
Cryptanalysis of the Paeng-Jung-Ha

Cryptosystem from PKC 2003

Daewan Han1, Myung-Hwan Kim2⋆, and Yongjin Yeom1

1National Security Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea.

{dwh,yjyeom}@etri.re.kr
2Department of Mathematical Science and ISaC-RIM,

Seoul National University, Seoul, 151-747, Korea.
mhkim@math.snu.ac.kr

Abstract. At PKC 2003 Paeng, Jung, and Ha proposed a lattice based
public key cryptosystem(PJH). It is originated from GGH, and designed
as a hybrid of GGH and NTRUEncrypt in order to reduce the key size.
They claimed that PJH is secure against all possible attacks, especially
against lattice attacks. However, in this paper, we present a key recovery
attack, based on lattice theory, against PJH. The running time of our
attack is drastically short. For example, we could recover all secret keys
within 10 minutes even for the system with n = 1001 on a single PC.
Unlike other lattice attacks against NTRUEncrypt and GGH, the attack
may be applied well to the system with much larger parameters. We
present some clues why we believe so. Based on this belief, we declare
that PJH should not be used in practice.

Keywords: Paeng-Jung-Ha cryptosystem, GGH, NTRUEncrypt, Lat-
tice attack

1 Introduction

Since Ajtai’s seminal work [1], some lattice-based public-key cryptosystems
[2, 4, 5] have been suggested inspired by his work. Among them GGH [4] and
NTRU [5] attracted much attention because both systems seemed to be practical
with fast encryption/decryption and reasonable key size. GGH is a lattice version
of the previously well-known code-based cryptosystems [9]. Though its key size
is somewhat large, the system is fast. The proposers claimed that the system
with practically usable parameters would be secure. A few years later, however,
Nguyen presented a powerful lattice attack against it [12]. In order for GGH
to be secure against Nguyen’s attack, its key size should be too large to be
practical. Thus, GGH has been regarded as a broken system since then. NTRU,
more precisely NTRUEncrypt, is another lattice-based system widely reviewed.
The system is very efficient and unbroken till now. From the lattice-theoretic
point of view, NTRUEncrypt is a special instance of GGH in the sense that the

⋆ The second author was partially supported by KRF(2005-070-C00004).

2

former uses a circulant matrix for a public key while the latter uses a random
square matrix. As a result, the key size of NTRUEncrypt is O(n) while that of
GGH is O(n2), where n is the dimension of the matrix.

A few years after Nguyen’s attack, Paeng, Jung, and Ha proposed a variant
[18] of GGH, which we will call PJH in this paper. Motivations of developing
such a variant are as follows: Firstly, one-way function of GGH has still merits
since it is simple and faster than other systems using modular exponentiations.
Secondly, at the time that PJH was suggested, it seemed to be easier to design a
natural signature scheme based on GGH than on NTRUEncrypt, although both
signature schemes turned out to be insecure recently [13]. Thirdly, it seems to be
possible to overcome Nguyen’s attack by choosing lattices more carefully. With
these in mind, they designed PJH as a hybrid type of GGH and NTRUEncrypt:
PJH looks similar to GGH except that it takes a partially circulant matrix for a
public key. As a result, its key size reduces down to O(n), which is same as that
of NTRUEncrypt. Concerning the security of PJH, the proposers claimed that
it would be secure against all possible attacks with practical key sizes. Because
GGH was broken by a lattice attack, they presented extensive analysis on the
security against lattice attacks, and concluded that their system would be secure
on the basis of various simulation results.

However, in this paper, we present a key recovery attack against PJH with a
lattice technique. In order to recover the secret keys, we induce a linear equation
from the public information on key pairs. Then, we construct a lattice from
the equation and obtain some of the secret keys by applying lattice reduction
algorithms to the lattice. The remaining secret keys can be recovered simply by
solving a few linear equations. We could recover secret keys within 10 minutes
even for the system with n = 1001, where n is a system parameter which will be
described in the next section. Unlike other lattice attacks against NTRUEncrypt
and GGH, our attack may be applied well to the system of much larger n’s. We
present some clues why we believe so. Based on this belief, we declare that PJH
should not be used in practice.

The rest of this paper is organized as follows. In the next section, we briefly
introduce PJH and describe basic principles of general lattice attacks against
public key cryptosystems. In Section 3, we present our key recovery attack,
simulation results, and applicability of our attack against the system with much
larger parameters. Finally, we conclude in Section 4.

2 Preliminaries

2.1 Overview of PJH Cryptosystem

Notations and Parameters Let n be a prime integer, and consider a polyno-
mial ring

R = Z[x]/〈xn − 1〉.
We identify a polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ R with a vector
(a0, a1, · · · , an−1) ∈ Zn. We will denote both by f . Note that the multiplication

3

f · g of f and g is computed by the convolution product of them, that is,

h = f · g , ck =
∑

i+j=k mod n

aibj,

where g = b0 + b1x + · · · + bn−1x
n−1 and h = c0 + c1x + · · · + cn−1x

n−1. For
f = a0 + a1x + · · · + an−1x

n−1 ∈ R let Φ(f) be the n × n circulant matrix

a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0

.

Then, it is easy to verify the following:

f · g = g · f = fΦ(g) = gΦ(f).

Finally, we remark that we will use row-oriented notations in matrix represen-
tations of lattices while PJH adopts column-oriented rotations in [18].

Key Generation In order to generate a private key, PJH generates 4 polyno-
mials f1, f2, h1, h2 ∈ R which have the following properties:

– f1(x) = α0 +α1x
1 + · · ·+αn−1x

n−1 and f2(x) = β0 +β1x
1 + · · ·+βn−1x

n−1,
where |α0|, |β0| ≈

√
2n and the other coefficients are elements in {−1, 0, 1}.

– The coefficients of h1 and h2 are elements in {−1, 0, 1}.

The private key R is defined by

R :=

(

Φ(f1) Φ(h2)
Φ(h1) Φ(f2)

)

.

Let p be a positive integer. In [18] p is a 10-bit or 80-bit integer which need
not be prime. Proposers recommended that p is kept secret although it does not
affect the security. In order to generate public keys, PJH chooses g ∈ R with
coefficients in (−p/2, p/2] such that g is invertible in Zp[x]/〈xn − 1〉. Then there
exists gp with coefficients in (−p/2, p/2] and Q in R such that

g · gp − 1 = pQ ∈ R.

Now, four public polynomials P1, P2, P3, P4 ∈ R are defined as follows:

P1 := f1 · g + h1 · Q,

P2 := pf1 + h1 · gp,

P3 := h2 · g + f2 · Q,

P4 := ph2 + f2 · gp.

(1)

4

Table 1. Comparison of key sizes(KB) of PJH and GGH

rank of B PJH(10-bit p) PJH(80-bit p) GGH GGH(HNF)

200 0.85 4.4 330 32
300 1.4 6.6 990 75
400 1.8 8.8 2370 140
500 2.3 11

The public key B is defined by

B :=

(

Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

)

.

The pair (R, B) constructed in this way have the same properties as that
in GGH. That is, R and B are different bases of a same lattice and have low
and high dual-orthogonality defects, respectively. For more details, we refer the
readers to [18].

Encryption and Decryption For a message m = (m1, m2) ∈ R2, the cipher-
text c is calculated by

c = (c1, c2) = mB + e ∈ (Q[x]/〈xn − 1〉)2

for an error vector e = (e1, e2) ∈ (Q[x]/〈xn − 1〉)2, where the coefficients of ei

are elements in {−1/2, 1/2}.
Let T be a matrix defined by

T :=

(

Φ(g) Φ(Q)
pI Φ(gp)

)−1

.

Then, c can be decrypted as follows:

m = (m1, m2) = ⌈cR−1⌋T.

The decryption works similarly to that of GGH. Since we don’t have to under-
stand thoroughly how the decryption works in order to explain our attack, we
omit the details.

Efficiency and Security Since the public matrix B is determined by four
polynomials in R, key size of PJH is O(n) while that of GGH is O(n2). The
comparison of key sizes of PJH with GGH in [18] is given in Table 1. The values
in the last column are the key size of GGH when it uses Micciancio’s HNF
expression [10].

Concerning the security of PJH, the proposers claimed that the system is
secure against all possible attacks even if the parameter p is disclosed. Because

5

Table 2. Running times to break PJH estimated by the proposers

n expected run time

211 1.46 ×109 seconds ≈ 46 years
257 1.45 ×1011 seconds ≈ 4.6 × 103 years
373 1.58 ×1016 seconds ≈ 5 × 108 years
503 5.18 ×1021 seconds ≈ 1.6 × 1014 years

GGH was broken by a lattice attack, they presented extensive analysis on the
security against lattice attacks. We briefly describe their analysis. Because the
equations in (1), which are the only public information on secret keys and pub-
lic keys, are quadratic of unknown variables in R, they expected that no key
recovery attack using lattice techniques would be feasible. On the other hand,
a message recovery attack seems to be feasible. However, they claimed that the
reduction algorithm would work badly because they made expected-gaps, which
is defined in the next subsection, small. Running times to break PJH estimated
by the authors of [18] are given in Table 2.

2.2 Lattice Attacks

A Lattice L is defined to be a discrete subgroup of Rn. It consists of all integral
linear combinations of a set of some linearly independent vectors b1,b2, · · · ,bd ∈
Rn. Such a set of vectors is called a lattice basis. All the bases of a lattice have the
same number of elements, and this number is called the dimension of the lattice,
denoted by dim(L). There are infinitely many bases for L when dim(L) ≥ 2.
Any two bases of a lattice L are related to each other by some unimodular
matrix (integral matrix of determinant ±1), and therefore all the bases share
the same Gramian determinant det1≤i,j≤d〈bi,bj〉, where {b1,b2, . . . ,bd} is a
basis of L. The volume vol(L) of L is defined by the square root of the Gramian
determinant, which is the d-dimensional volume of the parallelepiped spanned
by the bi’s. Since a lattice is discrete, it has a shortest non-zero vector. The
Euclidean length of a shortest vector of L is called the first minimum, denoted
by λ1(L). More generally, for all 1 ≤ i ≤ dim(L), the i-th minimum λi(L)
is defined by the minimum of max1≤j≤i ‖vj‖, where {v1, · · · ,vi} runs over all
possible sets of linearly independent vectors v1, · · · ,vi ∈ L. The ratio λ2/λ1 is
called lattice gap, which is useful in estimating the feasibility of lattice attacks.

Given a basis for a lattice L, the problem of finding a shortest vector of L
is called the shortest vector problem (SVP). Another famous problem related
to lattices is the closest vector problem (CVP), the problem of finding a vector
v ∈ L which is closest to a given vector t ∈ Rn. The CVP in ℓp-norm is proved
to be NP-hard for all p, and the SVP is also believed to be hard [11]. Indeed,
there are no known polynomial time algorithms to solve even the approximated
versions of them, if approximation factors are polynomials in dim(L). However,
if the dimension of a lattice is less than a few hundreds, we can solve them in
practice using lattice reduction algorithms such as LLL [8] and its variants [19].

6

For a given lattice basis {b1, · · · ,bn}, LLL outputs a reduced basis {b∗
1, · · · ,b∗

n}
satisfying ‖b∗

1‖ ≤ 2(n−1)/2λ1(L) within O(n4 log B) integer arithmetic opera-
tions, where B is the maximum of ‖bi‖2’s. The fastest LLL variant known has
bit-complexity essentially O(n5 log2 B) [14]. However, the real performances of
LLL and its variants are more better than what are expected from the theory,
both in terms of the running time and the output quality [15]. Thus, we can
find a genuine shortest vector of a given lattice using the algorithms when the
dimension of the lattices are less than a few hundreds.

Lattices have been widely used in attacking public-key cryptosystems. Read-
ers are referred to [16] for well-written summary of the various results about
them. Here we briefly describe basic principles to attack systems using lattices.
The attacks are accomplished by reducing the problem of finding a secret infor-
mation in the system to a specific instance of SVP or CVP. We describe the SVP
case here. First, one constructs a lattice from public information such as system
parameters and public keys. Then, one shows that a relatively short vector v of
the lattice includes the secret information we want to obtain, and finds such v
by solving SVP with lattice reduction algorithms. However, in most cases, one
cannot prove that v is a genuine shortest vector of the lattice. Instead, one can
infer that it is a shortest vector by using Gaussian heuristic: Given a random
lattice L of dimension n, the first minimum λ1(L) of L will be

√

n

2πe
vol(L)

1
n ≤ λ1(L) ≤

√

n

πe
vol(L)

1
n .

One use σ(L) as the estimation of λ1(L), where σ(L) (briefly σ) is defined by

σ(L) :=

√

n

2πe
vol(L)

1
n .

If ‖v‖ is less than σ, one may expect that v is a shortest vector. In practice,
the larger the ratio σ/‖v‖ is, the easier we can find v. We call this ratio an
expected-gap of L with respect to v.

3 Key Recovery Attack against PJH

3.1 Volume of the Lattice Generated by Φ(P2)

For a polynomial f ∈ R, let’s define V (f) by the volume of the lattice generated
by the circulant matrix Φ(f). In our attack, V (P2) is used essentially: More
precisely, we need to estimate a reasonable lower bound of δn(P2), which is
defined for randomly chosen P2 by

δn(P2) := p−1

√

1

2πe
V (P2)

1
n+1 .

In this subsection we present a heuristic on the asymptotic estimation of δn(P2).

7

Fig. 1. Experimental estimation of δn(P2) for 10-bit p(left) and 80-bit p(right)

To our knowledge, it is difficult to understand asymptotic behavior of V (f)
theoretically. For simplicity, suppose that the lattice is of full rank. In that case,
V (f) is equal to the determinant of the circulant matrix Φ(f). So, we can infer
intuitively

V (f) = det(Φ(f)) =
‖f‖n

orth-defect(Φ(f))
∼ O(‖f‖n).

However, if there are no conditions on n and f , there are no known theoretical
results on asymptotic properties of V (f). Moreover, we could not find meaningful
characteristics even from simulations.

Now, turn to our attention to δn(P2) in PJH. Because PJH uses prime n
and P2 is obtained by special formulas, V (P2) and δn(P2) behave regularly as n
increases. We could verify this by simulations. We calculated δn(P2) in randomly
constructed PJH for several n’s and for several 10-bit or 80-bit p’s. We tested
100 times for each n and p. The experimental results are shown in Figure 1.
The upper three curves in the figure show the simulated maximum, average,
and minimum values of δn(P2), respectively. They tend to increase linearly as n
increases. If the bit-size of p increases, the value of δn(P2) decreases a little bit.
However, as one can see in Figure 1, the slopes of δn(P2) do not change much
as the bit-size of p increases.

From our simulations, we estimate a lower bound of δn(P2) for large n and
for p ≤ 280 very conservatively as follows:

δn(P2) ≥ 0.02n for n ≥ 100. (2)

The lowest line in the figure shows the lower bound in (2). In the next subsections,
we will use this estimation for theoretical analysis of our attack against PJH.

8

3.2 A Linear Relation Between Key Pairs

Let’s recall some of equations in (1).

P1 = f1 · g + h1 · Q (3)

P2 = pf1 + h1 · gp (4)

By multiplying g to (4), we induce the following equation in R:

g · P2 = pf1 · g + h1 · gp · g
= pf1 · g + h1 · (1 + pQ)

= p(f1 · g + h1 · Q) + h1

= pP1 + h1.

(5)

In (5), g, p and h1 are unknown variables. However, note that the equation is
linear while those in (1) are quadratic. Suppose we can recover h1 and p. Then, g
can be recovered by solving the linear equation (5). From g and p we can obtain
gp and Q easily. Then, (1) becomes a system of four linear equations of four
unknown variables so that the other secret keys can be recovered easily. Thus,
if we can find h1 and p, we can recover all secret keys of PJH. We will recover
them using a lattice technique in the following subsections.

Remark 1. PJH can be designed flexibly. In [18], the authors introduced another
scheme which uses the polynomial ring Z[x]/〈xn−x−1〉 instead of Z[x]/〈xn−1〉
in Section 4.4, and one more in the appendix. However, our attack can be applied
identically to the one in Section 4.4, and a modified attack, using the equation

g · P12 = pP11 + h1

instead of (5), can be applied to the one in the appendix.

3.3 Finding h1 with a Lattice Technique

The Case When p is not Secret Consider a lattice L1 generated by rows of
the following (n + 1) × (n + 1) matrix L1:

L1 =

(

Φ(P2) 0n

pP1 1

)

,

where 0n is a column vector of dimension n whose entries are all 0. Then, a
vector

v1 = (h1,−1) = (g · P2 − pP1,−1) = (g,−1)L1

is contained in L1 and its length satisfies

‖v1‖ =
√

‖h1‖2 + 1 ≤
√

n + 1.

9

Table 3. Breaking times (in seconds) of PJH for 80-bit public p.

Dimension of lattice n =211 n =257 n =373 n =503 n = 1001

Time(Seconds) < 1 < 1 < 10 < 10 < 100

According to Gaussian heuristic we can expect

σ1 ∼
√

n + 1

2πe
vol(L1)

1
n+1 = δn(P2)p

√
n + 1,

where σ1 is the length of a shortest vector in L1. Using the approximation of
δn(P2) in (2), we can estimate σ1 as follows:

σ1 ≥ 0.02np
√

n + 1 for n ≥ 100.

Thus, the expected-gap of L1 with respect to v1 is bigger than or equal to 0.02np,
i.e.,

σ1

‖v1‖
≥ 0.02np for n ≥ 100. (6)

Since this is very large in PJH parameters, where p is a 10-bit or 80-bit prime,
v1 will be a shortest vector of L1 with high probability. So, we can easily find
v1 (and hence h1) by using lattice reduction algorithms.

We simulated the above attack on a Pentium IV 3.2 GHz PC using the
floating-point variant of LLL algorithm (LLL FP) with default parameters im-
plemented in NTL package [17]. We tested our attack against PJH with different
n’s for 10-bit and 80-bit randomly selected p’s. For each n and p, 10 different
instances were tested against. We could obtain v for all instances. For 10-bit
p’s, the running times for lattice reduction were too short to be described. The
running times for 80-bit p’s are given in Table 3. Even for n = 1001, we could
find the solutions within 100 seconds.

The Case When p is Secret If p is secret, we cannot construct the lattice
L1. Instead, we consider a lattice L2 generated by the following matrix L2:

L2 =

(

Φ(P2) 0n

P1 1

)

.

Then, a vector v2 = (h1,−p) is contained in L2 and its length is smaller than

or equal to
√

p2 + n2. The σ2 corresponding to L2 is equal to σ1, and hence
σ2 ≥ 0.02np

√
n + 1. Thus, we get

σ2

‖v2‖
≥ 0.02np

√
n + 1

√

p2 + n2
∼ 0.02n

√
n. (7)

Although this value is smaller than the expected-gap when p is public, it is still
large (see Table 5). So, we can find v2 (and hence h1, and p) by using lattice
reduction algorithms.

10

Table 4. Breaking times (in seconds) of PJH for 80-bit secret p.

Dimension of lattice n =211 n =257 n =373 n =503 n = 1001

Times(second) < 20 < 30 < 60 < 100 < 500

Table 5. Expected-gaps in attacks against NTRUEncrypt, GGH, and PJH.

Dimension of the lattice 200 250 300 350 400 450 500

GGH [12] 9.7 9.4 9.5 9.4 9.6
NTRUEncrypt [7] 5.7 6.3 6.9 7.5 8.0 8.5 8.9

PJH(secret p) [From (7)] 56.6 79.1 103.9 131.0 160.0 190.9 223.6
PJH(public p) [From (6)] 4p 5p 6p 7p 8p 9p 10p

We also simulated the above attack on the same machine using the same
algorithm as in the previous case. The results for 80-bit p’s are given in Table 4.
The running times for lattice reduction in this case were more longer than those
in case of public p. This was expected because the expected-gap of the former
is smaller than that of the latter. Still, we could find the solutions within 500
seconds even for n = 1001 .

Remark 2. We can use another lattice in our attack to get larger expected-gap.
Let dp be the bit-length of p, and consider a vector v3 = (2dph1,−p) and a
lattice L3 generated by the following matrix L3:

L3 =

(

2dpΦ(P2) 0n

2dpP1 1

)

.

Then, v3 is a short vector of L3 and the expected-gap of L3 with respect to v3

is about δn(P2)p. However, since the entries of L3 is larger than those of L2, it
takes more time in lattice reduction for L3 than for L2. Thus, using L2 is more
efficient in practice.

3.4 Attack against PJH with Larger Parameters

In attack against GGH, expected-gaps are small and do not increase as the
lattice dimension n increases [12], and in attack against NTRUEncrypt, they
increase but are bounded by about 0.25

√
n [7]. On the other hand, the efficiency

of reduction algorithm becomes worse as n increases. These two facts cause the
difficulty in attacking GGH and NTRUEncrypt when n is sufficiently large [3,
6, 12]. The attacks are not possible practically when n is more than 400 ∼ 500.

However, expected-gaps in our attack against PJH are much large and in-
crease very fast as n increases. The comparison of expected-gaps in attacks
against GGH, NTRUEncrypt, and PJH are given in Table 5. The large expected-
gaps explains why breaking times of PJH are shorter compared to other systems.

11

Moreover, the fact that the expected-gaps increases fast compensates the ineffi-
ciency of reduction algorithms for large n. Thus, we expect that we can break
PJH until n grows too large to be used practically.

4 Conclusion

We have shown that Paeng-Jung-Ha cryptosystem proposed at PKC 2003 is
not secure against a lattice attack contrary to proposer’s expectation. From the
relations between public keys and secret keys, we could induce a linear equation
useful for a lattice attack. Because the breaking times for suggested parameters
are drastically short and the feasibility of our attack against the system with
larger parameters is high, we may declare that the system should not be used
practically.

It seems to be hard to modify PJH to be secure against our attack without
worsening the efficiency. Our result shows that, although lattice-based cryp-
tosystems look attractive, it is difficult to design a practical system other than
NTRUEncrypt.

Acknowledgements. The authors would like to thank the anonymous referees
for pointing out some errors of this paper and giving valuable comments.

References

1. M. Ajtai. Generating Hard Instances of Lattice Problems. In Proc. of 28th ACM
STOC, 99-108, 1996.

2. M. Ajtai and C. Dwork. A Public-key Cryptosystem with Worst-case/Average-case
Equivalence. In Proc. of 29th ACM STOC, 284-293, 1997.

3. D. Coppersmith and A. Shamir. Lattice Attacks on NTRU. In Proc. of Euro-
crypt’97, LNCS 1233, 52-61, Springer-Verlag, 1997.

4. G. Goldreich, S. Goldwasser, and S. Halevi. Public-key Cryptosystems from Lattice
Reduction Problems. In Proc. of Crypto ’97, LNCS 1294, 112-131, Springer-Verlag,
1997.

5. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. In Proc. of ANTS III, LNCS 1423, 267-288, Springer-Verlag, 1998.

6. J. Hoffstein, J. H. Silverman, and W. Whyte. Estimated Breaking Times for NTRU
Lattices. Technical Report #12(Version 2), NTRU Cryptosystems, 2003.

7. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3. In Proc. of CT-RSA 2005, LNCS
3376, 118-135, Springer-Verlag, 2005.

8. A. K. Lenstra, H. W. Lenstra Jr, and L. Lovász. Factoring Polynomials with Ra-
tional Coefficients. Mathematische Ann. 261, 513-534, 1982.

9. R. J. McEliece. A public-key Cryptosystem Based on Algebraic Coding Theory.
DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages
114–116, January 1978.

10. D. Micciancio. Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In Proc. of CaLC 2001, LNCS 2146, 126-145, Springer-Verlag, 2001.

12

11. D. Micciancio and S. Goldwasser. Complexity of lattice problems : A Cryptographic

perspective. Kluwer Academic Publishers, 2002.
12. P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem

from Crypto ’97. In Proc. of Crypto ’99, LNCS 1666, 288-304, Springer-Verlag,
1999.

13. P. Q. Nguyen and O. Regev. Learning a Parallelepiped: Cryptanalysis of GGH and
NTRU Signatures. In Proc. of Eurocrypt’06, LNCS 4004, 271-288, Springer-Verlag,
2006.

14. P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proc. of Eurocrypt
2005, LNCS 3494, 215-233, Springer-Verlag, 2005.

15. P. Q. Nguyen and D. Stehlé. LLL on the Average. In Proc. of ANTS VII, LNCS
4076, 238-256, Springer-Verlag, 2006.

16. P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Proc. of
CaLC 2001, LNCS 2146, 146-180, Springer-Verlag, 2001.

17. NTL - A Number Theory Library. Available at http://shoup.net/ntl.
18. S. Paeng, B. E. Jung, and K. Ha. A Lattice Based Public Key Cryptosystem

Using Polynomial Representations. In the Proc. of PKC 2003, LNCS 2567, 292-
308, Springer-Verlag, 2003.

19. C. P. Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms. Theoretical Computer Science 53, 201-224, 1987.

