
New Chosen-Ciphertext Attacks on NTRU

Nicolas Gama1,Phong Q. Nguyen2

1 École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
nicolas.gama@ens.fr

2 CNRS/École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen

Abstract. We present new and efficient key-recovery chosen-ciphertext
attacks on NTRUencrypt. Our attacks are somewhat intermediate be-
tween chosen-ciphertext attacks on NTRUencrypt previously published
at CRYPTO ’00 and CRYPTO ’03. Namely, the attacks only work in the
presence of decryption failures; we only submit valid ciphertexts to the
decryption oracle, where the plaintexts are chosen uniformly at random;
and the number of oracle queries is small. Interestingly, our attacks can
also be interpreted from a provable security point of view: in practice,
if one had access to a NTRUencrypt decryption oracle such that the
parameter set allows decryption failures, then one could recover the se-
cret key. For instance, for the initial NTRU-1998 parameter sets, the
output of the decryption oracle on a single decryption failure is enough
to recover the secret key.

1 Introduction

NTRU [8] is one of the fastest public-key cryptosystems known, offering both
encryption (under the name NTRUencrypt) and digital signatures (under the
name NTRUSign [7]) using inexpensive operations on polynomials with small
coefficients. Besides efficiency, another interesting feature of NTRU compared to
traditional public-key cryptosystems based on factoring or discrete logarithm is
its potential resistance to quantum computers: no efficient quantum algorithm
is known for the NP-hard lattice problems related to the security of NTRU. The
security and insecurity of NTRU primitives has been an active research topic
in the past 10 years, and NTRU is now being considered by the IEEE P1363.1

standards [12].
While cryptanalysis has been rather successful on NTRU signatures (the ba-

sic version of NTRUSign has recently been broken in [14], and all the versions
of its ancestor NSS were successfully attacked [4,5]), it can be argued that no
significant weakness has ever been found on NTRU encryption. To date, the
most dangerous attacks on NTRUencrypt are perhaps key-recovery chosen-
ciphertext attacks. The first key-recovery chosen-ciphertext attacks were found
by Jaulmes and Joux [13] at CRYPTO ’00, and used few oracle queries. However,
the attacks used invalid ciphertexts of very special shape, and do not seem to
work for all NTRU instantiations. In particular, they can easily be thwarted by

2

an appropriate padding scheme (as is often the case in public-key encryption),
which is anyway necessary to achieve strong security notions. At CRYPTO ’03,
Howgrave-Graham et al. [11] realized that an unusual property of NTRUen-

crypt known as decryption failure gave rise to much more powerful chosen-
ciphertext attacks. Until the publication of [11] (and even [10]), all parameter
sets proposed by NTRU allowed decryption failures: the ciphertext of a ran-
domly chosen message could fail to decrypt correctly when using the NTRU
decryption algorithm. Although the probability of decryption failures was small,
it was significant enough (ranging from 2−12 to 2−40) not to be ignored in prac-
tice: an attacker might realistically collect decryption failures. The most power-
ful chosen-ciphertext attack of [11] then allowed to attack any instantiation of
NTRU, independently of the padding scheme, and using only a weak decryption
oracle which asserts if a given (valid) ciphertext failed to decrypt or not. How-
ever, this attack required a large number of decryption failures (estimated to be
about a million by [11]), and had not been fully implemented. In particular, the
attack uses in the final stage a sophisticated algorithm by Gentry and Szydlo [5]
(designed to attack the NSS signature scheme), which is polynomial time, but
has to the best of our knowledge not been fully implemented.

Our results. In this paper, we present new and efficient chosen-ciphertext at-
tacks on NTRUencrypt. Our attacks are somewhat intermediate between the
attacks of Jaulmes and Joux [13], and those of Howgrave-Graham et al. [11].
Like [11], the attacks are based on decryption failures and only query the de-
cryption oracle on valid ciphertexts. However, unlike [11], we do not only ask
whether a given (valid) ciphertext fails to decrypt, we ask for the full output
of the NTRU decryption algorithm on that (valid) ciphertext, like in an usual
chosen-ciphertext attack: when there is a decryption failure, this will provide
additional information. As a result, the number of decryption failures required
to make the attack successful is much lower than in [11], which makes it possible
to fully implement the attack in practice and check its efficiency. For instance,
for the initial NTRU-1998 parameter sets, a decryption query on a single de-
cryption failure is enough to recover the private key. For more recent parameter
sets, the number of required decryption failures increases but is at most a few
hundreds. The efficiency of our attacks seems to confirm the importance of re-
moving decryption failures in NTRUencrypt, as was first suggested in [11]:
it should be noted that the latest version [10] of NTRUencrypt modifies the
NTRU parameters so that no decryption failure can ever occur. Furthermore,
because we query the decryption oracle on random ciphertexts of messages uni-
formly chosen at random, our attacks can also be interpreted from a security
point of view. If one could simulate the NTRU decryption algorithm, one would
be able to recover the NTRU secret key in practice.

Road map. The paper is organized as follows. In Section 2, we provide back-
ground on NTRUencrypt, and we introduce the model of our attacks. In Sec-
tion 3, we study the probability distributions of the coefficients of the polyno-
mials used during decryption, and we analyze the information obtained in the
presence of decryption failures. In Section 4, we derive a first chosen-ciphertext

3

attack against the initial instantiation NTRU-1998 of NTRUencrypt, which
can recover the secret key using a single decryption failure. Finally, in Section 5,
we present a general chosen-ciphertext attack against all instantiations of NTRU
allowing decryption failures. It is perhaps worth noting that our attacks make
no use of lattices.

Acknowledgements. Part of this work is supported by the Commission of the Eu-
ropean Communities through the IST program under contract IST-2002-507932
ECRYPT.

2 Background

2.1 Definitions and Notation

NTRUencrypt operations take place in the quotient ring of polynomials P =
Z[X]/(XN − 1), where N is an integer. If f(X) is a polynomial in P , for all
k ∈ [0, N −1], fk denotes the coefficient of Xk and for all x ∈ C, f(x) represents
the evaluation of f at x. The convolution product h = f ∗g of two polynomials f
and g in P is given by hk =

∑

i+j≡k mod N fi · gj. Several different measures of
the size of a polynomial will be useful. We define the norm of a polynomial f
in the usual way, as the square root of the sum of the squares of its coefficients:

‖f‖ =
(

∑N−1
i=0 f2

i

)1/2

. We also define the “standard deviation” of a polynomial

f as σ(f) =

(

∑N
i=1

(

fi −
f(1)
N

)2
)1/2

. Note that ‖f‖ = σ(f) if the average value

f(1)
N of the coefficients of the polynomial is equal to zero.

2.2 The NTRU Encryption Scheme

The NTRU [8] cryptosystem has many possible instantiations. It uses a set of
parameters whose values will be given later:

– An integerN . This fundamental parameter in NTRUencrypt is taken to be
prime to prevent attacks due to Gentry [3], and sufficiently large to prevent
lattice attacks.

– Two relatively prime integers p and q, or alternatively the polynomial p =
X + 2 and a prime number q (which does not divide 2N + 1), so that the
elements p and q generate prime ideals in P . Standard practice is to take
q to be close to a power of 2 between N/2 and N , and p to be either the
integer 2, 3 or the polynomial 2 +X [1,2].

– Four subsets Lf ,Lg,Lr,Lm of P used for key generation and encryption.
The polynomials in all these subsets have very small coefficients and may
further be sparse.

– A bijection ψ between Lm mod p and Lm. The set of plaintexts is Lm.

The key generation, encryption and decryption primitives are as follows:

Key generation.

4

1: Choose f ∈ Lf and g ∈ Lg uniformly at random such that f is invertible in
P modulo q and modulo p.

2: Set Fq = f−1 mod q and Fp = f−1 mod p.
3: The private key is (f, Fp).
4: The public key is H = p · g ∗ Fq mod q.

Note that in NTRUencrypt, the polynomial g is not necessary for decryption,
and therefore is not included in the private key. However, g could easily be
deduced from f thanks to H ∗ f = p · g mod q.

Encryption. The encryption algorithm E is probabilistic.

Input: A message m ∈ Lm, and a public key H .
Output: A ciphertext e ∈ E(m).
1: Select r ∈ Lr uniformly at random.
2: return e = r ∗H +m mod q.

To achieve strong security notions, NTRU implementations additionally use
paddings: the message m is preprocessed and r might depend on m and hash
functions. In this paper, for any m ∈ Lm we denote by E(m) the set of all possi-
ble ciphertexts of the plaintext m, and by E(Lm) their union over all plaintexts
m. These sets take possible paddings into account, hence E(Lm) is also the set
of all validly generated ciphertexts.

Decryption. The decryption algorithm D provided by NTRU is very efficient,
but may not work correctly on all inputs, depending on the parameter set.

Input: A ciphertext e ∈ E(Lm) and a private key (f, Fp).
Output: A plaintext D(e) = m ∈ Lm.
1: Compute a mod q = e ∗ f mod q.
2: Using a centering procedure, try to recover the integer polynomial a = p · r ∗
g + f ∗m ∈ P from a mod q.

3: Compute m mod p = a ∗ Fp mod p.
4: return The plaintext m = ψ(m mod p).

Note that the operations performed by the decryption algorithm could in theory
be applied to any polynomial in P mod q, not only ciphertexts in E(Lm), and
this would still output a polynomial in Lm. The chosen-ciphertext attacks of
[13] relied on this extra-functionality: they used invalid ciphertexts which do not
belong to E(Lm).

For all the NTRU parameter sets proposed until 2005 [10], the centering
procedure used in Step 2 could fail to recover a. Thus, there may exist valid
ciphertexts e ∈ E(m) whose decryption D(e) is not equal to m. Such events
have been called decryption failures in [11]. Note that the decryption algorithm
could also perform additional checks: for instance, it can extract the random
polynomial r used by E from the formula r ∗H = (e − D(e)) mod q, thanks to
the notion of pseudo-inverse (see [16]). Then, it can check whether r is really
in Lr , or whether the potential paddings requirements are met. In particular,
we have a plaintext-checking oracle: given a ciphertext and a plaintext, we can
check whether the ciphertext corresponds to the plaintext.

5

2.3 Instantiations of NTRU

One difficulty with analyzing NTRU is the significant number of variants. Dif-
ferent choices of parameters can completely transform the security of NTRU: an
attack against a particular instantiation of NTRU may not work against other
instantiations. In this section, we recall the three main instantiations of NTRU
which have been proposed in the past eight years.

NTRU-1998. In the initial instantiation of NTRU [8], p is equal to 3 and q
is a power of 2 (for example q = 128). The subset Lm is the set of ternary
polynomials with coefficients in {−1, 0, 1}, and the bijection ψ between Lm mod p
and Lm is defined by selecting the representative −1, 0 or 1 of each coefficient
mod 3. The set Lf is defined as T (df , df − 1) where T (i, j) is the subset of
ternary polynomials containing exactly i times 1 and j times −1. Finally, Lg =
T (dg, dg) and Lr = T (dr, dr). Naturally, one drawback with this instantiation
is the conversion between binary messages and their ternary representation in
Lm. As an example, the parameters N = 263, q = 128, df = 50, dg = 24 and
dr = 16 were recommended for high security. Each parameter set in [8] leads to
a decryption failure every 215 encryptions of random messages, experimentally.

NTRU-2001. In the standards [1,2], a new instantiation is proposed, where p is
the polynomial X + 2 and q is a prime number. The subset Lm is the set of
binary polynomials with coefficients in {0, 1}, and Lf is the subset of polyno-
mials of the form 1 + p ∗ F with F ∈ B(dF), where B(dF) denotes the set of
binary polynomials with exactly dF coefficients equal to 1. The other subsets
are Lg = B(dg) and Lr = B(dr). The bijection ψ between a plaintext m and its
representative modulo X + 2 (which is the evaluation at X = −2) is non-trivial.

Mathematically, the function ψ computes the binary decomposition
∑N−1

i=0 νi2
i

of m(−2), and identifies it with the polynomial
∑N−1

i=0 νiX
i ∈ Lm. More details

for an efficient implementation are given in [9]. The main advantage of having
the private key f of the form 1 + p ∗ F is that the inverse Fp modulo p is equal
to 1, so the final multiplication by Fp in the decryption process disappears. The
average number of encryptions of random messages leading to a decryption fail-
ure ranges from 212 to 225, depending on the parameter set [1,2]. (see [11] for
more information).

NTRU-2005. In the last standard [10], the polynomial p = X+2 disappears and is
replaced by the integer p = 2. Furthermore, the use of product-form polynomials
(introduced in [9]) is recommended as a replacement of binary polynomials: so
f has the form 1 + p · F with F ∈ X (df), which means that F = f1 ∗ f2 + f3
with each f1, f2, f3 ∈ B(df). The other subsets are Lg = B(N/2), Lr = X (dr)
and Lm is the set of binary polynomials. Generally, dF and dr are equal and are
very small (e.g. between N/25 and N/20). More importantly, since it had been
discovered [11] that decryption failures could be a threat, the prime number q
has been multiplied by a factor of at least 2 so that no decryption failure can
ever happen: one drawback is that the resistance to lattice attacks is weakened.
But it is interesting to analyze what would happen if q had the same size as in

6

previous instantiations. In this case, the problem of finding the private key from
the public key seems as hard as in previous instantiations. But the proportion
of decryption failures would also be the same as in the previous instantiations.
In this paper, we want to analyze attacks based on decryption failures, so when
we refer to NTRU-2005, we actually mean a modified version with a smaller q.

2.4 The attack model, and comparison with previous attacks

In a chosen-ciphertext attack, a decryption oracle is given to an attacker. As
a precomputation, the attacker can submit as many ciphertexts as he wants
to the oracle. Then using the collected information, he must either recover a
private key or be able to decrypt a challenge ciphertext. For NTRU, the notion
of decryption oracle is ambiguous because of decryption failures. Here, like [11],
by decryption oracle, we do not mean an ideal algorithm which would extract
m from a ciphertext in E(m) without any failure, but the decryption algorithm
D provided by NTRU. In the following, we only consider key-recovery chosen-
ciphertext attacks.

The majority of previous chosen-ciphertext attacks against NTRU work by
running the algorithm D on special polynomials in P mod q, which are gener-
ally not valid ciphertexts in E(Lm). Following our terminology, these attacks
do not use decryption failures. For example, the article of Jaulmes and Joux
at CRYPTO’00 [13] presents two chosen-ciphertext attacks on NTRU-1998. By
sending roughly ten special polynomials to the oracle, an attacker recovers the
product of the key Fp and a low hamming-weight polynomial. After an exhaus-
tive search which takes a couple of minutes for the highest security parameters,
the attacker recovers Fp and deduces the private key f . Note that the bijection
between Fp and f only exists in the NTRU-1998 instantiation.

The second attack of [13] queries the decryption oracle N times on very
close inputs. Again, the input polynomials are in general not validly generated
ciphertexts in E(Lm). If f is binary or ternary, the output of the decryption
oracle then discloses the value and the position of many coefficients of f . Thus,
with less than a thousand calls to the decryption oracle, the private key f is
fully recovered. This attack can be rewritten and remains valid for NTRU-2001,
but fails on NTRU-2005, when f is in product form.

Other papers, like Han et al.’s paper [6], present chosen-ciphertext attacks
with the assumption that the user has power onm and r, which is not compatible
with the strongest paddings.

The first paper to introduce and use decryption failures in a chosen-ciphertext
attack is Howgrave-Graham et al.’s paper [11] at CRYPTO’03, where the authors
present (among others) a key-recovery chosen-ciphertext attack against NTRU-
2001 working with any padding scheme. The oracle is weak: it only accepts valid
ciphertexts in E(Lm) and only indicates whether or not there is a decryption
failure. The authors of [11] claim that if they are given a million decryption
failures, they can recover the polynomial XNf(X)f(1

X), and then recover the
private key thanks to an algorithm of Gentry and Szydlo [5], which was intro-
duced to break a former version of NTRU signatures. The main advantage of this

7

attack is that since all messages are validly generated, it is compatible with any
padding, including the very restrictive ones. However, the number 1,000,000 is
only a heuristic estimate, and the algorithm of Gentry and Szydlo [5] recovering
f from XNf(X)f(1

X) is proved polynomial time, but has to our knowledge not
yet been fully implemented in practice.

In this paper, we also use decryption failures. Our attack model is interme-
diate between the restrictive chosen-ciphertext attack of Jaulmes and Joux [13],
and the realistic model in Howgrave-Graham et al.’s attack [11]. The oracle is
only queried during the search for decryption failures, which is performed by
Algorithm 1. With this description, we clearly see that the decryption oracle is

Algorithm 1 Find a random decryption failure

Input: A NTRU parameter set, a public key H and the decryption oracle D.
Output: A decryption failure as (m,r,m′) where D(m+ r ∗H) = m′ 6= m.
1: repeat

2: Generate a random message m ∈ Lm and encrypt it with E to obtain a valid
ciphertext e.

3: Remember (or recover) the random polynomial r used by E.
4: Submit the ciphertext e to the decryption oracle D.
5: until there is a decryption failure (m′ = D(e) 6= m)
6: return the triplet (m, r,m′).

only used on validly generated ciphertexts. Furthermore, these ciphertexts are
not even chosen by the attacker, but are randomly generated. For these reasons,
the attacker is less powerful than in Jaulmes and Joux’ attack [13]. However,
the attacker has access to the output m′, which gives more information than
in Howgrave-Graham et al.’s attack [11]. We will see in the next sections the
number of decryption failures which is necessary to recover the private key.

3 Analysis of decryption failures

3.1 The decryption process

In Section 2.2, we only gave a sketch of the decryption primitive. In this section,
we give a detailed implementation (see Algorithm 2), in order to explain decryp-
tion failures. In the first step of the decryption algorithm D, when calculating
a mod q = f ∗ e mod q, one actually computes

a mod q = f ∗ e = f ∗ (r ∗ h+m) = p · r ∗ g + f ∗m mod q

The polynomials r, g, f and m have very small coefficients, so heuristically the
coefficients of the integer polynomial a = p · r ∗ g + f ∗m satisfy:

∀i ∈ [0..N − 1], ai ∈

[

a(1)

N
−
q

2
;
a(1)

N
+
q

2

[

. (1)

8

Algorithm 2 Decryption oracle D

Input: A validly generated ciphertext e and the instantiation of NTRU (and a hidden
private key (p, f, Fp)).

Output: The decryption of e (which might be incorrect).
1: compute a mod q = f ∗ e mod q.
2: if instantiation=NTRU-1998 then

3: Select the representative aest ∈ P of a mod q which has all its coefficients in
[− q

2
; q

2
[.

4: else

5: Compute r1 = r(1),f1 = f(1), and g1 = g(1) using the definition of Lr,Lf and
Lg.

6: Compute m(1) mod q = e(1)− r1 ∗H(1) mod q,
7: Choose m1 in [N

2
− q

2
; N

2
+ q

2
[so that m1 ≡ m(1) mod q.

8: Compute a1 = p · r1 · g1 + f1 ·m1.
9: Select the representative aest ∈ P of a mod q which has all its coefficients in

[a1
N
− q

2
; a1

N
+ q

2
[

10: end if

11: Compute m′ = aest ∗ Fp mod p.
12: return ψ(m′).

Note that all the parameter sets of NTRU given in Section 2.3 make it possible

to compute a(1)
N without knowing r or m. If Condition (1) holds, a may be

recovered exactly from a mod q in the ring P (using Step 9 of Algorithm 2).

In the NTRU-1998 instantiation, the mean value a(1)
N of the coefficients of a is

equal to m(1)
N , and is therefore between -1 and 1. For this reason, it is equivalent

to choose every coefficient of a in [− q
2 ; q

2 [at Step 3. Finally a mod p is equal
to f ∗m mod p and the multiplication by Fp at Step 11 recovers m mod p, and
therefore the plaintext m.

Decryption only works if the condition (1) is fulfilled. Unfortunately, this
condition does not always hold: depending on the choice of Lm and Lr , it
may happen for some rare m and r, that some coefficients of a lie outside the
centering range. In this case, the output m′ = D(e) will (almost always) differ
from the original plaintext m. These events are the so-called decryption failures

[11], which will be reused in this paper to construct key-recovery attacks on
NTRUencrypt.

We now analyze the probability distribution of the coefficients of a in the
particular case of a decryption failure. In order to simplify Condition (1), it is
possible to translate the polynomials so that the average value of their coefficients
is always zero. We say that a polynomial a is zero-centered if a(1) = 0, where a(1)
is the evaluation of the polynomial at 1, that is, the sum of the coefficients of a.
Given any polynomial in P or R, we can recenter this polynomial by subtracting
an appropriate multiple of the polynomial (1 +X + · · · + XN−1), as shown in
the following elementary lemma:

9

Lemma 1. The following function is an algebra homomorphism:

R[X]/
(

XN − 1
)

→ R[X]/
(

XN − 1
)

A→ Ǎ = A−
A(1)

N
(1 +X + · · · +XN−1)

Then Condition (1) can be rewritten as: there is a decryption failure if and only
if the polynomial ǎ = p · ř ∗ ǧ + f̌ ∗ m̌ satisfy:

∃i ∈ [0..N − 1], |ǎi| >
q

2
. (2)

3.2 Probability assumptions

In the following, we will often need to assume that certain objects are random.
More precisely, for any deterministic function ϕ from Lm×Lr (e.g. the encryption
function (m, r) → m+r∗H or the function (m, r) → p·r∗g+f ∗m implicitly used
in the decryption process), we say that a polynomial z = ϕ(m, r) is randomly
chosen in the image of ϕ if m and r are uniformly and independently chosen in
the finite subsets Lm and Lr. Here, we focus on the particular case of the centered
polynomials ǎ, which are computed from m and r with the deterministic formula
ǎ = p · ř ∗ ǧ+ f̌ ∗ m̌. In order to analyze the distribution of their coefficients, we
need to make two simplifying assumptions:

Assumption 1. If z ∈ P is a binary or ternary polynomial uniformly chosen

at random, then the coefficients of the zero-centered polynomial ž are all inde-

pendent.

Assumption 2. If a and b are randomly and independently drawn from finite

sets of zero-centered polynomials and if their coefficients are all independent,

then the coefficients of the product c = a ∗ b are all independent.

These assumptions are rather strong. However, one can hope that it is not
that far from the reality, due to the following: the average value of the coefficients
of a zero-centered polynomial is constant and equal to zero, so when a coefficient
is bigger than expected, the others will tend to be smaller. For this reason, there
is a small anti-correlation between different coefficients: the paper [17] shows
a correlation Corr(ci, cj) = − 1

N−1 if i and j are distinct indexes. There is a
small inaccuracy due to this anti-correlation, but the effect is very small when
N grows. Furthermore, we will see that experimentally, if one coefficient has
not the expected size, then the others behave correctly. Thus the effect of the
anti-correlation is in fact very limited.

3.3 Shape of decryption failures

In the decryption algorithm D, since r andm are randomly chosen independently
of the keys f and g, the coefficients of the polynomial ǎ are assumed to be
independent by Assumptions 1 and 2. As we saw in Section 3.1, a decryption

10

failure only occurs if Condition (2) holds. In this case, at least one coefficient
of the polynomial ǎ = p · ǧř + f̌ m̌ is outside the range [− q

2 ; q
2 [. Using these

assumptions, we deduce two heuristics:

Heuristic 1. In case of a decryption failure, then with extremely high probabil-

ity, there is exactly one coefficient ǎk of ǎ which is outside [− q
2 ; q

2 [

Explanation. We denote by pe the probability to choose (r,m) leading to a de-
cryption failure. Because of the independence assumption, the probability for

one coefficient of ǎ to be outside the range [− q
2 ; q

2 [is pa = 1− (1 − pe)
1
N ≈ 1

N pe.

The probability that exactly one coefficient of ǎ is too big, is pone =
(

N
1

)

· pa(1−

pa)N−1 ≈ pe(1−
N−1

N pe). Thus in case of a decryption error, the probability that

only one coefficient of ǎ is too big is pone/pe ≈ (1− N−1
N pe). Since the probability

of decryption failure pe is always very small, the last probability is almost equal
to 1. ⊓⊔

When a decryption failure occurs, all the coefficients except one are in the
correct interval. The second heuristic guesses the value of this overflowing coef-

ficient.

Heuristic 2. In case of a decryption failure, the overflowing coefficient of ǎk

defined by Condition (2) is very close to ± q
2 . More precisely, for standard NTRU

parameters, we expect that ǎk = ±
(

q
2 + ε

)

where ε ≤ 5.

Explanation. The distribution of a coefficient ǎk should be a discrete hyperge-
ometric distribution whose mean is 0, and whose standard deviation is smaller
than q

4 . If so, it would decrease much faster than a geometric distribution for the
rare values greater than q

2 . Then the expectation of the value of the overflowing
coefficient of ǎ would be very close to q

2 . ⊓⊔

3.4 Experiments

To check the validity of our heuristics, we performed experiments on the main
NTRU instantiations: NTRU-1998, NTRU-2001 and the slightly modified version
of NTRU-2005 seen in Section 2.3. We obtained approximately one decryption
failure every 25,000 messages, and we collected about 4,000 decryption failures
for each parameter set. For every decryption failure, we obtained exactly one
overflowing coefficient in ǎ, and in more than 90% of the cases, the absolute
value of this coefficient was lower than q

2 + 5. So the two heuristics seem to be
verified in practice.

However, in our experiments, the distribution of overflowing coefficients in
case of a decryption failure does not decrease as fast as was announced in the
explanation of Heuristic 2 (see Figure 1). Heuristic 2 is nevertheless true for
every parameter set tested, but this is only an experimental fact.

The two graphs in Figure 1 represent the experimental distribution of the
coefficients of a random polynomial ǎ = p · ř ∗ ǧ+ f̌ ∗ m̌ satisfying Condition (2).
The black bars represent the distribution of the overflowing coefficient (whose

11

Fig. 1. Experimental densities:

gaussian(−0.153609, 6.719)
other coefficients

overflowing coefficients

-40 -30 -20 -10 0 10 20 30 40

0.6
0.08

0.06

0.04

0.02

0

0.5

0.4

0.3

0.2

0.1

0

o
v
e
rfl

o
w

in
g

c
o
e
ff
s.

p
ro

b
a
.

o
th

e
r

c
o
e
ff
s.

p
ro

b
a
b
il
it
y

other coefficients
overflowing coefficients

gaussian(-0.109,12.3)

-80 -60 -40 -20 0 20 40 60 80

0.05 0.3

0.04

0.03

0.02

0.01

0

0.25

0.2

0.15

0.1

0.05

0

o
th

er
co

eff
s.

p
ro

b
a
b
il
it
y

ov
er

fl
ow

in
g

co
eff

s.
p
ro

b
a
.

absolute value is greater than q
2), and the grey boxes represent the distribution of

the other coefficients. The two curves are based on the NTRU-2005 instantiation,
the first one with p = 2,q = 67,N = 127 and binary polynomials, and the second
one with p = 2,q = 67,N = 127 and product-form polynomials. When the
polynomial ǎ contains an overflowing coefficient, there exists a rotation of m̌
(resp. ř) which is either positively or negatively correlated with the key f̌ (resp.
p·ǧ), depending on whether the overflowing coefficient is positive or negative (see
Section 5). In these two particular examples, there are more positive correlations,
but this is not the general case.

4 A new chosen-ciphertext attack against NTRU-1998

We will now describe chosen-ciphertext attacks on NTRU which only require few
decryption failures to recover the private key. In this section, we consider the
special case of NTRU-1998. The first attack uses the fact that a single decryption
failure is enough to recover Fp up to a shift. It turns out that in NTRU-1998, the
choice of p = 3 and f a ternary polynomial makes it possible to recover f from
f mod p or Fp mod p. Thus, one can recover a circular shift of the private key
f in the quotient ring P , which is enough to decrypt. The attack is summarized
in Algorithm 3.

4.1 Description of the attack

The parameters sets of [8] give rise to a decryption failure every 25,000 encryp-
tions, independently of the security level. Thus, after say 50,000 calls to the

12

Algorithm 3 A key-recovery chosen-ciphertext attack on NTRU-1998

Input: A public key H of NTRU-1998.
Output: A private key (f, Fp).
1: Find a decryption failure (m,r,m′) using Algorithm 1.
2: compute F ′

p ← (m′ −m) mod p where p = 3.
3: f ′ ← F−1

p mod p (chose the coefficients of f ′ in {−1, 0, 1}.
4: if g′ = (f ′ ∗H ∗ p−1) mod q /∈ Lg restart;.

5: return (f ′, F ′
p).

decryption oracle, we may reasonably assume that we were able to find a mes-
sage m ∈ Lm and a blinding polynomial r ∈ Lr leading to a decryption failure,
and we know the polynomial m′ 6= m returned by the decryption oracle. Then
if Heuristic 1 is satisfied, there is exactly one coefficient ak of a = prg + fm
which is not in the centering range. Thus, there exists an integer α ∈ Z such
that a− αqXk satisfies Condition (1), and it is precisely this polynomial which
is computed instead of a during the decryption algorithm. In the last step of the
decryption, a−αq ·Xk is taken modulo p and multiplied by Fp, so the incorrect
plaintext returned is:

m′ = Fp ∗ (fm− αq ·Xk) mod p = m− (αq mod p) ·Xk ∗ Fp.

Since there was a decryption failure and since p = 3, we are sure that α′ =
αq mod p is equal to ±1. Therefore, by considering the difference m − m′, we
recover a rotation (up to a sign) F ′

p = α′Xk ∗ Fp of the polynomial Fp from the
private key. It is then easy to invert F ′

p mod p in order to find the second part

of the key f ′ = α′XN−k ∗ f . As we saw at the beginning of the section, the
computed polynomials (f ′, F ′

p) form a secret key equivalent to (f, Fp), so it is
not necessary to find the value of k.

4.2 Experiments

We have implemented the attack described by Algorithm 3. In practice, the first
decryption failure is found before 40,000 calls to the oracle D. As seen previously,
the probability for (f ′, F ′

p) computed in steps 2 and 3 to be a valid private key

is higher than 1 − pe ≈ 24999
25000 . In this case, the polynomial g′ computed in step

4 is a rotation of g, and the algorithm ends. We chose 4 keys at random in each
parameter set of [8], and we collected 50 decryption failures per key. Instead of
stopping the execution once a circular shift of the key had been found, we ran the
attack on all the decryption failures obtained on the NTRU-1998 instantiation.
Each one disclosed a rotation (up to a sign) of the private key, which is an
equivalent private key.

5 A general attack against all NTRU instantiations

The attack on NTRU-1998 seen in the last section cannot be applied to more
recent instantiations of NTRU. Indeed, in the original implementation of NTRU,

13

the choice of p = 3 and a ternary key f made it possible to recover entirely f
from Fp . But in recent optimizations, the choice of f = 1 + p · F implies that
Fp is always equal to 1, and does not leak any information about f . However,
it is still possible to construct a key-recovery algorithm, using this time a few
hundreds of decryption failures. Our attack builds on [11], where it was noticed
that each decryption failure gave rise to an approximation of an (unknown) ro-
tation of f and g. Here, we further notice that the full output of the decryption
oracle enables us to find out which rotation it is. In other words, the output of
the oracle on each decryption failure discloses two polynomials, which have a
majority of coefficients in common with the secret keys f and g (without any
rotation). Unfortunately, the approximation provided by the decryption oracle
does not reveal the exact position of the correct coefficients. In this attack, we
therefore average many approximations of f deduced from independent decryp-
tion failures, in order to compute a more accurate approximation, until f can
be recovered by rounding. The attack will be described with p being an integer.
However it works on every instantiation of NTRU, even if p is the polynomial
X + 2. In this case, the only difference is that we have to replace the multi-
plication p · g by the convolution product p ∗ g. The attack is summarized by
Algorithm 4.

Algorithm 4 A general key-recovery chosen-ciphertext attack

Input: A public key H .
Output: A secret key (f, Fp).
1: p← 0; S ← 0.
2: estimate α← 2

2
“

‖f̌‖2+‖p·ǧ‖2
” using NTRU parameters.

3: loop

4: Find a decryption failure (m,r,m′) using Algorithm 1.
5: Find the integer k such that mk 6= m′

k.
6: V ← (mk,mk−1, . . . ,mk−N+1 mod N

, rk, rk−1, . . . , rk−N+1 mod N
).

7: ǫ← sign(〈V ,S〉) or +1 if 〈V ,S〉 = 0.
8: S ← S + ǫV ; z ← z + 1.
9: let f =

PN−1
i=0 round(1

αz
S1 + f(1)

N
)Xi.

10: if f ∗H ∗ p−1 mod q ∈ Lg, then return (f, f−1 mod p).

11: let f ′ =
PN−1

i=0 round(− 1
αz

S1 + f(1)
N

)Xi.
12: if f ′ ∗H ∗ p−1 mod q ∈ Lg , then return (f ′, f ′−1 mod p).
13: end loop.

5.1 Description of the attack

Again, we assume that we were able to find m ∈ Lm and r ∈ Lr such that
the ciphertext m + rH is decrypted as m′ 6= m. This time, m and r are not
zero-centered, so it is necessary to use the centering homomorphism in order
to use Condition (1). From Heuristic 1, we know that there exists ǫ = ±1 and
k ∈ [0, N − 1] such that p · ř ∗ ǧ + m̌ ∗ f̌ − ǫq · Xk has all its coefficients in
[− q

2 ; q
2 [. Thus, the output of the decryption algorithm is m′ = m + Xk mod p,

and k is therefore the only index where the coefficients m and m′ differ. Hence,

14

the value of k is disclosed and the kth coefficient is the overflowing coefficient, so:

∣

∣

∣

∣

∣

∣

N−1
∑

j=0

m̌k−j modN f̌j +

N−1
∑

j=0

řk−j modNpǧj

∣

∣

∣

∣

∣

∣

≥
q

2

If we call V the vector (m̌(k−0) modN , . . . , m̌(k−N+1) modN , ř(k−0) modN , . . . ,

ř(k−N+1) mod N) and K the vector (f̌0, . . . , f̌N−1, p · ǧ0, . . . , p · ǧN−1) represent-

ing the private key, the previous inequality can be rewritten as |〈V ,K〉| ≥ q
2 .

Thus, either V is very correlated with K or it is strongly anti-correlated. And
K is in one-to-one correspondence with the private key. Note that since the sum
of the coefficients of V is equal to zero, the squared norm ‖V ‖

2
is the sum

of the variance of m and r. It is a constant σ2 depending only on the NTRU
parameter set. Likewise, ‖K‖

2
is the sum of the variances of the keys f and

g, and it depends only on the parameter set. For instance, in NTRU-2005 with
binary polynomials, the private key f is equal to 1 + 2F where F is binary
and contains exactly dF ones. Therefore ‖f‖

2
=

∑N−1
j=0 f2

j = 1 + 4dF . After

centering the polynomial,
∥

∥f̌
∥

∥

2
= ‖f‖

2
− 1

N f
2(1) where f(1) = 1 + 2dF , so

∥

∥f̌
∥

∥

2
= 4 · dF (N−dF −1)

N . Using the same kind of arguments for ‖p · ǧ‖
2
, we show

that ‖K‖
2

= 4
N · (dF (N − dF − 1) + 2dg(N − dg)) in NTRU-2005.

Fig. 2. Simplified case

hyperplane V ·K = q

2

Sphere ‖ V ‖2= σ2

V
(i)s

Key vector K

Expectation(V) = V ·K
‖K‖2 ·K

Simplified case. In the simplified case, only positive correlations occur, and
Heuristic 2 suggests that the inequality |〈V ,K〉| ≥ q

2 is in fact almost an equal-
ity. Then, as shown in Figure 2, such a vector V is located on the hypersphere
at the intersection of the sphere of equation ‖V ‖2 = σ2 and the hyperplane
of equation |〈V ,K〉| = q

2 . If we gather many independent decryption failures,

we will obtain many V
(i)’s in this hypersphere. Their expectation is the center

of the hypersphere, which is the multiple q
2||K||2 · K of the private key vector.

Therefore if we consider n vectors V
(i)s coming from independent decryption

failures, then their mean value 1
n

∑n
i=1 V

(i) shall converge to q
2||K||2 ·K when n

grows. In practice, q
2||K||2 seems to be greater than 1

16 in every instantiation of

NTRU containing decryption failures. For this reason, if n is of the order of N ,
we expect to have enough accuracy to recover the full key K.

15

Fig. 3. Real case

distribution of
ǫn+iV

(n+i)

approxn(V) = 1
n

∑n
i=1 ǫiV

(i)

Half space 〈V , approxn(V)〉 ≥ 0

Hyperspheres ‖V ‖
2

= σ2 and 〈V ,K〉 = ± q
2

Key vector ±K

Real case. In reality, there may be both positive and negative correlations be-
tween V and K. Therefore, V is located on the union of two opposite hyper-
spheres ‖V ‖

2
= σ2 ∩ 〈V ,K〉 = ± q

2 (see Figure 3). Unfortunately, the pro-
portion of positive and negative correlations (which depends on the fractional

part of a(1)
N) may be equal to 1

2 in the worst case. In this case, the expecta-
tion of V is zero. We must be able to decide whether the correlation between
V and K is positive or not. The best test would be to compute directly the
dot product 〈V ,K〉, but we do not know K. Therefore, in our algorithm, we
try to guess for each V

(i), a sign ǫi = ±1 such that 〈ǫiV
(i),K〉 ≥ q

2 for all i,

or 〈ǫiV
(i),K〉 ≤ − q

2 for all i. In order to do that, we arbitrarily set ǫ1 = 1,

and recursively set ǫn+1 = sign(〈V (n+1),
∑n

i=1 ǫi
i
V 〉), hoping that

∑n
i=1 ǫiV

(i)

is not orthogonal to K (as shown in Figure 3). Then, as suggested on the figure,
the sum

∑n
i=1 ǫiV

(i) will slowly take the direction of K or −K, and like in the
simple case, the average vector 1

n

∑n
i=1 ǫiV

(i) will converge to ± q
2||K||2 · K.

5.2 Experiments

We have implemented the attack described by Algorithm 4. Both the encryption,
decryption algorithms and the attack were implemented using the NTL library
[15] without any running-time optimization. Indeed, since the attack only con-
sists of adding a few hundreds of vectors, its running time is negligible compared
to the time of collecting the required number of decryption failures. We refer to
[8,10,9] for the actual running time of an efficient implementation of the encryp-
tion and the decryption algorithm.

As shown in Table 1, the number of decryption failures needed in order to
fully recover the private key (even for highest parameters) is a few hundreds.
Recall that there is a decryption failure every 215 encryptions: this means that
the total number of calls to the decryption oracle is about 223, which takes less
than two days with an unoptimized version of the encryption and decryption
algorithms. As shown in Figure 4, the main idea of the algorithm is to build an
approximation of the private key vector. The more decryption failures we use, the
more accurate the approximation. Since the secret key has integer coefficients,
the approximation eventually reaches a precision level where a simple rounding
procedure is enough to fully recover the key.

16
Fig. 4. Coefficients of the estimation of the key in the algorithm:

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

16

12

corresponds to fi = 0
corresponds to fi = 2
corresponds to fi = 4

8

4

0

corresponds to fi = 4
corresponds to fi = 2
corresponds to fi = 0

corresponds to fi = 5

-0.2 -0.1 0 0.1 0.2 0.3 0.4

12

8

4

0

These two graphs represent the distribution of the coefficients of the estimation of
the key (that is the vector S/z of Algorithm 4 line 9) for NTRU-2005 with product-
form keys with N = 251, q = 113. The different levels of grey represent the value of
the corresponding key coefficient. The attack works only if the different colors are well
separated (by the dotted vertical lines). The first graph is obtained after gathering 150
decryption failures, and the second after 250 decryption failures. In the first graph, there
is only one black bar which is misplaced (in the fi = 2 area, so after 150 decryption
failures, we have recovered all bits of f with exactly 1 error. In the second graph, the
colors are well separated, so the private key is fully recovered.

Table 1. Experiments

type NTRU N p q dF number of
decryption

failures used

number of digits
of f recovered

NTRU-1998 167 3 128 32 50 N-3
100 N (all)

NTRU-2001 251 X+2 127 40 80 N-1
140 N (all)

NTRU-2005 binary 251 2 127 64 80 N-2
(using a smaller q) 130 N (all)

NTRU-2005 product form 251 2 113 9 100 N-3
(using a smaller q) 150 N-1

250 N (all)

5.3 Potential Improvements

Here, we discuss potential improvements which might further lower the number of
required decryption failures.

Exhaustive search. The number of errors in Table 1 between the private key and the
estimation is very small during the last half of the algorithm. If we assume that there
are less than three errors of at most one unit in our estimation, then the number of
possible keys is bounded by 8

`

N

2

´

+ 4
`

N

2

´

+ 2N . Even with N = 251, it is possible
to perform this exhaustive search in practice. In Table 1, the number of decryption
failures needed to recover the private key up to 3 errors is half of the number required
to fully recover the key. Hence, exhaustive search would divide the number of calls to
the decryption oracle by a factor 2.

17

Lattice attack. Instead of performing an exhaustive search, we may use a lattice re-
duction algorithm. Once we get a sufficiently accurate approximation of the vector
K = (f, p · g), the distance between this approximation of K and the lattice generated
by the NTRU public basis should be extremely small compared to its shortest vector. In
this case, we may hope that lattice reduction algorithms can recover the whole private
key from this approximation in practice.

References
1. Consortium for Efficient Embedded Security. Efficient embedded security standards

#1: Implementation aspects of NTRU and NSS, 2001.
2. Consortium for Efficient Embedded Security. Efficient embedded security standards

#1: Implementation aspects of NTRUEncrypt and NTRUSign, 2002.
3. C. Gentry. Key recovery and message attacks on NTRU-composite. In Proc. of

Eurocrypt ’01, volume 2045 of LNCS. IACR, Springer-Verlag, 2001.
4. C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the NTRU signature

scheme (NSS) from Eurocrypt 2001. In Proc. of Asiacrypt ’01, volume 2248 of LNCS.
Springer-Verlag, 2001.

5. C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme. In
Proc. of Eurocrypt ’02, volume 2332 of LNCS. Springer-Verlag, 2002.

6. D. Han, J. Hong, J. W. Han, and D. Kwon. Key recovery attacks on NTRU without
ciphertext validation routine. ACISP 2003, LNCS 2727:pages 274–284, 2003.

7. J. Hoffstein, N. A. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Proc. of CT-RSA, vol-
ume 2612 of LNCS. Springer-Verlag, 2003.

8. J. Hoffstein, J. Pipher, and J. Silverman. NTRU: a ring based public key cryptosys-
tem. In Proc. of ANTS III, volume 1423 of LNCS, pages 267–288. Springer-Verlag,
1998. First presented at the rump session of Crypto ’96.

9. J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Public-key
Cryptography and Computational Number Theory. DeGruyter, 2000. available
at http://www.ntru.com.

10. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3.

11. N. A. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos., J. H. Silverman,
A. Singer, and W. Whyte. The impact of decryption failures on the security of NTRU
encryption. In Proc. of the 23rd Cryptology Conference (Crypto ’03), volume 2729
of LNCS, pages 226–246. IACR, Springer-Verlag, 2003.

12. IEEE. P1363.1 Public-Key Cryptographic Techniques Based on
Hard Problems over Lattices, June 2003. IEEE., Available from
http://grouper.ieee.org/groups/1363/lattPK/index.html.

13. E. Jaulmes and A. Joux. A chosen ciphertext attack on NTRU. In Proc. of Crypto
’00, volume 1880 of LNCS. IACR, Springer-Verlag, 2000.

14. P. Q. Nguyen and O. Regev. Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In S. Vaudenay, editor, Proc. of Eurocrypt ’06, volume 4004 of
LNCS, pages 271–288. Springer, 2006.

15. V. Shoup. Number Theory C++ Library (NTL) version 5.4. Available at
http://www.shoup.net/ntl/.

16. J. H. Silverman. Invertibility in truncated polynomial rings. Technical report,
NTRU Cryptosystems, 2003. Technical reports available at http://www.ntru.com.

17. J. H. Silverman and W. Whyte. Technical report n. 18, version 1: Estimating
decryption failure probabilities for ntruencrypt. Technical report, NTRU Cryp-
tosystems, 2005.

http://www.ntru.com

	New Chosen-Ciphertext Attacks on NTRU
	Nicolas Gama,Phong Q. Nguyen

