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Abstract. The paper cryptanalyses a new public key cryptosystem that
has been recently proposed by Paeng, Ha, Kim, Chee and Park [5].
The scheme works on finite non-abelian groups. We focus on the group
SL(2, ZZp)×θ ZZp which was discussed in [5] extensively.
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1 Introduction

In [5] Paeng, Ha, Kim, Chee and Park presented a new public key encryption
scheme based on the difficulty of the discrete log problem in the inner automor-
phism group of a non-abelian group G. This scheme was later called MOR cryp-
tosystem [6]. As underlying group the authors propose the semi-direct product
group SL(2, ZZp) ×θ ZZp and discuss the resulting encryption scheme in detail.
In [5] the authors do not give a formal proof of security for their system. They
rather informally argue why an attacker should not be able to derive the secret
key from the public key.
Our analysis of the MOR system comprises several attacks that enable an at-
tacker to determine the plaintext message under certain conditions without com-
promising the secret key.

The security of the MOR system is closely related to the hardness of the con-
jugacy problem in the underlying group G. Given x, y ∈ G the conjugacy problem
is to find w ∈ G such that y = wxw−1. In MOR using G = SL(2, ZZp) ×θ ZZp

the situation is slightly different. If m ∈ G is the plaintext message, cipher-
texts are of the form C(m) = xabmx−ab. The special situation of MOR using
SL(2, ZZp) ×θ ZZp, that we use in our attacks, is that the value x can easily be
calculated from the public information (an element from the centralizer of x is
already sufficient). We will see that in this case an attacker can collect valuable
information about m in a ciphertext-only attack.

To increase the efficiency of their scheme in SL(2, ZZp) ×θ ZZp the authors
further propose some modifications to the original scheme. The first proposal is
to use SL(2, ZZp) ×θ {0} ∼= SL(2, ZZp) instead of SL(2, ZZp) ×θ ZZp.
In its basic form the MOR system is a probabilistic encryption scheme: The
sender has to choose a random encryption exponent for every message he wants
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to encrypt. For G = SL(2, ZZp) ×θ ZZp the authors propose to fix the encryp-
tion exponent and use it for multiple encryptions. A randomised algorithm that
maps plaintext messages in ZZp to matrices in SL(2, ZZp) is used to get a prob-
abilistic encryption scheme. We will present and discuss the drawbacks of these
modifications.

The rest of this paper is organised as follows. In section 2 we give a short
summary of the MOR cryptosystem and its underlying constructions. For a more
detailed description of the MOR system we refer to [5]. The sections 3 and 4
discuss the security of the MOR system. In section 3.1 we show that MOR using
SL(2, ZZp) ×θ ZZp is not harder than MOR using SL(2, ZZp). We further show
that the parameter selection from [5] is not secure. In section 3.2 we present two
ciphertext-only attacks for MOR using SL(2, ZZp)×θZZp that enable an attacker
given one component of the plaintext to determine the whole plaintext message.
In section 4 we investigate the security of the MOR cryptosystem when the en-
cryption exponent is fixed. As we will see, MOR with fixed encryption exponent
is vulnerable to known-plaintext attacks. Only one resp. two plaintext-ciphertext
pairs are sufficient to decrypt all ciphertexts that were encrypted using the same
exponent. In the appendix useful results about the matrix groups SL(2, ZZp)
and GL(2, ZZp) are summarised.

Related Work: The conjugacy problem is considered a hard problem in braid
groups. There is no known polynomial time algorithm which solves the deci-
sional or the computational conjugacy problem in braid groups. For a detailed
discussion of cryptography on braid groups we refer to [1, 3, 4].
Other cryptosystems using the conjugation map on matrix groups have been
published by Yamamura [7, 8]. The systems later were broken by Blackburn and
Galbraith [2].

2 Framework and Definitions

2.1 The MOR System

Definition 1 (Semi-direct Product Group). Let G and H be given groups
and θ : H → Aut(G) be a homomorphism. Then the semi-direct product G×θ H
is the set

G×H = {(g, h) | g ∈ G, h ∈ H}

together with the multiplication map

(g1, h1)(g2, h2) = (g1θ(h1)(g2), h1h2)

The semi-direct product G×θ H is also a group.

Definition 2 (The Mapping Inn). Let G be a group. Then the mapping

Inn : G → Aut(G)
g �→ Inn(g)

is given by Inn(g)(h) = ghg−1.
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We call Inn(g) an inner automorphism and Inn(G) = {Inn(g) | g ∈ G} the
inner automorphism group. If G is an abelian group then Inn(g) is the identity
map for all g ∈ G and Inn(G) is trivial. Let {γi} be a set of generators of G.
Since Inn(g) is a homomorphism, Inn(g) is totally specified for all m ∈ G if the
values {Inn(g)(γi)} are given.

Definition 3 (Center, Centralizer). Let G be a group. The center Z(G) of G
is defined as Z(G) := {g ∈ G | xg = gx ∀x ∈ G}.
The centralizer Z(g) of a group element g ∈ G is defined as Z(g) := {h ∈ G |
hg = gh}.
Note that Z(G) =

⋂
g∈G Z(g).

Definition 4 (Conjugacy Problem). Let G be a group. For arbitrary x, y ∈ G
the conjugacy problem (CP) is to find w ∈ G such that wxw−1 = y.

Let w ∈ G be a solution for the instance (x, y) of the CP, i.e. wxw−1 = y. Then
w · Z(x) is the solution set for (x, y).

Definition 5 (Special Conjugacy Problem). For a given Inn(g) the special
conjugacy problem is to find a group element ḡ ∈ G satisfying Inn(g) = Inn(ḡ).

The solution set for the special conjugacy problem is g · Z(G).

In GL(2, ZZp) the conjugacy problem is easy. To solve the special conjugacy
problem in GL(2, ZZp) two pairs (A1, Inn(A1)) and (A2, Inn(A2)) with A1 /∈
Z(A2) are needed (see appendix A.2 for details).

The MOR cryptosystem: MOR is an asymmetric cryptosystem with a ran-
dom value a as secret and the two mappings Inn(g) and Inn(ga) (given as
{Inn(g)(γi)} and {Inn(ga)(γi)} for a generator set {γi} of G) as corresponding
public key.

The encryption process works as follows:

1. Alice expresses the plaintext m ∈ G as a product of the γi.
2. Alice chooses an arbitrary b and computes (Inn(ga))b, i.e. {(Inn(ga))b(γi)}.
3. Alice computes E = Inn(gab)(m) = (Inn(ga))b(m).
4. Alice computes Φ = Inn(g)b, i.e. {Inn(gb)(γi)}.
5. Alice sends (E,Φ).

Decryption Process:

1. Bob expresses E as a product of the γi.
2. Bob computes Φ−a, i.e. {Φ−a(γi)}.
3. Bob computes Φ−a(E).

In [5] no formal proof of security is given for the MOR cryptosystem. The
authors state that the security of the MOR cryptosystem relies on the discrete



178 Christian Tobias

log problem in the inner automorphism group of G. They argue that even an
adversary that is able to calculate discrete logs in G is not able to determine the
secret exponent a since the conjugacy problem does not have a unique solution
and if G has a center of appropriate size, the attacker gets a vast number of DLP
instances and is not able to figure out the correct one.

2.2 MOR Using SL(2, ZZp) ×θ ZZp

In [5] the authors propose to use the group

G = SL(2, ZZp) ×θ ZZp

where

θ = Inn ◦ θ1 : ZZp → Aut(SL(2, ZZp))

and θ1 is an isomorphism from ZZp to 〈α〉 with α ∈ SL(2, ZZp) of order p. Thus
we get θ(y)(x) = θ1(y)xθ1(y)−1.
Let g = (x, y) ∈ G. The conjugate of (a, b) ∈ G is

(x, y)(a, b)(x, y)−1 = (xθ(y)(a)θ(b)(x−1), b)
= (x θ1(y)a(θ1(y))−1 θ1(b)x−1(θ1(b))−1, b)

Since (x, y)n = ((xθ1(y))nθ1(y)−n, ny) we get

(x, y)n(a, b)(x, y)−n = ((xθ1(y))na θ1(b)(xθ1(y))−nθ1(−b), b)

The two matrices T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
are generating SL(2, ZZp)

and thus {(T, 0), (S, 0), (I, 1)} is a generator set for SL(2, ZZp) ×θ ZZp.
Given g ∈ SL(2, ZZp) with non-zero (2,1)-component a decomposition
g = T j1ST j2ST j3 can be calculated efficiently (see [5]).

3 Attacking MOR Using SL(2, ZZp) ×θ ZZp

In this section we reveal several vulnerabilities of MOR using SL(2, ZZp)×θ ZZp

and demonstrate how they can be exploited. In a first step we show that MOR
using SL(2, ZZp) ×θ ZZp is not more secure than MOR using SL(2, ZZp).

MOR using SL(2, ZZp) suffers from the big disadvantage that the ciphertext
already reveals valuable information about the encrypted plaintext. If M̄ =
XMX−1 for X,M ∈ SL(2, ZZp) then det(M̄) = det(M) and trace(M̄) =
trace(M). A MOR ciphertext is of the form C(M) = gabMg−ab. We present
two simple but powerful attacks that can be carried out if g or any element of
the centralizer of g is known to the attacker. Both attacks are ciphertext-only.
The first attack uses the above mentioned properties of G = SL(2, ZZp), whereas
the second may be used for arbitrary groups G where the conjugacy problem is
easy.
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3.1 MOR Using SL(2, ZZp) ×θ ZZp is not Harder than MOR Using
SL(2, ZZp)

We know that Inn(g) = Inn(g ·z) if and only if z ∈ Z(G). Let G = SL(2, ZZp)×θ

ZZp. Since Z(G) = {(x, y) | y ∈ ZZq, x = ±θ1(−y)} we get g · Z(G) = {(±x ·
θ1(−z), y + z) | z ∈ ZZq} for g = (x, y) ∈ G.

Thus every ĝ = (x̂, ŷ) ∈ g · Z(G) can be written as ĝ = (±xθ1(−z), y + z) for
a z ∈ ZZq and x̂θ1(ŷ) is of the form

x̂θ1(ŷ) = ±xθ1(−z)θ1(y + z)
= ±xθ1(y)

It follows that the value xθ1(y) is (apart from its sign) invariant for all elements
of g · Z(G).

The encryption function of MOR using SL(2, ZZp) ×θ ZZp is of the form

Inn(gn)(m) = (x, y)n(m1,m2)(x, y)−n

= ((xθ1(y))nm1θ1(m2)(xθ1(y))−nθ1(−m2),m2)

where g = (x, y),m = (m1,m2) ∈ SL(2, ZZp)×θZZp. By calculating Inn(gn)(mi)
for several messages mi ∈ SL(2, ZZp)×θ ZZp and solving the conjugacy problem
in SL(2, ZZp) an attacker is able to extract (±xθ1(y))n.
For MOR using SL(2, ZZp)×θZZp that means that an attacker is able to calculate
±xθ1(y) and (±xθ1(y))a from the receiver’s public key and (±xθ1(y))b from the
ciphertext.

Thus MOR using SL(2, ZZp)×θZZp is not harder than MOR using SL(2, ZZp).
In particular, recovering the plaintext m in a ciphertext-only attack in MOR
using SL(2, ZZp) ×θ ZZp is not harder than the computational Diffie-Hellman
problem in SL(2, ZZp).

In [5] the authors propose to choose g = (x, y) ∈ SL(2, ZZp)×θ ZZp satisfying
xθ1(y) = A(I + cδ12)A−1 for some c ∈ ZZp and A ∈ SL(2, ZZp) (where δij is the
matrix whose entries are all zero except the (i, j)-entry which is 1).
This is a really unfortunate choice since the authors themselves showed in [5],
remark 1, that the discrete log problem is easy for matrices of this special form
which means that the secret key a can be calculated easily in this case. In fact,
the value g = (x, y) ∈ G has to be chosen such that the discrete log problem is
hard in the subgroup generated by xθ1(y).

In the following sections we will concentrate on MOR using SL(2, ZZp), but
with the techniques presented in this section the described attacks can easily be
applied to attack MOR using SL(2, ZZp) ×θ ZZp also.

3.2 Ciphertext-Only Attacks with Known Centralizer Elements

In this section we present two ciphertext-only attacks on MOR using GL(2, ZZp)
and MOR using SL(2, ZZp).
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Our attacker is given a ciphertext M̂ = Inn(Xk)(M) = XkMX−k. We assume
that the attacker knows X or any element from the centralizer of X (Since the
CP is easy in SL(2, ZZp), X can be computed given Inn(X) = {Inn(X)(γi)}
which is part of the receiver’s public key.).

In our first attack we use the centralizer element X̂ ∈ Z(X) to transform the
given ciphertext M̂ to a ciphertext X̂ · M̂ = Xk(X̂ · M)X−k of X̂ · M . Using
the invariance of the trace and the determinant under conjugation we get three
equations in the components of M which enables us to derive the structure of
the encrypted plaintext M . In particular, if one component of M is known, the
whole plaintext matrix M can be reconstructed.

In the second attack the centralizer element X̂ ∈ Z(X) is used to calculate
Inn(M̂)(X̂) = (Xk · M)X̂(Xk · M)−1. Since the conjugacy problem is easy in
GL(2, ZZp) one gets information about the structure of Xk ·M .

This simple lemma will be very useful in the following sections:

Lemma 1. Let M =
(
a b
c d

)
, X =

(
x y
w z

)
and M̂ = XMX−1 =

(
â b̂

ĉ d̂

)
be in

GL(2, ZZp). Then tr(M) = tr(M̂).

Proof. Since X−1 =
(

z
detX

−y
detX−w

detX
x

detX

)
∈ GL(2, ZZp) we get â = 1

detX (axz + cyz −
bxw − dyw) and d̂ = 1

detX (bwx + dzx − awy − czy). It follows that tr(M̄ ) =
â + d̂ = 1

detX ((a + d)(xz − wy)) = 1
detX ((a + d)(detX)) = a + d = tr(M). ��

Attack 1:
Using the notation of the lemma we know that tr(M̂ ) = tr(M) = a + d. Let

X̂ =
(

x̂ ŷ
ŵ ẑ

)
∈ Z(X). We now compute M̄ = X̂ · M̂ = Xk(X̂ ·M)X−k and get

tr(M̄ ) = tr(X̂ · M) = ax̂ + cŷ + bŵ + dẑ, i.e. a second linear equation for the
desired values a, b, c, d.

Unfortunately, this trick only works once. If we do the same trick again with

another centralizer element X̄ =
(

x̄ ȳ
w̄ z̄

)
∈ Z(X) and set M̃ = X̄ · M̂ = Xk(X̄ ·

M)X−k, we get a system of three linear equations:

a + d = tr(M̂)
ŵ · b + ŷ · c + (ẑ − x̂) · d = tr(M̄ ) − x̂ · tr(M̂ )
w̄ · b + ȳ · c + (z̄ − x̄) · d = tr(M̃ ) − x̄ · tr(M̂ )

We further know that x̂ = ẑ + a−d
c ŵ, ŷ = b

c ŵ, x̄ = z̄ + a−d
c w̄ and ȳ = b

c w̄ (see
appendix A.1). Setting k := ŵ

w̄ it follows that k · ȳ = ŷ and k · (z̄ − x̄) = ẑ − x̂,
i.e. our third equation differs from the second equation only by a constant factor.
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The two linear equations allow us to express a and b in terms of c and d. If we
further use that det(M̂) = det(M) = ad− bc we can also express c in terms of d

and know that the searched plaintext has the structure M =
(
f1(d) f2(d)
f3(d) d

)
where the functions f1, f2 and f3 are known.

Attack 2:
Let again M̂ = Inn(Xk)(M) = XkMX−k. The aim of the second attack is to
calculate the value Xk ·M .

Let X̂ =
(
x̂ ŷ

ĉ d̂

)
∈ Z(X) and X̄ =

(
x̄ ȳ
c̄ d̄

)
= M̂X̂M̂−1 = (Xk·M)X̂(Xk·M)−1.

By solving the conjugacy problem for the instance (X̂, X̄) one gets that Xk ·M =(
ŵ
w̄ t + x̂−z̄

w̄ s ŷ
w̄ s + ẑ−z̄

w̄ t
s t

)
for some s, t ∈ ZZp.

Unfortunately, performing this attack multiple times does not lead to more data
about Xk ·M (see appendix A.2).

If X ∈ SL(2, ZZp), we know that det(XkM) = det(M) and can further express s
in terms of t.

4 Attacks when Exponents are Used Multiple Times

To make MOR using SL(2, ZZp)×θ ZZp more efficient the authors propose to fix
the encryption exponent b and use it for multiple encryptions.
The problem with that approach is that given one plaintext-ciphertext pair an
attacker is able to calculate (xθ1(y))ab which can be used to decrypt all cipher-
texts that were encrypted using the same b1.

In [5] remark 4 the authors therefore propose to choose ZZp as message space
and use some randomised padding technique:

Let m ∈ ZZp with m �= 0 be the plaintext message. Choose random r1, r2 ∈R

ZZp and encrypt M =
(
m r1
r2

1+r1r2
m

)
∈ SL(2, ZZp) with the MOR cryptosystem.

In this section we will present two attacks that show that this padding tech-
nique is highly insecure. Both attacks are known plaintext attacks, i.e. the at-
tacker knows pairs of ciphertext and corresponding plaintext. We show that an
attacker that knows one resp. two plaintext-ciphertext pairs is able to decrypt
all ciphertexts that are encrypted using the same encryption exponent b.

Our attacks work in SL(2, ZZp) as well as in GL(2, ZZp). Since GL(2, ZZp) is
the more general case, we concentrate on GL(2, ZZp) (though the MOR system
was origionally presented using SL(2, ZZp)). In our case, if a plaintext mes-

sage m ∈ ZZp with m �= 0 is given, we encrypt M =
(
m r1
r2 r3

)
∈ GL(2, ZZp),

1 If no element from the centralizer of (xθ1(y)) is known, two plaintext-ciphertext
pairs are needed (see also appendix A.2).
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where r1, r2, r3 ∈R ZZp with the MOR cryptosystem. Since det(M) is known,
the value r3 can be expressed as r3 = det(M)+r1r2

m .
Let M̄ = XMX−1 be a MOR encryption of a message m ∈ ZZp. This

equation can also be written as X−1M̄X = M . If the plaintext m is known the
attacker gets one equation over ZZp on the unknown entries of X per known
plaintext-ciphertext-pair. In our attacks we further use the invariance of trace
and determinant under conjugation and the homomorphic property of mapping
Inn(g), i.e. multiplying two ciphertexts Inn(g)(m1) and Inn(g)(m2) results in
a ciphertext Inn(g)(m1 ·m2) of m1 ·m2 (this property only holds if the exponent b
is fixed for multiple encryption).

In the first attack we assume that the attacker knows an element X ∈
Z(xθ1(y)), i.e. we are in the situation of section 3.2. In fact our attack is very
similar to section 3.2 attack 1 which enables an attacker to determine the whole
plaintext message if only one component is known. We will see that one plaintext-
ciphertext pair is sufficient to solve the special conjugacy problem in GL(2, ZZp),
i.e. to find a value X̄ ∈ GL(2, ZZp) with Inn(X̄) = Inn((xθ1(y))ab).

In the second attack we assume that the attacker does not know any ele-
ments from the centralizer of xθ1(y). This might be the case when the mapping
Inn(g) is represented in a different way. We show that in this case two plaintext-
ciphertext pairs are sufficient to decrypt all future ciphertexts.
This attack also demonstrates that the special conjugacy problem might also
be easy in GL(2, ZZp) if pairs (Ai, Inn(Ai)) are given, but only parts of the
matrices Ai are known.

4.1 Attack with Known Centralizer

The attacker is given a message m ∈ ZZp and the corresponding ciphertext

C = (C1, 0) = (x, y)ab(M, 0)(x, y)−ab = ((xθ1(y))abM(xθ1(y))−ab, 0)

where M =
(
m r
s t

)
∈ GL(2, ZZp) with r, s, t ∈R ZZp. We further assume that

the attacker knows an element X =
(

x y
w z

)
∈ Z(xθ1(y)) with X /∈ Z(M).

Since tr(M) = tr(C1) and det(M) = det(C1) the attacker can compute t
and r · s. We now use the trick of section 3.2 attack 1: C1 ·X = (xθ1(y))ab(M ·
X)(xθ1(y))−ab and tr(C1 ·X) = tr(M ·X) = mx+rw+sy+ tz. This is sufficient
to calculate r and s. 2

With (M,C1) and (X · M,X · C1) we get two instances of the conjugacy
problem in GL(2, ZZp). From X /∈ Z(M) we get that M /∈ Z(X · M). Thus,

2 The matrix M can also be completely reconstructed if the semi-direct prod-
uct group is used, i.e. if C = (C1, m̄) = (x, y)ab(M, m̄)(x, y)−ab =
((xθ1(y))

ab(Mθ1(m̄))(xθ1(y))
−abθ1(−m̄), m̄). Since θ1(m̄) and m are known, the

evaluation of tr(C1θ1(m̄)) and tr(XC1θ1(m̄)) results in two linear equations in the
variables r, s and t. We further know that det(M) = det(C1) which is sufficient to
derive matrix M .
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the two instances (M,C1) and (X ·M,X · C1) are sufficient to solve the special
conjugacy problem in GL(2, ZZp), i.e. to find a matrix X̄ ∈ GL(2, ZZp) with
Inn(xθ1(y)) = Inn(X̄) (see appendix A.2).
This value X̄ can be used to decrypt all following ciphertexts that where en-
crypted using the same encryption exponent b.

4.2 Attack without Centralizer Elements

We now assume that the attacker is given two plaintext messages m1,m2 ∈ ZZp

and Ā = XAX−1 =
(
ā b̄
c̄ d̄

)
and B̄ = XBX−1 =

(
â b̂

ĉ d̂

)
where A =

(
m1 r1
r2 r3

)

and B =
(
m2 s1

s2 s3

)
and r1, r2, r3, s1, s2, s3 ∈R ZZp

3.

From the traces of Ā and B̄ the attacker gets tr(Ā) = tr(A) = m1 + r3
and tr(B̄) = tr(B) = m2 + s3. Using the plaintexts m1 and m2 he is able to
calculate r3 and s3. Evaluating the determinant det(Ā) = det(A) = m1 ·r3−r1 ·r2
the attacker is further able to compute r1 · r2 resp. s1 · s2.

We now use the homomorphic property of the conjugation map. Since
tr(ĀB̄) = tr(XABX−1) = tr(AB) = m1m2 + r1s2 + r2s1 + r3s3, we get r1s2 +
r2s1.

By solving the quadratic equation

x2 − (r1s2 + r2s1)x + s1s2r1r2 = 0

we get the two values r1 · s2 and r2 · s1 (we have to guess which of the two
solutions equals r1 · s2 and which equals r2 · s1).

We now take a closer look at equation ĀX = XA which is equivalent to
Ā = XAX−1 and describe it as a system of linear equations:

(m1 − ā)x + r2y − b̄w = 0
r1x + (r3 − ā)y − b̄z = 0
−c̄x + (m1 − d̄)w + r2z = 0

− c̄y + r1w + (r3 − d̄)z = 0
By adding the linear equations resulting from B̄X = XB and simplifying

the system by removing redundant equations we get:

x + s2(d̄−m1)−r2(d̂−m2)

c̄(d̂−m2)−ĉ(d̄−m1)
z = 0

y + ( d̄−r3
c̄ + ĉr1r2−c̄r1s2

c̄(c̄(d̂−m2)−ĉ(d̄−m1))
)z = 0

w + ĉr2−c̄s2

c̄(d̂−m2)−ĉ(d̄−m1)
z = 0

3 If the two MOR ciphertexts C(m1) = (Ā, 0) = ((xθ1(y))
abA(xθ1(y))

−ab, 0) and
C(m2) = (B̄, 0) = ((xθ1(y))

abB(xθ1(y))
−ab, 0) are given, we get this form by setting

X = (xθ1(y))
ab.



184 Christian Tobias

Since we know the values r1·r2 and r1·s2, we are able to express s2 as s2 = k·r2
for a k ∈ ZZp. Thus we get x = c1r2z, y = c2z and w = c3r2z where c1 =
(d̂−m2)−k(d̄−m1)

c̄(d̂−m2)−ĉ(d̄−m1)
, c2 = r3−d̄

c̄ + c̄r1s2−ĉr1r2

c̄(c̄(d̂−m2)−ĉ(d̄−m1))
and c3 = kc̄+ĉ

c̄(d̂−m2)−ĉ(d̄−m1)
.

Since ā = 1
detX (m1xz+r2yz−r1xw−r3yw) = 1

detX r2z
2(m1c1+c2−r1r2c1c3−

r3c2c3) we get r2z
2 = ā·detX

m1c1+c2−r1r2c1c3−r3c2c3
=: c4 · detX .

The values c1, c2, c3 and c4 are all that is necessary to decrypt arbitrary
ciphertexts that are encrypted using the same matrix X . Assume that we are

given a matrix XCX−1 = C̄ =
(
ã b̃

c̃ d̃

)
where C =

(
m3 t1
t2 t3

)
is completely

unknown. We know that

m3 =
1

detX
(ãxz − c̃xy + b̃wz − d̃xy)

=
1

detX
r2z

2(ãc1 − c̃c1c2 + b̃c3 − d̃c2c3)

= c4(ãc1 − c̃c1c2 + b̃c3 − d̃c2c3)

and get the desired cleartext message by using the components of the ciphertext
in combination with the precomputed constants c1, c2, c3 and c4. In a similar
way all other components of C can be calculated.

5 Conclusion

In section 3.1 we showed that xθ1(y) and (xθ1(y))a can be extracted from
Inn((x, y)) and Inn((x, y)a). Hence, for the security of MOR using G =
SL(2, ZZp) ×θZZp it is necessary to choose (x, y) ∈ G such that the discrete
log problem is hard in the subgroup generated by (xθ1(y)). In particular, (x, y)
must not be chosen such that xθ1(y) = A(I + cδ12)A−1 where c ∈ ZZp and
A ∈ SL(2, ZZp) as proposed in [5].

With the ciphertext-only attacks from section 3.2 it is possible to deter-
mine the whole plaintext message if only one component is known. This attacks
works in SL(2, ZZp) as well as in SL(2, ZZp) ×θ ZZp. To prevent this attack we
recommend to use padding. Using the padding technique from [5] remark 4 (see
section 4) and choosing the encryption exponent b randomly for every ciphertext
is a good countermeasure against the presented attack.

The most critical point we discussed is fixing the encryption exponent b
and using it for multiple encryptions. Without padding the resulting system is
vulnerable to known plaintext attacks. If one plaintext-ciphertext pair is known
all following ciphertexts can be decrypted. In section 4 we showed that the
padding technique from [5] does not make the system more secure. It is an open
question whether the MOR system (with fixed exponent) can be made secure
by using an appropriate padding technique.

If MOR is used with SL(2, ZZp)×θZZp, an appropriate padding technique and
the encryption exponent is chosen uniformly and independently for every plain-
text to be encrypted, the resulting system seems to offer a reasonable amount
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of security (though there still is no formal proof). On the other hand calculat-
ing Inn(gb) and Inn(gab) from Inn(g) and Inn(ga) which then is necessary for
every single encryption process is computationally very expensive which makes
the system less efficient than RSA and ElGamal.
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A General Results for Matrix Groups

A.1 Computing Centralizers in GL(2, ZZp)

Let A =
(
a b
c d

)
∈ GL(2, ZZp) with c �= 0. Then centralizer elements C ∈ Z(A)

are of the form

C =
(
z + a−d

c w b
cw

w z

)
=

(
a−d

c w b
cw

w 0

)
+ z ·

(
1 0
0 1

)
for arbitrary w, z ∈ ZZp.

A.2 The Conjugacy Problem in GL(2, ZZp) and SL(2, ZZp)

Let A =
(
a b
c d

)
and Â =

(
â b̂

ĉ d̂

)
be a given instance of the conjugacy problem,

i.e. a matrix X =
(

x y
w z

)
satisfying Â = X · A ·X−1 has to be found.

If we write Â = X · A · X−1 as Â · X = X · A, we get the following system of
linear equations:



186 Christian Tobias

(a− â) · x + c · y − b̂ · w = 0
b · x + (d− â) · y − b̂ · z = 0
−ĉ · x + (a− d̂) · w + c · z = 0

− ĉ · y + b · w + (d− d̂) · z = 0

By removing redundant equations one gets:

x + ( d̂−a
ĉ ) · w − c

ĉ · z = 0
y − b

ĉ · w + d̂−d
ĉ · z = 0

(Note that we only considered the case that ĉ �= 0. The case ĉ = 0 is analogue.)

That means that the matrices that solve the conjugacy problem are of the form

X̄ =
(

c
ĉ · z + a−d̂

ĉ · w b
ĉ · w + d−d̂

ĉ · z
w z

)
where w, z ∈ ZZp.

In SL(2, ZZp) we further know that det(X̄) = 1 and can replace w by a term
depending only on z.

Let G ∈ {GL(2, ZZp), SL(2, ZZp)}. Given only one instance of the conjugacy
problem in G, i.e. M, M̄ = XMX−1 ∈ G, the solution set for the CP is L =
X · Z(M).

If more than one instance is given, i.e. M1,M2, M̄1 = XM1X
−1, M̄2 =

XM2X
−1 ∈ G that does not necessarily imply that the solution set can further be

narrowed. If M1 ∈ Z(M2) the solution set is still L = X ·Z(M). If M1 /∈ Z(M2)
the solution set is L = X · Z(G).

Since Inn(g) = Inn(g · z) for z ∈ Z(G) and for all g ∈ G we are able to solve
the special conjugacy problem in the latter case.

Remark: If (M1, M̄1 = XM1X
−1) with M1 /∈ Z(X) is an instance of the

conjugacy problem and an element X̂ ∈ Z(X) with X̂ /∈ Z(M1) is known,
we can easily construct a second instance (M2, M̄2) with M1 /∈ Z(M2) of the
conjugacy problem by setting M2 = X̂M1 and M̄2 = X̂M̄1 = X(X̂M1)X−1.
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