
On the Limitations of the Spread of an
IBE-to-PKE Transformation

Eike Kiltz

CWI Amsterdam
The Netherlands
kiltz@cwi.nl

http://kiltz.net

Abstract. By a generic transformation by Canetti, Halevi, and Katz
(CHK) every Identity-based encryption (IBE) scheme implies a chosen-
ciphertext secure public-key encryption (PKE) scheme. In the same work
it is claimed that this transformation maps the two existing IBE schemes
to two new and different chosen-ciphertext secure encryption schemes,
each with individual advantages over the other.
In this work we reconsider one of the two specific instantiations of the
CHK transformation (when applied to the “second Boneh/Boyen IBE
scheme”). We demonstrate that by applying further simplifications the
resulting scheme can be proven secure under a weaker assumption than
the underlying IBE scheme.
Surprisingly, our simplified scheme nearly converges to a recent encryp-
tion scheme due to Boyen, Mei, and Waters which itself was obtained
from the other specific instantiation of the CHK transformation (when
applied to the “first Boneh/Boyen IBE scheme”). We find this partic-
ularly interesting since the two underlying IBE schemes are completely
different.
The bottom line of this paper is that the claim made by Canetti, Halevi,
and Katz needs to be reformulated to: the CHK transformation maps
the two known IBE schemes to nearly one single encryption scheme.

1 Introduction

Chosen-ciphertext secure encryption schemes. One of the main fields of
interest in cryptography is the design and the analysis of the security of encryp-
tion schemes in the public-key setting. In this work we consider such schemes for
which one can provide theoretical proofs of security (without relying on heuris-
tics such as the random oracle), but which are also efficient and practical.

The notion of chosen-ciphertext security was introduced by Naor and Yung [13]
and developed by Rackoff and Simon [14], and Dolev, Dwork, and Naor [9]. In
a chosen ciphertext attack, the adversary is given access to a decryption oracle
that allows him to obtain the decryptions of ciphertexts of his choosing. Intu-
itively, security in this setting means that an adversary obtains (effectively) no
information about encrypted messages, provided the corresponding ciphertexts

2 E. Kiltz

are never submitted to the decryption oracle. For different reasons, the notion
of chosen-ciphertext security has emerged as the “right” notion of security for
encryption schemes.

As an example of an encryption scheme that meets this strong security prop-
erty in the standard model we have the scheme from Cramer and Shoup [7, 8]
which was recently improved by Kurosawa and Desmedt [11]. Until 2004 the
Cramer-Shoup scheme and its variants remained basically the only practical
schemes with such strong security properties that could be proved secure in the
standard model (under a reasonable complexity-theoretic assumption).

From identity-based Encryption to Chosen-Ciphertext Secure En-
cryption. One of the recent celebrated applications of identity-based encryption
(IBE) is the work due to Canetti, Halevi, and Katz [6, 2] showing an elegant
black-box transformation from any IBE (plus a one-time signature) into an en-
cryption scheme without giving up its efficiency. We will refer to this as the CHK
transformation. If the IBE scheme is weakly (selective-identity) chosen-plaintext
secure then the resulting encryption scheme is chosen-ciphertext secure. Efficient
constructions of IBE schemes in the standard model were recently developed by
Boneh and Boyen [1] so the CHK transformation provides further alternative
instances of chosen-ciphertext secure encryption schemes in the standard model.

Boneh and Katz [4] later improve the efficiency of the CHK transformation
by basically replacing the one-time signature by a message authentication code
(MAC). The latter BK transformation results in shorter ciphertexts and more
efficient encryption/decryption.

Specific instantiations of the CHK transformation. Until now there are
only two different identity-based encryption schemes known, both due to Boneh
and Boyen [1]. The CHK transformation maps each individual IBE scheme to a
new chosen-ciphertext secure encryption scheme [6]. In particular, in Chapter 7
of [2] the following two encryption schemes are proposed:

1. IBE-to-PKE[BB1]: the first Boneh/Boyen IBE scheme [1] plugged into the
CHK-transformation

2. IBE-to-PKE[BB2]: the second Boneh/Boyen IBE scheme [1] plugged into
the CHK-transformation

It is claimed in [6, 4, 2] that the two encryption schemes have different properties.
In particular, the second scheme offers more efficient decryption while relying
on a stronger assumption.

Revisiting the IBE-to-PKE[BB1] scheme. Boyen, Mei, and Waters [5] re-
cently revisited the IBE-to-PKE[BB1] scheme, i.e. the encryption scheme ob-
tained from the CHK transformation instantiated with the first IBE scheme
from [1]. By avoiding the CHK transformation they show how to make the re-
sulting scheme more efficient in terms of computational time and ciphertext ex-
pansion. In particular, they come up with a chosen-ciphertext secure encryption
scheme with security based on the Bilinear Decisional Diffie-Hellman (BDDH)
assumption in the standard model.

On the Limitations of the Spread of an IBE-to-PKE Transformation 3

1.1 Our Results

Revisiting the IBE-to-PKE[BB2] scheme. In this work we reconsider the
IBE-to-PKE[BB2] scheme, i.e. the encryption scheme obtained by the CHK-
transformation instantiated with the second IBE scheme from Boneh and Boyen.
Similar to the work from [5] we obtain a direct construction avoiding the CHK
transformation. The resulting scheme is again simple and practical.

We can prove security of the resulting encryption scheme with respect to a
weaker assumption than the security assumption needed for the IBE scheme. In
particular, our scheme can be proved secure under the new square Bilinear De-
cisional Diffie-Hellman (square-BDDH) assumption, whereas the original IBE
scheme can only be proved secure under the q-Bilinear Decisional Diffie-Hellman
(q-BDDHI) assumption.1 (We stress that unfortunately our results do not im-
ply that the underlying IBE scheme can be proved secure under this weaker
assumption.)

Comparison with the encryption scheme from Boyen, Mei, and Wa-
ters. Surprisingly, our simplified IBE-to-PKE[BB2] encryption scheme turns
out to be (nearly) equivalent to the encryption scheme from Boyen, Mei, and
Waters [5] which itself was a simplification of the IBE-to-PKE[BB1] scheme.

Our main result can be formulated as follows: In contrast to what was
claimed in [6, 4, 2] for the two different IBE schemes BB1 and BB2, we have

IBE-to-PKE[BB1] ≈ IBE-to-PKE[BB2] ,

where “≈” reads “nearly converges to” and will be further explained below. In
other words, the CHK IBE-to-PKE transformation does not seem to spread the
IBE schemes well over all encryption schemes, i.e. the transformation maps the
two different IBE schemes from Boneh and Boyen to nearly the same encryption
scheme.

We stress that the equivalence is not obtained by “simplifying away” all
possible differences between the two schemes. In fact, the “core” of the two
schemes is the same and already the raw schemes IBE-to-PKE[BB1] and IBE-to-
PKE[BB2] can be shown to be equivalent by removing the unnecessary overhead
of the two respective decryption algorithms.

We now explain the meaning of the above “≈”. There is only a small difference
between the two simplified schemes “hidden” in the respective key generation
algorithms. Intuitively, in the BMW construction key generation involves the
generation of one more independent random element (let’s call it y), whereas
our scheme “recycles” the randomness. More precisely, this value y contains
some redundant information and therefore depends on some other element from
the key.

Complexity Theoretic Assumptions. We study the relations between all
mentioned assumptions, in particular showing the (assumption-wise) hierarchy
q-BDDHI (for any q ≥ 1) implies square-BDDH implies BDDH.
1 Here q is an upper bound on the decryption queries made by an adversary attacking

the choosen-ciphertext security of the scheme.

4 E. Kiltz

Discussion. We study the spread of the CHK transformation, i.e. how well the
CHK transformation spreads different IBE schemes over the set of all encryp-
tion schemes. Our results indicate that the CHK transformation maps the two
different IBE schemes to one single encryption scheme. Unfortunately these two
IBE schemes are the only IBE schemes we know until today.

In light of the number of different encryption schemes secure against chosen-
ciphertext attacks in the standard model the implication of our result is purely
destructive. Due to its similarities we propose to “remove” the IBE-to-PKE[BB2]
scheme from our toolbox of different practical encryption schemes: instead of two
we only get one new scheme from identity-based techniques.

From a theoretical side we find it interesting that two completely different
identity-based encryption schemes finally lead to very similar encryption schemes
after applying the CHK transformation and some simplifications. Again we stress
that this does not imply that the two different IBE schemes from [1] also converge
to one (and there are reasons that they don’t).

Presentation. To simplify our presentation all schemes will be described as key
encapsulation mechanisms rather than full public-key encryption schemes. We
remark that since a secure key encapsulation mechanism plus a secure symmetric
encryption scheme implies secure public-key encryption this is a more general
concept.

In Section 2 we formally define the concept of a key encapsulation mechanism.
Next, in Section 3 we state all relevant complexity-theoretic assumptions and
classify them by their strength. The two schemes, the original one by Canetti,
Halevi, and Katz, and our proposed simplification are presented in Section 4.
We conclude this paper with an efficiency comparison of the two schemes in
Section 5.

2 Notation and Definitions

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s

$← S
denotes the operation of picking an element s from S uniformly at random.
We write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . .

and by z
$← A(x, y, . . .) we denote the operation of running A with inputs

(x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate
that A is an algorithm with inputs x, y, . . . and access to oracles O1,O2, . . . and
by z

$← AO1,O2,...(x, y, . . .) we denote the operation of running A with inputs
(x, y, . . .) and access to oracles O1,O2, . . ., and letting z be the output.

We now formally introduce the notions of a key-encapsulation mechanism
together with a security definition.

2.1 Public Key Encapsulation Schemes

A public-key encapsulation mechanism (KEM) KEM = (KEMkg,KEMencaps,
KEMdecaps) with key-space KeySp(k) consists of three polynomial-time algo-

On the Limitations of the Spread of an IBE-to-PKE Transformation 5

rithms. Via (pk , sk) $← KEMkg(1k) the randomized key-generation algorithm
produces keys for security parameter k ∈ N; via (K,C) $← KEMencaps(pk)
a key K ∈ KeySp(k) together with a corresponding ciphertext C is created;
via K ← KEMdecaps(sk ,C) the possessor of secret key sk decrypts ciphertext
C to get back a key. For consistency, we require that for all k ∈ N, and all
(K,C) $← KEMencaps(pk) we have Pr [KEMdecaps(sk ,C) = K] = 1, where the
probability is taken over the choice of (pk , sk) $← KEMkg(1k), and the coins of
all the algorithms in the expression above.

Formally, we associate with an adversary A the following experiment:

Experiment Expkem-cca
KEM ,A (k)

(pk , sk) $← KEMkg(1k)
K∗

0
$← KeySp(k) ; (K∗

1 ,C ∗) $← KEMencaps(pk)
δ

$← {0, 1}
δ′

$← ADec(pk ,K∗
δ ,C ∗)

If δ 6= δ′ then return 0 else return 1

where the oracle Dec(C) returns K
$← KEMdecaps(sk ,C) with the restriction

that A is not allowed to query oracle Dec(·) for the target ciphertext C ∗. We
define the advantage of A in the experiment as

Advkem-cca
KEM ,A (k) =

∣∣∣∣Pr
[
Expkem-cca

KEM ,A (k) = 1
]
− 1

2

∣∣∣∣ .

A KEM scheme KEM is said to be secure against adaptively-chosen ciphertext
attacks if the advantage function Advkem-cca

KEM ,A (k) is a negligible function in k for
all polynomial-time adversaries A.

2.2 Target Collision Resistant Hash Functions

Let (CRs)s∈S be a family of hash functions for security parameter k and with seed
s ∈ S = S(k). F is said to be collision resistant if, for a hash function CR = CRs

(where the seed is chosen at random from S), it is infeasible for any polynomial-
time adversary to find two distinct values x 6= y such that CR(x) = CR(y).

A weaker notion is that of target collision resistant hash functions. Here it
should be infeasible for a polynomial-time adversary to find, given a randomly
chosen element x and a randomly drawn hash function TCR = TCRs, a distinct
element y 6= x such that TCR(x) = TCR(y). (In collision resistant hash functions
the value x may be chosen by the adversary.) Such hash functions are also called
universal one-way hash functions [12] and can be built from arbitrary one-way
functions [12, 15]. We define

Advhash-tcr
TCR,A (k) = Pr[A finds a collision].

Hash function family TCR is said to be a target collision resistant if the advan-
tage function Advhash-tcr

TCR,A is a negligible function in k for all polynomial-time
adversaries A.

6 E. Kiltz

3 Assumptions

In this section we give a parameter generating algorithm for bilinear groups and
pairings and state our complexity assumptions.

3.1 Parameter generation algorithms for Bilinear Groups.

The scheme will be parameterized by a bilinear parameter generator. This is a
polynomial-time algorithm BilinGen that on input 1k returns the description of
a multiplicative cyclic group G1 of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group GT of the same order, a random
element g that generates G1, and a bilinear pairing ê: G1 × G1 → GT . This
bilinear pairing should be efficiently computable and satisfy the conditions below.

Bilinear: For all g, h ∈ G1, x, y ∈ Z, ê(gx, hy) = ê(g, h)xy

Non-degenerate: ê(g, g) 6= 1G2

We use G∗
1 to denote G1 \ {0}, i.e. the set of all group elements except the

neutral element. Throughout the paper we use BG = (G1, GT , p, ê, g) (obtained
by running BilinGen) as shorthand for the description of bilinear groups.

3.2 The square BDDH assumption

Let BG be the description of bilinear groups and let g ∈ G1 be a random element
from group G1. Consider the following problem: Given (g, ga, gb,W) ∈ G3

1 ×GT

as input, output yes if W = ê(g, g)a2b and no otherwise. More formally we
associate with an adversary B the following experiment:

Experiment Expsbddh
BilinGen,B(1k)

BG $← BilinGen(1k)
a, b, w

$← Z∗p
γ

$← {0, 1} ; if γ = 0 then W ← ê(g, g)a2b else W ← ê(g, g)w

γ′
$← B(1k, BG , g, ga, gb,W)

If γ 6= γ′ then return 0 else return 1
We define the advantage of B in the above experiment as

Advsbddh
BilinGen,B(k) =

∣∣∣∣Pr
[
Expsbddh

BilinGen,B(1k) = 1
]
− 1

2

∣∣∣∣ .

We say that the Square Bilinear Decision Diffie-Hellman (square BDDH) as-
sumption relative to generator BilinGen holds if Advsbddh

BilinGen,B is a negligible func-
tion in k for all polynomial-time adversaries B.

3.3 The BDDH assumption

Let BG be the description of bilinear groups and let g ∈ G1 be a random
element from group G1. Consider the following problem formalized by Boneh
and Franklin [3]: Given (g, ga, gb, gc,W) ∈ G4

1 × GT as input, output yes if
W = ê(g, g)abc and no otherwise. The corresponding BDDH assumption can be
formalized the same way as the square BDDH assumption in the last paragraph.

On the Limitations of the Spread of an IBE-to-PKE Transformation 7

3.4 The q-BDDHI assumption

Let BG be as above and let z ∈ G1 be a random element from group G1. For
a function q = q(k) ≥ 1 polynomial in the security parameter k consider the
following problem introduced by Boneh and Boyen [1]: Given (z, zy, z(y2), . . . ,
z(yq),W) ∈ Gq+1

1 ×GT as input, output yes if W = ê(z, z)1/y and no otherwise.

3.5 Relation between the Assumptions

The next lemma classifies the strength of the different assumptions we intro-
duced. Here “A ≤ B” means that assumption B implies assumption A, i.e. as-
sumption B is a stronger assumption than A.

Lemma 1. BDDH ≤ square BDDH ≤ 1-BDDHI ≤ 2-BDDHI . . .

In partiuclar this means that square BDDH is a stronger assumption than
BDDH, but weaker than q-BDDHI (for any q ≥ 1). The simple proof of Lemma 1
is postponed until Appendix B.

4 Key Encapsulation based on the second Boneh/Boyen
IBE scheme

In this section we revisit the encryption scheme from [6, 4] obtained by applying
the CHK transformation to the second Boneh/Boyen IBE scheme from [1]. As
already mentioned in the Introduction the scheme is presented as a key encap-
sulation mechanism (KEM) instead of an encryption scheme as in the original
paper. After reminding the reader of the original scheme we then move on to
present our simplifications.

For both schemes let the global system parameters be BG = (G1, GT , p, ê, g),
a random bilinear group obtained by running BilinGen(1k).

4.1 CHK2: the original scheme from [6]

In this construction, we use a one-time signature scheme OTS = (Skg,Sign,Vfy).
The key generation algorithm Skg is run to obtain a random pair of verifica-
tion/signing keys (v , s) $← Skg(1k); the signing key s is used to sign a message
M to obtain a signature σ

$← Signs(M) on a message M ; using the public veri-
fication key v , a signature σ can be verified by running Vfyv (M,σ). We require
that this scheme be secure in the sense of strong unforgeability, see [6] for exact
definitions and constructions (details can be skipped here).

The key encapsulation mechanism proposed by Canetti, Halevi, and Katz [6]
which we will denote by CHK2 is given in Fig. 1 (in order to simplify the com-
parison, compared to [6] we made some slight change of variables). It is straight-
forward to verify the correctness of the scheme. In terms of security the following
theorem was derived in [6]:

8 E. Kiltz

KEMkg(1k)

x1, x2
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; z ← ê(h2, h2)
pk ← (h1, h2, z) ; sk ← (x1, x2)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

(v , s)
$← Skg(1k) ; c2 ← hr

1 · hv·r
2

K ← zr

σ
$← Signs(c1||c2)

C ← (c1, c2, v , σ)
Return (K,C)

KEMdecaps(sk ,C)
Parse C as (c1, c2, v , σ)
If Vfyv (c1||c2, σ) = reject

then return reject.
Else

r′
$← Zp

K ← ê
“
cr′
1 c2, h

1/(v+x1/x2+r′/x2)
2

”
Fig. 1. The original CHK2 scheme.

Theorem 2. Assuming the q-BDDHI assumption holds relative to the generator
BilinGen, OTS is a strong, one-time signature scheme, then the KEM from Fig. 1
is chosen-ciphertext secure. Here q = q(k) is an upper bound on the decapsulation
queries made by an adversary attacking the scheme.

4.2 CHK2’: An equivalent Depcapsulation Algorithm

A closer inspection of the decapsulation algorithm of the CHK2 scheme from
Fig. 1 shows that it implicitly rejects inconsistent ciphertexts (i.e., ciphertexts
that were not obtained running the encapsulation algorithm with the correct
public key) by returning a random session key in that case. Once consistency of
the ciphertext is established, recovering the session key can be greatly improved.

For a value v ∈ Zp we have

cx1+x2v
1 = c2 ⇔ ê(g, cx1+x2v

1) = ê(g, c2)

⇔ ê(gx1+x2v , c1) = ê(g, c2)

⇔ ê(h1h
v
2 , c1) = ê(g, c2).

Therefore it can be publicly verified (using the public key only) if cx1+x2v
1 = c2

by checking if ê(h1h
v
2 , c1) = ê(g, c2). A tuple (c1, c2) meeting this property is

dubbed to be consistent with v . Note that any tuple (c1, c2) correctly generated
by the encapsulation algorithm is always consistent with its verification key v . (A
correctly generated ciphertext has the form C = (c1, c2, v , σ) = (gr, hr

1 ·hvr
2 , v , σ).

Therefore cx1+x2v
1 = (gr)x1+x2v = (gx1)r(gx2v)r = hr

1 · hrv
2 .)

An equivalent way to compute the session key K, given that the signature was
successfully verified, is as follows: First, a random key K is returned if (c1, c2)
is not consistent with v , i.e. if cx1+x2·v

1 6= c2 which can be checked as bescribed
above. Otherwise, the key is recovered as K = ê(hx2

2 , c1).

On the Limitations of the Spread of an IBE-to-PKE Transformation 9

We claim that this decapsulation algorithm is equivalent to the one from
CHK2 (Fig. 1). It is easy to verify that

ê(cr′

1 c2, h
1/(v+x1/x2+r′/x2)
2) = ê(hx2

2 , c1)∆(r′),

where ∆(r′) = (r′ + logc1
c2)/(r′ + x1 + v · x2) is a random element from Zp if

cx1+x2v
1 6= c2 (i.e., if (c1, c2) is not consistent with v) and ∆(r′) = 1 otherwise.

We have seen that if (c1, c2) is consistent with v decapsulation computes the key
K as

= ê(hx2
2 , gr)1

= ê(h2, g
x2)r

= ê(h2, h2)r = zr ,

as the key computed in the encapsulation algorithm. This shows correctness.
We note that, equivalently, instead of returning a random key K the decap-

sulation algorithm could as well reject the ciphertext.

4.3 CHK2”: our simplification

In this section we show how to avoid the one-time signature scheme by replacing
it with a (determinstic) target collision resistant hash function applied to parts
of the ciphertext. We note that the usage of the hash function is somewhat
reminiscent of the Cramer/Shoup scheme [7].

Let TCR : G1 → Zp be a target collision resistant hash function. Our simpli-
fication of the above construction is depicted in Fig. 2. Correctness of decapsu-

KEMkg(1k)

x1, x2
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; z ← ê(h2, h2)
pk ← (h1, h2, z) ; sk ← (x1, x2, y = hx2

2)

Return (pk , sk)
KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

v ← TCR(c1) ; c2 ← hr
1 · hv·r

2

K ← zr

C ← (c1, c2)
Return (C , K)

KEMdecaps(sk ,C)
Parse C as (c1, c2)
v ← TCR(c1)

If cx1+x2·v
1 6= c2 then reject

Else K ← ê(y, c1)
Return K

Fig. 2. CHK2”: Our simplification of CHK2.

lation follows from the correctness of the last scheme.

10 E. Kiltz

Let C = (c1, c2) be an arbitrary ciphertext and let v = TCR(c1). We call C
consistent if it passes the verification check in the decapsulation algorithm, i.e.
if cx1+x2v

1 = c2. By the discussion above we note that our KEM allows for public
verification of the consistency of a ciphertext by testing if ê(h1h

v
2 , c1) = ê(g, c2).

This public consistency check will play a crucial role in the proof of security. We
note that the original CHK2 scheme from Fig. 1 already has a similar public
verification property (using the one-time signature scheme).

4.4 Security

Theorem 3. Assume TCR is a target collision resistant hash function. Under
the square BDDH assumption relative to the generator BilinGen the KEM from
Fig. 2 is secure against chosen-ciphertext attacks.

The security reduction is tight. The proof of Theorem 3 is given in Appendix A.
We will try to provide some intuition instead.

Security of the scheme CHK2’. Let C ∗ = (c∗1, c
∗
2, v

∗, σ∗) be the challenge
ciphertext output by the simulator in the security experiment. It is clear that,
without any decryption oracle queries, the value of the bit δ remains hidden to
the adversary. This is so because (c∗1, c

∗
2) comes from a chosen-plaintext secure

encryption scheme, v∗ is independent of the message, and σ∗ is the result of
applying the one-time signing algorithm to c∗1||c∗2.

We claim that decryption oracle queries cannot further help the adversary
in guessing the value of δ. Consider an arbitrary ciphertext query (c1, c2, v , σ) 6=
(c∗1, c

∗
2, v

∗, σ∗) made by the adversary during the experiment. If v = v∗ then
(c1, c2, σ) 6= (c∗1, c

∗
2, σ

∗) and the decryption oracle will answer reject since the
adversary is unable to forge a new valid signature σ with respect to v∗. Now
let v 6= v∗. Intuitively, a query with v 6= v∗ does not help the adversary since
the underlying IBE scheme is selective-identity secure. In a nutshell, this IBE
security property exactly translates to what we need here. I.e, any decryption
query made for the “identity” v distinct from “target identity” v∗ (which is is
completely independent of the adversary’s view until it sees the target ciphertext;
therefore the simulator may as well choose v∗ in the beginning of the experiment)
does not help the adversary further. Details will be given in the proof.

Security of the scheme CHK2”. To argue for security we again claim that
decryption oracle queries cannot further help the adversary in guessing the value
of δ. If v 6= v∗ we can still argue as in the CHK2’ scheme. If v = v∗ then by the
target collision resistance of TCR we may assume c1 = c∗1. In this case consistency
implies c∗2 = c2 and therefore C ∗ = C .

5 Comparison and Efficiency

5.1 Relation between CHK2 and CHK2”

In terms of functionality of the CHK2” scheme we note that the element y =
hx2

2 is contained in the secret key for the sole reason of improving efficiency of

On the Limitations of the Spread of an IBE-to-PKE Transformation 11

decapsulation when recovering the key as K = ê(hx2
2 , c1) = ê(y, c1). Apart from

that, key-generation is equivalent to the CHK2 scheme from Section 4.1.
The value y gives rise to a tradeoff between the length of the secret key

and decryption speed. In particular, the secret value y = hx2
2 can always be

reconstructed by the owner of the secret key on-line during decapsulation. This
variant makes the secret-key one element shorter with the drawback of one more
exponentiation during decapsulation.

Every IBE scheme can be viewed as a more general concept, a tag-based en-
cryption (TBE) scheme. It was recently shown [10] that TBE is already sufficient
for the CHK transformation to obtain a chosen-ciphertext secure encryption
scheme. We note that the TBE scheme implied by the BB2 IBE scheme already
can be proved secure under the (weaker) square BDDH assumption meaning
that the original CHK2 scheme is also secure under square BDDH. To be more
precise, in the transformation chain IBE ⇒ TBE ⇒ “chosen-ciphertext secure
encryption”, the security improvement is already obtained after the first impli-
cation.

5.2 Relation between CHK1” and CHK2”

As we instantly notice, our CHK2” scheme from Section 4.3 is very similar to
the scheme from Boyen, Mei, and Waters [5] which we will refer to as CHK1”.
(For completeness we remind the reader of CHK1” in Appendix C.) Let us point
out the differences.

The only difference is that the key generation algorithm of CHK1” chooses (in
an information theoretical sense) a new independent secret value y. In contrast,
our scheme derives the secret value y = hx2

2 from h2 and x2, i.e. the secret key
contains some redundant information. (The sole reason the value y is included
in our scheme is to save one exponentiation in the decapsulation algorithm.)
This dependence of y is the reason why we need a stronger assumption to prove
security. Performance of the two KEMs is exactly the same.

5.3 Relation between CHK1 and CHK2

We denote by CHK1 the scheme obtained by plugging the first Boneh/Boyen IBE
scheme into the CHK transformation. We note that the CHK1 scheme (which
for completeness is also presented in Appendix C) is already equivalent to the
CHK2 scheme.

Similar to our scheme CHK2’ between CHK2 and CHK2” from Section 4.4
(which was equivalent to CHK2) we can also build a scheme CHK1’ between
CHK1 and simple CHK1 scheme that still uses the one-time signature but sim-
plifies decryption by equivalently replacing the original randomized decryption
by a consistency check plus a deterministic computation of the key. Again this
scheme CHK1’ can be shown to be equivalent to CHK1.

Both schemes, CHK1’ and CHK2’ already give nearly the same schemes with
the same small difference as the two schemes CHK1” and CHK2”.

12 E. Kiltz

5.4 Efficiency

We summarize our results and present a quick efficiency comparison of our pro-
posed scheme with the original scheme from Canetti, Halevi, and Katz [6].

The scheme CHK2 is the scheme obtained from the second Boneh/Boyen
IBE scheme plugged into the CHK transformation from Section 4.1. We give the
performance values for the more MAC-based BK transformation [4]. The scheme
CHK2” from Section 4.3 is our simplified version of CHK2. For comparison the
schemes CHK1 and its simplified variant CHK1” are given in Appendix C. For
comparison we borrowed some figures from [2, 5]. Ciphertext overhead represents
the difference (in bits) between the ciphertext length and the message length,
and |p| is the length of a group element.

Scheme Assumption Encapsulation Decapsulation Ciphertext Keysize
#pairings + #[multi,reg]-exp + ... Overhead (pk, sk)

CHK2” square-BDDH 0 + [1, 2] + TCR 1 + [0, 1] + TCR 2|p| (3, 3)
CHK2 q-BDDHI 0 + [1, 2] + MAC 1 + [0, 2] + MAC 2|p| + 768 (3, 2)
CHK1” [5] BDDH 0 + [1, 2] + TCR 1 + [0, 1] + TCR 2|p| (3, 3)
CHK1 BDDH 0 + [1, 2] + MAC 1 + [1, 0] + MAC 2|p| + 768 (3, 3)

5.5 Conclusion

We have shown that, after removing an unnecessary decryption overhead, CHK1
is nearly the same scheme as CHK2. Furthermore, their respective simplifications
CHK1” [5] and CHK2” are also nearly the same. This contradicts the statement
from [6, 4, 2] that the two schemes are different schemes, with different perfor-
mance and security properties. In our point of view the fact that the CHK
IBE-to-PKE transformation maps two different IBE schemes to nearly the same
encryption scheme is very surprising.

For any new IBE scheme, even though it seems to be very different from
the two known IBE schemes, care should be taken when claiming that the CHK
transformation applied to it yields a new encryption scheme.

5.6 Acknowledgments

We thank Ronald Cramer for proposing the title and the anonymous PKC ref-
erees for their detailed comments. This research was supported by the research
program Sentinels (http://www.sentinels.nl). Sentinels is being financed by
Technology Foundation STW, the Netherlands Organization for Scientific Re-
search (NWO), and the Dutch Ministry of Economic Affairs.

References

1. D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption with-
out random oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 223–238. Springer-Verlag, May 2004.

On the Limitations of the Spread of an IBE-to-PKE Transformation 13

2. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. Accepted to SIAM Journal on Computing, January
2006.

3. D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

4. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 87–103. Springer-Verlag, Feb. 2005.

5. X. Boyen, Q. Mei, and B. Waters. Simple and efficient CCA2 security from IBE
techniques. In ACM Conference on Computer and Communications Security—
CCS 2005, pages 320–329. New-York: ACM Press, 2005.

6. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 207–222. Springer-Verlag, May 2004.

7. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 13–25. Springer-Verlag, Aug. 1998.

8. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

9. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991.

10. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer-
Verlag, Mar. 2006.

11. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442.
Springer-Verlag, Aug. 2004.

12. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In 21st ACM STOC, pages 33–43. ACM Press, May 1989.

13. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

14. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 433–444. Springer-Verlag, Aug. 1991.

15. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, pages 387–394. ACM Press, May 1990.

A Proof of Theorem 3

Suppose there exists a polynomial time adversary A that breaks the chosen-
ciphertext security of the encapsulation scheme with (non-negligible) advantage
Advkem-cca

KEM ,A (k). We show that there exists an adversary B that runs in about
the same time as A and runs adversary A as a subroutine to solve a random
instance of the square BDDH problem with advantage

Advsbddh
G,B (k) ≥ Advkem-cca

KEM ,A (k)−Advhash-tcr
TCR,H (k) . (1)

Now Eqn. (1) proves the Theorem.

14 E. Kiltz

We now give the description of adversary B. Adversary B inputs an instance
of the square BDDH problem, i.e. B inputs the values (1k, BG , g, ga, gb,W).
B’s goal is to determine whether W = ê(g, g)a2b or W is a random element in
GT . Adversary B runs adversary A simulating its view as in the original KEM
security experiment as follows:

Key Generation & Challenge. Initially adversary B picks a random value
d ∈ Z∗p and defines the target ciphertext

C ∗ = (c∗1 = gb, c∗2 = (gb)d) . (2)

and the challenge key as K∗ = W . We denote v = TCR(c∗1) as the target
tag (associated with the target ciphertext). The public key pk = (h1, h2) is
defined as

pk = (h1 = (ga)−v∗ · gd), h2 = ga, z = ê(ga, ga)) . (3)

This implicitly defines the secret key sk = (x1, x2, v) as x2 = a, x1 =
logg(h1) = −v∗a + d, and v = hx2

2 = g(a2) where x1, x2 and v are not
known to adversary B. Note that the public key is identically distributed as
in the original KEM.
With each ciphertext C = (c1, c2) we associate a tag v = TCR(c1). Recall
that we call a ciphertext consistent (i.e., it passes the consistency test in the
decapsulation algorithm) if cx1+x2·v

1 = c2. Note that the way the keys are
setup this condition can be rewritten as

c2 = cx1+x2v
1 = cx2v−v∗x2+d

1 = (cx2
1)v−v∗ · cd

1 . (4)

Given a consistent ciphertext C = (c1, c2) with associated tag v 6= v∗ the
session key K = ê(y, c1) can alternatively be computed by Eqn. (4) as

K = ê(y, c1) = ê(hx2
2 , c1) = ê(h2, c

x2
1) = ê(h2, c2/cd

1)
(v−v∗)−1

. (5)

By Eqn. (4) and since v∗ = TCR(c∗1) the challenge ciphertext C ∗ = (c∗1, c
∗
2) =

(gb, (gb)d) = (c∗1, (c
∗
1)

d) is consistent. If W = ê(g, g)a2b then it follows by
Eqn. (3) (since x2 = a and h2 = gx2) that C ∗ = (gb, (gb)d) is a correct
ciphertext of key K∗ = W = ê(g, g)a2b = ê(ga, ga)b = zb, distributed as
in the original experiment. On the other hand, when W is uniform and
independent in GT then C ∗ is independent of K∗ = W in the adversary’s
view.
Adversary B runs A on input (pk ,K∗,C ∗) answering to its queries as follows:

Decryption queries. The KEM decapsulation queries are simulated by B as
follows: Let C = (c1, c2) be an arbitrary ciphertext submitted to the decap-
sulation oracle Dec(·). First B performs a consistency check as explained in
Section 4.3, i.e. it checks if ê(h1h

v
2 , c1) = ê(g, c2) using the bilinear map from

BG . If C is not consistent then B returns reject. Otherwise, if the ciphertext
is consistent B computes v = TCR(c1) and distinguishes the following three
cases:

On the Limitations of the Spread of an IBE-to-PKE Transformation 15

Case 1: v = v∗ and c1 = c∗1: adversary B rejects the query. In this case
consistency (c.f. Eqn. (4)) implies c2 = cd

1 = (c∗1)
d = c∗2 and hence C =

C ∗ and the query made by A is illegal. Therefore it may be rejected by
B.

Case 2: v = v∗ and c1 6= c∗1: adversary B found a collision c1 6= c∗1 in TCR
with TCR(c1) = TCR(c∗1). In that case B returns the collision and aborts.

Case 3: v 6= v∗: adversary B computes the correct session key by Eqn. (5)
as K ← ê(h2, c2/cd

1)
(v−v∗)−1

.
This completes the description of the decapsulation oracle.
We have shown that unless B finds a collision in TCR (Case 2) the simulation
of the decapsulation oracle is always perfect, i.e. the output of oracle Dec(C)
is identically distributed as the output of KEMdecaps(sk ,C).

Guess. Eventually, A outputs a guess δ′ ∈ {0, 1} where δ′ = 1 means that
K∗ is the correct key. Algorithm B concludes its own game by outputting
γ′ = δ′ where γ′ = 1 means that W = ê(g, g)a2b and γ′ = 0 means that W
is random.

This completes the description of adversary B.

Analysis. We have shown that as long as there is no hash collision in TCR
found by B, adversary A’s view in the simulation is identically distributed to its
view in the real attack game.

Note that c∗1 is a random element from G1 (provided from outside of B’s view),
therefore finding a value c1 with TCR(c1) = TCR(c∗1) really contradicts to the
security property of the target collision resistant hash function. The probability
that B finds a collision in the hash function TCR is bounded by Advhash-tcr

TCR,H (k),
where H is an adversary against the target collision resistance of TCR, running
in about the same time as B.

Define ”B wins” to be the event that B wins its square BDDH game, i.e. it
outputs δ′ = 1 if W = ê(g, g)a2b and δ′ = 0 if W is random in GT . Assume there
was no hash collision found by B. On the one hand, if W is uniform and indepen-
dent in GT then the challenge ciphertext C ∗ is independent of K∗ = W in the
adversary’s view. In that case we have Pr [B wins] = Pr [δ′ = 0] = 1

2 . On the
other hand, when W = ê(g, g)a2b then C ∗ is a correct ciphertext of the challenge
key K∗, distributed as in the original experiment. Then, by our assumption, A
must make a correct guess δ′ = 1 with advantage at least Advkem-cca

KEM ,A (k) and we
have |Pr [B wins]− 1

2 | = |Pr [δ′ = 1]− 1
2 | ≥ Advkem-cca

KEM ,A (k).
Therefore, adversary B’s advantage in the square BDDH game is bounded

by Advsbddh
G,B (k) ≥ Advkem-cca

KEM ,A (k) −Advhash-tcr
TCR,H (k) which proves Eqn. (1) and

completes the proof of the theorem.

B Proof of Lemma 1

The implications BDDH ≤ square BDDH and 1-BDDHI ≤ 2-BDDHI ≤ 3-
BDDHI ≤ . . . are obvious. To prove “square BDDH assumption ≤ 1-BDDHI

16 E. Kiltz

assumption”, assume there exists a polynomial-time adversary A that breaks
the square BDDH assumption with non-negliglible probability of success. We
show that then there exists a polynomial-time adversary B with oracle access to
A that breaks the 1-BDDHI assumption. Let (h, hz,W) ∈ G2

1 × GT be an in-
put instance of the 1-BDDHI problem given to B. B’s goal is to decide whether
W = ê(h, h)1/z or W is random. B picks two random values x0, y0 and define its
output as the bit γ := γ′, where γ′ is input from A as

γ′ ← A(hz, hx0 , hy0 ,W ′ = W x2
0y0).

Defining g = hz (and hence h = g1/z), x = x0/z, and y = y0/z we have
(hz, hx0 , hy0) = (g, (g1/z)x0 , (g1/z)y0) = (g, gx, gy). If W = ê(h, h)1/z then

W ′ = W x2
0y0 = ê(h, h)1/z·x2

0y0 = ê(g, g)1/z3·x2
0y0 = ê(g, g)x2y.

If W is a random element, so is W ′. Therefore B solves 1-BDDHI with the
same success probability as A solves square BDDH, which was non-negliglible
by assumption. This proves the lemma.

C The schemes CHK1 and CHK1”

For completeness we include the complete description of the schemes CHK1 [6]
and CHK1” [5] in Fig. 3 and Fig. 4, respectively.

KEMkg(1k)

x, x1, x2,
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; y ← gx ; z ← ê(g, y)
pk ← (h1, h2, z) ; sk ← (x1, x2, x)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

(v , s)
$← Skg(1k) ; c2 ← hr

1 · hv·r
2

K ← zr

σ
$← Signs(c1||c2)

C ← (c1, c2, v , σ)
Return (K,C)

KEMdecaps(sk ,C)
Parse C as (c1, c2, v , σ)
If Vfyv (c1||c2, σ) = reject

then return reject.
Else

r′
$← Zp

K ← ê
“
c

x+r′(x1+x2·v)
1 · c−r′

2 , g
”

Fig. 3. The CHK1 scheme from [6].

Theorem 4 ([6]). Assume OTS is a strong, one-time signature scheme. Under
the BDDH assumption relative to generator G, the CHK1 scheme from Fig. 3 is
secure against chosen-ciphertext attacks.

Theorem 5 ([5]). Under the BDDH assumption relative to generator G, the
CHK1” scheme from Fig. 4 is secure against chosen-ciphertext attacks.

On the Limitations of the Spread of an IBE-to-PKE Transformation 17

KEMkg(1k)

x1, x2, x
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; y ← gx ; z ← ê(g, y)
pk ← (h1, h2, z) ; sk ← (x1, x2, y)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

v ← TCR(c1) ; c2 ← hr
1 · hv·r

2

K ← zr

C ← (c1, c2)
Return (C , K)

KEMdecaps(sk ,C)
Parse C as (c1, c2)
v ← TCR(c1)

If cx1+x2·v
1 6= c2 then reject

Else K ← ê(y, c1)
Return K

Fig. 4. The CHK1” scheme from [5].

