a value of m2, m1, and m3 that solves some of the equations. The message words
m2 and m1 are used quite far for the last steps, so it will be hard to study how



they affect the final state Q44, ...Q47: we will only use m3 to control the hash,
while m2 and m1 will be used to simplify the equations.

First Steps. We assume that an initial message has been chosen. Let us first
study the initial steps of MD4:

Q0 = (Q−4 � IF(Q−1, Q−2, Q−3)�m0)≪ 3 (1)
Q1 = (Q−3 � IF(Q0 , Q−1, Q−2)�m1)≪ 7 (2)
Q2 = (Q−2 � IF(Q1 , Q0 , Q−1)�m2)≪ 11 (3)
Q3 = (Q−1 � IF(Q2 , Q1 , Q0 )�m3)≪ 19 (4)

Equation (4) shows that Q−1 is completely determined by m3. Additionally,
we will ask that Q1 = 1: this simplify Equation (3) and make Q−2 completely
determined by m2, independently of Q−1:

Q2 = (Q−2 �Q0 �m2)≪ 11 (3’)

Last Steps. Let us now study the final steps of MD4. We will assume that a
value has been chosen for Q32,m2,m1: we can now compute Q32 to Q43 in the
third round, and Q−2 by equation (3’). This gives us Q46 = H2 −Q−2.

Q44 = (Q40 �XOR(Q43, Q42, Q41)�m3 �K2)≪ 3 (5)
Q45 = (Q41 �XOR(Q44, Q43, Q42)�m11 �K2)≪ 9 (6)
Q46 = (Q42 �XOR(Q45, Q44, Q43)�m7 �K2)≪ 11 (7)
Q47 = (Q43 �XOR(Q46, Q45, Q44)�m15 �K2)≪ 15 (8)

Here we see that (7) gives the value Q44 ⊕ Q45. Moreover, we will ask that
Q41 �m11 �K2 = 0 so as to simplify (6). We let V be Q42 ⊕Q43 ⊕Q44 ⊕Q45,
which is a known constant, and equation (6) becomes:

Q45 = XOR(Q44, Q43, Q42)≪ 9
Q45 = (Q45 ⊕ V )≪ 9 (6’)

This last equation is actually a system of linear equations over the bits of
Q45; it is easy to check whether it is satisfiable, and to compute the solutions
(see Appendix B for an optimization). From Q45, we compute Q44 by (6) and
m3 by (5), and we know that this particular choice of m3 will give the right
value for Q46, and we will have H2 = H2.

Simplifications. We have introduced two extra conditions to simplify the equa-
tions:

Q1 = 1 (C1)
Q41 �m11 �K2 = 0 . (C2)



Algorithm 2 Partial Pseudo Preimage
Input: H0, H2, IV 2

Output: M, IV st. H0 = H0, H2 = H2 and IV2 = IV 2

Running Time: 232

1: loop . Expect 1 iteration
2: Choose an initial message with Q1 = 1 . 296 possibilities
3: for all Q32 do . 232 iterations
4: Compute Q33, Q34, Q35.
5: Choose m2 so that Q−2 = IV 2. . Q−2 is IV2

6: Compute Q36, Q37, Q38, Q39.
7: Choose m1 so that Q41 = −m11 −K2.
8: Compute Q40, Q41, Q42, Q43.
9: Choose m3 so that Q46 = H2 �Q−2. . Q46 �Q−2 is H2

10: Compute Q44, Q45, Q46, Q47, and Q−1, Q−2, Q−3.
11: Choose m0 so that Q−4 = H0 �Q44. . Q44 �Q−4 is H0

12: if m0 matches Q32 then . OK with prob. 2−32

13: return
14: end if
15: end for
16: end loop

(C1) can only be satisfied statistically, by computing about 232 initial messages
and keeping the good ones, but this cost can be amortized over the many choices
of Q32, m2, and m1. On the other hand, (C2) can be satisfied by choosing an
appropriate m1 when Q32 and m2 have been chosen:

Q40 = (Q36 �XOR(Q39, Q38, Q37)�m1 �K2)≪ 3 (9)
Q41 = (Q37 �XOR(Q40, Q39, Q38)�m9 �K2)≪ 9 (10)

The choice of Q41 gives Q40 by (10), which gives m1 by (9). Conversely, with
this choice of m1 (C2) will be satisfied. Every initial message can now be used
with 264 choices of Q32 and m2, so we still have some extra degree of freedom:
we can use the freedom of m2 to choose the value of Q−2. In the end we can
choose both Q−2 and Q46 (hence H2) for an amortized cost of one compression
function.

Partial pseudo-preimage. When we put this all together, we can computem3

so thatH2 = H2 for an amortized cost of 1 compression function, and we can also
choose IV2. The full algorithm, given in Algorithm 2, is a partial pseudo-preimage
attack, which is 232 times more efficient than exhaustive search. It should be
repeated about 264 times to find a full pseudo-preimage, and we have enough
different initial messages for that. Note that Algorithm 2 finds pseudo-preimages
on (H0, H2), but if we change a little bit the end of the algorithm we can have
pseudo-preimages on (H1, H2) or (H2, H3) just as easily. See Appendix A for an
example of a partial pseudo-preimage.



3 Preimage of the full MD4

To extend this attack to the full MD4, we will use an idea similar to the un-
balanced meet-in-the-middle attack of Lai and Massey [12]. We compute many
pseudo-preimages ofH, we hash many random messages, and we use the birthday
paradox to meet in the middle. If we have a pseudo-preimage attack with com-
plexity 2s, the generic attack uses the pseudo-preimage attack 2(n−s)/2 times
starting from the target digest H (we assume there is no problem with the
padding), and hashes 2(n+s)/2 random blocks, starting from the standard IV.
Thanks to the birthday paradox, we expect one match. This gives a preimage
attack with complexity 21+(n+s)/2. In our case this would be 2113 (we have
s = 96), but we will show how to use some specific properties of our pseudo-
preimage attack to build a preimage attack with complexity 2102.

3.1 The Padding

First, we need to handle the padding in the last block. When looking for a
padded message of b blocks, we will use a message length of 512b− 65 bits. The
last block is correctly padded if and only if m15 = 0, m14 = 512b − 65, and
m

[0]
13 = 1. The condition on m15 is easy to satisfy since we can choose m15 in the

initial message, and on the other hand m14 depends only on C:

Q27 = (Q23 �MAJ(Q26, Q25, Q24)�m14 � k27)≪ 13
C = (C�C�m14 �K1)≪ 13

m14 = C≫ 13� C�C�K1

Thus, we just run an exhaustive search over C, and we expect to find one value
that gives the correct m14. Similarly, we have m13 = C≫ 13 � C�C�K1 =
m14, so the condition m[0]

13 = 1 will be satisfied.
Note that we can not set a size that is a multiple of 8 this way sincem14 = m13

is used both as the padding and as the length. If we really need to use a message
made of bytes and not of bits, we can build a second-preimage attack by reusing
the last block of the original message (and keeping the same padding).

When searching for the last block, we only have 232 initial messages available.
We will not chose the value of IV2, but keep m2 as a degree of freedom. Each
initial message can be used to compute 264 related messages with H2 = H2.
There is probability of 1 − 1/e ≈ 0.63 that at least one of these messages will
give the full correct hash, so we might have to repeat this a few times. The extra
freedom will come from the message length: if we change the number of blocks
b, this gives us a new m14 and a new C, and we can try again to find a padding
block.

We start with b = 34 or b = 18 (see next section), and increase b until we
find a padding block. Note that some values of b will give no suitable value of C,
but this is not a problem. Additionally, if one wants to choose a prefix for the
preimage attack, one just has to start with a bigger b.



3.2 Layered Hash Tree

To improve over the basic meet-in-the-middle attack, we will use an extra prop-
erty of our pseudo-preimage attack on the compression function: we need a
workload of 2s (in our case, s = 96) to find a pseudo-preimage of a single target
value, but if have a set of k target values (with some extra conditions on the set),
we can find a pseudo-preimage of one of them in time 2s/k. This is because our
pseudo-preimage attack is based on the repetition of a partial pseudo-preimage
attack, where the remaining bits are random. Thus, we can find 2k pseudo-
preimages in time 2s+1, and if we can also make sure that the pseudo-preimage
set satisfy the extra conditions, we can iterate this operation. We will start with
a set H0 of size 1, and after n − s iterations we have a set Hn−s of size 2n−s,
which we use for the unbalanced meet-in-the-middle. The resulting structure is
shown in figure 3. In the end, we will find a preimage in time 2(n − s)2s + 2s,
using a memory of size O(2n−s).

A similar idea based on multi-target pseudo-preimage was used by Mendel
and Rijmen to attack HAS-V [14]. In that attack, they could run a multi-target
pseudo-preimage attack on a set of size 2s (this is not possible in our case), and
this result in an attack with time complexity 2s+1 and a memory requirement
of O(2s).

Our attack against MD4 can be used as a multi-target pseudo-preimage at-
tack following Algorithm 3, if the target set H satisfies the following extra prop-
erties:

– {H2 : H ∈ H} is a singleton: a single m3 can be used for the whole set;
– |H| ≤ 264: the loop of line 11 is negligible.

Since our algorithm allows us to choose the value of IV 2 in the pseudo-preimages,
we can build the pseudo-preimage set so that the extra conditions are still sat-
isfied.

H32 H0H1H2H3

232
296

11
296

2
297

4
297

8. . .
297

H
pad

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

IV

Fig. 3. Preimage attack on the full MD4 with a layered hash tree.

The tree costs 32 × 297 = 2102 to build, and gives 232 pseudo-preimages
of H; this is significantly better than the generic attack which find 2t pseudo-



Algorithm 3 Multi-Target Pseudo Preimage
Input: IV 2, H2 and a target set H st. ∀X ∈ H, X2 = H2.
Output: preimage set I st. ∀(IV,M) ∈ I, F (IV,M) ∈ H and IV2 = IV 2.
Running Time: 297

1: while |I| < 2|H| do . Expect 265 iterations
2: Choose an initial message with Q1 = 1 . 296 possibilities
3: for all Q32 do . 232 iterations
4: Compute Q33, Q34, Q35.
5: Choose m2 so that Q−2 = IV 2. . Q−2 is IV2

6: Compute Q36, Q37, Q38, Q39.
7: Choose m1 so that Q41 = −m11 −K2.
8: Compute Q40, Q41, Q42, Q43.
9: Choose m3 so that Q46 = H2 �Q−2. . Q46 �Q−2 is H2

10: Compute Q44, Q45, Q46, Q47, and Q−1, Q−2, Q−3.
11: for all H ∈ H st. H3 = H3, H4 = H4 do . Expect 2−64|H| values
12: Choose m0 so that Q−4 = H0 �Q44. . Q44 �Q−4 is H0

13: if m0 matches Q32 then . OK with prob. 2−32

14: Add the solution to I
15: end if
16: end for
17: end for
18: end while

preimages in time 296+t. In the forward step, we compute the hashes of 296

random messages, and we expect to find a match thanks to the birthday paradox.
The full preimage search has time complexity 2102, and require a memory of
about 233 message blocks to store the tree (we do not have to store the 296

hashes in the forward step).

Tweaking the tree. We can tweak the parameters of the tree so as to slightly
improve the attack. First, instead of doubling the size of the set at each iteration,
we can triple it (the length of the preimage starts from 23, and the cost of the
attack is about 2101.92) or quadruple it (the length of the preimage starts from
18, and the cost of the attack is about 2102).

We can also replace the layered tree by another structure. We start with a
set of 1 target value, and every time we find a pseudo-preimage of one element of
the set, we add it to the set. The first pseudo-preimage will cost 296, the second
one 296/2, then 296/3 and so on... the set will have size 232 after an expected
workload of:

296
232∑
k=1

1
k
≤ 296(ln 232 + 1) ≤ 2100.54.

In this case, we do not control the length of the preimage, so we will use an
expendable message [3,9] in the forward step.



Conclusion

Our attack on MD4 is still theoretical due to the high complexity, but it shows
that MD4 is even weaker than we thought. Our attack relies on the absorption
property of some of the Boolean functions, and exploits the message expansion.
It is the first preimage attack on the full MD4 and it is much less efficient than
Dobbertin’s attack on a two round version [6].

We did not find any direct application of the attack on the compression
function, but constructions relying on the partial one-wayness of cMD4 should
be carefully analysed: our attack might be practical depending on the exact
assumptions made on cMD4.

This attack reduces the security margin of other members of the MD4, but
it is not a direct threat. The features introduced in later members of the family
make the attack unsuitable:

– The rounds function of MD5, SHA-1, and SHA-2 have a much better diffusion
that MD4 due to the summation of Qi−1 to compute Qi (we can not absorb
a difference);

– The number of rounds is more important;
– The message expansion in the SHA family is much harder to control.
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A A Partial Pseudo-Preimage of MD4

Here is an example of a partial pseudo-preimage of MD4. We ran our algorithm
with H1 = 0, H2 = 0, and IV 2 = 0. It would cost 264 hash evaluations to find
this message by exhaustive search, but our algorithm finds it in about 20 minutes
on a desktop computer.

IV
72 fa 31 aa a0 6e 27 95 00 00 00 00 13 c9 dc ce

Message block
8e 34 9e ad 6c 36 1e 1c 21 b7 0e bd 14 1e 98 d9
79 67 c3 19 d7 3c 6a 19 d7 3c 6a 19 d7 3c 6a 19
14 61 85 33 14 61 85 33 14 61 85 33 14 61 85 33
58 13 27 05 58 13 27 05 58 13 27 05 17 46 57 27

MD4
34 5e 59 ae c5 6a 3b 8e 00 00 00 00 00 00 00 00

The internal state variables for this message are given by:

Q−4=0xaa31fa72 Q−3=0xcedcc913 Q−2=0x00000000 Q−1=0x95276ea0
Q0 =0x1545809d Q1 =0xffffffff Q2 =0xa1bdf692 Q3 =0x1a9925ec
Q4 =0xa8473548 Q5 =0x92125811 Q6 =0x9b4aaa1d Q7 =0x00a73054
Q8 =0x6ef7f38b Q9 =0xa3789cab Q10 =0x3de0878e Q11 =0x2f9cbd24
Q12 =0x0ffc6391 Q13 =0x1e2a88f4 Q14 =0x1e83b396 Q15 =0x1e83b396
Q16 =0xb5062a71 Q17 =0x1e83b396 Q18 =0x1e83b396 Q19 =0x1e83b396
Q20 =0x51547062 Q21 =0x1e83b396 Q22 =0x1e83b396 Q23 =0x1e83b396
Q24 =0x3b4aa594 Q25 =0x1e83b396 Q26 =0x1e83b396 Q27 =0x1e83b396
Q28 =0x6f4786bc Q29 =0x1e83b396 Q30 =0x1e83b396 Q31 =0x24db97dc
Q32 =0x84d9f63d Q33 =0xc9a584fe Q34 =0x475e7886 Q35 =0x508d517f
Q36 =0x79ca3034 Q37 =0x3bd701b4 Q38 =0x980fef11 Q39 =0x9784cf50
Q40 =0xc8f3a1b1 Q41 =0x5da0b34b Q42 =0x5fa99919 Q43 =0x2d166b40
Q44 =0x042763c2 Q45 =0x312336ed Q46 =0x00000000 Q47 =0xf913fc25

Note that MD4 uses a little-endian convention to convert a sequence of bytes to
a sequence of words, and that the order of the words in the IV and in the hash
is not the same as in the internal state.



B Solving the equation x = (x ⊕ V )≪ 9

In Section 2.2 we find that Q45 has to be the solution of the following equation:

x = (x⊕ V )≪ 9. (11)

where V is a constant that depends on the choices made on the previous steps
of the algorithm. We have to solve this equation 296 times for each pseudo-
preimage, so we want to solve it very efficiently (it should cost less that one
evaluation of cMD4).

We can write this equation as a linear system over the bits of x and V :

(11) ⇐⇒


x[ 0] = x[23] ⊕ V [23]

x[ 1] = x[24] ⊕ V [24]

...

x[31] = x[22] ⊕ V [22]

And we can express each bit of x as a function of x[0] and V :

⇐⇒



x[ 9] = x[0] ⊕ V [0]

x[18] = x[0] ⊕ V [0] ⊕ V [9]

...

x[23] = x[0] ⊕ V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14]

x[ 0] = x[0] ⊕ V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14] ⊕ V [23]

The system is consistent if and only if the last equation holds, i.e.
⊕31

i=0 V
[i] = 0.

In this case we have a first solution x0 given by

x
[ 0]
0 = 0
x

[ 9]
0 = V [0]

x
[18]
0 = V [0] ⊕ V [9]

...

x
[23]
0 = V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14]

and a second solution x1 = x0 ⊕ 1. Note that the expression of the bits of
x0 is linear in the bits of V : x0 = ϕ(V ). We will split V into 4 bytes, V =
V3||V2||V1||V0, and we precompute 4 tables (each one contains 256 words):

T0[u] = ϕ(0||0||0||u) T1[u] = ϕ(0||0||u||0) T2[u] = ϕ(0||u||0||0) T3[u] = ϕ(u||0||0||0)

Then we have x0 = ϕ(V ) = T0[V0]⊕ T1[V1]⊕ T2[V2]⊕ T3[V3]. We can solve the
equation, with only:

– the computation of the parity of the hamming weight of V ;
– 4 table look-ups when there is a solution.
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