
Exceptional Procedure Attack

on Elliptic Curve Cryptosystems

Tetsuya Izu1 and Tsuyoshi Takagi2

1 FUJITSU LABORATORIES Ltd.
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

izu@flab.fujitsu.co.jp
2 Technische Universität Darmstadt, Fachbereich Informatik

Alexanderstr.10, D-64283 Darmstadt, Germany
ttakagi@cdc.informatik.tu-darmstadt.de

Abstract. The scalar multiplication of elliptic curve based cryptosys-
tems (ECC) is computed by repeatedly calling the addition formula that
calculates the elliptic curve addition of two points. The addition for-
mula involves several exceptional procedures so that implementers have
to carefully consider their treatments. In this paper we study the excep-
tional procedure attack, which reveals the secret scalar using the error
arisen from the exceptional procedures. Recently new forms of elliptic
curves and addition formulas for ECC have been proposed, namely the
Montgomery form, the Jacobi form, the Hessian form, and the Brier-Joye
addition formula. They aim at improving security or efficiency of the un-
derlying scalar multiplications. We analyze the effectiveness of the excep-
tional procedure attack to some addition formulas. We conclude that the
exceptional procedure attack is infeasible against the curves whose order
are prime, i.e., the recommended curves by several standards. However,
the exceptional procedure attack on the Brier-Joye addition formula is
feasible, because it yields non-standard exceptional points. We propose
an attack that reveals a few bits of the secret scalar, provided that this
multiplier is constant and fixed. By the experiment over the standard el-
liptic curves, we have found many non-standard exceptional points even
though the standard addition formula over the curves has no exceptional
point. When a new addition formula is developed, we should be cautious
about the proposed attack.

Keywords: Elliptic curve cryptosystem (ECC), scalar multiplication,
exceptional procedure attack, exceptional point, side channel attack

1 Introduction

The scalar multiplication of the elliptic curve cryptosystem (ECC) is imple-
mented using the addition formula assembled by arithmetics of a definition field.
The addition formula involves exceptional procedures that cause an error (0−1

of the definition field) at the end of the scalar multiplication. Implementers
should carefully deal with the exceptional procedures. Recently new forms of el-
liptic curves and addition formulas have been proposed, namely the Montgomery

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 224–239, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 225

form [OKS00], the Jacobi form [LS01, BiJ02], the Hessian form [JQ01, Sma01],
and the Brier-Joye addition formula [BrJ02]. These new curves and formulas aim
at improving security or efficiency of their scalar multiplications.

In this paper we study a possible attack using the error arisen from the
exceptional procedures of the addition formula, called the exceptional procedure
attack. Two points are called the exceptional points if they cause the exceptional
procedure. The goal of the attack is to reveal the secret key d. The attack
tries to produce the exceptional point of the elliptic curve E during the scalar
multiplication by manipulating the base point P ∈ E to the appropriate point
P ′ ∈ E. If an error occurs in the scalar multiplication d ∗ P ′ ∈ E, the attack
can know a few significant bits of d depending on the underlying addition chain.
A basic principal of the proposed attack is different from that of the fault based
attacks [BDL97, BMM00] or the small subgroup attack [LMQSV98]. The fault
attacks usually analyze the scalar multiplication d ∗ P ∗ ∈ E∗ with the point P ∗

over the different curve E∗, which need a physical fault in order to generate
a failure point P ∗. The small subgroup attack performs a calculation of d∗P over
the subgroup Tor(E) ⊂ E with small order, and the order of the elliptic curve
must be divisible by a small integer. The exceptional procedure attack essentially
requires neither the physical fault nor the curves with the small subgroup.

We first discuss the exceptional procedure attack against the standard ad-
dition formula. We observe necessary and sufficient conditions that two points
are exceptional points, that is P1 or P2 is contained in the torsion subgroups
of the underlying group. When the order of the elliptic curve is divisible by
a small integer, the curve has several exceptional points. In other words, the
curves whose order are prime are secure against the proposed attack, namely
the recommended curves in several standards [ANSI, IEEE, SEC].

Next we analyze the exceptional procedure attack against the non-standard
addition formula proposed by Brier-Joye [BrJ02]. This addition formula is de-
signed for enhancing security of the scalar multiplication, namely resistant
against the side channel attack [KJJ99]. Their exceptional points are two
points P1 = (x1, y1), P2 = (x2, y2), which only satisfy y1 + y2 = 0. Some of
these points are non-trivial exceptional points. Especially, a point P is called
the m-th collision point if two points mP,P are exceptional points. We show
necessary and sufficient conditions that a point P is the m-th collision point. We
demonstrate that there exist many m-th collision points over the recommended
curves by the international standards [ANSI, IEEE, SEC]. Moreover, we analyze
a possible attack against the plain ElGamal cryptosystem using the collision
points.

The attack proposed in this paper is independent from the characteristic of
the definition field. However, just for a simplicity, we only discuss prime field
cases in the following.



226 Tetsuya Izu and Tsuyoshi Takagi

2 Elliptic Curves

In this section we briefly review basic properties of elliptic curves. The standard
addition formula and its variants over different coordinate systems are described.
We then explain how the scalar multiplication provides an error.

2.1 Standard Addition Formula

Let Fp be a finite field with p elements, where p > 3 is a prime. Let E be an
elliptic curve over Fp defined by Weierstrass-form equation

E : y2 = x3 + a x+ b (a, b ∈ Fp, 4a3 + 27b2 �= 0). (1)

A point of E is uniquely represented as (x, y) that is the pair in the basic
field Fp. It is called the affine coordinate representation. A set of all points on
curve E, including the point of infinity O, is denoted by E(Fp). This set has
a commutative additive group structure with the neutral element O. We denote
by + the addition of the E(Fp). Especially we have P+O = P and P+(−P ) = O,
where −P = (x,−y) for point P = (x, y) ∈ E(Fp) \ {O}.

In order to algorithmically describe the addition rule arisen from the addition
group E(Fp), we employ the arithmetic of the definition field Fp, namely addi-
tions, subtractions, multiplications, and inversions. The addition rule is called
the addition formula.

We explain the standard addition formula in the following. Let P1 =
(x1, y1), P2 = (x2, y2) be points on E(Fp) that are different fromO. The standard
addition formula calculates the point P3 = (x3, y3) of the addition P3 = P1+P2.
The standard addition formula is as follows:

{
x3 = λ2 − x1 − x2,
y3 = −λx3 − µ,

where

(λ, µ) =




(
y2−y1
x2−x1

, y1x2−y2x1
x2−x1

)
, x1 �= x2(

3x2
1+a

2y1
,
−x3

1+a x1+2b
2y1

)
, (x1 = x2) ∧ (P2 �= −P1)

We remark that there are two formulas for (λ, µ) based on the condition of
two points P1, P2. The first one is used for the case P1 �= P2 and it is called
ECADD. The second one is used for the case P1 = P2 and is called ECDBL.
Note that the standard addition formula does not support the points P1, P2

with P1 + P2 = O, P1 = O, P2 = O for ECADD and P = (x, 0) for ECDBL.
It is called the exceptional procedure of the standard addition formula, because
they require exceptional treatment in the formula.

2.2 Coordinate System

The standard addition formula described in the previous section is designed
for the affine representation of points. It possesses one inversion of the definition



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 227

field, which is relatively expensive in most computing environments. Fortunately
the elliptic curve has different coordinate systems which do not need inversions.
The projective coordinate and the Jacobian coordinate are examples [CMO98].
Using these coordinates we can avoid computing inversions in Fp. In the follow-
ing we represent the standard addition formula using the projective coordinate
and the Jacobian coordinate, which are widely employed in elliptic curve cryp-
tosystems.

In the projective coordinate, a point is represented by a tuple (X : Y : Z),
where two points (X : Y : Z) and (rX : rY : rZ) (r ∈ F

∗
p) are identified as the

same point. The curve equation is given by substituting x = X/Z, y = Y/Z into
(1). The identity point O is represented by (0 : 1 : 0); this is the only point with
its Z-coordinate equal to 0. Setting x = X/Z, y = Y/Z in the affine equation,
we obtain the projective Weierstrass equation EP : Y 2Z = X3 + a XZ2 + bZ3.
The inverse of P = (X : Y : Z) is −P = (X : −Y : Z). Let P1 = (X1 : Y1 :
Z1), P2 = (X2 : Y2 : Z2) and P1 + P2 = P3 = (X3 : Y3 : Z3), then the addition
formulas are as follows:

ECADD in Projective Coordinate (P1 �= ±P2) : X3 = vA, Y3 =
u(v2X1Z2 − A) − v3Y1Z2, Z3 = v3Z1Z2 with u = Y2Z1 − Y1Z2, v =
X2Z1 −X1Z2, A = u2Z1Z2 − v3 − 2v2X1Z2

ECDBL in Projective Coordinate (P1 = P2) : X3 = 2hs, Y3 =
w(4B − h) − 8Y 2

1 s
2, Z3 = 8s3 with w = aZ2

1 + 3X2
1 , s = Y1Z1, B =

X1Y1s, h = w2 − 8B

If Z1 = 0, then Z3 = 0 for both ECADD and ECDBL. Thus the point P =
(X : Y : 0) is the exceptional points of the standard addition formula using the
projective coordinate.

The Jacobian coordinate system offers a faster computation of the addition
formula. In this coordinate, a point on the curve is represented as a tuple (X :
Y : Z). Two points (X : Y : Z) and (r2X : r3Y : rZ) (r ∈ F

∗
p) are identified as

the same point. The identity pointO is represented by (0 : 1 : 0); this is again the
only point with its Z-coordinate equal to 0. Setting x = X/Z2, y = Y/Z3 in the
affine equation, we obtain the Jacobian equation EJ : Y 2 = X3 + a XZ4 + bZ6.
The inverse of P = (X : Y : Z) is −P = (X : −Y : Z). Let P1 = (X1 : Y1 :
Z1), P2 = (X2 : Y2 : Z2) and P1 + P2 = P3 = (X3 : Y3 : Z3), then the addition
formulas are as follows:

ECADD in Jacobian Coordinate (P1 �= ±P2) : X3 = −H3 −
2U1H

2 + r2, Y3 = −S1H
3 + r(U1H

2 − X3), Z3 = Z1Z2H with U1 =
X1Z

2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, r = S2 − S1

ECDBL in Jacobian Coordinate (P1 = P2) : X3 = T, Y3 =
−8Y 4

1 +M(S−T ), Z3 = 2Y1Z1 with S = 4X1Y
2
1 , M = 3X2

1 +aZ4
1 , T =

−2S +M2

As we discuss for the projective coordinate, if Z1 = 0, then Z3 = 0 for both
ECDBL and ECDBL. Thus the point P1 = (X : Y : 0) is the exceptional points
of the standard addition formula using the Jacobian coordinate.



228 Tetsuya Izu and Tsuyoshi Takagi

2.3 Scalar Multiplication

Let d be an n-bit integer and P be a point on the elliptic curve E(Fp). The
scalar multiplication is to compute the point d ∗ P = P + P + · · · + P (d −
1 additions). This is the dominant computation of all ECC algorithms, including
the encryption/decryption and the signature generation/verification.

The standard algorithm for computing the scalar multiplication is the binary
method. Let d = d[0]20 + d[1]21 + ...+ d[n− 1]2n−1 be the binary representation
of the scalar d, where d[n − 1] is the most significant bit of d and d[n − 1] = 1.
Then the binary addition chain computes the scalar multiplication d∗P for given
d[0], d[1], ..., d[n−1] and point P as follows. We first assign T = P . For i = n−2
down to 0 we compute T = ECDBL(T ) and T = ECADD(T, P ) if d[i] = 1.
Finally T is returned as the value of the scalar multiplication d ∗ P .

With the projective coordinate, a scalar multiplication d ∗ P = (xd, yd) of
P = (x, y) is computed as follows:

1. Set (X : Y : Z) = (x : y : 1).
2. Compute (Xd : Yd : Zd) = d ∗ (X : Y : Z).
3. Convert (Xd : Yd : Zd) to (xd, yd) = (Xd/Zd, Yd/Zd).

Note that if Zd = 0 in Step 3, the conversion fails. Similarly, the conversion fails
using the Jacobian coordinate if the Z-coordinate is zero in Step 3. Once the Z-
coordinate of the projective (or Jacobian) coordinate becomes zero during the
scalar multiplication, the error will be occurred in Step 3. The error is usually
returned as the system error and we can observe that the exceptional procedure
of the addition formula has caused during the scalar multiplication.

3 Exceptional Procedure Attack

In this section, we propose the exceptional procedure attack by using the excep-
tional procedure in the addition formula and we analyze its effectiveness for the
standard addition formula. This section aims at proposing the general idea of the
exceptional procedure attack using the standard addition formula. The analysis
of this attack against the other addition formulas (or the addition formula for
hyper-elliptic curves) strongly depend on their explicit formula. Details of the
analysis for each addition formula must be independently considered. Indeed we
deeply analyze the Brier-Joye addition formula in the next section.

3.1 Basic Idea

Let P be a base point of an elliptic curve E and d be a secret scalar. The
exceptional procedure attack tries to reveal (part of) the secret key d. An idea
of the attack is to produce the exceptional point over E, which causes an error
(0−1 ∈ Fp) at the end of the scalar multiplication. The secret key d is guessed
from the error of the scalar multiplication d ∗ Q for different base points Q of
the curve E. For example the replacement can be accomplished by the chosen



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 229

ciphertext attack. The attacker uses the scalar multiplication d ∗ Q for chosen
point Q as a black box.

Base Point Q ∈ E −→ Black Box of computing d ∗ Q ∈ E −→ Error

In order to achieve this scenario, we assume the following two assumptions
for our attack setting.

1. (Base Point Replacement) In the beginning of the scalar multiplication d ∗
P ∈ E, the attacker can replace the base point P to another point Q of the
elliptic curve E.

2. (Error Detection) The attacker can detect the error caused by the final in-
version (0−1 ∈ Fp) of the scalar multiplication.

Instead of outputting the error (0−1 ∈ Fp), one can return 0 (or some other
value) for Z-coordinate. However, one can still detect the error, because the
returned point is not a correct value of the scalar multiplication d ∗Q ∈ E and
thus it causes an error of the cryptographic primitive in the decryption process.

One of the main theme of our attack is how to produce these exceptional
points. We first investigate the occurrence criteria of exceptional points.

3.2 Exceptional Procedure in Standard Formula

We investigate conditions with which the standard formula has the exceptional
procedures, namely the Z-coordinate of the addition P1 + P2 becomes zero. We
consider the standard formula using the projective coordinate and the Jacobian
coordinate.

First, we look at the standard formula using the projective coordinate.
Let P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) with P1 �= P2. Then, from
the standard formula using the projective coordinate, the Z-coordinate of the
addition P3 = (X3 : Y3 : Z3) = P1 + P2 is computed by Z3 = v3Z1Z2 for
v = X2Z1 − X1Z2. If Z3 = 0, we have three cases, (1) v = 0, (2) Z1 = 0, or
(3) Z2 = 0. Suppose v = X2Z1 −X1Z2 = 0. If (X2 = 0) ∧ (X1 = 0), P1 = ±P2.
If (X2 = 0) ∧ (Z2 = 0), P2 = O. If (Z1 = 0) ∧ (X1 = 0), P1 = O. If (Z1 =
0) ∧ (Z2 = 0), P1 = P2 = O. Suppose v �= 0. Then we have P1 = O (Z1 = 0)
or P2 = O (Z2 = 0). These observations are summarized as follows: Z3 = 0
iff P1 = ±P2 or (at least) one of P1, P2 is O. These points coincide the excep-
tional points in the standard addition formula except P1 = P2. If P1 = P2, we use
the formula ECDBL. The Z-coordinate of ECDBL(P1) becomes zero iff Y1 = 0
or Z1 = 0 holds. We can compute all points P with Y1 = 0 using the definition
equation x3 +ax+ b = 0. This equation has solutions over Fp iff the order of the
curve is divisible by 2.

Next we consider the Jacobian case. Let Z3 be the Z-coordinate of the ad-
dition P1 + P2 using the Jacobian coordinate, where P1 = (X1 : Y1 : Z1), P2 =
(X2 : Y2 : Z2) with P1 �= P2. We have Z3 = Z1Z2H , where H = X2Z

2
1 −X1Z

2
2 .

If Z3 = 0, we have three cases, (1) H = 0, (2) Z1 = 0, or (3) Z2 = 0. By a similar



230 Tetsuya Izu and Tsuyoshi Takagi

calculation, we obtain the conditions of the exceptional points which are same
as the projective case.

Thus, we have the following theorem.

Theorem 1. The standard addition formula using the projective (or Jacobian)
coordinate for computing P1 + P2 returns the zero Z-coordinate if and only if
one of the following condition satisfies: (1)P1 + P2 = O, (2)P1 = O, (3)P2 = O
for ECADD(P1, P2), or P has order 2 for ECDBL(P ).

3.3 Exceptional Procedure Attack against Standard Formula

We explain the exceptional procedure attack based on the exceptional procedure.
For the sake of simplicity, we assume that the scalar multiplication is com-

puted by the binary method in section 2.3. The scalar multiplication produces
the sequence a0Q, a1Q, a2Q, . . . , anQ for the given base point Q, which are gen-
erated by ECDBL and ECADD. a0 is always 2 because of a0Q = ECDBL(Q).
Then a1 = 3 holds if and only if the second most significant bit d[n− 2] is one.
If the curve has the point Q with order 3, we can break the second significant
bit d[n − 2] because of the error 3Q = O. Generally the information ai(i > 3)
are able to provide the lower bits d[n− 3], d[n− 4], and so on.

From Theorem 1, in order to cause the error in the sequence, the attacker has
to find the pointQ that satisfies one of the following condition (I) ECADD(Q, d1∗
Q) = O for some integers d1, (II) d2∗Q = O for some integers d2, or (III) ECDBL
(Q) = O. These cases are equivalent to the problems that find the (d1 + 1)-th
division points, d2-th division points, and the 2-nd division points, respectively.
The a-th division points are defined by the points Q that satisfies a∗Q = O. It is
well-known that the a-th division points exist over the elliptic curve, if and only
if #E is a multiple of a, where #E is the order of the elliptic curve E [Sil86]. The
points with small order can be efficiently generated by the division polynomial.
If the order of the curve is divisible by small integers, the curve involves the
exceptional points.

The elliptic curves over prime fields recommended in the several standards
has prime order [ANSI, IEEE, SEC]. In these cases there are no non-trivial
division points and the exceptional point attack against the standard addition
formula is not feasible. However, in the next section we show the exceptional
procedure attack over the standard curves is effective against a non-standard
addition formula from [BrJ02].

3.4 Relation to Other Attacks

Here we examine differences of our attack to other similar attacks.
The Fault Attack (FA) or the Differential Fault Attack (DFA)

[BDL97], [BMM00], which is sophisticated from FA, are very similar to our
attack. The attack model and the aim are almost same. FA/DFA use special
points which are not on the curve. We show a simple example. The attacker
changes the curve E and the base point P ∈ E to E∗ and Q∗ ∈ E∗ where the



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 231

order of E∗ is smooth. The result of the scalar multiplication d∗Q∗ is contained
in curve E∗. Thus the attacker can easily recover the secret scalar d by the
Pohlig-Hellman algorithm. However, these points are easily detected by check-
ing whether the base point satisfies the curve equation of E or not. On the other
hand, our attack uses points on the original curve. The checking process cannot
reject the manipulated points. Another difference is the means of the attack.
FA/DFA enforce bit errors from outside of the device, while our attack is able
to be achieved by a chosen ciphertext attack and we don’t need such physical
tools.

Other similar attack is the Subgroup Attack (SA) [LMQSV98], which uses
a special point on the curve whose order is small. For example, if we use the
base point P with the small order h > 1, the possible values of the scalar
multiplication d ∗ P are at most h. If the attacker can change the base point of
the Diffie-Hellman protocol to the smooth order point, then the attack can guess
the shared key by the brute-force attack with the size h. SA succeeds only when
the order of the curve is divisible by small integer and, if the order is prime, SA
has no effectiveness. When we use the standard addition formula, our attack is
successful only when the curve has points of order 2. From this point, our attack
seems weaker than SA. However, as we will discuss in the next section, our attack
is successful for Brier-Joye’s addition formula even if the order is prime, while
SA has no effectiveness on this curve. Thus our attack is different property from
that of SA.

4 Brier-Joye’s Addition Formula

In this section, we investigate the security of the non-standard addition formula
proposed by Brier and Joye [BrJ02]. The addition formula is designed in order to
prevent side channel attacks [KJJ99]. It can computes both ECADD and ECDBL
using only one formula. We do not have to switch pairs (λ, µ) of the addition
formula depending on inputs. However the addition formula has non-standard
exceptional points that have not appeared in the standard addition formula.
We analyze these non-standard exceptional points and apply these points to the
exceptional procedure attack described in the previous section.

4.1 Brier-Joye’s Addition Formula

Let y(P ) denote the y-coordinate value of a point P .

Proposition 1 (Indistinguishable Addition Formula, [BrJ02]). Let E be
an elliptic curve over a finite field Fp (p > 3 a prime) defined by y2 = x3+a x+b
and let P1 = (x1, y1) P2 = (x2, y2) be points on the curve with y(P1) �= y(−P2).
Then (λ, µ) in the addition formula is given by

(λ, µ) =
(
x2

1 + x1x2 + x2
2 + a

y1 + y2
, y1 − λx1

)
.



232 Tetsuya Izu and Tsuyoshi Takagi

Brier-Joye also proposed an efficient algorithm to compute P1 + P2 in the
projective coordinate system as follows:

Proposition 2 ([BrJ02]). Let E be an elliptic curve over a finite field Fp (p >
5 a prime) defined by Y 2Z = X3 + a XZ2 + bZ3 (the projective coordinate
system) and let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) be points on the
curve. Then, P3 = (X3 : Y3 : Z3) = P1 + P2 is given by

X3 = 2FW, Y3 = R(G− 2W )− L2, Z3 = 2F 3, (2)

where U1 = X1Z2, U2 = X2Z1, T = U1 + U2, R = T 2 − U1U2 + a Z2, M =
Y1Z2 + Y2Z1, F = Z1Z2M , L =MF , G = TL and W = R2 −G.

4.2 Exceptional Procedure in Brier-Joye’s Formula

Let P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2), P3 = (X3 : Y3 : Z3) = P1 + P2

be points on the curve represented in the projective coordinate. If Z3 = 0, from
(2), we have three cases, (1) Y1Z2 + Y2Z1 = 0, (2) Z1 = 0, or (3) Z2 = 0. The
latter two cases are reduced to trivial conditions P1 = O or P2 = O. However
the first condition is worth to investigate. The condition implies y1 + y2 = 0.
If P1 + P2 = O, we have y1 + y2 = 0, but this is not interesting. Conversely,
even if y1 + y2 = 0, P1 +P2 does not always equal to O. That is, we can pick up
points P1, P2 such that x1 �= x2, y1 + y2 = 0. Once such ”exceptional points”
are added in the scalar multiplication, we have Zd = 0 and the conversion from
the projective to the affine fails. In this case, we cannot obtain the correct result
of d ∗ P = (xd, yd) and we can observe that an error has occurred in the scalar
multiplication.

4.3 Finding Collision Points

Next, we discuss the criteria y1 + y2 = 0, which are exceptional cases of the
Brier-Joye’s addition formula. We call two points P1 = (x1, y1), P2 = (x2, y2)
satisfy the DZ condition if

x1 �= x2, y1 + y2 = 0

holds, and in this case, we call P1, P2 as a collision pair. The necessary condition
for the DZ condition is x3

1+a x1+b = x3
2+a x2+b, namely x2

1+x1x2+x2
2+a = 0.

From the condition we can generate a collision pair P1, P2, which satisfies the
DZ condition. A point P is called the m-th self-collision point if P and m ∗ P
is the collision pair.

We explain how to find a collision pair (P1, P2) in the following. For a given
elliptic curve E : y2 = x3 + ax + b and a base point P1 = (x1, y1) on the
curve, determining whether P1 has collision points or not is easy. For simplicity,
we assume the order of the elliptic cure E is prime. If (P1, P2) is a collision
pair, an intuitive relation of P1 and P2 is in Fig. 1. So, P1 has collision points
if the equation x2 + x1x + (x2

1 + a) = 0 has roots in Fp and this evaluation



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 233

Fig. 1. A geometric relation of collision points

is done quite easily. However, we need a relation between P1 and P2 in the
attack, namely we have to solve the discrete logarithm P2 = u ∗ P1 on the
curve (the Collision-ECDLP). This problem might be easier than the general
discrete logarithm problem over elliptic curves because we have the constrained
condition x1 �= x2 and y1+y2 = 0. However there is no evidence of the difference
between these problems and this is an open problem.

Thus we have to change the approach. Assume we have an elliptic curve E
and an integer m. The next approach is to find a point P1 such that (P1,m∗P1)
is a collision pair. Such P1 satisfies a certain equation – the self-collision polyno-
mial, which will be defined in the next section – and finding P1 is equivalent to
solve this equation. Roughly speaking, computing the m-th self-collision polyno-
mial is not easier than computing the m-th division polynomial at the moment.
However, computing the m-th self-collision points is feasible for small m, which
are enough for our attack.

4.4 Self-Collision Polynomial

We discuss how to find them-th self-collision points for a randomly chosen curve.
We denote the m-th division polynomial as ψm = ψm(x, y). If a point P = (x, y)
is in the m-torsion group, namely m ∗ P = O, then (x, y) satisfies ψm(x, y) = 0.
Let denote P = (x, y) and m ∗ P = (xm, ym). Then, xm and ym are written as
in the following by the division polynomials [BSS99]:

(xm, ym) =
(
x− ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4yψ3
m

)
. (3)



234 Tetsuya Izu and Tsuyoshi Takagi

If P and m ∗ P is a collision pair, we have y + ym = 0 and so

Fm(x, y) = 4y2ψ3
m + ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1 = 0. (4)

On the other hand, because of y2 = y2
m and x− xm �= 0, we have

Gm(x, y) = (3x2 + a)ψ4
m − 3xψ2

mψm−1ψm+1 + ψ2
m−1ψ

2
m+1 = 0. (5)

Here the two equations Fm(x, y) and Gm(x, y) have a common polynomial divi-
sor fm(x, y). Small examples of fm(x) are in the appendix. A concrete relation
between Fm(x, y) and Gm(x, y) is given by the following proposition. The proof
is described in the appendix.

Proposition 3. Let m be an integer m ≥ 2. Then,

1. Fm(x, y) = 4yfm(x, y)ψm+1(x, y),
2. Gm(x, y) = fm(x, y)fm+1(x, y).
3. fm(x, y) = fm(x), i.e. fm ∈ Z[x]
4. fm(x) = (m2 −m+ 1)xm2−m+ lower terms of x

We call the polynomial fm(x) as the m-th self-collision polynomial. As in the
above discussion, if a point P = (x, y) is the m-th self-collision point, x = x(P )
should satisfy fm(x) = 0. However all roots of fm(x) = 0 does not lead to the
points on the curve. So what we want is roots of fm(x) = 0 such that x3+ax+ b
is quadratic residue. Thus we have the following Theorem:

Theorem 2. Let P = (x, y) be a point on an elliptic curve. Then, fm(x) = 0
iff P is the m-th self-collision point.

Corollary 1. Let E : y2 = x3 + ax + b be an elliptic curve. Then, fm(x) = 0
and x3+ax+b is square iff E has the m-th self-collision points whose x-coordinate
value is x.

We made an experiment of finding the m-the self-collision points for small
m (2 ≤ m ≤ 9) using the polynomial fm(x). We used several standard elliptic
curves in the draft of SECG [SEC]. Then we have found severalm-th self-collision
points. Therefore our proposed attack is feasible for several standard curves with
the Brier-Joye’s addition formula. These results are summarized in the appendix.

4.5 Attack to the ElGamal-Type Encryption

We shortly explain the exception point attack against the ElGamal-type encryp-
tion. The attacker chooses a k-th self-collision point Q on the underlying curve.
The point Q is sent to the decryption primitive that computes the scalar mul-
tiplication d ∗ P using the secret key d. If the attacker receives the error from
the decryption oracle, he/she knows the scalar multiplication has calculated the
addition Q+ k ∗Q.

We assume that the scalar multiplication is computed by the binary method
in section 2. If the attacker wants to guess the 2-nd most significant bit, the



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 235

attacker asks the 3-rd self collision point to the decryption oracle, which is com-
puted during the scalar multiplication if and only if the second most significant
bit is one. We can recursively apply this process to lower bits.

Note that the k-th self-collision point Q is not a division point such that
Q+ k ∗Q = (k+1) ∗Q = O. Therefore the attack is feasible for the curves with
prime order, namely standard curves [ANSI, IEEE, SEC].

5 Concluding Remarks

This paper studied the exceptional procedure attack that uses the exceptional
procedure of the addition formula. We show the attack is effective against the
addition formula proposed by Brier-Joye. Partial bits of the secret key can be
revealed by our proposed attack. We demonstrated the feasibility of our attack
against the recommended curves in the international standards [ANSI, IEEE,
SEC] and found enough curves for which our attack works. However, the attack
discussed in Section 4.5 is restricted to the ElGamal-type systems, in particular
it is not relevant to ECDSA because the base point of ECDSA is usually fixed as
the system parameter. An application to other cryptosystems will be our future
work.

When a new addition formula is designed, the designers should be careful
for the exceptional procedure attack. Even though the new formula is secure
against previously known attacks, it might be insecure against the exceptional
procedure attack or similar attacks based on the exceptional procedures in the
formula. This attack can be essentially extended to the attacks against hyper-
elliptic curve cryptosystems. The security analysis of the attack strongly depends
on their explicit formulas.

Acknowledgments

We would like to thank Marc Joye and anonymous referees for their valuable
comments.

References

[ANSI] ANSI X9.62, Public Key Cryptography for the Financial Services Indus-
try: The Elliptic Curve Digital Signature Algorithm (ECDSA), draft,
1998. 225, 230, 235

[BMM00] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on El-
liptic Curve Cryptosystems”, CRYPTO 2000, LNCS 1880, pp.131-146,
Springer-Verlag, 2000. 225, 230

[BiJ02] O. Billet and M. Joye, “The Jacobi Model of an Elliptic Curve and Side-
Channel Analysis”, Cryptology ePrint Archive, Report 2002/125, 2002.
225

[BDL97] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Checking
Cryptographic Protocols for Faults”, Eurocrypt’97, LNCS 1233, pp.37-
51, Springer-Verlag, 1997. 225, 230



236 Tetsuya Izu and Tsuyoshi Takagi

[BrJ02] E. Brier and M. Joye, “Weierstraß Elliptic Curves and Side-Channel At-
tacks”, PKC 2002, LNCS 2274, pp.335-345, Springer-Verlag, 2002. 225,
230, 231, 232

[BSS99] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography,
Cambridge University Press, 1999. 233

[CMO98] H.Cohen, A.Miyaji and T.Ono, “Efficient Elliptic Curve Exponentiation
using Mixed Coordinates”, Asiacrypt’98, LNCS 1514, Springer-Verlag,
pp.51-65, 1998. 227

[IEEE] IEEE P1363, Standard Specifications for Public-Key Cryptography,
2000. Available from http://groupe.ieee.org/groups/1363/ 225, 230,
235

[IT02] T. Izu and T. Takagi, “On the Security of Brier-Joye’s Addition Formula
for Weierstrass-form Elliptic Curves”, Technical Report, No. TI-3/02,
Technische Universität Darmstadt, 2002.

[JQ01] M. Joye and J. Quisqiater, “Hessian Elliptic Curves and Side-Channel
Attacks”, CHES 2001, LNCS 2162, pp.412-420, Springer-Verlag, 2001.
225

[KJJ99] C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, Crypto’99,
LNCS 1666, pp.388-397, Springer-Verlag, 1999. 225, 231

[LMQSV98] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An Efficient
Protocol for Authenticated Key Agreement”, Technical report CORR
98-05, University of Waterloo, 1998. 225, 231

[LS01] P. Liardet and N. Smart, “Preventing SPA/DPA in ECC System using
the Jacobi Form”, CHES 2001, LNCS 2162, pp.401-411, Springer-Verlag,
2001. 225

[OKS00] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic Curves with the
Montgomery Form and their cryptographic Applications”, PKC 2000,
LNCS 1751, pp.446-465, Springer-Verlag, 2000. 225

[SEC] Standards for Efficient Cryptography Group (SECG), Specifica-
tion of Standards for Efficient Cryptography. Available from
http://www.secg.org 225, 230, 234, 235, 236

[Sil86] J. Silverman, The Arithmetic of Elliptic Curves, GMT 106, Springer-
Verlag, 1986. 230

[Sma01] N. Smart, “The Hessian Form of an Elliptic Curve”, CHES 2001, LNCS
2162, pp.118-125, Springer-Verlag, 2001. 225

A Numerical Examples

In this appendix, we show numerical examples of polynomial fm(x) and them-th
self-collision points on standardized curves over a prime field in [SEC].

A.1 Self-Collision Points

Table 1 shows the number of the m-th self-collision points (2 ≤ m ≤ 9) on the
elliptic curves standardized in [SEC].



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 237

Table 1. The number of the m-th self-collision points

m 2 3 4 5 6 7 8 9

secp112r1 2 - - 2 2 - - 2

secp112r2 - - - 2 - - 2 4

secp128r1 - 2 4 - - 2 4 -

secp128r2 2 - - - 2 - 2 2

secp160k1 - - - - - - - -

secp160r1 - - - - - - - 2

secp160r2 - - 2 - - - - -

secp192k1 - - - - - - - -

secp192r1 2 - - 2 2 - 4 -

secp224k1 - - - - - - - -

secp224r1 - 2 4 - - 2 2 2

secp256k1 - - - - - - - -

secp256r1 - - - - 4 2 - -

secp384r1 2 - - 2 2 2 - -

secp521r1 4 - 2 - - - - -

In the following, the numerical data of self-collision points on the standard-
ized curve secp128r1 are listed. All data are described in hexadecimal.

p = 0xfffffffdffffffffffffffffffffffff

a = 0xfffffffdfffffffffffffffffffffffc

b = 0xe87579c11079f43dd824993c2cee5ed3

The 3rd self-collision points (2 points)

(0xa2b4652401379e1e3ff1f915e64ca2c8, 0xea7c93c0989bb3d2d4611a81df3032b)
(0xa2b4652401379e1e3ff1f915e64ca2c8, 0xf15836c1f67644c2d2b9ee57e20cfcd4)

The 4-th self-collision points (4 points)

(0xfc34bdc223c2601307ad0b8b21e1c8be, 0xc4e0ed0ac0db88cf58ee1806bc2621e)
(0xfc34bdc223c2601307ad0b8b21e1c8be, 0xf3b1f12d53f247730a711e7f943d9de1)
(0x28a53b1ca02fdb170f2330225b05cab6, 0xdfed12d13ceba387b3695ef16010f0f7)
(0x28a53b1ca02fdb170f2330225b05cab6, 0x2012ed2cc3145c784c96a10e9fef0f08)

The 7-th self-collision points (2 points)

(0x3e420615cdb89fc6b57989b0661d13a8, 0x23dc8dd9995872ba72a1cbccfbffe4ff)
(0x3e420615cdb89fc6b57989b0661d13a8, 0xdc23722466a78d458d5e343304001b00)

The 8-th self-collision points (4 points)

(0x95f75d5e09789632c30aa23aadebd9f7, 0xbe80ab797a9e63f4a687f081f670e439)
(0x95f75d5e09789632c30aa23aadebd9f7, 0x417f548485619c0b59780f7e098f1bc6)
(0x9a8034c28924315a96fc0a0c4f69c358, 0x9b3a46c0fcce148116e4be42bff777c9)
(0x9a8034c28924315a96fc0a0c4f69c358, 0x64c5b93d0331eb7ee91b41bd40088836)



238 Tetsuya Izu and Tsuyoshi Takagi

A.2 Self-Collision Polynomial fm(x)

Here are small examples of fm(x). The definition of fm(x) is in section 4.3.

f2(x) = 3x2 + a

f3(x) = 7x6 + 11a x4 − 4bx3 + 13a2x2 + 20a bx + a3 + 16b2

f4(x) = 13x12 + 70a x10 + 52bx9 + 231a2x8 + 912a bx7 + (100a3 + 1536b2)x6

+408a2bx5 + (43a4 + 1776a b2)x4 + (−176a3b + 1024b3)x3

+(54a5 + 96a2b2)x2 + (84a4b + 448a b3)x + a6 + 48a3b2 + 256b4

f5(x) = 21x20 + 298a x18 + 828bx17 + 1917a2x16 + 16224a bx15

+(−360a3 + 43920b2)x14 + 3024a2bx13 + (938a4 + 88368a b2)x12

+(−31200a3b + 42432b3)x11 + (11484a5 + 42768a2b2)x10

+(−600a4b + 113600a b3)x9 + (13794a6 + 26928a3b2 + 101376b4)x8

+(45216a5b + 127872a2b3)x7 + (4312a7 + 104496a4b2 + 252672a b4)x6

+(16464a6b + 169344a3b3 + 129024b5)x5 + (225a8 + 38160a5b2 + 276480a2b4)x4

+(−1056a7b + 28352a4b3 + 254976a b5)x3

+(138a9 − 720a6b2 + 768a3b4 + 86016b6)x2 + (252a8b + 1728a5b3)x

+a10 + 144a7b2 + 1536a4b4 + 4096a b6

f6(x) = 31x30 + 967a x28 + 5332bx27 + 10431a2x26 + 162252a bx25

+(−37737a3 + 651744b2)x24 − 233640a2bx23 + (−2373a4 + 1471536a b2)x22

+(−1775928a3b − 458304b3)x21 + (755427a5 + 382896a2b2)x20

+(−119844a4b + 596928a b3)x19 + (2161515a6 + 6446544a3b2 + 7594752b4)x18

+(9080100a5b + 22216320a2b3)x17 + (2480643a7 + 39949488a4b2 + 69276672a b4)x16

+(13109904a6b + 106820352a3b3 + 49167360b5)x15

+(1514205a8 + 55841760a5b2 + 272943360a2b4)x14

+(6809520a7b + 124271232a4b3 + 347083776a b5)x13

+(705045a9 + 34703328a6b2 + 295451904a3b4 + 158822400b6)x12

+(482124a8b + 62178432a5b3 + 527431680a2b5)x11

+(491997a10 + 7532448a7b2 + 68961024a4b4 + 461328384a b6)x10

+(360276a9b + 25187328a6b3 + 141441024a3b5 + 136445952b7)x9

+(273573a11 − 1545408a8b2 + 15061248a5b4 + 225533952a2b6)x8

+(1294488a10b + 827136a7b3 − 30200832a4b5 + 132857856a b7)x7

+(34569a12 + 2980080a9b2 + 11748096a6b4 − 40587264a3b6 + 20643840b8)x6

+(190728a11b + 4920768a8b3 + 19031040a5b5 − 35979264a2b7)x5

+(a13 + 486768a10b2 + 7898880a7b4 + 26443776a4b6 − 31260672a b8)x4

+(−5756a12b + 511424a9b3 + 8380416a6b5 + 29884416a3b7 − 10747904b9)x3

+(313a14 − 3696a11b2 + 265728a8b4 + 4767744a5b6 + 18284544a2b8)x2

+(572a13b + 7040a10b3 + 135168a7b5 + 1622016a4b7 + 5767168a b9)x

+a15 + 304a12b2 + 5888a9b4 + 61440a6b6 + 393216a3b8 + 1048576b10



Exceptional Procedure Attack on Elliptic Curve Cryptosystems 239

B Proof of Proposition 3

Proposition 3. Let m be an integer m ≥ 2. Then,

1. Fm(x, y) = 4yfm(x, y)ψm+1(x, y),
2. Gm(x, y) = fm(x, y)fm+1(x, y).
3. fm(x, y) = fm(x), i.e. fm ∈ Z[x]
4. fm(x) = (m2 −m+ 1)xm2−m+ lower terms of x

Proof. The division polynomial ψm is a polynomial in Z[x] if m is odd, and
ψm/(2y) is a polynomial in Z[x] if m is even. 1. If a point P = (x, y) satisfies
ψm+1 = 0, then P is the m-th self-collision. So, we have ψm+1(x, y)|Fm(x, y).
If m is odd, we have 4y2|ψm+2ψ

2
m−1, 4y

2|ψm−2ψ
2
m+1 and 4y|Fm(x, y). It is the

same for even m. 2. If P = (x, y) is the (m + 1)-th self-collision, then, −P =
(x,−y) is the m-th self-collision. So we have fm+1(x, y)|Gm(x, y). 3. If m is
odd, Fm(x, y) ∈ Z[x]. On the other hand, ψm+1 can be factored into the form
2yg(x). So fm = Fm/(8y2g(x)) ∈ Z[x]. It’s the same for even m. 4. We know
ψm(x, y) = mx(m2−1)/2+ lower term of x, where we weight x as 1 and y as 3/2.


	Exceptional Procedure Attack on Elliptic Curve Cryptosystems
	Introduction
	Elliptic Curves
	Standard Addition Formula
	Coordinate System
	Scalar Multiplication

	Exceptional Procedure Attack
	Basic Idea
	Exceptional Procedure in Standard Formula
	Exceptional Procedure Attack against Standard Formula
	Relation to Other Attacks

	Brier-Joye's Addition Formula
	Brier-Joye's Addition Formula
	Exceptional Procedure in Brier-Joye's Formula
	Finding Collision Points
	Self-Collision Polynomial
	Attack to the ElGamal-Type Encryption

	Concluding Remarks
	Acknowledgments
	References
	Numerical Examples
	Self-Collision Points
	Self-Collision Polynomial fm(x)

	Proof of Proposition 3


