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Abstract. We give the first simple and efficient construction of verifiable
random functions (VRFs). VRFs, introduced by Micali et al. [13], combine
the properties of regular pseudorandom functions (PRFs) (i.e., indistin-
guishability from a random function) and digital signatures (i.e., one can
provide an unforgeable proof that the VRF value is correctly computed).
The efficiency of our VRF construction is only slightly worse than that of
a regular PRF construction of Naor and Reingold [16]. In contrast to our
direct construction, all previous VRF constructions [13, 12] involved an
expensive generic transformation from verifiable unpredictable functions
(VUFs).
We also provide the first construction of distributed VRFs. Our construc-
tion is more efficient than the only known construction of distributed
(non-verifiable) PRFs [17], but has more applications than the latter.
For example, it can be used to distributively implement the random
oracle model in a publicly verifiable manner, which by itself has many
applications.
Our construction is based on a new variant of decisional Diffie-Hellman
(DDH) assumption on certain groups where the regular DDH assumption
does not hold [10, 9]. Nevertheless, this variant of DDH seems to be
plausible based on our current understanding of these groups. We hope
that the demonstrated power of our assumption will serve as a motivation
for its closer study.

1 Introduction

As a motivating example for our discussion, consider the problem of implement-
ing the random oracle model [2]. Recall that in this model one assumes the
existence of a publicly verifiable random function O (over some suitable domain
and range). Each value O(x) is random and independent from the other values,
and evaluating O on the same input twice yields the same (random) output. This
model has found numerous applications in cryptography, which we do not even
attempt to enumerate. It was shown by Canetti et al. [5], though, that no fixed
public function can generically replace the random oracle, so more elaborate
solutions are needed.
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Pseudorandom Functions. As the first attempt, we may assume the exis-
tence of a trusted (but computationally bounded) party T . Since a function is an
exponential sized object, T cannot store it explicitly. While maintaining a dy-
namically growing look-up table is a possibility, it is very inefficient as it requires
large storage and growing complexity. A slightly better option is to use a pseudo-
random function (PRF) FSK(·) [8]. As indicated, this function is fully specified
and efficiently computable given its short secret key (or seed) SK. However,
without the knowledge of SK it looks computationally indistinguishable from
exponential-sized O.

In terms of constructing PRFs, there are several options. The most rele-
vant to this paper, however, is the number-theoretic construction due to Naor
and Reingold [16], which is based on the decisional Diffie-Hellman (DDH) as-
sumption. This assumption in some group G of prime order q states that given
elements g, ga and gb of (where g is the generator of G), it is hard to distinguish
the value gab from a truly random value gc (where a, b, c are random in Zq). The
PRF of [16] is a tree-based construction similar to the PRF construction of [8]
from a pseudorandom generator. Namely, the secret key SK = (g, a1, . . . a�) con-
sists of a random generator g of G and  random exponents in Zq (where  is the
length of the input to our PRF FSK : {0, 1}� → G). Given x = x1 . . . x� ∈ {0, 1}�,
the PRF is defined by:

Fg,a1,...,a�
(x1 . . . x�)

def= g
∏

{i|xi=1} ai mod q (1)

Verifiable Random Functions. Coming back to our motivating application,
replacing random oracle with a PRF has several problems. The first one is the
question of verifiability and transferability. Even if everybody trusts T (which
we will revisit soon), T has to be contacted not only when the value of F has to
be computed for the first time, but even if one party needs to verify that another
party has used the correct value of F . Thus, it would be much nicer if each value
of FSK(x) would come with a proof πSK(x) of correctness, so that the recipient
and everybody else can use this proof without the need to contact T again. As
a side product, the ability to give such proof will also ensure that T himself
cannot “cheat” by giving inconsistent values of F , or denying a correctly com-
puted value of the function. This leads to the notion of verifiable (pseudo)random
functions, or VRFs [13]. Intuitively, such functions remain (pseudo)random when
restricted to all inputs whose function values were not previously revealed (and
proved). Notice, the pseudorandomness and verifiability of a VRF immediately
imply that a VRF by itself is an unforgeable signature scheme secure against
chosen message attack.

Constructions of VRFs. Unfortunately, VRFs are not very well studied yet.
Currently, we have two constructions of VRFs: based on RSA [13], and based on
a separation between computational and decisional Diffie-Hellman problems in
certain groups [12]. Both of these constructions roughly proceed as follows. First,
they construct a relatively simple and efficient verifiable unpredictable function
(VUF) based on the corresponding assumption. Roughly, a VUF is the same ver-
ifiable object as a VRF, except each “new” value FSK(x) is only unpredictable
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(i.e., hard to compute) rather than pseudorandom. From VUFs, a generic con-
struction to VRFs is given, as introduced by [13]. Unfortunately, this construction
is very inefficient and also looses a very large factor in its exact security. Essen-
tially, first one uses the Goldreich-Levin theorem [7] to construct a VRF with
very small (slightly super-logarithmic) input size and output size 1 (and pretty
dramatic security loss too!).1 Then one makes enough such computations to
amplify the output size to roughly match that of the input. Then one follows
another rather inefficient tree-based construction on the resulting VRF to get a
VRF with arbitrary input size and small output size. Finally, one evaluates the
resulting convoluted VRF several times to increase the output size to the de-
sired level. In some sense, the inefficiency of the above construction is expected
given its generality and the fact that it has to convert pure unpredictability into
a much stronger property of pseudorandomness. Still, this means that the re-
sulting VRF constructions are very bulky and inelegant. In this work we present
the first simple, efficient and “direct” VRF construction.

Distributed PRFs. Returning to our target application of implementing the
random oracle, the biggest problem of both PRF/VRF-based solutions is the
necessity to fully trust the honest party T holding the secret key for F . Of course,
VRFs slightly reduced this trust level, but T still singlehandedly knows all the
values of F . Clearly, this approach (1) puts to much trust into T , (2) makes T
is bottleneck of all the computations; (3) makes T is “single point of failure”:
compromising T will break the security of any application which depends on the
random oracle assumption.

The natural solution to this problem is to distribute the role of T among n
servers. This leads to the notion of distributed PRFs (DPRFs) and distributed
VRFs (DVRFs). Since the latter concept was not studied prior to our work, we
start with DPRFs, thus ignoring the issue of verifiability for now. Intuitively,
DPRFs with threshold 1 ≤ t < n allow any (t + 1) out of n servers to jointly
compute the function using their shares, while no coalition of up to t servers to
be in a better situation that any outside party. Namely, the function remains
pseudorandom to any such coalition.

DPRFs first originate in the work of Micali and Sidney [14]. However, their
construction (later improved by [15]) can tolerate only a moderate number of
servers or a small threshold, since its complexity is proportional to nt. The next
influential work is that of Naor et al. [15], who give several efficient constructions
of certain weak variants of DPRFs. Ironically, one of the constructions (namely,
that of distributed weak PRF) can be turned into an efficient DPRF by utilizing
random oracles. Even though this is non-trivial (since nobody should compute
the value of a DPRF without the cooperation of t+1 servers), we would certainly
prefer a solution in the plain model, since elimination of the random oracle was
one of the main motivation for DPRFs!
1 The latter is the reason for such a small input size. One can make a very strong
exponential assumption to increase the input size, like was done in [12], but the
construction still loses a lot in security, and still goes through an intermediate VUF.
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The first regular DPRF was recently constructed by Nielsen [17] by distribut-
ing a slightly modified variant of the Naor-Reingold PRF [16], given in Equa-
tion (1) (in the final version of their work, [16] also give essentially the same
construction). Unfortunately, the resulting DPRF in highly interactive among
the servers (while ideally the servers would only talk to the user requesting the
function value) and requires a lot of rounds (proportional to the length of the in-
put). In particular, the question of non-interactive DPRF construction remained
open prior to this work.

Distributed VRFs. Even though DVRFs were not explicitly studied prior to
this work, they seem to provide the most satisfactory solution to our original
problem of implementing the random oracle. Indeed, distributing the secret key
ensures that no coalition of up to t servers can compromise the security (i.e.,
pseudorandomness) of the resulting random oracle. On the other hand, verifi-
ability ensures that one does not need to contact the servers again after the
random oracle was computed once: the proof can convince any other party of
the correctness of the VRF value. For example, DVRFs by themselves provide
an ordinary threshold signature scheme, which can be verified without further
involvement of the servers. And, of course, using DVRFs are likely to enhance
the security, robustness or functionality of many applications originally designed
for plain PRFs, VRFs and DPRFs.

Our Contributions. We give the first simple and direct construction of VRFs,
based on a new “DDH-like” assumption which seems to be plausible on certain
recently proposed elliptic and hyper-elliptic groups (e.g., [10]). We call this as-
sumption sum-free decisional Diffie-Hellman (sf-DDH) assumption. While we
will discuss this assumption later, we mention that in the proposed groups the
regular regular DDH assumption is false (in fact, this is what gives us verifia-
bility!), and yet the sf-DDH or some similar assumption seems plausible. Our
construction is similar to the Naor-Reingold (NR) construction given by Equa-
tion (1), except we utilize some carefully chosen encoding C before applying the
NR-construction. Specifically, if C : {0, 1}� → {0, 1}L is some injective encoding,
we consider the function of the form

Fg,a1,...,aL(x1 . . . x�)
def= g

∏
{i|C(x)i=1} ai mod q (2)

Identifying the properties of the encoding C and constructing C satisfying these
properties will be one of the main technical challenges we will have to face. At
the end we will achieve L = O() (specifically, L = 2 to get a regular PRF, and
L = 3+2 to get a VRF), making our efficiency very close to the NR-construction.

Our second main contribution is the first construction of a distributed
VRF(DVRF). Namely, we show that our VRF construction can be made dis-
tributed and non-interactive (although multi-round). This is the first non-
interactive construction of a distributed PRF (let alone VRF), since the only
previous DPRF construction of [17, 16] is highly interactive among the servers. In
fact, our DVRF construction is more efficient than the above mention DPRF con-
struction, despite achieving the extra verifiability. We already mentioned the big
saving in communication complexity (roughly, from n2k to nk, where k is the
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security parameter). Another important advantage, though, is that we dispense
with the need to perform somewhat expensive (concurrently composable) zero
knowledge proofs for the equality of discrete logs. This is because in our groups
the DDH problem is easy, so it can be locally checked by each party without
the need for the proof. In particular, even though we need to apply the en-
coding C to the message, while the construction of [17, 16] does not, the lack of
ZK-proofs makes our round complexity again slightly better. Finally, we remark
that the same distributed construction can be applied to distribute the VUF of
Lysyanskaya [12] (which results in a threshold “unique signature” scheme under
a different assumption than the one we propose).

2 Definitions

2.1 Verifiable Random Functions and Friends

Definition 1. A function family F(·)(·) : {0, 1}�(k) → {0, 1}m(k) is a family
of VRFs, if there exists a probabilistic polynomial time algorithm Gen and deter-
ministic algorithms Prove and Verify such that: Gen(1k) outputs a pair of keys
(PK,SK); ProveSK(x) outputs a pair 〈FSK(x), πSK(x)〉, where πSK(x) is the
proof of correctness; and VerifyPK(x, y, π) verifies that y = FSK(x) using the
proof π. We require:

1. Uniqueness: no values (PK, x, y1, y2, π1, π2) can satisfy VerifyPK(x, y1, π1) =
VerifyPK(x, y2, π2) when y1 
= y2.

2. Provability: if (y, π) = ProveSK(x), then VerifyPK(x, y, π) = 1.
3. Pseudorandomness: for any PPT A = (A1, A1) who did not call its ora-

cle on x (see below), the following probability is at most 1
2 + negl(k) (here

and everywhere, negl() stands for some negligible function in the security
parameter k):

Pr
[
b=b′

∣∣∣ (PK,SK)←Gen(1k); (x, st)← A
Prove(·)
1 (PK); y0 = FSK(x);

y1 ← {0, 1}m(k); b← {0, 1}; b′ ← A
Prove(·)
2 (yb, st)

]

Intuitively, the definition states that no “new” value of the function can be
distinguished from a random string, even after seeing any other function values
together with the corresponding proofs. Regular PRFs form the non-verifiable
analogs of VRFs. Namely, PK = ∅, πSK(·) = ∅, there is no algortihm Verify,
no uniqueness and provability properties, and pseudorandomness is the only
remaining property. We notice that the resulting definition is not the typical
definition for PRFs [8]: namely, that no adversary can tell having oracle access to
a truly random function from having oracle access to a pseudorandom function.
However, it is easy to see that our definition is equivalent to that usual one, so
will we use it as the more convenient in the context of VRFs.
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2.2 Diffie-Hellman Assumptions

Assume Setup(1k) outputs the description of some cyclic groupG of prime order q
together with its random generator g. Let L = L(k) be some integer and a1 . . . aL

be random elements of Zq . Let [L] denote {1 . . . L}, and given a subset I ⊆ [L],
we denote aI =

∏
i∈I ai mod q (where a∅ = 1), G(I) = GI = gaI . Finally, we

will often view an element z ∈ {0, 1}L as either a subset {i | zi = 1}, or an L-
dimensional vector over GF (2) (and vice versa).

Generalized Diffie-Hellman Assumptions. The security of ours, as well
as the previous related constructions [16, 12], will rely on various assumptions
of the following common flavor. The adversary A has oracle access to G(·), and
tries to “obtain information” about some value G(J). The meaning of obtaining
information depends on whether we are making a computational or a decisional
assumption. In the former case, A has to compute G(J), while in the latter
case A has to distinguish G(J) from a random element of G. While the decisional
assumption is stronger, it has a potential of yielding a (verifiable) pseudorandom
function, while the computational assumption can yield at best2 a (verifiable)
unpredictable function.

In either case, we require that it should be hard to any polynomial time ad-
versary to succeed. Of course, one has to make some non-trivial restrictions on
when the adversary is considered suceessful. Formally, given that the adversary
called its oracle on subsets I1, . . . , It and “obtained information” about G(J),
we can define a predicate R(J, I1, . . . It) which indicates whether the adversary’s
actions are “legal”. For example, at the very least the predicate should be false
if J ∈ {I1 . . . It}. We call any such predicate non-trivial. We will certainly re-
strict ourselves to non-trivial predicates, but may sometimes place some more
restrictions on R in order to make a more plausible and weaker assumption (see
below).

Definition 2. Given L = L(k), we say that the group G satisfies the generalized
decisional Diffie-Hellman (gDDH) assumption of order L relative to a non-trivial
predicate R, if for any PPT adversary A = (A1, A1) who called its oracle on
subsets I1 . . . It satisfying R(J, I1, . . . , It) = 1, the probability below is at most
1
2 + negl(k):

Pr
[
b = b′

∣∣∣ (G, q, g)← Setup(1k); (a1 . . . aL)← Zq, (J, st)← A
G(·)
1 (G, q);

y0 = G(J); y1 ← G; b← {0, 1}; b′ ← A
G(·)
2 (yb, st)

]

Very similarly one can define the generalized computational Diffie-Hellman
(gCDH) assumption of order L relative to R, where the job of A is to com-
pute G(J). We notice that the more restrictions R places on the Ii’s and the
“target” set J , the harder it is for the adversary to succeed, so the assumption
becomes weaker (and more preferable). Thus, the strongest possible assumption
of the above type is to put no further restrictions on R other than non-triviality
(i.e., J 
∈ {I1, . . . It}). We call the two resulting assumptions simply gDDH and
gCDH (without specifying R). A slightly weaker assumption results when we

2 Unless a generic inefficient conversion is used, or one assumes random oracles.
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require that the target set is equal to the full set J = [L], i.e. the adversary
has to obtain information about ga1...aL . We call the resulting assumptions full
target gDDH/gCDH (where L = 2 yields regular DDH/CDH). Finally, making L
larger generally makes the assumption stronger, since the adversary can always
choose to concentrate on some subset of L. Thus, it is preferable to base the
security of some contsruction on as small L and as restrictive R as possible.

Before moving to our new sum-free gDDH assumption, let us briefly state
some simple facts about gDDH/gCDH. It was already observed by [19] that
gDDH assumption of any polynomial order L(k) (with or without full target)
follows from the regular DDH assumption (which corresponds to L = 2). Unfor-
tunately, we do not know of the same result for the gCDH problem. The best
analog of this result was implicitly obtained by [12], who more or less showed
that the regular gCDH assumption of logarithmic order O(log k) (even with full
target) implies the gCDH assumption of any polynomial order L(k), provided in
the latter we restrict the adversary to operate on the codewords of any good
error-correcting code.

Sum-Free gDDH. We already saw that the regular DDH assumption is a very
strong security assumption in that it implies the gDDH assumption. This useful
fact almost immediately implies, for example, that the Naor-Reingold construc-
tion in Equation (1) is a PRF under DDH, illustrating the power of DDH for
proving pseudorandomness. Unfortunately, groups were DDH is true are not
convenient for making verifiable random functions, since nobody can verify the
equality of discrete logs. On the other hand, we will see shortly that it is very
easy to obtain verifiability in groups where DDH is solvable in polynomial time
(such as the group suggested by [10]). Unfortunately, such groups certainly do
not satisfy the gDDH assumption too, which seems to imply that we have to
settle for the computational assumption (like gCDH) in such groups, which in
turn implies that we settle only for the VUF construction rather than the de-
sired VRF. Indeed, obtaining such a VUF is exactly what was recently done by
Lysyanskaya [12] in groups where DDH is easy but gCDH is hard.

However, we make the crucial observation that the easiness of regular DDH
does not mean that no version of gDDH assumption can be true: it only means
we might have to put more restrictions on the predicate R in order to make it
hard for the adversary to break the gDDH assumption relative to R. Indeed, for
the current elliptic groups for which we believe in a separation between DDH and
CDH, we only know how to test if (h, u, v, w) is of the form u = ha, v = hb, w =
hab (this is called a DDH-tuple). This is done by means of a certain bilinear
mapping (details are not important), for which we do not know a multi-linear
variant. In fact, Boneh and Silverberg [4] observe that a multi-linear variant of
such mapping seems unlikely to exist in the currently proposed groups, and pose
as a major open problem to exhibit groups where such mappings exist. This
suggests that many natural, but more restrictive flavors of DDH seem to hold
in the currently proposed groups (where regular DDH is easy). For example,
as was mentioned by Boneh and Franklin [3], it seems reasonable to assume
that it is hard to distinguidh a tuple (h, ha, hb, hc, habc) from a random tuple
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(h, ha, hb, hc, hd). Put differently, when a1 . . . aL are chosen at random and given
a sample g = G(∅), G(I1) . . . G(It), the only way we know how to distinguish
G(J) from a random element of such groups is by exhibiting three sets Im, Ip, Is
(where 0 ≤ m, p, s ≤ t, and I0 denotes the empty set) such that aJ · aIm ≡
aIp · aIs mod q.3 The last equation implies that “J + Im = Ip + Is”, where we
view the sets as L-bit 0/1-vectors, and the addition is bitwise over the integers.
In other words, one has to explicitly find a DDH-tuple among the samples G(Ii)’s
and the target G(J).

We formalize this intuition into the following predicate R(J, I1, . . . , It). Let
us denote I0 = ∅. We say that J is DDH-dependent on I1 . . . It if there are indices
0 ≤ m, p, s ≤ t satisfying J+ Im = Ip+ Is (see explanation above). For example,
10101 is DDH-dependent on 01010, 00001 and 11111, since 10101 + 01011 =
11111 + 00001 = 11112. Then we define the DDH-free relation R to be true if
and only if J is DDH-independent from I1 . . . It.
Definition 3. Given L = L(k), we say that the group G (where regular DDH is
easy) satisfies the sum-free decisional Diffie-Hellman (sf-DDH) assumption of
order L if it satisfies the gDDH assumption of order L relative to the DDH-free
relation R above.

For our purposes we notice that DDH-dependence also implies that J⊕ Im =
Ip⊕ Is, where ⊕ indicates the bitwise addition moduo 2 (i.e., we make “2 = 0”),
or J⊕Im⊕Ip⊕Is = 0. Let us call J 4-wise independent from I1 . . . It if no three
sets Im, Ip, Is yield J ⊕ Im ⊕ Ip ⊕ Is = 0. Hence, if we let R′(J, I1, . . . , It) = 1
if and only if J is 4-wise independent from the Ii’s, we get that R′ is a stricter
relation than our DDH-free R. But this means that gDDH assumption relative
to R′ is a weaker assumption than sf-DDH, so we call it weak sf-DDH. Our actual
construction will in fact be based on weak sf-DDH.

To summarize, sf-DDH is the strongest assumption possible in groups were
regular DDH is false. We chose this assumption to get the simplest and most
efficient VRF construction possible when DDH is false. However, even if the
ambitious sf-DDH assumption we propose turns out to be false in the current
groups where DDH is easy — which we currently have no indication of — it
seems plausible that some reasonable weaker gDDH assumptions (relative to
more restrictive R) might still hold. And our approach seems to be general
enough to allow some easy modification to our construction (at slight efficiency
loss) meet many such weaker gDDH assumptions.

3 Constructions

Assume G is the group where DDH is easy while some version of sf-DDH holds.
We consider the natural the type of functions given by Equation (2); in our new

3 One can also try to find the additive relations, but since the ai’s are all random,
it seems that the only such relations one can find would trivially follow from some
multiplicative relations.
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notation, Fg,a1,...,aL(x1 . . . x�) = G(C(x)),4 where C is some currently unspec-
ified (but efficiently computable) injective mapping from {0, 1}� to {0, 1}L. To
emphasize this dependence on C, we will sometimes denote the above function
by NRC(·).

3.1 Building PRFs

As a warm-up towards VRFs, we first determine the conditions on C and the
kind of gDDH assumption we need in order to get a regular PRF.
Lemma 1. Assume R and C are such that R(C(w), C(x1), . . . , C(xt)) = 1 for
any w 
∈ {x1, . . . , xt}. Then NRC(·) is a PRF under the gDDH assumption of
order L relative to R.

Proof. The proof follows almost immediately by comparing the deginition of
gDDH relative to R (Definition 2) and the definition of PRF given in Section 2.1.
Indeed, the adversary can query NRC(·) at any points x1, . . . xt, which corre-
sponds to querying G(·) on C(x1) . . . C(xt), and has to distinguish NRC(w) =
G(C(w)) for some w 
∈ {x1 . . . xt}. Since our assumption implies that R(C(w),
C(x1), . . . , C(xt)) = 1, this adversary is legal for breaking gDDH (of order L)
relative to R.
As an immediate corollary, usual gDDH assumption implies that NRC(·) is
a PRF for any (injective) C, including the identity. This in turn gives the result
of [16], since we mentioned that regular DDH implies gDDH [19].

More interestingly, we will now determine the properties of C which suffice
to show that NRC is a PRF under the much weaker sf-DDH assumption (for
now, of the same large order L; we will reduce the order later). In the following,
view every subset of [L] (or element of {0, 1}L) as an L-dimensional vector over
GF (2). We say that the collection of vectors I1 . . . It is 4-wise independent, if
no 4 or fewer vectors are linearly dependent. The proof of the theorem below is
now obvious from Lemma 1.

Theorem 1. Assume C is such that the collection
{
C(x) | x ∈ {0, 1}�} is 4-

wise independent. Then NRC(·) is a PRF under the (weak) sf-DDH assumption
of order L.

Constructing 4-wise Independent Encodings. To get our PRF under the
sf-DDH assumption, it thus suffices to construct a 4-wise independent encod-
ing C. Naturally, the goal is to make L as close to  as possible. Such encodings
come up quite often in the theory of derandomization (see [1]), and are closely
related to coding theory.5 In our case, the well known construction is very simple
4 Notice, we output a (pseudo)random element of G instead of a (pseudo)random m-
bit string. However, standard hashing techniques imply we can extract an almost
uniform string of length close to log |G| from such an output. See [16].

5 In particular, obtaining the 4-wise independent encoding C we need is equivalent to
designing a parity check matrix of any linear code of distance 5. Our specific code
gives such matrix for the famous (and optimal) BCH code of designed distance 5.



10 Yevgeniy Dodis

and efficient, so we present it in a self-contained manner. It will achieve (easily
seen to be optimal) L = 2.

Let us view any non-zero element x ∈ {0, 1}� as an element of the field
GF (2�), which can also be represented as an -dimensional vector over GF (2).
This gives us the same bitwise addition operation ⊕, but now we also have
a multiplication operation. Then we set L = 2 and define C(x) = (x3‖x),
which is interpreted as follows. We first cube x, which gives us another -
dimentional vector x3, and then we append x to it. Notice, the code C is explicit
and extremely efficient to evaluate. Now, assume there are some non-zero dis-
tinct x1, x2, x3, x4 ∈ GF (2�) and constants α1, α2, α3, α4 ∈ {0, 1} such that∑4

i=1 αiC(xi) = 0. We will show that α1 = α2 = α3 = α4 = 0, which yields 4-
wise independence.

Since our bitwise addition is the same as in the field, we get
∑4

i=1 αixi =
0 and

∑4
i=1 αix

3
i = 0 over GF (2�). Next, we square the first equation. Since

GF (2�) has characteristic 2 and α2
i = αi, the only surviving terms are αix

2
i ,

which gives us
∑4

i=1 αix
2
i = 0. Similarly, raising the first equation to the power 4

gives
∑4

i=1 αix
4
i = 0. We get a linear system (with unknowns α1, α2, α3, α4)

saying that
∑4

i=1 αix
j
i = 0 for j = 1, 2, 3, 4. The system corresponds to the

famous Vandermonde matrix whose determinant is x1x2x3x4 ·
∏

i<j(xi−xj) 
= 0,
since all the xi’s are distinct and non-zero. Thus, the only solution to the system
is the trivial all-zero solution.

As a small technicality, we get the 4-wise independent encoding C : {0, 1}�\{
0�

}→ {0, 1}2�, i.e. we exclude the all-zero vector. This implies that we get the
PRF whose input domain excludes the all-zero vector too. To summarize,

Theorem 2. The encoding C above defines a PRF mapping  bits (except 0�) to
an element of G, which is secure under the (weak) sf-DDH assumption of order
2.

Reducing the Order. While Theorem 2 gives a simple PRF construction, it
is based on the sf-DDH assumption of high polynomial order 2(k). While this
assumption is reasonable, we now show how to reduce the order to O(log k)
at only a marginal efficiency loss. So let C : {0, 1}� → {0, 1}L be any 4-wise
independet encoding satisfying Theorem 1 (like the one we constructied above).
The idea, similar to that of [12], is to use an error-correcting code E : {0, 1}L →
{0, 1}N on top of our encoding C. However, since we are dealing with linear
dependence, we will have to restrict ourselves to linear codes (which was not
needed in [12]), and the analysis will be slightly more involved. Thus, let E be
a linear error correcting code of distance δN (where δ > 0 and N = O(L)), and
define C̃ = E ◦ C : {0, 1}� → {0, 1}N . We get the following result, whose proof
can be found in the full version [6].

Theorem 3. Assume (weak) sf-DDH assumption holds for any order p =
O(log k). Then NRC̃(·) is a PRF.

We remark that since error-correcting code can in principle approach a rate of 1,
using Theorem 3 we can get a PRF construction with final expansionN = (2+ε).
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3.2 Building VRFs

We now show how extend our ideas to get a VRF based of sf-DDH. As before, the
construction is parameterized by some encoding C : {0, 1}� → {0, 1}L. Recall
also that we assume that testing regular DDH can be done in polynomial time.

– Gen(1k): runs (G, q, g) ← Setup(1k), picks random a1, . . . , aL+1 ∈ Zq , sets
h = gaL+1, y1 = ha1 ,. . ., yL = haL . Outputs public key PK = (G, q, g, h, y1 =
ha1 , . . . , yL = haL), secret key SK = (g, a1, . . . , aL).

– ProveSK(x): outputs (σ1, . . . σL), where σj = g
∏

{i≤j|C(x)=1} ai for j = 1 . . . L.
In particular, the value σL is FSK(x), while (σ1, . . . , σL−1) is the proof
πSK(x).

– VerifyPK(σ1, . . . , σL): sets σ0 = g and checks, for i = 1 . . . L, that (σi−1, σi,
h, yi) form a DDH-tuple (recall, DDH is easy!) when C(x) = 1, or that
σi−1 = σi is C(x)i = 0. Accept if all the tests pass.

To satisfy the definition of VRFs (Definition 1), we need to examine unique-
ness, provability and pseudorandomness. The first two properties are very easy.
Uniqueness follows from the fact that discrete logs are unique in G (and that our
assumed algorithm for DDH will never accept an invalid tuple), while provability
is obvious by construction.

Thus, we only need to examine pseudorandomness. Luckily, a lot of machin-
ery has been already developed in Section 3.1. Essentially, the main difference
we have is that when the adversary asks Prove(x), not only does he get F (x) =
G(C(x)), but he also gets the proof values G(I) for all I ∈ Prefixes(C(x)), where
for a set J ⊆ [L] we define Prefixes(J) def= {∅, J ∩ [1], J ∩ [2], . . . , J ∩ [L− 1], J}.
Additionally, the public key gives the adversary the values G({L+ 1}),
G({L+ 1, 1}), . . . , G({L+ 1, L}). We denote the latter L + 1 subsets of [L + 1]
involving element L + 1 by Pub(L + 1). With these in mind, we easily get the
following analog of Lemma 1.

Lemma 2. Assume R and C are such that that for any w 
∈ {x1, . . . , xt} we
have R(C(w),Prefixes(C(x1)), . . . ,Prefixes(C(xt)), Pub(L + 1)) = 1. Then our
construction is a VRF, under the gDDH assumption of order L+1 relative to R.

Next, we can generalize the notion of 4-wise independence to that of 4-wise
prefix-independence. Namely, a vector J is 4-wise prefix independent from vec-
tors I1 . . . It if there exist no 1 ≤ p, r, s,≤ t and I ′p ∈ Prefixes(Ip),
I ′r ∈ Prefixes(Ir), I ′s ∈ Prefixes(Is) such that J ⊕ I ′p ⊕ I ′r ⊕ I ′s = 0. A collection
{I1 . . . It} is said to be 4-wise prefix independent if every vector Ii is 4-wise pre-
fix independent from the remaining vectors. Finally, we will say that the above
collection has prefix-distance at least 3, if for any i 
= j and I ′j ∈ Prefixes(Ij), we
have that Ii and I ′j differ in at least 3 positions when viewed as binary vectors
of length L. Then, we get the following analog of Theorem 1.

Theorem 4. Assume C is such that the collection
{
C(x) | x ∈ {0, 1}�} is 4-

wise prefix-independent and has prefix-distance at least 3. Then our construction
is a VRF under the weak (and thus regular) sf-DDH assumption of order L+ 1.
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Proof. By Lemma 2, we only need to show that no vector C(w) is linearly depen-
dent on 3 vectors z1, z2, z3 inside the sets Prefixes(C(x1)), . . . ,Prefixes(C(xt)),
Pub(L + 1). Assuming the contrary, if none of z1, z2, z3 comes from Pub(L +
1), we would exactly get that the collection

{
C(x) | x ∈ {0, 1}�} is 4-wise

prefix-dependent, a contradiction. Otherwise, some zi’s (say, z1) is one of
{{L+ 1} , {L+ 1, 1} , . . . , {L+ 1, L}}. Since these are the only sets containing
element (L + 1), in order to “cancel” (L + 1) one other zi (say, z2) also comes
from this collection, which means that z1 ⊕ z2 is some subset of I of [L] or
cardinality at most 2. The only way we can now have C(w) ⊕ I ⊕ z3 = 0, is if
some z3 was a prefix of some C(xj) (where xj 
= w) which differs from C(w)
in at most 2 coordinates. But this is exactly what is ruled out by the fact the
collection

{
C(x) | x ∈ {0, 1}�} has prefix-distance at least 3.

Constructing the Encoding. It remains to construct a 4-wise prefix-inde-
pendent encoding of prefix distance at least 3. We do it by giving a simple generic
transformation from any regular 4-wise independent encoding C : {0, 1}� →
{0, 1}L, such as the encoding (x3‖x) considered in the previous section. We will
assume without loss of generality that every two distinct elements C(x) and
C(w) differ in at least two positions. For example, this is true with the 4-wise
independent encoding (x3‖x) constructed in the previous section. However, even
if originally false in C, one can always increase L by 1 by adding a “parity” bit
to C (i.e., the XOR of all the bits of C(x)) and get the required distance at
least 2 between distinct codewords. Also, for a technical reason we will exclude
the zero vector 0� from the domain of our new encoding.

Lemma 3. If C is 4-wise independent (and has distance at least 2), then C′(x)=
(C(x)‖1‖x‖1) is 4-wise prefix-independent and has prefix-distance at least 3.

Proof. Below we will refer to the two 1’s in the definition of C′ as “middle” and
“last”. We start with showing the prefix distance. Take any x 
= w and consider
any prefix I of C′(w). This prefix either “crosses” both the middle and the last 1,
only the middle 1, or none of them. In the first case (i.e., we look at C′(w) itself),
we get distance three between C′(x) and C′(w) since C(x) differs from C(w) in
at least two locations, and x differs from w in at least one more location. In the
second case, C(x) still differs from C(w) in at least two locations, and now also I
does not have the last 1 which C′(x) has. Finally, in the last case (no 1’s are
crossed), I does not have both 1’s that C′(x) has, and also in between the 1’s x is
non-zero (this is where we exclude 0�) while the prefix I is zero, giving distance
at least 3 again.

Next, we show the 4-wise prefix independence. Take any x,w1, w2, w3 where
x 
∈ {w1, w2, w3}, and let z1, z2, z3 be some prefixes of C′(w1), C′(w2), C′(w2)
such that (C(x)‖1‖x‖1)⊕ z1 ⊕ z2 ⊕ z3 = 0. Notice, in order to cancel the last 1
of C′(x), at least one of the prefixes, say z1, has to be full; i.e., z1 = C′(w1) =
C(w1)‖1‖w1‖1. Since the middle 1’s cancel out in C′(x) ⊕ C′(w1), we have two
possibilities for them to cancel in the full sum C′(x)⊕ C′(w1)⊕ z2 ⊕ z3. Either
both prefixes z2 and z3 cross the middle 1, or none does. In the first case,
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taking the “C-prefixes” we get that C(x)⊕C(w1)⊕C(w2)⊕C(w3) = 0, which
contradicts the fact that C is 4-wise independent. In the second case, we get
that the identity parts between the 1’s yield x ⊕ w1 = 0, i.e. x = w1, which is
again a contradiction.

Applying this Lemma to the encoding C(x) = (x3‖x) used in Theorem 2, we
get:

Theorem 5. The encoding C′(x) = (x3‖x‖1‖x‖1) defines a VRF mapping  bits
(except 0�) to an element of G, under the (weak) sf-DDH assumption of order
3+ 3.

Reducing the Order. Similarly to Theorem 3, we apply an “outer” error-
correcting code to reduce the order of the sf-DDH assumption we need for The-
orem 5. However, we need to be sure that our construction preserves prefix-
independence. Here is one direct way of doing it if we start — as in Lemma 3
— from any regular 4-wise independent (but perhaps not prefix-independent)
C : {0, 1}� → {0, 1}L with minimum distance 2. Let E1 : {0, 1}L → {0, 1}N1

and E2 : {0, 1}� → {0, 1}N2 be two linear error correcting codes, both cor-
recting some constant fraction of errors. We define the final encoding C̃(x) =
(E1(C(x))‖1‖E2(x)‖1) which maps  non-zero bits to N1+N2+2 = O() bits. By
carefully combining the arguments in Theorem 3 with the technique in Lemma 3,
we get the following corollary:

Theorem 6. Assume (weak) sf-DDH assumption holds for any order p =
O(log k). Then the code C̃ above defines a VRF.

As earlier, using a very good code we can in principle construct a VRF with
final expansion N = (3 + ε) based of the sf-DDH assumption of order O(log k).

Finally, we remark that with an extra overhead of 2 in the expansion of C̃
(and a large polynomial loss in exact security), we can reduce our PRF and
VRF constructions in both Theorem 3 and Theorem 6 to using the full target sf-
DDH assumption of order O(log k). We omit the details due to space constraints.

4 Distributed VRF

In this section we show that our VRF construction can be easily made dis-
tributed, which results in the first DVRF construction. Our construction is ex-
tremely simple and reminds DPRF construction of Nielsen [17] based on regular
DDH. However, the fact that DDH is easy implies we can make our construction
non-interactive (i.e., servers do not need to know about each other) and more
efficient than that of Nielsen. We start by presenting our model, and then show
our simple construction.
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The Model. We assume there are n servers S1, . . . , Sn and that we have a reg-
ular VRF V = (Gen,Prove, Setup) which we want to distribute. First, we define
the syntax of the new generation algorithm Gen′(·) run by the trusted party.
Gen′(1k) not only outputs the public/secret keys PK and SK for V , but also
a pair of public/secret key (PKi, SKi) for each server Si. The global secret key
SK is then erased, each server Si gets SKi, and the values (PK,PK1, . . . , PKn)
are published. When a user U approaches the server Si with input x, the server
determines if the user is qualified to learn the value/proof of F (x). How this is
done is specifed by the application at hand and is unimportant to us. If U is
successful, though, we say that Si was initiated on input x, and U and Si engage
in a possibly interactive protocol. To successfully complete this protocol, the
user might have to simultaneously interact with several servers in some possibly
predefined order (see below), but the servers do not need to interact to each
other or know each other’s state. Given a threshold t of the systems, the robust-
ness property states that if U contacts s servers on input x, and at least at least
(t+1) of these servers are honest, then at the end of the protocol the user learns
the unique correct output of Prove(x); i.e., the value F (x) and the proof π(x).
This should hold even if the remaining (s − t − 1) of the contacted servers are
malicious. We notice also that while the user U needs to know the “local’ public
key PKi of server i in order to interact with server Si, any outside party only
needs to know the “global” public key PK in order to verify the consistency of
F (x) and π(x). In other words, the verification algortihm Verify does not have
to be changed from the non-distributed setting.

The security property of the DVRF protocol states that for any t indices
i1, . . . , it and for any adversary A = (A1, A2) who “breaks” the security of
DVRF by “corrupting” servers Si1 , . . . , Sit (see below), there exists an adversary
B = (B1, B2) which breaks the pseudorandomness property of our original VRF,
as given by Definition 1. We now define what it means to break the security of
DVRF. In addition to the public key (PK,PK1, . . . , PKn), A learns the values
SKi1 , . . . , SKit of the corrupted servers. Then, A1 runs in the first stage, in
which it is given the ability to interact with any honest servers Sj on arbitrary
inputs and in any manner that A1 desires. However, we keep track of the set
of inputs I which were initiated by A1. At the end of the phase, A1 outputs
the challenge input x (and the state information for A2). Then A2 is given back
a challenge yb (for random b), which is either the value y0 = F (x) or a random
element y1 in the range of F . A2 can then again interact with honest servers,
just like A1 did. At the end, A2 outputs the guess b̃ and succeeds if b̃ = b and
neither A1 nor A2 initiated the input x with any of the servers. A breaks the
scheme if it succeeds with non-negligible advantage over 1/2.

Construction. In Section 3.2 we defined a general candidate for VRF
parametrized by any encoding C. We now show how to make such construction
distributed for any C for which the basic construction is a VRF. The construc-
tion is quite simple, but it shows how convenient it is to have verifiability (given
by the easiness of DDH) “for free”. Recall that we had SK = (g, a1, . . . , aL);
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PK = (G, q, g, h, y1 = ha1 , . . . , yL = haL); and ProveSK(x) = (σ1, . . . σL), where
σ0 = g, σj = σ

aj

j−1 if C(x)j = 1 and σj = σj−1 otherwise.
To distribute this process, for every j = 1 . . . L we use Shamir’s (t + 1, n)-

secret sharing [18] over Zq to split each aj into n shares (aj,1, . . . , aj,n), so that
any t + 1 of these shares suffice to recover aj, while t or fewer shares give no
information about aj . We set the secret key SKi of server i to (a1,i, . . . , aL,i),
and its public key PKi to (y1,i = ha1,i , . . . , yL,i = haL,i). To compute Prove(x),
the user U needs to contact at least (t + 1) honest servers. The protocol with
the contacted Si’s proceeds in rounds. Assuming inductively that the value σj−1

is known to both the user and the servers (with the base being σ0 = g which is
known to everybody), we show how to compute σj . If C(x)j = 0, σj = σj−1, so
we are done. Otherwise, each server Si sends the value σj,i = σ

aj,i

j−1 to the user.
The user locally checks that (σj−1, σj,i, h, yj,i) form a proper DDH-tuple. If they
do not, U discards the share and stops interacting with Si. Upon receiving at
least (t+ 1) correct shares, U uses the corresponding Lagrange interpolation in
the exponent to compute the (necessarily correct) value σj , and sends σj to all
the servers it is communicating with. Each server Si, upon receiving σj , checks
if (σj−1, σj , h, yj) form a valid DDH-tuple. If they do not, the server stops the
interaction with U . Then the protocol proceeds to the next round until the entire
output is computed.
Security. The security of the above scheme is quite straightforward. Robust-
ness is immediate since every share is checked for consistency. As for pseudo-
randomness, consider any successful distributed adversary A = (A1, A2) who
corrupts servers i1 . . . it. We build B = (B1, B2) for our original VRF as fol-
lows. B picks random values aj,is ∈ Zq for every j ∈ [L] and s ∈ [t], and gives
the resulting secret keys SKi1 , . . . , SKit to A. It then computes the induced
public keys PKi1 , . . . , PKit and uses its own public key ha1 , . . . , haL to compute
the remaining public keys PKi for all non-corrupted users. This is done by per-
forming the appropriate Lagrange interpolation in the exponent which computes
the value yj,i from yj , yj,i1 , . . . , yj,it . It hands all these public keys to A, after
which B1 starts running A1. When A1 initiates any server on input x, B1 asks
for the value Prove(x), and uses the response (σ1, . . . , σL), together with the
knowledge of SKi1 , . . . , SKit , to compute all the relevant shares σj,i (by again
doing straightforward Lagrange interpolation in the exponent; details are obvi-
ous and omitted). This allows B1 to simulate all the responses to A1. After B1

outputs the same challenge x′ as A1, B2 gets the output challenge y′, which it
forwards to A2 as well. Then B2 simulates A2’s interaction with the servers in
exactly the same way B1 did it for A1. Finally, B2 outputs the same guess b̃
as A2, which completes the reduction and the proof of security.
Efficiency. The above protocol is quite efficient. The communication com-
plexity is O(tk), and the round complexity is L = O().
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