
Cramer-Damg̊ard Signatures Revisited: Efficient

Flat-Tree Signatures Based on Factoring

Dario Catalano1 and Rosario Gennaro2

1 CNRS - École normale supérieure, Laboratoire d’informatique
45 rue d’Ulm, 75230 Paris Cedex 05, France.

dario.catalano@ens.fr

2 I.B.M. T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598.
Email: rosario@us.ibm.com

Abstract. At Crypto 96 Cramer and Damg̊ard proposed an efficient,
tree-based, signature scheme that is provably secure against adaptive
chosen message attacks under the assumption that inverting RSA is com-
putationally infeasible.
In this paper we show how to modify their basic construction in order
to achieve a scheme that is provably secure under the assumption that
factoring large composites of a certain form is hard.
Interestingly our scheme is as efficient as the original Cramer Damg̊ard
solution while relying on a seemingly weaker intractability assumption.

1 Introduction

Digital Signatures are arguably the most important primitive of public-key cryp-
tography [10]. Using digital signatures the receiver of a message can be assured
that the message originated with a specific sender, and even more importantly,
she will be able to prove such thing to a third party (non-repudiation). Because
of the centrality of this concept it is very important to find signature schemes
which are provably secure and efficient.

The concept of provable security for signature schemes (i.e. forgery should be
equivalent to the solution of a well-defined conjectured hard problem) was for-
malized in the seminal paper by Goldwasser et al. [14] where an exact definition
of what “forgery” means is given.

Starting from the scheme described in [14], several other provably secure sig-
nature schemes have been proposed in the literature that follows their paradigm.
An important line of research has been to try to identify the minimal assumption
needed to construct provably secure signature schemes. The assumption used in
[14] was the existence of trapdoor claw-free permutations. Later, Bellare and Mi-
cali [2] showed that any trapdoor permutation would suffice. A breakthrough
result came with Naor and Yung [18] who showed that it is possible to construct
provably secure signatures out of one-way permutations, disposing of the trap-
door assumption which was considered essential. Finally Rompel [23] relaxed the
assumption to the mere existence of one-way functions (which is easily seen to
be the minimal assumption required).

318 Dario Catalano and Rosario Gennaro

However, the schemes mentioned above fall short in terms of their efficiency
(which is measured as of computing time needed to produce and verify signatures
and as of signature length). For example the original scheme in [14] builds a
binary tree of height d, and the signature lenght and the computing time is O(d).
The parameter d is chosen so that 2d is larger than the number of messages that
the signer will ever sign.

It is thus important to research if using the properties of specific number-
theoretic problems (like Factoring, RSA or Discrete Log) it is possible to devise
provably secure yet efficient signature schemes.

For the case of the RSA function, Dwork and Naor [11] propose such a scheme,
which was later improved by Cramer and Damg̊ard [7]. The idea proposed in
[11, 7] is to use specific properties of the RSA function to modify the original
scheme in [14] to work with a “flat”tree, i.e. a tree with large branching factor
l > 2. In the [11, 7] schemes, computation time and signature length are still
O(d) but now d is much smaller because all we need is that ld is larger than the
total number of signed messages.

At the same time Cramer [5] extended the basic GMR [14] technique to
work with a flat-tree. The resulting scheme allows to obtain signatures that are
somewhat shorter than GMR. This however comes at the cost of requiring much
larger keys and public parameters: for example the signer is required to keep
l + 1 different “trapdoors” and users of the scheme must agree on a common
list of l random numbers (the latter is required also in [11]). In particular this
means that the private storage for the signer is larger by a factor of l with respect
to [11, 7]. The computational efficiency of Cramer’s scheme [5] is comparable to
[14], which is less efficient than [7].

Thus from a purely computational point of view (i.e. regardless of the as-
sumption used), the method presented in [7] is more desirable since it uses less
time and space. The open question, then, is to see if one can achieve the same
efficiency as [7], only relying on a factoring assumption.

Our Contribution. In this paper we give a positive answer to this question, by
showing how to construct an efficient flat-tree signature scheme whose security
is based on the assumption that factoring large RSA moduli of a special form
is hard. The restriction on the moduli N is that we require that the product
of the smallest l primes divides φ(N). This restriction does not seem to affect
the security of the factoring assumption, nor does it seem to make finding these
moduli any harder.

Some components of our scheme (particularly the basic authentication step)
are identical to the ones proposed by Cramer and Damg̊ard in [7]. The secu-
rity reduction to factoring is achieved by changing the key generation protocol
and the choice of the public parameters. Because the basic authentication step
remains the same, however, the efficiency of our scheme is pretty much equiva-
lent to the efficiency of the scheme proposed in [7], while relying on a seemingly
weaker assumption.

Efficient Flat-Tree Signatures Based on Factoring 319

1.1 Other Related Work

Besides the works already mentioned in the Introduction, we point out that ef-
ficient provably secure signature schemes have been proposed using a variation
on the RSA assumption. These works [13, 8] present efficient, state-free (all the
above schemes, including ours, require the signer to keep some state) signatures
based on a stronger assumption on the inversion of the RSA function. Although
these schemes are more efficient than ours we stress that our goal was to prove
the security of a reasonably efficient signature scheme based on the weaker as-
sumption about factoring large integers, which subsumes both the regular and
the strong RSA Assumptions.

A different approach followed in the literature is to try to prove “as much
as possible” the security of efficient signature schemes like traditional RSA and
schemes of the ElGamal family [12]. Starting from the work of Bellare and Ro-
gaway [3] several papers proved that these schemes are secure (according to the
[14] definition) in an idealized model of computation where a random oracle (an
oracle that returns the result of a random function) is available to all parties.
The random oracle is used to model “complicated hash functions” on which the
security of the scheme relies. Although a proof in the random oracle model is
better than no proof at all, it should not be automatically construed as a proof of
security in the real model of computation. Indeed this is not the case, as proven
in a result by Canetti et al. [4]. Since our scheme does not use a random oracle,
we do not further discuss the random oracle model in this paper.

2 Definitions and Notations

We start with some definitions and notations. Given a probability space C we
indicate with x← C the algorithm which assigns to x a random element accord-
ing to C. In the case in which C is a finite set, x ← C indicates the algorithm
which assigns to x a random (uniformly chosen) element of C.

We say that a function ε(·) is negligible if for every constant c ≥ 0 there exists
an integer kc such that for all k > kc ε(k) < k−c

In the rest of the paper we assume that N is an n-bit composite modulus
obtained as the product of two Blum primes p and q (i.e. p and q are such that
p ≡ q ≡ 3 mod 4). We denote such moduli as Blum modului. We denote with
λ(N) = lcm(p − 1, q − 1). It is well known that for all x ∈ Z∗

N we have that
xλ(N) = 1 mod N .

Consider now l (small) odd primes ρ1, . . . , ρl and let σ be their product. We
are going to consider Blum moduli N , such that ∀ i ρi is a divisor of λ(N), but ρ2

i

is not, and moreover N >> σ4. Let’s denote then with BLUM(k, ρ1, ρ2, . . . , ρl)
the set of such Blum moduli with the property that λ(N)/σ is of length k, i.e.

BLUM(k, ρ1, ρ2, . . . , ρl) = {N = pq : p, q ≡ 3 mod 4 ,

ρi|λ(N) , ρ2
i 6 |λ(N) , |λ(N)/(ρ1 · · · ρl)| = k}

In the following we will assume that factoring such integers is hard even when
given knowledge of the product σ of the small primes that divides λ(N).

320 Dario Catalano and Rosario Gennaro

Assumption 1 (Factoring) For every polynomial-time algorithm A, and for
every set of small primes ρ1, . . . , ρl, the following probability is negligible in k:

Pr

[

N ← BLUM(k, ρ1, ρ2, . . . , ρl) ,
A(N, ρ1, . . . , ρl) = (p, q) : N = pq

]

Families of Hash Functions. We consider families of hash functions mapping
strings of arbitrary length to strings of fixed length. Namely we consider a family
H = {Hk}k where each Hk is a collection of functions of the form H : {0, 1}∗ →
{0, 1}k for some integer k. Hk is polynomially samplable. We will be interested
in hash functions that are collision intractable. A family H of hash functions is
said to be collision intractable if it is infeasible to find two different inputs that
map to the same output for a randomly chosen member of the family.

Definition 1 (Collision Intractability [9]). We say that H is collision in-
tractable if, for every probabilistic polynomial time algorithm A there exists a
negligible function ε(·) such that

Pr[H ← Hk; A(H) = (x1, x2) s.t. x1 6= x2 and H(x1) = H(x2)] ≤ ε(k)

We now define digital signatures.

Definition 2 (Digital Signatures). Let k be a security parameter, we define
a digital signature as the triplet (G,SIG ,VER), where

– G is a polynomial time randomized algorithm that on input 1k outputs a pair
(PK, SK) of matching public and secret keys.

– SIG is the signing algorithm. It takes as input a message m, the keys
PK, SK and possibly keeps some internal state. It produces as output a sig-
nature σ for m. This algorithm can be probabilistic.

– VER is the verification algorithm. It receives as input a message m, the
public key PK and a signature σ, and checks if σ is valid according to m
and PK. In other words VER(m, PK, σ) = 1 if σ = SIG(m, PK, SK).

The strongest notion of security for signature schemes was given by Goldwasser,
Micali and Rivest [14]

Definition 3 (Secure signatures). A signature scheme (G,SIG,VER) is ex-
istentially unforgeable against an adaptive chosen message attack if it is com-
putationally infeasible for a forger, who knows just the public key, to produce a
valid signature σ on a message m even after having obtained polynomially many
signatures on messages mi of his choice from the signer.

More formally, for every probabilistic polynomial time algorithm F , there
exists a negligible function ε(·) such that

Pr

(PK, SK)← G(1k)
for i = 1 . . . n

mi ← F(PK, m1, σ1, . . . , mi−1, σi−1)
σi ← SIG(mi, PK, SK)

(m, σ)← F(PK, m1, σ1, . . . mn, σn);
m 6= mi for i = 1 . . . n, and VER(m, PK, σ) = 1

≤ ε(k)

Efficient Flat-Tree Signatures Based on Factoring 321

3 The new scheme

Our scheme will make use of a l-ary tree (i.e. with branching degree l), which we
call the signature tree. The root of the tree will be a random value S included in
the public key of the signer. The tree has depth d+1 with a branching degree of
l in the first d levels and a branching degree of 1 in the last level. By this setting
we will allow the signer to sign up to ld messages (we are going to assume ld to be
polynomial in k the security parameter). We now introduce some terminology:
The first d levels of the tree are denoted as expanding levels, since every parent
node Sj at level j (j ∈ {1, . . . , d}) has l children (we have the root as S0 = S).
We call these nodes expanding nodes. The remaining level, level d + 1, is called,
the terminal level. Every parent node belonging to this levels has exactly one
child. The parent nodes at the terminal level are denoted as terminal nodes. As
usual, each terminal node’s only child is called a leaf of the tree. We call an
item a parent together with all his children and an arc a parent with one of his
children. This means that every item has l arcs. A path from a node A to a node
B is is the sequence of arcs that connects A with B.

Informally the signature algorithm will start “filling up” this tree. To sign
the ith message mi, the signer will place mi as the ith leaf and will output an
authentication chain that links mi to the root of the tree (which is part of the
public key). The verifier, will follow this authentication chain and if the end
result matches the value in the public key, accepts the signature. Formal details
follow.

3.1 Formal description on the scheme

We now give a formal detailed description of our scheme.

Key Generation. The signer chooses l odd distinct primes3 ρi < 2v (for some

small enough parameter v) and sets p̂ =
∏l/2

i=1 ρi, q̂ =
∏l

i=l/2+1 ρi and σ = p̂q̂. He

then randomly picks two (distinct) large primes p′ and q′ of length k/2 such that
p = 2p′p̂ + 1 and q = 2q′q̂ + 1 are two (k + ω)/2-bit primes (for some parameter
ω that depends on v and l). Then he sets N = pq as the public modulus.

Note that by this position we have that N is a Blum integer such that ρi

(but not ρ2
i) divides λ(N), and of the appropriate length. Notice also that 2 (but

not 22 = 4) divides λ(N).
Denote with E = 2σ = 2ρ1 · · · ρl. The signer chooses uniformly and at ran-

dom two E-th residues h, S in Z
∗

N and a function H from a family of collision
intractable hash functions. We will assume that H outputs a value in {0, 1}`,
for some security parameter `. For technical reasons, that will become apparent
in the proof of security, the signer sets e = 2`+1 and for each i = 1, . . . , l sets
ei = ρ`i

i , where `i is the minimum integer such that ei > 2`. The signer publishes
(N, h, S, e, e1, . . . , el, H, d), where d represents the depth of the tree, as his public

3 The choice of these primes needs not satisfy any special requirement. For efficiency
reason these primes could be chosen as the first l odd primes.

322 Dario Catalano and Rosario Gennaro

key and keeps private the factorization of the modulus. Note that this allows the
signer to sign up to ld messages.

Remark 1. The key generation algorithm is very similar to the one proposed
by Naccache and Stern in [17]. They showed that the extra requirement on the
choice of p, q in practice slows down the generation of N by around 9% with
respect to the generation of a regular RSA modulus (see [17] for more details).

Signature Algorithm. The signer holds a tree of depth d with root S. All
the nodes in the tree at the beginning are empty.

To sign the ith message mi the signer proceeds as follows:

1. He visits the path on the tree from the root to the ith leaf, which is labeled
with mi. If a node j on this path has not been visited before, the signer
labels it with a random E-residue Sj .

2. Let (S, i1, Si1 , . . . , id, Sid
) be the visited path (where each ij is an index in

{1, . . . , l}). Then he solves the following equations

y
ei1

i1
= S · hH(Si1

) mod N

and for all j = 2, . . . , d

y
eij

ij
= Sij−1

· hH(Sij
) mod N

To conclude the signature he computes a zi such that

ze
i = Sid

· hH(mi) mod N

3. The output signature on mi is sig(mi) = (zi, yi1 , i1, . . . , yid
, id).

Signature Verification. The receiver, given a message m, the public key
(N, h, S, e, e1, . . . , el, H, d) and a purported signature sig(m) = (zi, yi1 , i1, . . . , yid

, id),
computes the following

Sid
= ze

i · h
−H(mi) mod N

followed by
Sij−1

= y
eij

ij
· h−H(Sij

) mod N

for all j = d downto 1.
If the final value S0 ≡ S mod N the signature is accepted as valid.

Remark 2. Note that even though we perform iterated root extractions during
the signing procedure we just need to assume that h and the Sj ’s above are E-th
residues to make the above procedure work. Indeed we have that gcd(ei, λ(N)) =
ρi, so we can find αi, βi such that αiei +βiλ(N) = ρi. This means that, in order
to compute the ei = ρ`i

i -th root of an E-residue x, the signer should first compute
∆ = xαi which by the above GCD computation is an ei-root of xρi and then
compute a ρi-root of ∆. A similar argument holds for e-roots.

Efficient Flat-Tree Signatures Based on Factoring 323

Now let ∆ be an E-residue and let δi one of its ρi-roots, i.e. δρi

i = ∆ mod N . In
general the value δi can be computed in O(ρi) time if we know the factorization
of N (cf. [1]). Note that this is not a problem if one assumes that the primes ρi

are all very small. However, if one wants to use slighly larger primes, the O(ρi)
solution may become too inefficient. In Appendix A we show a method to extract
ρi-roots at the cost of a single modular exponentiation in Z∗

N .

The security of the scheme is stated in the following Theorem.

Theorem 1. If Assumption 1 holds and H is a collision resistant hash function,
then the digital signature scheme presented above is secure against an adaptive
chosen message attack.

The proof appears in the following Section 4. In the proof we use the following
fact: Assume to have an algorithm A that on input N, e and an e-th residue y
outputs an eth root of y. In Appendix B we prove that it is then possible to
construct a different algorithm B, having black box access to A, that factors the
modulus with probability 1− 1/e.

Remark 3. Our presentation of the scheme, and consequently the theorem state-
ment, assume the existence of collision-resistant hash functions. However it
should be noted that factoring does imply the existence of collision-resistant
hashing, thus we are not introducing any extra computational assumption. More-
over, using techniques similar to the ones presented in [7], one can completely
dispense with the hash function H in our scheme. Either solution (implementing
a factoring-based hashed function or changing the scheme so not to need one)
would be however much more expensive than using, say, SHA-1. In order to keep
the presentation simple, we decided to present the scheme this way, since we be-
lieve it is also conceptually clearer to “separate” the role of the hash function
from the number-theoretic authentication step. In the final version of the paper
we will show how to adapt the techniques in [7] to our scheme to avoid using H
altogether.

4 Proof of Security

The proof goes by reductio ad absurdum. We assume that the proposed scheme
is not secure, meaning that there exists an adversary A that can forge signatures
with some non-negligible probability ε. Then we prove that if such an adversary
exists, then it is possible to construct a probabilistic polynomial time algorithm
B (a simulator) that, using A as an oracle, can factor with non negligible prob-
ability, thus contradicting the hypothesis of the theorem.

If we assume that such A exists, then his interaction with the signer would
be as follows. First A gets the public key. Then for i = 1, . . . , t (where t is
the maximum number of signatures the adversary is allowed to ask) he asks for
the signature on a message mi and receives back a valid signature Sig(mi) =
(zi, yi1 , i1, . . . , yid

, id). Then he will output m 6= mi and a valid signature Sig(mj) =
(zj , yj1 , j1, . . . , yjd

, jd) on it.

324 Dario Catalano and Rosario Gennaro

We argue that the public key and the verification tests on a valid signature
imply that the forged signature must satisfy one of the following (mutually ex-
clusive) conditions (where with Si0 we denote S the root of the tree contained
in the public key):

Type I For some 1 ≤ i ≤ t, one has that yjk
= yik

for each k = 1, . . . , d,
Sid

= Sjd
, but zj 6= zi.

Type II For some 1 ≤ i ≤ t, there exist an index 1 ≤ k′ < d such that for all
k ≤ k′, yjk

= yik
, Sik′

= Sjk′
but yjk′+1

6= yik′+1
.

If there is a forger that succeeds with non negligible probability, then there
must be a forger that can successfully produce either a Type I forgery, or a Type
II forgery with non negligible probability.

In the rest of the proof we will distinguish two cases, depending on the type of
expected forgery. Since these two cases are exhaustive, one of them must happen
with probability at least ε/2.

Forgery of type I. The algorithm B (the simulator) is given as input a Blum
modulus N of the appropriate form together with a set of l small primes (ρ1, . . . ρl)
such that for every ρi one has that ρi|λ(N) but ρ2

i 6 |λ(N). We want to show
how B can use the forgery received from A to factor N . Let t be the maximum
number of sign-queries the adversary is allowed to ask (for simplicity we will
assume that A will ask exactly t queries). The simulator generates his public
key as follows. First it generates the public exponents e, e1, . . . el as a real signer
would do. Next, it sets F = 2 · e1 · · · el, choses α, β uniformly and at random
in Z

∗

N and sets h = αF mod N and S = βF mod N . Notice that we can take
ei-roots of h, S (for any i) but not e-roots (since e = 2`+1).

All the internal node, except those of depht d are computed in a similar
way. The simulator sets Sk = xF

k mod N (where, once again, the xk ’s are chosen
randomly in Z

∗

N) and stores the xk’s for future usage. Observe that all the nodes
generated this way – as well as S and h – are random E-residues in Z

∗

N , so they
are distributed exactly as in the real signing process (more details below).

The simulator can generate valid signatures as follows. To sign the i-th mes-
sage mi, it chooses zi at random in Z

∗

N and sets

Sid
= ze

i h
−H(mi) mod N

All the remaining relations can be easily computed as follows. For each index
ik in the path of the signature, the simulator sets

yik
= x

F/eik

ik−1
(αF/eik)H(Sik

) mod N

Finally it outputs the signature

Sig(mi) = (zi, yi1 , i1, . . . , yid
, id)

Observe that the signatures produced by the simulator are perfectly indis-
tinguishable with respect to the signatures a real signer would generate. As a

Efficient Flat-Tree Signatures Based on Factoring 325

matter of fact the only difference between a real signature and a simulated one
is the following. In the first case all the nodes of the tree – as well as the root
S and the public value h – are E-residues (recall that E = 2 · ρ1 · · · ρl), whereas
in the simulation they are F -residues (with F = 2 · e1 · · · el). However, since
ei = ρ`i

i (for each index i = 1, . . . , l) and N is a Blum modulus, every ρi-th

residue is also an ρ`i

i power. Consequently any E-residue is also an F -residue.
Moreover, notice that, according to the simulation method described so far, the
value α is never revealed to the adversary. In the terminal levels the (simulated)
authentication procedure does not involve any e-root extraction. On the other
hand, in the expanding levels, the authentication method requires the simulator
to extract ei-roots, but it is always the case that ei 6= e. In other words the
simulation is information-theoretically independent from α.

Now let Sig(mj) = (zj , yj1 , j1, . . . , yjd
, jd) be the forgery produced by the ad-

versary on a (up to now) unsigned message mj . Since we are assuming the
adversary creates a Type I forgery, for some previously produced signature
Sig(mi) = (zi, yi1 , i1, . . . , yid

, id) we have that yjk
= yik

for each k = 1, . . . , d
but zj 6= zi.

This yields to the following system of equations:

(zj)
e = Sid

hH(mj) mod N

(zi)
e = Sid

hH(mi) mod N

Moreover, since H is collision resistant mi 6= mj implies that H(mi) 6=
H(mj) and we can write H(mi) − H(m) = 2ωq for some ω ≤ ` and an odd
q ≥ 1.

From the two equations above we can compute

(

zj

zi

)e

= (hq)2
ω

mod N = (αqF/2)2
ω+1

mod N

Recall now that e = 2`+1 so we get that

(

zj

zi

)2`+1−ω

= hq mod N

Now, hq has two square roots, of which we already know one: αqF/2. From the

above equation we get that (zjz
−1
i)2

`−ω

is also a square root of hq . Notice that
`− ω ≥ 0 so we can easily compute the value without computing square-roots.

Observe that the adversary has no information at all regarding the original
α chosen by the simulator (in an information theorethic sense). Consequently

the value (zjz
−1
i)2

`−ω

is a square root of hq that is different from αqF/2 with
probability 1/2. This immediately allows to factor the modulus.

Forgery of type II. The algorithm B is given as input a Blum modulus N of
the appropriate form together with a set of l small primes (ρ1, . . . ρl) such that
for every ρi one has that ρi|λ(N) but ρ2

i 6 |λ(N).

326 Dario Catalano and Rosario Gennaro

The simulator starts generating the signing public key by choosing a random
index 1 ≤ δ ≤ l. This random choice can be interpreted as the simulator “guess-
ing” the value of jk′+1, the index of the first child where the forgery and the
regular signature path of the tree will differ.

Next it creates the public exponents e, e1, . . . el as prescribed by the key
generation algorithm. Then it chooses a random element α ∈ Z

∗

N , computes
G = e · e1 · · · eδ−1 · ρδ · eδ+1 · · · eτ and sets h = αG mod N .

The simulation proceeds by letting B precompute the authentication tree in
order to be able to produce t valid signatures. This precomputation phase goes
very similarly to the one described before. The main difference here is that the
root and the internal nodes of the tree are computed in a bottom-up fashion
(rather than top-down, as for the forgeries of type one).

For each node Sid
(nodes of depth d) the simulator chooses a random element

xid
and sets Sid

= xG
id

mod N . Once the nodes of level d are prepared, one can
construct the expanding nodes, item by item.

Here, for simplicity, we show the method for a generic item I . The basic idea
is to construct the parent node SI0 in terms of its δ-th child SIδ

. In particular
the simulator chooses a random value xI ∈ Z

∗

N , sets

SI0 = x
G·ρ

`δ−1

δ

I h−H(SIδ
) mod N

and stores the values SI0 and xI (in the following, for each item I , we will refer
to xI as to the basis of SI0).

Using this methodology the simulator can (inductively) generate the entire
tree. Each new level is obtained by combining the items of the previous level in
a tree structure (the roots of the items of level k play the role of the leaves to
construct the items of level k− 1). At the end of this phase the simulator comes
up with a global root S, which is included as part of the public key.

On top of this construction to sign the message mi, the simulator does as
follows. First he computes the path (i1, . . . , id) from the root to the ith leaf of
the tree. Then he proceeds according to the following procedure:

for k = 1 to d
Assume Sik

is the b-th child of Sik−1

Let xik
be the basis of Sik−1

if b == δ

Set yik
= x

G/ρδ

ik

if b 6= δ

Set yik
= x

G/eb·ρ
`δ−1

δ

ik
· (αG/eb)H(Sik

)

Set zi = x
G/e
id

(αG/e)H(mi)

Output the signature Sig(mi) = (zi, yi1 , i1, . . . , yid
, id)

In other words, the adversary easily computes e-roots and ei-roots (for i 6= δ)
because all the values are G-residues and he knows G-roots of them. For the

Efficient Flat-Tree Signatures Based on Factoring 327

case i = δ it is not necessary to compute eδ-roots thanks to the way in which
the internal nodes have been prepared.

If the adversary produces a valid forgery Sig(mj) = (zj , yj1 , j1, . . . , yjd
, jd),

one can “use” it to break Assumption 1 as follows. Since we are dealing with a
forgery of the second type, there exists and index k (such that 1 ≤ k ≤ d) for
which one has that Sik−1

= Sjk−1
but yik

6= yjk
. Moreover, since B simulates a

real signer perfectly, with probability 1/l one has that Sjk
is the δ-th child of

Sjk−1
. If this is the case we can then consider the following equations:

yeδ

jk
= Sik−1

hH(Sjk
) mod N

yeδ

ik
= Sik−1

hH(Sik
) mod N

which dividing term by term become

Y eδ = h∆H mod N

where we set Y = (yjk
/yik

) and ∆H = H(Sjk
)−H(Sik

).
Once again since H is collision resistant, from the fact that Sjk

6= Sik
we can

assume that ∆H 6= 0. Therefor we can write ∆H = ρω
δ q with q ≥ 1, such that

gcd(q, ρδ) = 1. Moreover ω < `δ, because of the way we chose `δ.
The above equation can then be rewritten as

Y ρ
`δ
δ =

(

α
qG
ρδ

)ρω+1

δ

mod N

which implies that the value Z = Y ρ
`δ−ω−1

δ is an ρδ root of hq , that is different

with respect to α
qG
ρδ with probability 1− 1/ρδ. Again notice that `δ − ω− 1 ≥ 0

so the value Z can be easily computed without computing ρδ-roots.

5 Security Analysis

For lack of space we cannot discuss in more details our intractability assumption.
In the full version of this paper we give some evidence why assuming N >> σ4

seems to be safe. We point out here, however, that the same analysis was already
presented in [17]. The interested reader is referred to [17] for details.

5.1 Comparison with GMR

In [14] Goldwasser, Micali and Rivest proposed the first example of digital sig-
nature scheme secure against adaptive chosen message attack. The scheme relies
on the existence of claw free permutations, but the authors propose a concrete
implementation based on the hardness of factoring. The reader is referred to
[14] for the technical details; here we compare the practical performance of our
scheme with respect to the one presented in [14].

Their scheme is based on a binary tree. As we mentioned before the depth
of the tree is d̂ = log K. Let us denote with δ > 1 the ratio d̂/d.

328 Dario Catalano and Rosario Gennaro

The length of the signature is about 2d̂n bits, i.e. 2n bits per level of the
tree. Notice that this is a factor of 2δ longer than our signatures.

The basic authentication step, performed at each level of the tree, consists of
taking repeated square roots. In the original scheme in [14] the number of square
roots taken at each level is about 2n, where n is the length of the modulus. This
happens because the number of square roots taken is proportional to the length of
the information being authenticated. However to obtain a fair comparison with
our scheme, we should improve the scheme in [14] by introducing a separate
collision-resistant hash function H , like we did in our scheme. If one hashes the
information at each step, before applying the authentication step, we reduce the
work to 2` square-root computations per level of the tree. By using the speed-up
trick suggested by Goldreich (cf. Section 10.2 of [14]) this is equivalent to one
exponentiation with an ` bit exponent, and one full exponentiation modN , per
level of the tree, i.e. roughly 1.5(`+n) multiplications. Thus the worst-case cost

of computing a signature is 1.5d̂(`+n) multiplications, which is a factor δ slower
than ours.

To compute the amortized complexity of signatures in [14] we need to multi-

ply the cost of the basic authentication step, by 2d̂ (the number of nodes divided

by two) 4 and then divide by 2d̂ (the number of signatures). The net result is
that the amortized cost is 1.5(` + n) multiplications per signature, the same as
ours.

Similarly the verification of a signature requires the computation of about 2`
squarings at each level of the tree, for a total of 2`d̂ multiplications. Verification
in [14] is thus a factor of 2δ/3 slower than in ours.

Let us consider a specific example in which n = 1024, d = 80, l = 32 (i.e.

d̂ = 16) and ` = 160. In this case δ = 5 and we immediately obtain that
our signatures are a factor of 10 shorter than the ones in [14]. The worst case
complexity of computing a signature is also 5 times smaller in our scheme, while
the amortized complexity is the same. Finally verification time is about three
times as fast in our scheme.

5.2 Comparison with Cramer-Damg̊ard

It is not hard to see that our scheme is very similar to the scheme proposed by
Cramer and Damg̊ard in [7]. Thus the efficiency of our scheme is identical to the
one of the scheme proposed there, while relying on a weaker assumption.

6 Conclusions

We presented a new and efficient signature scheme, which is provably secure
against adaptive chosen message attack under the assumption that factoring
large composites of a certain form is infeasible.

4 This is because a basic authentication step in [14] requires to authenticate an entire
(binary) item.

Efficient Flat-Tree Signatures Based on Factoring 329

Our scheme shows that the “flat-tree” approach can lead also to efficient
signatures under a factoring assumption, while previous proposals relied either
on the seemingly stronger RSA Assumption or were less efficient.

In terms of efficiency our scheme is equivalent to the RSA-based scheme
presented in [7], and much better than the factoring-based ones in [14] and
in [5].

Acknowledgements. We thank Pascal Paillier for helpful discussions.

References

1. E. Bach and J. Shallit. Algorithmic Number Theory. Vol.1 Efficient Algorithms.
MIT Press. 1996.

2. M. Bellare and S. Micali How to sign given any trapdoor permutation Journal of
the ACM no. 39(1), pages 214-233, 1992

3. M. Bellare and P. Rogaway Random Oracles are Practical: A paradigm for design-
ing efficient protocols. Proc. of First ACM Conference on Computer and Commu-
nications Security, pages 62-73, 1993

4. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revis-
ited. Proc. 30th ACM Symposium on Theory of Computing, 1998

5. R. Cramer Modular design of secure yet practical cryptographic protocols. Ph.D.
Thesis, University of Amsterdam, 1996.

6. R. Cramer and I. Damg̊ard. Secure signature schemes based on interactive proto-
cols. Proc. of Crypto ’95 LNCS no. 963, pp.297-310.

7. R. Cramer and I. Damg̊ard. New Generation of Secure and Practical RSA-based
signatures. Proc. of Crypto ’96 LNCS no. 1109, pages 173-185.

8. R. Cramer and V. Shoup. Signature schemes based on the Strong RSA assumption.
Proc. of 6th ACM Conference on Computer and Communication Security 1999.

9. I. Damg̊ard. Collision free hash functions and public key signature schemes. Proc.
of Eurocrypt ’87 LNCS no. 304, pages 203-216.

10. W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):644-654, November 1976.

11. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme
and its applications. J. of Cryptology 11(3) 1998, pages 187-208.

12. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. Proc. of Cryypto ’84 LNCS no. 196, pages 10-18.

13. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. Proc. of Eurocrypt ’99 LNCS no. 1592, pages 123-139.

14. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen message attacks. SIAM J. on Computing 17(2):281-308 1988.

15. N. Koblitz A course in number theory and cryptography, 2nd ed., Springer Verlag
16. R. Merkle. A Digital Signature based on a Conventional Encryption Function.

Advances in Cryptology–Crypto’87. LNCS, vol.293, pp. 369–378, Springer–Verlag,
1988.

17. D. Naccache and J. Stern. A new cryptosystem based on higher residues. Proc. of
the 5th ACM conference on on computer and communication security, ACM press
(1998), pp.59-66.

18. M. Naor, M. Yung. Universal one-way hash functions and their cryptographic
applications Proc. of 21st ACM STOC pages 33-43, 1989.

330 Dario Catalano and Rosario Gennaro

19. B. Pfitzmann. Digital Signatures Schemes - General Framework and Fail-Stop
Signatures. Lecture Notes in Computer Science no. 1100 Springer.

20. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. of Cryptology. 13(3):361–396. Springer. Summer 2000.

21. M. Rabin. Digital Signatures and Public Key Encryptions as Intractable as Fac-
torization. MIT Technical Report no. 212, 1979

22. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

23. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
Proc. of 22nd STOC 1990, pages 387-394.

A Efficient Root Extractions

With the following lemma we show a simple method (taking advantage of the
fact that the ρi’s are all odd primes) to extract ρi-roots in a (asyntotically) more
efficient way.

Lemma 1. Let p be a Blum prime of size k. Let e be a prime such that e|p−1 but
e2 6 |p− 1. Then there exists an efficient algorithm, taking as input an e-residue
a, that returns as output an e-root of a in time O(k3).

Proof. First note that the prime p can be written as p = 2em + 1 where m is
an odd integer such that gcd(e, m) = 1. Since a is an e-residue in Z

∗

p it must be
true that

a
p−1

e ≡ 1 mod p

Now let B such that p−1
e + B = Ae for some A over the integers. The equation

above can the be rewritten as

a
p−1

e · aB ≡ aAe mod p

or better

aAe ≡ aB mod p

Furthemore observe that since gcd(2m, e) = 1 it has to be the case that gcd(B, e) =
1. This means that, using the extended Euclidean algorithm, it is possible to
compute two values λ and µ such that λB + µe = 1 over the integers. Thus the
equation above becomes

aλB+µe ≡ (aA)eλ · aµe mod p

and then

a ≡
(

aAλ+µ
)e

mod p

Thus aAλ+µ is an e-root of a.

The cost of the described method is dominated by the cost of the Extended
Euclidean Algorithm which requires O(k3) bit operations.

Efficient Flat-Tree Signatures Based on Factoring 331

B Two Simple Lemmas

The following two lemmas are invoked during the proof of security of the signa-
ture scheme.

Lemma 2. Let N = pq be the product of two primes. Let e be a divisor of λ(N)
with multiplicity one (i.e. e2 does not divide λ(N)) such that e divides either p−1
or q − 1 but not both of them. Then every e-th residue has exactly e different
e-th roots.

Proof. It is a well known fact from number theory [15] that in every finite cyclic
group G, the equation xd = a has gcd(d, ord(G)) different solutions. This fact,
however, cannot be immediately applied to Z∗

N because it is not a cyclic group,
but can be applied to the cyclic groups Z∗

q and Z∗

p having order, respectively,
φ(q) = (q − 1) and φ(p) = (p− 1) (see [15] for details).
Without loss of generality assume that e divides p− 1 but does not divide q− 1.
Now from the equation y = xe mod N , we derive the equations

y = xe mod p (1)

and
y = xe mod q (2)

Equation 1 has then gcd(e, (p − 1)) = e different solutions and equation 2
has gcd(e, (q − 1)) = 1 different solutions. Using the Chinese Remainder Theo-
rem [15], these can be combined to yield e different solutions modulo N .

Lemma 3. Let N = pq be the product of two primes. Let e be a divisor of
p− 1 (resp. q − 1) but not a divisor of q − 1 (resp. p− 1) with multiplicity one.
Let a be an e-residue in Z∗

N and y1, y2 two distinct solutions of the equation
xe = a mod N . Then there is an efficient algorithm that on input y1 and y2

returns the factorization of N .

Proof. Without loss of generality assume that e divides p−1. Since the equation
xe = a mod q has only one solution, it must be the case that

y1 ≡ y2 mod q (3)

On the other hand since y1 6= y2 mod N it has to be the case that

y1 6≡ y2 mod p (4)

Equation 3 tells us that y1 − y2 ≡ 0 mod q and thus, since y1, y2 < N , gcd(y1 −
y2, N) is a non trivial factor of N .

The two lemmas above have the following consequence. Assume to have an al-
gorithm A that on input N, e and an e-th residue y outputs an eth root of y.
From the lemmas above it is immediate to see that is then possible to construct
a different algorithm B, having black box access to A, that factors the modulus
with probability 1 − 1/e (just feed A with y = xe mod N , where x is chosen
randomly, and with probability 1− 1/e A will return a root different than x).

