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Abstract. We show that in certain natural computational models every
bit of a message encrypted with the NtruEncrypt cryptosystem is as
secure as the whole message.

1 Introduction

Whereas in the past cryptography used to be performed by national agencies
running mainframe computers, today we see a trend towards the use of cryp-
tography in thinner and thinner clients such as cellular phones, PDAs, etc. For
public key cryptography to be widely deployed on these devices, we require high
performance algorithms to obtain service behavior that is acceptable to the end-
users. When designing faster and faster encryption schemes, there is of course
always a risk that security is sacrificed, and new, high-performance schemes need
to be thoroughly analyzed. One promising recent high-performance scheme is the
NtruEncrypt cryptosystem [12].

It is quite natural that the performance, and more importantly, the security of
NtruEncrypt is often compared to other schemes such as RSA, elliptic curves,
etc. Unfortunately, like many other practical schemes, NtruEncrypt does not
have a formal proof of security. On the other hand, the security appears to be
closely based on some quite well-studied lattice problems, and to date, no serious
attack on NtruEncrypt is known.

Still, it would be worthwhile to investigate whether new schemes such as
NtruEncrypt enjoy security properties that are known to exist in the more
“classical” schemes. For instance, it is known that RSA enjoys the property
of bit-security: finding any single bit of the plaintext is (via polynomial time
reductions) as hard as finding the whole plaintext, see [11]. Establishing the
same property for NtruEncrypt would indicate a certain robustness in the
scheme, and this is the problem we address in this paper.

Adopting a new (stronger) computational model, we answer the question pos-
itively. While it cannot be debated that our model makes the proof not seeming
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too hard, it far from trivializes the problem. Also, it is interesting to compare our
methods and those previously used for the RSA scheme. In particular, the above
mentioned results for RSA are obtained exploiting a quite undesirable property
of “raw” RSA: multiplicativity; xeae ≡ (ax)e (mod N). To obtain our results
on NtruEncrypt we similarly make use of the basic scheme’s malleability;
given the NTRU encryption of x and one or more bits of x, it is possible to
compute an encryption of x′, corresponding to x with said bit(s) flipped.

Finally, in same classical model as that used in [11] we also obtain a bit-
security result, though much weaker.

2 Preliminaries

We recall that in the NtruEncrypt cryptosystem [12], one selects integer pa-
rameters (N, q) and four sets Lf ,Lg,Lϕ,Lm of polynomials f, g, ϕ,m in the ring
R = ZZq[X ]/(XN − 1) . The coefficients of these polynomials are constrained by
the choice of an additional parameter, p, a small integer or polynomial. In the
original presentation of NtruEncrypt [12], p was taken to be the integer 3,
and the polynomials f, g, ϕ,m were trinary. The authors of NtruEncrypt have
since recommended [13] that p be taken to be the polynomial 2 +X , and this
is current practice in implementations [4]. This choice for p, along with other
optimizations suggested in [13], leads to f, g, ϕ,m being constructed from binary
polynomials. Of particular relevance to this paper is that it leads to the message
representative polynomial m being binary.

We denote by � the operation of multiplication in the ring R.
We also recall the key creation procedure where the receiver Alice randomly

selects polynomials f ∈ Lf and g ∈ Lg such that f has an inverse modulo q
and modulo p (this issue has been discussed in [13,18] together with heuristic
estimates for a polynomial f ∈ Lf to satisfy these conditions).

Then Alice computes inverses f∗
q and f

∗
p that satisfy

f � f∗
q ≡ 1 (mod q), f � f∗

p ≡ 1 (mod p),

and the product
h ≡ p� f∗

q � g (mod q).

Alice publishes the polynomial h as her public key, retaining f as her private
key. The polynomial f∗

p should also be stored for later use, and the polynomi-
als f∗

q , g may be discarded. Note that the paper [13] recommends that f have
the form 1 + p� F with F ∈ R; in this case, of course, f∗

p = 1.
Suppose the sender Bob wants to encrypt and send a secret message to

Alice. Bob selects a message m from the set of plaintexts Lm. Next, Bob selects
a random “blinding” polynomial ϕ ∈ Lϕ and uses the public key h to compute

e ≡ ϕ� h+m (mod q). (1)

Bob then transmits e to Alice.
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We do not discuss the decryption procedure and thus the structure on the sets
Lf ,Lg,Lϕ,Lm which maximizes the chance of unambiguous decryption (rather
we refer to [12,13] for details). However the set Lm plays a crucial role and we
recall that Lm consists of 2N polynomials with 0, 1-coefficients, that is

Lm =
{
a0 + a1X + . . .+ aN−1X

N−1 | a0, a1 . . . , aN−1 ∈ {0, 1}
}
.

Thus each coefficient of m ∈ Lm carries one bit of information. We also use the
fact that the set Lϕ is closed under multiplication by X i for i = 0, 1, . . . , N − 1.

Here we prove that NtruEncrypt encryption has a very attractive bit se-
curity property. Namely, each coefficient of the encrypted messagem is as secure
as the whole message. Detailed surveys of bit security results are given in [6,8];
several more recent results can be found in [2,3,9,10,11,14,15,17]. Obviously any
such results admit opposite points of view. One can express it as “a part is as
hard as the whole” and say that this is an advantage of the corresponding cryp-
tosystem. On the other hand, one can express the same property as “the whole
is as weak as a part” and say that it is a weakness. We do not here favor either
of the above points of view, but we note that the former one is more traditional
and has been the main emphasis of prior work.

Our method is based on the following observation: Given an encryption e of
a message m, we derive from (1) that

ei = X ie ≡ X i � ϕ� h+X i �m (mod q) (2)

is a valid encryption of the message mi = X i �m corresponding to the choice
of the “blinding” polynomial ϕi = X i � ϕ ∈ Lϕ. It is easy to see that mi is just
a cyclic shift of the message m and that since X i is invertible modulo XN − 1,
ϕi is uniformly distributed in Lϕ. Thus given an oracle returning a prescribed
coefficient of the message from a given encryption, one queries this oracle with
the values of ei, i = 0, 1, . . . , N − 1, to recover all bits of m one by one. This
is a normally undesirable property since it means that the scheme is so-called
malleable. We again note that similarly undesirable properties of RSA is the
central ingredient in obtaining bit-security results for RSA, so this is not in any
way strange. In fact, here we also use one other malleability aspect, see below.

Here we show that the same idea can be used for much weaker oracles which
return the value of some coefficient of the message only for a very small propor-
tion of the messages.

We remark that our arguments rely on the fact that the sets Lf ,Lg,Lϕ,Lm

which guarantee unambiguous decryption are public. In particular, this means
that any “guess” for a message m can be efficiently verified by an attacker by
checking whether (e −m) � h−1 = ϕ with some ϕ ∈ Lϕ. We note that for the
parameter sets given in [12,13] (see also [4]), the polynomial h (equivalently, g)
is not invertible. However, because of the structure of ϕ, it is possible to use
a “pseudo-inverse” of h to perform the check [16].

We say that an algorithm is polynomial time if its running time is bounded by
(N log q)O(1). In fact, typically q is of the same order as N , so this last expression
can be replaced by simply NO(1). We do not evaluate the exact complexities
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(which depend on the accepted model of computation) but this is a very simple,
although somewhat tedious task.

Finally, we use log z to denote the binary logarithm of z > 0.

3 Main Results

Earlier bit-security results, such as those referenced above, use the model of hav-
ing access to an oracle that returns the ith bit of the message with probability
1/2+ ε, for some small ε > 0 (which could be a function of some other parame-
ters), where the probability is taken uniformly over the sample space of messages
and auxiliary encryption parameters (and also, over the internal coinflips of the
oracle). Here we use a somewhat different model.

Assume that we are given an oracle NT RUγ which for any sequence of k
distinct and valid encryptions e1, . . . , ek, returns the leading coefficient of the
corresponding messages m1, . . . ,mk for at least γk� queries and returns the
error message symbol ∗ for the rest of the queries. We do not impose any re-
strictions on the behavior of this oracle on invalid inputs.

It is important to remark that repeatedly querying this oracle with the same
message cannot help to extract any new information because it maintains the
required rate of correct outputs only for distinct messages. In the same way,
we do not specify the behavior of this oracle on invalid queries e which do
not correspond to any valid message as we only require it to be correct on valid
encryptions. For example, for such queries it can output 0 and 1 with probability
γ/2 each, and output ∗ with probability 1 − γ. Thus the oracle cannot be used
to distinguish between valid and invalid encryptions.

On the other hand, we assume that it is a Las Vegas type oracle which never
gives a wrong answer, although sometimes may give no answer at all. One can
clearly argue that this model is qualitatively much stronger than the “classical”
model, though on the other hand, it is quantitatively quite comparable as it
only returns correct answers for some (non-negligible) γ-fraction of all queries.
Moreover, the results obtained are stronger, since the reconstruction algorithm
for the message m can be made fully deterministic.

It is known [5] that when N is composite then the whole scheme is not secure,
thus we consider only the case of prime N .

For this and other algorithms our general strategy is to create several valid
encryptions, by “flipping” already known (or “guessed”) bits of m. In other
words, we again exploit the malleability of basic NTRU. If all of them are distinct,
then each time the oracle provides new information to us. On the other hand,
if not all of them are distinct then, as the following statement shows, we can
recover m without even using the oracle.

Lemma 1. Let e be any NtruEncrypt encryption of a message m ∈ Lm and
let {r1, . . . , rk} ⊂ R be such that for all i = 1, . . . , k, the polynomial e + ri is
a valid encryption of m+ ri ∈ Lm. Then, either
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◦ the polynomials {Xj � (m+ ri), j = 0, . . . , N − 1, i = 1, . . . , k} are all
distinct,

or,

◦ given the polynomials r1, . . . , rk one can recover m from e in polyno-
mial time.

Proof. We remark that if

Xj1 � (m+ r1) = Xj2 � (m+ r2), (3)

for two distinct pairs (j1, r1) �= (j2, r2), then(
Xj1 −Xj2

)
�m = Xj2 � r2 −Xj1 � r1.

If j1 = j2 then,
Xj1 � (r2 − r1) = 0

and because X and XN − 1 are relatively prime, we obtain r1 = r2 which
contradicts our assumption. For j1 �= j2 we remark that the greatest common
divisor of Xj1 − Xj2 and XN − 1 is X − 1. Therefore, each two distinct pairs
(j1, r1) �= (j2, r2) uniquely define m modulo (XN − 1)/(X − 1). Because m has
0, 1 coefficients there could be at most 2 possible values for m which can be
found and verified by checking whether (e−m)� h−1 � p−1 ∈ Lϕ. ��

Theorem 1. Let N be a prime. For any constant A > 0, given an oracle
NT RUγ with any

γ ≥ N−A,

there exists a deterministic polynomial time algorithm which, given a valid en-
cryption e of a message m ∈ Lm, makes O(γ−2N) calls to the oracle NT RUγ

and finds the message m.

Proof. The algorithm below calls the oracle NT RUγ with valid encryptions
of the form Xj � (e + r) which correspond to some unknown messages of the
form Xj � (m+ r) for some polynomial r ∈ R (chosen in such a way that Xj �
(m+ r) ∈ Lm, and thus Xj � (e+ r) is its valid encryption).

By Lemma 1, in the algorithm below we always assume that each message
(of the form Xj � (m+ r) where j and r ∈ R are known) it produces is distinct
from all the previously generated messages, otherwise the above procedure finds
m immediately. That is, each time a new message is produced we apply the
above procedure (for this message and all previously used messages) and either
find m or make sure this new message has never occurred before. Thus the
corresponding encryptions are pairwise distinct as well.

We put L =
⌈
log γ−1

⌉
and “guess” the L highest coefficients of m. For

each guess we execute the below procedure. We remark that the total number
of guesses 2L = O(γ−1) and also it is enough to consider only the case when
our guess is correct. Indeed, as we have already remarked, for each guess, the
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candidate for the message m produced by the below algorithm can easily be
verified. Thus it is enough to find the right message m at least once (that is, for
the right guess).

So we now assume that L highest coefficients aN−1, . . . , aN−L+1 of m are
known.

To find the coefficient aN−i, i = L + 1, . . . , N , we consider the following 2L

valid messages (which are flips and cyclic shifts of m)

m
(ν)
i = X i−1 �


m−

N−1∑
j=N−L

(aj − νj)Xj




where ν = (νN−L, . . . , νN−1) runs over all L dimensional binary vectors, and
compute the corresponding encryptions

e
(ν)
i = X i−1 �


e− N−1∑

j=N−L

(aj − νj)Xj


 .

For each i = L+1, . . . , N , the algorithm makes 2L calls of the oracleNT RUγ

with e(ν)
i . By the conditions on the oracle NT RUγ , because 2Lγ ≥ 1, it either

returns correctly ai at least once or we obtain an equation of the form (3).
To estimate the number of calls to the oracle NT RUγ , we remark that for

each of the 2L guesses the algorithm makes O
(
2LN

)
calls. Therefore the total

number of calls is O
(
22LN

)
= O

(
γ−2N

)
. ��

We now consider the more classical Monte Carlo type oracles, which always
return a result which however is correct only with with probability bounded
away from 1/2. However, we make one additional assumption.

Namely, assume that we are given an oracle ˜NT RUε which for any sequence
of k distinct and valid encryptions e1, . . . , ek, returns the leading coefficient of
the corresponding messages m1, . . . ,mk for at least (0.5 + ε)k + O(1) queries
and returns an arbitrary value for other messages. Thus, the added assumption
is that the advantage of the oracle is in a sense uniformly distributed over the
sample space.

As before we assume that the oracle ˜NT RUε is consistent in its replies, it
maintains the required rate of correct outputs only for distinct messages. Thus,
asked several times with the same value of e, it returns the same value (correct
or not) for the leading coefficient of the corresponding message m. Again, as
before, we do not specify the behavior of this oracle on invalid queries e which
do not correspond to any valid message. For example, for such queries it can
output 1 with probability 0.5+ε and 0 with probability 0.5−ε. As in the case of
the previous oracle, this oracle cannot be used to distinguish valid from invalid
encryptions either.

Theorem 2. Let N be a prime. For any constant A > 0, given an oracle˜NT RUε with any
ε ≥ N−A,
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there exists a deterministic polynomial time algorithm which, given a valid en-
cryption e of a message m ∈ Lm, makes O(ε−2N) calls of the oracle ˜NT RUε

and finds the message m.

Proof. Let C be a constant such that the oracle ˜NT RUε returns the correct
answer for at least (0.5 + ε)k − C pairwise distinct and correct queries (that
is, C is the implicit constant in O(1) in the definition of ˜NT RUε).

Put L =
⌈
log

(
Cε−1 + 2

)⌉
. We start with “guessing” the L highest coeffi-

cients ofm. In fact, we repeat the below procedure with all 2L = O(ε−1) possible
“guesses” and remark that if our guess is correct, then the algorithm below finds
the encrypted message correctly. Thus we just verify the obtained 2L = O(ε−1)
results in order to find which one corresponds to the encrypted message.

As in the proof of Theorem 1 we remark that by Lemma 1, all messages which
appear in our algorithm are of the formXj�(m+r) where j and r ∈ R are known
(and pairwise distinct). Thus we by checking polynomially many “suspects” we
can assume that all valid encryptions used in our algorithm correspond to distinct
messages.

Now, for each “guess” (aN−L, . . . , aN−1) of the L highest coefficients of the
message m we consider 2L − 1 “flips” of the L highest coefficients

m(ν) = m−
N−1∑

j=N−L

(aj − νj)Xj

and compute the corresponding encryptions

e(ν) = e−
N−1∑

j=N−L

(aj − νj)Xj

defined by an L-dimensional non-zero binary vector ν = (νN−L, . . . , νN−1).
Then for each i = L+ 1, . . . , N for which the corresponding coefficient aN−i

is still undefined, we query the oracle with 2L − 1 distinct encryptions e(ν)
i =

X i−1 � e(ν), getting (assuming our original guess of the L highest coefficients is
correct) the value of aN−i at least

(0.5 + ε)
(
2L − 1

)
− C = 0.5

(
2L − 1

)
+ ε

(
2L − 1

)
− C

≥ 0.5
(
2L − 1

)
+ ε

(
Cε−1 + 1

)
− C > 0.5

(
2L − 1

)
times. Thus we make the majority decision on the value of ai. We remark that we
make an odd number of queries thus the majority decision procedure is always
correctly defined (even when our original guess of the coefficients is not correct).

��
Finally, we can indeed consider the classical model where the oracle gives us

the leading coefficient ofm with probability 0.5+δ, where the probability is over
random choices of m,ϕ and the (possible) internal random choices of the oracle.
This complicates things since there could for example, be certain messages for
which the oracle has no advantage at all. Still, we can obtain a (weak) non-trivial
result as follows. Denote such an oracle ̂NT RU δ.
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Theorem 3. Let 0 < α < 1 be a constant. If there is an oracle ̂NT RU δ with

δ ≥ 1
2
− α

N
,

there exists a deterministic polynomial time algorithm which, given a valid, ran-
dom, encryption e of a random message m ∈ Lm, makes N calls of the oraclêNT RUδ and finds the message m with probability 1− α.

Proof. Querying ̂NT RUδ on X i � e, gives us aN−i−1 except with probability
at most α/N . Proceeding with cyclic shifts we can extract all bits, but unfor-
tunately, the queried inputs are highly dependent. Still, for randomly chosen m
and ϕ, the probability that any of the N calls is wrong is at most α. ��

4 Concluding Remarks and Open Questions

It is obvious that similar algorithms work for an oracle producing any other fixed
coefficient of the message m rather than just the leading coefficient.

Finally, one can probably consider an oracle which is a combination of the
oracles NT RUγ and ˜NT RUε, namely the oracle which for any sequence of k
distinct and valid encryptions e1, . . . , ek, returns 0, 1 for at least γk+O(1) queries
which is the correct value of the leading coefficient of the corresponding message
for at least (0.5+ε)γk+O(1) of them, while for the remaining queries it returns
the error message symbol ∗.

It is easy to see that our approach applies to any choice of p, for example, to
the original case p = 3, implying that finding any coefficient of the message m
is as hard as finding the whole message.

It is hard to resist comparing our results to those known for other functions
(in the classical model). While our results here are much weaker, the initial
results for the RSA function, [7], were of the precisely the same strength as
ours. Also, the best known results for Diffie-Hellman bits, [3,9], are (to date) not
any stronger. In fact, they are obtained for much more powerful oracles (which
return much longer bit strings and are always correct). Considering that it has
taken quite some time before the “full” security of RSA bits was shown, [1],
we hope that the methods developed in this paper in some form can eventually
lead to an analogous result for NTRU. Unlike the RSA scheme, it is easy to
see that NtruEncrypt has properties that guarantee that if any single bit is
secure, then so are the others. Extending the results for the least significant bits
of RSA, [1], to all bits, [11], on the other hand has taken almost twenty years.

Finally, it should be noted that whereas “a bit” is certainly a natural study-
item for security, it is at the same time also a quite arbitrary concept. It would
be of great interest to show security of any non-trivial predicate of an NTRU
encrypted message.
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