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Abstract. In this paper, we point out some weaknesses in the Salsa20
core function that could be exploited to obtain up to 231 collisions for
its full (20 rounds) version. We first find an invariant for its main build-
ing block, the quarterround function, that is then extended to the
rowround and columnround functions. This allows us to find an in-
put subset of size 232 for which the Salsa20 core behaves exactly as the
transformation f(x) = 2x. An attacker can take advantage of this for
constructing 231 collisions for any number of rounds. We finally show
another weakness in the form of a differential characteristic with proba-
bility one that proves that the Salsa20 core does not have 2nd preimage
resistance.
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1 Introduction

Salsa20 is a very interesting design by Daniel Bernstein [1]. It is mostly known
because of its submission to the eSTREAM Project, where it passed to Phase
3 without major known attacks, although some interesting weaknesses over
reduced-round versions have been pointed out [6, 8, 11]. As mentioned in [2],
“The core of Salsa20 is a hash function with 64-byte input and 64-byte output.
The hash function is used in counter mode as a stream cipher: Salsa20 encrypts
a 64-byte block of plaintext by hashing the key, nonce, and block number and
xor’ing the result with the plaintext.” Note, however, that in spite of its name,
the Salsa20 “hash” function was never really intended for hashing.

Reduced-round versions Salsa20/12 and Salsa20/8 (respectively using 12 and
8 rounds) have been proposed [3], although the author acknowledges that the
security margin for Salsa20/8 is not huge, in view of the attack against Salsa20/5
presented in [6]. However, the speed gain over the full Salsa20 is very significant.
Unfortunately, serious doubts over the security of Salsa20/8 were raised later
over the publication of [11], which essentially breaks Salsa20/6 and successfully
attacks Salsa20/7.
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Salsa20 represents quite an original and flexible design, where the author
justifies the use of very simple operations (addition, xor, constant distance rota-
tion) and the lack of multiplication or S-boxes to develop a very fast primitive.
Moreover, its construction protects it from timing attacks.

We find that, although this paper shows some vulnerabilities in its underly-
ing cryptographic core, Bernstein’s approach is indeed valuable and should be
further investigated. For more information about Salsa20 design, please refer to
the rationale presented by its author in [4].

The rest of the paper is organized as follows. Section 2 presents the main
results in the form of various theorems, and Section 3 shows how these results
can be practically used to find collisions for the full Salsa20 “hash” function.
Section 4 ends the paper with some conclusions. In the Appendix, we show two
collisions (out of the 231 presented in this paper) for testing purposes.

2 Main Results

The main building block of the Salsa20 “hash” is the quarterround function,
defined as follows:

Definition 1 If y =

(

y0 y1

y2 y3

)

then quarterround(y) =

(

z0 z1

z2 z3

)

, where:

z1 = y1 ⊕ ((y0 + y3) ≪ 7) (1)

z2 = y2 ⊕ ((z1 + y0) ≪ 9) (2)

z3 = y3 ⊕ ((z2 + z1) ≪ 13) (3)

z0 = y0 ⊕ ((z3 + z2) ≪ 18) (4)

and X ≪ n is the rotation of the 32-bit word X to the left by n positions.

Theorem 1 For any 32-bit value A, an input of the form

(

A −A

A −A

)

is left

invariant by the quarterround function, where −A represents the only 32-bit
integer satisfying A + (−A) = 0 (mod 232).

Proof. Simply by substituting in the equations above, we obtain that every
rotation operates over the null vector, so zi = yi for every i ∈ (0..3) ⊓⊔

Similarly, the rowround function, defined below, suffers from the same prob-
lem:

Definition 2 If y =









y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15









then rowround(y) =









z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15









where:
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(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3) (5)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4) (6)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9) (7)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14) (8)

Theorem 2 Any input of the form









A −A A −A

B −B B −B

C −C C −C

D −D D −D









, for any 32-bit values

A, B, C and D, is left invariant by the rowround transformation.

Proof. This trivially follows from the repeated application of Theorem 1 to the
four equations above. ⊓⊔

Remark. It is important to note that any other rearrangement of the equations
from its canonical form:

(z4∗i, z4∗i+1, z4∗i+2, z4∗i+3) = quarterround(y4∗i, y4∗i+1, y4∗i+2, y4∗i+3) (9)

will suffer from the same problem whenever the rearranging permutation keeps
on alternating subindex oddness.

It is worth observing that this result implies that, from the 2512 possible
inputs, at least one easily characterizable subset of size 2128 remains invariant
by the rowround transformation.

The same happens with the Columnround function, which is defined below:

Definition 3 If y =









y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15









then columnround(y) =









z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15









where:

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12) (10)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1) (11)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6) (12)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11) (13)

Theorem 3 Any input of the form









A −B C −D

−A B −C D

A −B C −D

−A B −C D









, for any 32-bit values

A, B, C and D, is left invariant by the columnround transformation.

Proof. This follows directly from the repeated application of Theorem 1, and
can be seen as a dual of Theorem 2.
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Theorem 4 Any input of the form









A −A A −A

−A A −A A

A −A A −A

−A A −A A









for any 32-bit value A,

is left invariant by the doubleround transformation.

Proof. This is quite obvious. The point is that, due to the arrangement of the
indexes in the columnround and the rowround function, we cannot have as
free a hand. Here we are forced to make B = −A, C = A, and D = −A.

Taking into account that doubleround is defined as the composition of a
columnround and a rowround operation:

doubleround(x) = rowround(columnround(x)) (14)

a common fixed point should be also a fixed point of its composition. ⊓⊔

3 Collision finding for the Salsa20 “hash” function

Theorem 5 For any input of the form









A −A A −A

−A A −A A

A −A A −A

−A A −A A









and for any 32-bit

value A, the Salsa20 core function behaves as a linear transformation of the form
f(x) = 2x, and this happens independently of the number of rounds.

Proof. As the Salsa20 “hash” is defined as:

Salsa20(x) = x + doubleround10(x) (15)

and every input of the above form is an invariant (fixed point) for the doubler-

ound function, then:

Salsa20(x) = x + doubleround10(x) = x + x = 2x (16)

(And this happens independently of the number of rounds) ⊓⊔

The previous result is of great use in collision finding. All what is left now is
to find two different nontrivial inputs, x and x′, of the said form such that:

x 6= x′ but 2x = 2x′ (17)

Fortunately, this is possible thanks to modular magic, i.e. the fact that all
operations in Salsa20 are performed mod 232.

3.1 Modular magic

Let us assume that X is a 32-bit integer such that X < 231. Then, we define
X ′ = X+231. The interesting point here is that, even though X 6= X ′, 2X = 2X ′

(mod 232).
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Theorem 6 Any pair of inputs









Z −Z Z −Z

−Z Z −Z Z

Z −Z Z −Z

−Z Z −Z Z









and









Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′

Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′









,

such that Z < 231 and Z ′ = Z + 231, generate a collision for any number of

rounds of the Salsa20 “hash” function, producing









2Z −2Z 2Z −2Z

−2Z 2Z −2Z 2Z

2Z −2Z 2Z −2Z

−2Z 2Z −2Z 2Z









as a

common hash value.

Proof. This follows directly from the observations and definitions above. Sub-
stitution of the proposed input values into the formulæ for the Salsa20 “hash”
will confirm this hypothesis. ⊓⊔

Corollary 1 Theorem 6 implies that there are at least (these conditions are
sufficient but probably not necessary) 231 input pairs that generate a collision in
the output, proving that indeed Salsa20 is not to be used as-is as a hash function.
As an example, two of these pairs are provided in the Appendix.

Corollary 2 Let us call inputs of the form discussed by Theorem 5 A-states.
Then, as a direct consequence of Theorem 6 the output by the Salsa20 “hash”
function of any A-state is also an A-state (where, in this case, A is even).
It could be interesting to check whether these states could be reached at any
intermediate step during a computation beginning with a non-A state. This would
have important security implications. However, it could be easily shown that this
is not the case, so any state leading to an A-state should be an A-state itself.

This property has an interesting similitude with Finney-states for RC4 [7]
and could be useful in mounting an impossible fault analysis for the Salsa20
stream cipher, as Finney-states were of key importance on the impossible fault
cryptanalysis of RC4 [5]. A-states, on the other hand, have the interesting ad-
vantage over Finney-states that their influence over the output is immediately
recognized, so they can be detected in an even simpler way. On the other hand,
it is much less likely to reach an A-state by simply injecting random faults, as
the set of conditions that should hold is larger than for the RC4 case.

Once we have shown that the Salsa20 “hash” function is not collision resis-
tant, we focus on its security against 2nd preimage attacks. The next result1

reveals that 2nd preimage attacks are not only possible but even easy.

Theorem 7 Any pair of inputs A, B with a difference of

A − B = A
⊕

B =









0x80000000 0x80000000 0x80000000 0x80000000

0x80000000 0x80000000 0x80000000 0x80000000

0x80000000 0x80000000 0x80000000 0x80000000

0x80000000 0x80000000 0x80000000 0x80000000









will produce the same output over any number of rounds.

1 This property was presented informally before by Robshaw [10] and later by Wagner
[12]
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Proof. This depends on two interesting observations. The first one is that ad-
dition behaves as xor over the most significant bit (that changed by adding
0x80000000). So the result in each of the four additions on Definition 1 is the
same when both its inputs are altered by adding 231 (differences cancel out mod
232).
The second one is that in the quarterround function, all partial results z0, ..., z3

are computed after an odd number (three in this case) of addition/xor oper-
ations. As a result, quarterround conserves the input difference, and so it
does rowround, columnround and doubleround. As in the last stage of the
Salsa20 core function the input is added to the output; This forces input differ-
ences to cancel out. ⊓⊔

Corollary 3 Theorem 7 could now be seen as a particular instance of 6 (because
2 ∗ 0x80000000 = 0x00000000). It is interesting to point out that this result has
some common points with the one on the existence of equivalent keys for TEA
made by Kelsey et al. [9], and also with the exact truncated differential found by
Crowley in [6] for a reduced-round version of the Salsa20 stream cipher.

A direct consequence of this result is that the effective key/input space of
the Salsa20 “hash” is reduced by half, so there is a speed up by a factor of 2 in
any exhaustive key/input search attack. This also means that Salsa20(x) = y

has solution for no more than (at most) half of the possible y’s.

4 Conclusions

The Salsa20 “hash” function was never intended for cryptographic hashing, and
some previous results showed that finding a good differential for the core func-
tion was not as hard as might have been expected [10]. Even though its author
acknowledges that the Salsa20 core is not collision-free, to the best of our knowl-
edge no work has so far focused on finding and characterizing these collisions.
In this paper we explicitly show that there is a relevant amount (231) of eas-
ily characterizable collisions, together with an undesirable linear behavior over
a large subset of the input space. In a sense, Theorem 6 is a generalization of
Robshaw’s previous observation.

Since the stream cipher uses four diagonal constants to limit the attacker’s
control over the input (thus making unreachable the differences needed for a colli-
sion), these results have no straightforward implications on its security. However,
these undesirable structural properties might be useful to mount an impossible
fault attack for the stream cipher. Particularly, what we have called A-states
could play a role analogous to Finney states for RC4, in way similar to that pre-
sented by Biham et al. at FSE’05 [5]. We consider this as an interesting direction
for future research.

That being said, we still consider that Salsa20 design is very innovative and
well-motivated. Further work along the same guidelines should be encouraged.
Particularly, we believe that a new, perhaps more complex and time consuming
definition of the quarterround function should lead to a hash that would not be
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vulnerable to any of the presented attacks and could, in fact, provide a high-level
security algorithm. This will, obviously, be more computationally expensive, but
there may exist an interesting trade-off between incrementing the complexity
of the quarterround function and decreasing the total number of rounds. The
use of the add-rotate-xor chain at every stage of the quarterround function
considerably eases the extension of these bad properties to any number of rounds.
Although the author justified this approach because of performance reasons, we
believe that alternating this structure with xor-rotate-add and making all output
words depending on all input words will present the cryptanalyst with a much
more difficult task. This should be the subject of further study.

On the other hand, in the light of our results we can also conclude that the
inclusion of the diagonal constants is absolutely mandatory. An additional con-
clusion from our results is that less diagonal constants might suffice for stopping
these kinds of undesirable structural properties, with a significant efficiency im-
provement that can vary from a 16% (from processing 384 bits to 448 bits in
the same amount of time, that is, using only two diagonal constants) up to a
33% (in the extreme case of fixing the most significant bit of two diagonal 32-bit
values).
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Appendix: Collisions for the full Salsa20 hash function

Here we show a couple of collisions for testing purposes:

If

Z =









0xAAAAAAAA 0x55555556 0xAAAAAAAA 0x55555556

0x55555556 0xAAAAAAAA 0x55555556 0xAAAAAAAA

0xAAAAAAAA 0x55555556 0xAAAAAAAA 0x55555556

0x55555556 0xAAAAAAAA 0x55555556 0xAAAAAAAA









and

Z ′ =









0x2AAAAAAA 0xD5555556 0x2AAAAAAA 0xD5555556

0xD5555556 0x2AAAAAAA 0xD5555556 0x2AAAAAAA

0x2AAAAAAA 0xD5555556 0x2AAAAAAA 0xD5555556

0xD5555556 0x2AAAAAAA 0xD5555556 0x2AAAAAAA









then, the common Salsa20 hash value is

Salsa20(Z) = Salsa20(Z ′) =









0x55555554 0xAAAAAAAC 0x55555554 0xAAAAAAAC

0xAAAAAAAC 0x55555554 0xAAAAAAAC 0x55555554

0x55555554 0xAAAAAAAC 0x55555554 0xAAAAAAAC

0xAAAAAAAC 0x55555554 0xAAAAAAAC 0x55555554









Alternatively, if

W =









0xFFFFFFFF 0x00000001 0xFFFFFFFF 0x00000001

0x00000001 0xFFFFFFFF 0x00000001 0xFFFFFFFF

0xFFFFFFFF 0x00000001 0xFFFFFFFF 0x00000001

0x00000001 0xFFFFFFFF 0x00000001 0xFFFFFFFF









and
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W ′ =









0x7FFFFFFF 0x80000001 0x7FFFFFFF 0x80000001

0x80000001 0x7FFFFFFF 0x80000001 0x7FFFFFFF

0x7FFFFFFF 0x80000001 0x7FFFFFFF 0x80000001

0x80000001 0x7FFFFFFF 0x80000001 0x7FFFFFFF









then, the common Salsa20 hash value is

Salsa20(W ) = Salsa20(W ′) =









0xFFFFFFFE 0x00000002 0xFFFFFFFE 0x00000002

0x00000002 0xFFFFFFFE 0x00000002 0xFFFFFFFE

0xFFFFFFFE 0x00000002 0xFFFFFFFE 0x00000002

0x00000002 0xFFFFFFFE 0x00000002 0xFFFFFFFE










