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Abstract. In this paper, we first demonstrate a gap between the se-
curity of verifiably committed signatures in the two-party setting and
the security of verifiably committed signatures in the multi-party set-
ting. We then extend the state-of-the-art security model of verifiably
committed signatures in the two-party setting to that of multi-party
setting. Since there exists trivial setup-driven solutions to multi-party
verifiably committed signatures (e.g., two-signature based solutions, we
propose solutions to the multi-party stand-alone verifiably committed
signatures in the setup-free model, and show that our implementation is
provably secure under the joint assumption that the underlying Zhu’s sig-
nature scheme is secure against adaptive chosen-message attack, Fujisaki-
Okamoto’s commitment scheme is statistically hiding and computation-
ally binding and Paillier’s encryption is semantically secure and one-way
as well as the existence of collision-free one-way hash functions.
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1 Introduction

Optimistic fair-exchange protocols was first introduced by Asokan et al, in [1]
and formally studied in [2], [3] and [14] in the context of verifiably encrypted
signatures. Very recently, Dodis and Reyzin[11] have formalized a unified model
for fair-exchange protocols as a new cryptographic primitive called verifiably
committed signatures in the two-party setting. Zhu and Bao[20] have shown
that the existence of verifiably encrypted signatures implies the existence of
the verifiably committed signatures while the existence of verifiably committed
signatures does not imply the existence of verifiably encrypted signatures. As a
result, the notion of verifiably committed signatures is a general extension of the
notion of verifiably encrypted signatures.

A verifiably committed signature can be setup-driven or setup-free[19]. A ver-
ifiably committed signature is called setup-driven if an initial key setup protocol
between a primary signer and its trusted third party (TTP) must be involved
such that at the end of the key setup protocol, the primary signer and its TTP
share a prior auxiliary string. This shared auxiliary information enables TTP



to convert any valid partial signature into the corresponding full signature if
a conflict occurs between the primary signer and its verifier. A verifiably com-
mitted signature is called setup-free if an individual participant needs not to
contact his/her arbitrator(s) even for the registration purpose. Namely, no ini-
tial key setup procedure between a primary signer and his/her TTP is involved
except for one requirement that the primary signer can obtain and verify TTP’s
certificate and vice versa.

A verifiably committed signature can be stand-alone[19] or not[18]. A verifi-
ably committed signature is called stand-alone if on input a valid partial signa-
ture scheme, the distribution of outputs of a resolution algorithm is identical with
the distribution of signatures generated by a full signing algorithm. A verifiably
committed signature is called non-stand-alone if it is not stand-alone.

The state-of-the-art verifiably committed signatures are only considered in
the two-party setting (a primary signer and a verifier, together with an off-line
arbitrator). We are interested in studying stand-alone and setup-free verifiably
committed signatures in the multi-party setting throughout the paper by demon-
strating that the security of two-party setup-free verifiably committed signatures
does not guarantee the security of multi-party setup-free verifiably committed
signatures.

We stress that the existence of multi-party verifiably committed signatures
in the setup-driven model is obvious assuming that the underlying signatures are
secure in the sense of [13]. That is, suppose a primary signer’s public and secret
key pair (pk1, sk1) is the public key and secret key pair for the first signature
scheme, and at the same time the prime signer and its TTP share another pub-
lic/secret key (pk2, sk2) of the second signature scheme. By pk= (pk1, pk2) we
denote the public key of the entire signature scheme, and by sk=(sk1, sk2), we
denote the corresponding secret keys. Now given a message m, the primary signer
produces its partial signature σ1 on the message m. A full signature of the mes-
sage m is defined as σ =(σ1, σ2), where σ2 is the signature of m corresponding
the public/secret key pair (pk2, sk2). It is easy to verify that this two-signature
based solution is a multi-party verifiably committed signature scheme since the
security of public key signatures in the two-party setting is preserved in the
multi-party setting[6]. This leaves an interesting research problem: how to im-
plement multi-party stand-alone and setup-free verifiably committed signatures
in the standard complexity model?

The contribution of this paper is of three-fold. In the first fold, we demon-
strate that there is a gap between the security of two-party verifiably committed
signatures and multi-party verifiably committed signatures. In the second fold,
we extend the state-of-the-art security definition of verifiably committed signa-
tures in the two-party setting to that of the multi-party case. In the third fold,
we propose an efficient implementation of multi-party stand-alone and setup-free
verifiably committed signatures. We are able to show that our implementation is
provably secure under the joint assumption that the underlying Zhu’s signature
scheme is secure against adaptive chosen-message attack, Fujisaki-Okamoto’s
commitment scheme is statistically hiding and computationally binding and Pail-



lier’s encryption is semantically secure and one-way as well as the existence of
collision-free one-way hash functions. To the best of our knowledge, this is the
first implementation of stand-alone and setup-free verifiably committed signa-
ture scheme which is provably secure in the multi-party setting.

The rest of this paper is organized as follows: in Section 2, a gap between
the security of two-party verifiably committed signatures and multi-party veri-
fiably committed signatures is demonstrated. In Section 3, syntax and security
definitions of stand-alone and setup-free verifiably committed signatures in the
multi-party setting are introduced and formalized. In Section 4, building blocks
on which our implementation is based are briefly sketched. An efficient implemen-
tation of multi-party stand-alone and setup-free verifiably committed signatures
is proposed in Section 5, and we conclude our work in Section 6.

2 A gap between two-party and multi-party verifiably
committed signatures

A stand-alone and setup-free verifiably committed signature in the two-party
setting based on Cramer and Shoup’s signature scheme has been presented in
[19]. We are about to demonstrate that although this scheme is provably secure
in the two-party setting, it is not secure in the multi-party setting. To show this
gap, we first sketch their scheme below:

– primary signer’s key generation algorithm KGA: on input kA, a primary
signer Alice runs KGA to generate two large safe primes pA and qA such that
pA−1 = 2p′A and qA−1 = 2q′A, where p′A, q′A are two l′-bit primes. KGA also
chooses two random elements xA and hB from QRnA

, where nA = pAqA and
QRnA

is the quadratic residue of Z∗
nA

. Finally, KGA outputs a description of
a group G of order s, and two random elements g1 and g2 of G with order
s. We stress that in the Cramer and Shoup’s signature scheme the choice of
group G is independent with nA (see [8] for more details).
The public key of Alice is (nA, hA, xA, g1, g2,H), along with an appropriate
description of G including s, where H is a collision-free cryptographic hash
function with output length l-bit (say, l=160). The private key is (pA, qA).
The primary signer Alice now proves to her CA that all values are correctly
generated and then obtains her certificate CertA from her CA;

– arbitrator’s key generation algorithm KG: on input k′, an arbitrator runs KG
to generate a k′-bit RSA modulus N = pcqc, where pc, qc are two large safe
primes.
The public key of the arbitrator is APK=((1 + N), N). The private key is
ASK=(pc, qc). The arbitrator should prove to his CA that the public and
secret key pair is correctly generated and then obtains his certificate CertB

from his CA;
– full signing algorithm Sig: To sign a message m, Alice runs Sig to choose

at random a (l + 1)-bit prime number e, a string t ∈ Zs. The equation



ye = xAhA
H(gt

1g
H(m)
2 ) modnA is solved for y. The corresponding signature σ

of the message m is (e, t, y).
– full verification algorithm Vf: given a putative triple (e, t, y), a verifier Bob

runs Vf to check whether e is an odd (l + 1)-bit number. If so, Bob further

checks the validation of the equation xA = yehA
−H(gt

1g
H(m)
2 )modnA. If the

equation is valid, then Bob accepts, otherwise, he rejects.
– partial signing algorithm PSig: on input a message m, Alice runs PSig to

choose a (l + 1)-bit prime e and a string t ∈ Zs. The equation ye =

xAhA
H(gt

1g
H(m)
2 ) modnA is solved for y.

Alice then computes u=gt
1 and c= (1+N)trN modN2 together with a proof

pr that she knows that u contains the same number as the encryption and
t ∈ I using Boudot’s protocol [4]. The partial signature σ′ of message m is
defined by (e, y, u, c, pr).

– partial verification algorithm PVf: given a putative signature σ′=(e, y, u, c, pr),
Bob runs PVf to check whether e is an odd (l + 1)-bit number. Second PVf

checks the validity of the equation xA = yehA
−H(ug

H(m)
2 ) modnA. If the equa-

tion is valid, then PVf further checks the validity of proof pr that u contains
the same number as the encryption, and then uses Boudot’s protocol to ver-
ify that the encrypted value t ∈ I. If it is valid then the verifier accepts,
otherwise, it rejects.

– resolution algorithm Res: given σ′=(e, y, u, c, pr) and a proof that Bob ful-
filled his obligation to the primary signer. The arbitrator first checks validity
of the request message. If so, the arbitrator then runs Res to output a valid
full signature of (e, y, t) using his decryption key, otherwise, Res rejects the
request.

Suppose now an adversary Eve generates two large safe primes pE and qE

such that pE = 2p′E + 1 and qE = 2q′E + 1, where p′E , q′E are two l′-bit primes.
Eve also chooses two random elements xE , hE ∈ QRnE

, where nE = pEqE and
QRnE

is the quadratic residue of Z∗
nE

. Eve’s now reuses Alice’s partial public
key (G, s, g1, g2). We stress that the reuse of Alice’s partial public key is not a
problem since the public data (G, s, g1, g2,H) can be chosen independently with
the private key (nA, pA, qA). We now can show how the malicious verifier Bob
and Eve attack Alice below:
– Alice gives her partial signature (e, y, u, c, prA) to Bob, where prA is Alice’s

proof that u contains the same number as that of c and the encrypted value
t ∈ I;

– Bob gives his partial signature (e′, y′, u, c, prB) to the malicious Eve, where
prB ← prA. We stress that although the malicious Bob does not know the
exactly hiding value t ∈ I, he can provide a valid proof prB by copying Alice’s
prA.

– Eve asks TTP to open Bob’s signature by forwarding partial signature
(e′, y′, u, c, prB) and a proof that Eve fulfilled her obligation to Bob;

– TTP opens t such that u = gt and c =E(t, r) if and only if (e′, y′, u, c, prB)
and a proof that Eve fulfilled her obligation to Bob are valid; Finally, TTP
sends t back to Eve;



– Eve gives t to Bob, who now has the full signature of Alice.

The counterexample shows that the security of verifiably committed signa-
tures in the single setting does not imply the security of verifiably committed
signatures in the multi-party setting. We stress that in the above counterexam-
ple, the common reference string (the description of G is shared between Alice
and Eve) is reused. This is possible since the description of G is independent
with APK.

3 Multi-party stand-alone and setup-free verifiably
committed signatures: syntax and security definitions

3.1 Syntax

We now extend (stand-alone and setup-free) two-party verifiably committed sig-
natures [11], [19] and [20] to the multi-party verifiably committed signatures
setting.

Definition 1. A multi-party stand-alone and setup-free verifiably committed
signature scheme consists of the following algorithms:

– arbitrator key generation algorithm KG: on input a security parameter k, it
returns a public key and secret key pair (pk, sk);

– individual key generation algorithms IKG: on input a security parameter ki,
it returns a public key and secret key pair (pki, ski).

– full signing and verification algorithms(Sig, Vf): these are conventional sign-
ing and verification algorithms. on input a message mj, pki and ski, Sig out-
puts a full signature σi,j on mj; on input a putative signature (mj , σi,j , pki),
Vf will output 1 (accept) or 0 (reject);

– partial signing and verification algorithms(PSig, PVf): these are partial sign-
ing and verification algorithms, which are similar to ordinary signing and
verification algorithms, except they can depend on the public arbitration key
pk. That is, on input a message (mj, ski, pki, pk), PSig outputs a partial
signature σ′i,j; on input a putative partial signature (mj, σ′i,j, pki, pk), PVf
outputs 1 (accept) or 0 (reject);

– resolution algorithm Res: this is a resolution algorithm run by the arbitrator
in case the primary signer pki refuses to open her signature σi,j to the ver-
ifier, who in turn possesses a valid partial signature σ′i,j on mj and a proof
that he fulfilled his obligation to the primary signer1. In this case, Res(mj,
σ′i,j, pki, sk, pk) should output a valid full signature σi,j of mj.

Correctness the correctness property of a multi-party verifiably committed
signatures states that:

– Vf(mj ,Sig(mj , ski, pki)=1 (∀ j, ∀ i);
– PVf(mj , PSig(mj , ski, pki, pk), pki, pk)=1 (∀ j, ∀ i);
– Vf(mj , Res(PSig(mj , ski, pki, pk), sk, pk, pki), pki)=1 (∀ j, ∀ i).

1 The definition does not deal with any specific question of how a verifier proves to
the arbitrator that he/she fulfilled his/her obligation to the primary signer.



3.2 The definitions of security

We extend the security definition of Dodis and Reyzin[11] in the two party
setting to the multi-party setting. The security definition of multi-party stand-
alone and setup-free verifiably committed signatures consists of the following
three aspects: security against any primary signer, security against any verifier
and security against any arbitrator/TTP.

Security against malicious primary signer: intuitively, an individual pri-
mary signer should not provide a partial signature which is valid both from the
viewpoints of a verifier and an arbitrator but which will not be opened into the
primary signer’s full signature by the honest arbitrator. More precisely, By ki, we
denote the system security parameter of individual user i; By OPSig(pki,ski,···),
we denote an oracle of the partial signing procedure PSig(pki, ski, · · ·) and by
ORes(pki,pk,sk,···) an oracle of the resolution procedure Res(pki, pk, sk, · · ·). We
require that any probabilistic polynomial time Adv succeeds with at most negli-
gible probability in the following game.

– arbitrator key generation algorithm KG: on input a security parameter k, it
outputs (sk, pk);

– individual key generation algorithm IKG: on input a security parameter ki,
it outputs (sk∗i , pki), where IKG∗(ki) denotes the run of key generator IKG
with the corrupted primary signer pki by the adversary, and sk∗i denotes the
adversary’s states.
The honest primary signer j (j 6= i) runs IKG on input kj and obtains a
public and secret key pair (pkj , skj). The adversary obtains (pkj , skj) and
pki but not sk∗i (1 ≤ i, j ≤ t(k′) and j 6= i).

– resolution oracle query ORes(pki,pk,sk,···): for each adaptively chosen message
mj , the adversary computes its partial signature σ′i,j for mj and forwards

σ′i,j to the oracle ORes(pki,pk,sk,σ′
i,j

) to obtain full signature σi,j of message
mj , where 1 ≤ j ≤ t(ki), and t(·) is a polynomial.

– at the end ofORes(pki,pk,sk,···) oracle query, the adversary produces a message
and its full signature pair (m∗, σi,∗), i.e.,

(m∗, σ
′
i,∗)← AdvO

Res(pki,pk,sk,···)
(sk∗i , pki, pk);m∗ 6= mj , 1 ≤ j ≤ t(k′);

σi,∗ ← Adv(m∗, σ
′
i,∗, sk

∗, pk, pki)

– success of succ=[PVf(m∗, σ
′
i,∗, pk, pki) = 1 ∧ Vf(m∗, σi,∗, pki) = 0].

Definition 2. A multi-party verifiably committed signature is secure against
malicious primary signer pki, if any probabilistic polynomial time adversary
Adv associated with resolution oracle, succeeds with at most negligible proba-
bility, where the probability takes over coin tosses in IKG∗(ki, ·), PSig(pki, ·) and
ORes(pki,pk,sk,···).



Security against malicious verifier: suppose a primary signer pki and
a verifier v are trying to exchange signature in a fair way. The primary signer
pki wants to commit to the transaction by providing his/her partial signature.
Of course, it should be computationally infeasible for the verifier v to compute
the corresponding full signature from any partial signature2. More formally, we
require that any probabilistic polynomial time adversary Adv succeeds with at
most negligible probability in the following game:

– arbitrator key generation algorithm KG: on input a security parameter k, it
outputs (sk, pk);

– individual key generation IKG: on input a security parameter kj , it outputs
(skj , pkj), where IKG(kj) denotes the run of key generator IKG with the cor-
rupted primary signer pkj by the adversary, and skj denotes the adversary’s
states. The honest primary signer i (i 6= j) runs IKG(ki), obtains a public
and secret key pair (pki, ski). The adversary obtains (pkj , skj) and pki but
not ski (1 ≤ i, j ≤ t(k′) and j 6= i).

– OPSig(pki,ski,pk,·) and ORes(pki,sk,pk,···) oracle queries: for each adaptively
chosen message mj , the adversary obtains a partial signature σ′i,j of mes-

sage mj by querying the partial signing oracle OPSig(i,mj). The adversary
forwards σ′i,j to the resolution oracle ORes(pki,sk,pk,σ′

i,j) to obtain the full
signature σi,j of message mj , where 1 ≤ j ≤ t(ki), and t(·) is a polynomial.

– at the end of oracle queries to OPSig(pki,ski,pk,···) and ORes(pki,sk,pk,···),
the adversary outputs a message-partial signature pair (m∗, σ

′
i,∗). On in-

put (m∗, σ
′
i,∗), the adversary further outputs a message-full signature pair

(m∗, σi,∗) ← AdvO
PSig(pki,ski,pk,σ′

i,∗ )
,O

Res(pki,sk,pk,σ′
i,∗ )

.
– success of adversary succ: = [Vf(m∗, σi,∗, pki) = 1 ∧ m∗ /∈ Query (Adv,
ORes(pki,sk,pk,···))], where Query( Adv, ORes(pki,sk,pk,···)) is the set of valid
queries the adversary Adv asked to the resolution oracle ORes(pki,sk,pk,···),
i.e., (m∗, σ

′
i,∗) such that Vf(m∗, σ

′
i,∗) = 1.

Definition 3. A multi-party verifiably committed signature is secure against
a malicious verifier, if any probabilistic polynomial time adversary Adv which
is associated with a partial signing oracle OPSig(pki,ski,pk,···) and a resolution
oracle ORes(pki,sk,pk,···), succeeds with at most negligible probability, where the
probability takes over coin tosses in (pki, ski)← IKG(ki) and (pk, sk)← KG(k),
OPSig(pki,ski,pk,···) and ORes(pki,sk,pk,···).

Security against semi-trusted arbitrator: even though the arbitrator is
semi-trusted, a primary signer does not want this arbitrator to produce a valid
signature which the primary signer do not intend on producing. To achieve this
goal, we require that any probabilistic polynomial time adversary Adv associated
2 The security preventing a malicious third party from forging valid partial signatures

is stated as security against any malicious arbitrator below as a malicious arbitrator
is the most powerful adversary in the security model.



with partial signing oracle OPSig(pki,ski,pk,···), succeeds with at most negligible
probability in the following game:

– key generation algorithm KG∗: on input security parameter k, KG∗(k) out-
puts (sk∗, pk), where KG∗(k) is run by the dishonest arbitrator.

– individual key algorithm IKG: on input a security parameter kj , it outputs
(skj , pkj), where IKG(kj) denotes the run of key generator IKG with the cor-
rupted primary signer pkj by the adversary, and skj denotes the adversary’s
states. The honest primary signer i (i 6= j) runs IKG(ki), obtains a public
and secret key pair (pki, ski). The adversary obtains (pkj , skj) and pki but
not ski (1 ≤ i, j ≤ t(k′) and j 6= i).

– OPSig(pki,ski,pk,···) oracle query: for each adaptively chosen message mj ,
the adversary obtains the partial signature σ′i,j for mj from the oracle

OPSig(pki,ski,pk,mj), where 1 ≤ j ≤ t(k′).
– at the end of the partial partial signing oracle query, the adversary produces

a message-full signature pair (m∗, σi,∗), i.e.,

(m∗, σi,∗)← AdvO
PSig(pki,ski,pk,m∗)

(sk∗, pk, pki).

– success of adversary is defined as follows:

succ = [Vf(m,σ, pki) = 1 ∧m∗ /∈ Query(Adv,OPSig(pki,ski,pk,···))]

where Query( Adv, OPSig(pki,ski,pk,···) is the set of valid queries Adv asked
to the partial oracle such that PVf(mj , σ

′
i,j) = 1.

Definition 4. A multi-party verifiably committed signature is secure against
malicious arbitrator, if any probabilistic polynomial time adversary Adv asso-
ciated with partial signing oracle P , succeeds with at most negligible proba-
bility, where the probability takes over coin tosses in (pki, ski)← IKG(ki) and
(pk, sk∗)← KG∗(k), OPSig(pki,ski,pk,···).

Definition 5. A multi-party verifiably committed signature is secure if it is se-
cure against any malicious primary signer, malicious verifier and malicious ar-
bitrator.

4 Building blocks

Before we propose our implementation, we would like to sketch the following
building blocks on which our protocol is based.

4.1 Paillier’s cryptographic system

Paillier investigated a novel computational problem, called Composite Residuos-
ity Class Problem, and its applications to public key cryptography in [15]. Our
construction of multi-party verifiably committed signatures will heavily rely on
this probabilistic encryption scheme sketched below.



– the public key is a κ-bit RSA modulus N = PQ, where P , Q are two large
safe primes, where |P |=|Q| =2κ. the private key is (P,Q);

– the plain-text space is ZN and the cipher-text space is Z∗
N2 ;

– to encrypt α ∈ ZN , one chooses Ra ∈ Z∗
N uniformly at random and computes

the cipher-text as EPK(a,Ra) = (1 + N)aRN
a mod N2.

– given c =(1 + N)aRN
a mod N2, and trapdoor information (P,Q), one can

first computes c1 (=c mod N), and then compute Ra from the equation Ra

= c
N−1modφ(N)
1 modN ; Finally, one can compute a from the equation cR−N

a

modN2 =1 + aN .
– the encryption function is homomorphic, i.e., EPK(a1, R1) × EPK(a2, R2)

mod N2 = EPK(a1 + a2 mod N , R1 ×R2 mod N).

4.2 Fujisaki-Okamoto commitment scheme

Let τ be a security parameter. The public key is a τ -bit RSA modulus n=pq,
where p, q are two large safe primes. We assume that neither a committer nor a
receiver knows factorization n. Let g1 be a generator of QRn and g2 be an element
of large order of the group generated by g1 such that both discrete logarithm of
g1 in base g2 and the discrete logarithm of g2 in base g1 are unknown by the
committer or the receiver. We denote C(a, ra) = ga

1gra
2 modn a commitment to a

in bases (g1, g2), where ra is randomly selected over {0, 2sn}, where s is a security
parameter. This commitment scheme first appeared in [12] and reconsidered by
Damg̊ard and Fujisaki [10] is statistically hiding and computationally binding,
i.e.,

– a committer is unable to commit itself to two values a1, a2 such that a1 6= a2

in Z by the same commitment unless the committed can factor n or solves
the discrete logarithm of g1 in base g2 or the the discrete logarithm of g2 in
base g1;

– C(a, ra) statistically reveals no information to the receiver, i.e., there is a
simulator which outputs simulated commitments to a which are statistically
indistinguishable from true ones.

– this commitment is homomorphic, i.e., C(a+b, ra+rb) = C(a, ra) × C(b, rb).

4.3 Boudot’s protocol

With the help of Fujisaki-Okamoto commitment scheme, an efficient protocol
allows Alice to prove to Bob that a committed number x ∈ [a, b] belongs to the
desired interval [a, b] (0 < a ∈ Z and a < b ∈ Z), has been proposed by Boudot
[4]. The idea behind Boudot’s protocol is that to achieve a proof of membership
without tolerance, the size of x is first enlarged, and then Alice proves to Bob that
the value 2T x lies in interval < 2T a−2T , 2T b+2T > with tolerance (a proof with
tolerance is easier than a proof without tolerance, we refer the reader to [4] for
further reference), and thus x ∈ [a, b]. Boudot’s protocol is zero-knowledge proof
of knowledge and it is sound assuming that the underlying Fujisaki-Okamoto
commitment scheme is statistically hiding and computationally binding.



4.4 Proof equality of a committed number and an encryption in
different moduli

An efficient implementation for proving the equality of a committed number and
an encryption has been proposed by Damg̊ard and Jurik[9]:

– let λ be maximum bit length of x. Let C be a commitment C(x, rx) =gx
1grx

2

modn computed from Fujisaki-Okamoto commitment scheme and E be a
cipher-text E(x, Rx)= (1 + N)xRx

N modN2 computed from Paillier’s en-
cryption scheme, a prover should provide a proof that C and E hide the
same value x.

– the prover chooses at random ω ∈ {0, 1}λ+2l, where l is a security param-
eter. The prover sends C ′=gω

1 grω
2 and E′= E(ω, Rω) to the verifier. Here

we assume that the security parameter κ of Paillier’s system is larger than
(λ + 2l)

– the verifier chooses a l-bit challenge f ;
– the prover opens the encryptions C ′Cf modn and E′Ef modN2, to reveal

in both cases the number z = ω + xf defined over the integer domain. The
verifier checks the opening were correct.

The protocol can be made non-interactive in the standard way using a hash func-
tion RO and the Fiat-Shamir technique. It is also statistically zero-knowledge
in the random oracle mode.

4.5 Proof equality of a committed number and a discrete logarithm
in different moduli

Let l, t and s be three security parameters. Assume that a prover Alice holds
a secret value x ∈ {0, T}. We denote by E1 =gx

1gr
2 modn1, be a commitment

computed from Fujisaki-Okamoto commitment scheme and E2 =gx modn2 be a
discrete logarithm of QRn2 modulo n2, where n2 =p2q2, p2 = 2p′2+1, q2 = 2q′2+1
and QRn2 =< g >. A prover Alice wants to prove to a verifier Bob that she
knows x and r ∈ {−2sn1 + 1, 2sn1− 1} such that E1 =gx

1gr
2 modn1 and E2 =gx

modn2.

– Alice picks random strings ω ∈ {1, · · · , 2l+tT − 1} and ρ ∈ {1, · · · , 2l+t+sn−
1}. Alice then computes π1 =gω

1 gρ
2 modn1 and π2 =gω modn2; Finally, Alice

sends (π1, π2) to Bob;
– Bob sends f ∈ {0, 1}2t to Alice;
– Alice computes τ1 =ω + fx and τ2 =ρ + fr (over the integer domain Z);
– Bob checks whether gτ1

1 gτ2
2 =π1E

f
1 modn1 and gτ1 =π2 Ef

2 modn2.

This protocol originally appeared in [5] and independently in [7] is a zero-
knowledge proof of equality of a committed number and a discrete logarithm
in different moduli. Again, the protocol can be made non-interactive in the stan-
dard way using a hash function RO and the Fiat-Shamir technique. It is also
statistically zero-knowledge in the random oracle mode.



4.6 Zhu’s signature scheme

Our multi-party verifiably committed signatures is built on the top of Zhu’s
signature (see [16], [17] and [18] for more details).

– Key generation algorithm: Let p, q be two large safe primes (i.e., p − 1 =
2p′ and q − 1 = 2q′, where p′, q′ are two primes with length (l′ + 1)). Let
n = pq and QRn be the quadratic residue of Z∗

n. Let X, g, h ∈ QRn be three
generators chosen uniformly at random. The public key is (n, g, h,X,H),
where H is a collision free hash function with output length l. The private
key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier checks
that e is an (l + 1)-bit odd number. Then it checks the validity of X =
yeg−th−H(m)modn. If the equation is valid, then the signature is valid. Oth-
erwise, it is rejected.

Zhu’s signature scheme is provably secure against adaptive chosen-message at-
tack under joint assumptions that the strong RSA problem is hard and the dis-
crete logarithm defined over QRn is hard as well as the underlying hash function
H is collision free.

5 Stand-alone, setup-free verifiably committed signatures
in multi-party setting

5.1 Implementation

With the help of these building blocks listed above, we can now describe our
implementation of multi-party stand-alone, setup-free verifiably committed sig-
natures below.

– arbitrary key generation algorithms (KGE , KGC): on input a security param-
eter κ, an arbitrary runs KGE (it is a key generator of Paillier’s encryption
algorithm) to generate κ-bit RSA modulus N = PQ, where P , Q are two
large safe primes. The plain-text space is ZN and the cipher-text space is
Z∗

N2 .
On input τ , the arbitrator runs KGC (it is a key generator of Okamot-
Fujisaki’s commitment scheme) to generate τ -bit RSA modulus Nc=PcQc,
where Pc and Qc are two large prime numbers. KGC also outputs two random
elements g, h ∈ QRNc .
The public key pk =(pkE , pkC), where pkE =(1+N,N) and pkC=(Nc, g, h).
The secret keys sk=(skE , skC), where skE=(P,Q) and skC =(Pc, Qc).

– individual key generation algorithm IKG: on input a security parameter
(ki, li, l

′
i), the ith user runs IKG (it is a key generation algorithm of Zhu’s sig-

nature scheme) to generate two large primes pi and qi such that pi−1 = 2p′i
and qi − 1 = 2q′i, where p′i, q

′
i are two (l′i + 1)-bit strings.



Let ni = piqi and QRni
be the quadratic residue of Z∗

ni
. Let gi, hi be two

generators of QRni
chosen uniformly at random. The public key is the ith

user is (ni, gi, hi, xi,Hi), where xi ∈ QRni and Hi is a collision free hash
function with output length li. The private key is (pi, qi).

– full signature algorithm Sig: to sign a message mj , a (li + 1)-bit prime
ei,j and a li bit string ti,j are chosen at random. The equation yi,j

ei,j

=xigi
ti,j hi

Hi(mj) modni is solved for yj . The corresponding signature σi,j of
the message mj is (ei,j , ti,j , yi,j).

– verification algorithm Vf: given a putative triple (ei,j , ti,j , yi,j), Vf first checks
that ei,j is an odd (li + 1)-bit number. Second it checks the validation that
xi = yi,j

ei,j g
−ti,j

i hi
−Hi(mj) modni. If the equation is valid, then Vf accepts,

otherwise, it rejects.
– partial signing algorithm PSig: on input a message mj , (li +1)-bit prime ei,j

and a li string ti,j are chosen at random. The equation yi,j
ei,j =xigi

ti,j hi
Hi(mj)

modni is solved for yj . Then the ith user (say Alice) further performs the
following computations:
• ui,j ← g

ti,j

i ;
• Ei,j ← E(pkE , ti,j), where E(pkE , ti,j) = (1 + N)ti,j RN

i,j modN2;
• Ci,j ← C(pkc, ti,j), where C(pkC , ti,j) = gti,j hri,j modNc;
• a proof pri,j that she knows that ui,j contains the same number as that

hidden by E(pkE , ti,j) as well as ti,j is a li-bit string. More precisely, the
proof pri,j consists of the following three statements:
∗ the prover runs the protocol specified in Section 4.4 and proves to

the verifier Bob the equality of the committed number by Ci,j and
the encrypted number by Ei,j ;

∗ the prover runs the protocol specified in Section 4.5 and proves to
the verifier Bob the equality of the committed number by Ci,j and
the discrete logarithm by ui,j on base gi;

∗ the prover runs the protocol specified in Section 4.3 and proves to the
verifier Bob that the committed number by Ci,j lies in the interval
{0, 2li − 1} .

The partial signature is denoted by σ′i,j =(ei,j , yi,j , ui,j , ci,j , pri,j).
– The corresponding partial signature verification algorithm PVf: given a pu-

tative signature σ′i,j =((ei,j , yi,j , ui,j , ci,j , pri,j)), the verifier Bob performs
the following checks:
• checking ei,j is an odd (li + 1)-bit number.
• checking the validity of the equation xi = yi,j

ei,j g
−ti,j

i hi
−Hi(mj) modni.

• checking the validity of proof pri,j ;
• if all checks are valid then the verifier accepts, otherwise, it rejects.

– resolution algorithm Res: given σ′i,j = ((ei,j , yi,j , ui,j , ci,j pri,j)), and a proof
that Bob fulfilled his obligation to the primary signer pki. If the verification
is passed, then the arbitrator outputs a valid full signature (ei,j , yi,j , ti,j)
using his decryption key skE , otherwise, it rejects.

This ends the description of our protocol. We stress that the technique presented
in this section can be easily extended to the case where the underlying signature



scheme is Cramer-Shoup’s hash signature such that individual group Gi is chosen
independently.

5.2 The proof of security

The proof of security follows that presented in [19]. We also stress that the tech-
nique presented in this section can be applied to the case where the underlying
signature scheme is Cramer-Shoup’s hash signature with the restriction that
individual group Gi is chosen independently and is never reused.

Lemma 1. The verifiably committed signature is secure against malicious pri-
mary signer in the multi-party setting.

Proof. Suppose the ith user Alice is able to provide a valid partial signature
σ′i,j = (ei,j , yi,j , ui,j , Ei,j , Ci,j , pri,j) corresponding to a message mj , where the
valid proof pri,j means that she knows that ui,j contains the same number as
the encryption Ei,j and the encrypted value ti,j ∈ I, I = {0, 2li − 1}. Since σ′i,j
is valid from the viewpoints of its verifier and TTP, by rewinding Alice, both
verifier and cosigner can extract ti,j ∈ I such that

ui,j = g
ti,j

1 , Ei,j = E(pkE , ti,j), y
ei,j

i,j = xig
ti,j

i h
Hi(mj)
i , ti,j ∈ I.

It follows that the designated TTP can always transform any valid partial
signature scheme into the correspondenting valid signature σi,j=(ei,j , yi,j , ti,j).

Lemma 2. Our construction is secure against malicious verifier under the joint
assumptions that Fujisaki-Okamoto’s commitment scheme is statistically hiding
and computationally binding and Paillier’s encryption scheme is semantically
secure and one-way.

Proof. We convert any attacker B that attacks our verifiably committed signa-
ture scheme into an inverter B′ of the underlying encryption scheme. That is,
given a random cipher-text Ei,j , B′ will obtain the corresponding plain-text mj

with non-negligible probability with the help of the attacker B. This can be done
as follows:

– B′ runs IKG to generate the ith primary signer’s public/secret key (pki, ski)
as that in the real verifiably committed signature scheme and obtains the
public and secret key pair (pki, ski).

– B′ then runs KG to generate the arbitrator’s public/secret key (pk, sk) as
that in the real verifiably committed signature scheme and obtains pk but
not sk from the arbitrator.

Given the target cipher-text Ei,j , we first describe a simulator of the partial
signature oracle OPSig(pki,ski,pk,···) as follows:

Let qPSig be the total number of queries made by B, and let ι be a random
number chosen from {1, qPSig} by B′.



– If i ∈ {1, qPSig} and i 6= ι, then B′ runs the partial signing oracle as the real
partial signature scheme;

– If i ∈ {1, qPSig} and i = ι, for the given target cipher-text Ei,j , B′ chooses
a random string fi,j , zi,j and ui,j in the correct interval specified in the
real protocol and then B′ computes E′

i,j from the equation E(pkE , z) = E′
i,j

E
fi,j

i,j . At the same time, it computes u′i,j from the equation g
zi,j

i = u′i,j u
fi,j

i,j .

– Given ui,j , B′ computes (ei,j , yi,j) from the equation y
ei,j

i,j = xiui,jh
Hi(mj)
i ,

this is possible since B′ knows the secret key ski (notice that B′ assigns fi,j

to be the hash value of the random oracle RO if the specified protocol in
Section 4.5 is non-interactive).
Similarly, for the given ui,j , there exists a simulator that can simulate views
for the following proofs:
• a proof of equality of the committed number Ci,j and the discrete loga-

rithm loggi
(ui,j), where Ci,j is a forgery commitment;

• a proof of equality of the committed number by Ci,j and the encrypted
number by Ei,j ;
• a proof that the committed number by Ci,j lies in the correct interval.

Such a simulator can be defined by the concatenation of individual sim-
ulators for the above zero-knowledge proof systems since Boudot’s proto-
col, Damg̊ard and Jurik’s protocol, as well as Boudot, and Camenisch and
Michels’ protocols are zero-knowledge proof systems (see Section 4.3, Sec-
tion 4.4 and Section 4.5 for more details). As a result, the existence of such
a simulator following the definition of the zero-knowledge proof system im-
mediately.

B′ simulates ORes(pki,sk,pk,···) oracle queries as follows:

– If (mj , σ
′
i,j) that is in the partial signature query list and if j 6= ι, then

ORes(pki,sk,pk,···) outputs ti;
– If (mj , σ

′
i,j) that is in the partial signature query list and if j = ι, then

ORes(pki,sk,pk,···) outputs ⊥;
– If (mj , σ

′
i,j) that is not in the partial signature query list, thenORes(pki,sk,pk,···)

outputs ⊥.

Notice that the probability that the simulator outputs ⊥ is 1 − 1/qPSig for

the queries whose partial signatures are listed in the OPSig(pki,ski,pk,···) oracle
query. Thus when the adversary outputs a valid full signature (m∗, σ∗) whose
partial signature is in the list of OPSig(pki,ski,pk,···) oracle query, the probability
that B′ can invert the target cipher-text Ei,j with probability at least ε/qPSig,
where ε stands for the probability that B can break our verifiably committed
signature scheme.

Lemma 3. Our construction is secure against malicious arbitrator under the
joint assumptions that the underlying Zhu’s signature scheme is secure against



adaptive chosen-message attack, Fujisaki-Okamoto’s commitment scheme is sta-
tistically hiding and computationally binding and Paillier’s encryption scheme
is semantically secure.

Proof. Suppose an arbitrator is able to forgery partial signature σ′i,j with non-
negligible probability, then by rewinding the arbitrator, we can extract ti,j from
the valid proof pri,j . It follows that the arbitrator is able to output a valid
forgery signature from Zhu’s signature scheme with non-negligible probability.
Since the underlying Zhu’s signature scheme signature has proved to be secure
against adaptive chosen-message attack under joint assumptions of the strong
RSA problem as well as the existence of collision free hash function. It follows
that our construction is secure against semi-trusted arbitrator under joint as-
sumptions that the hardness of the strong-RSA problem and the existence of
collision free hash functions.

In summary, we have proved the main result below:

Theorem 1. The stand-alone, setup-free verifiably committed signature scheme
constructed above is provably secure under the joint assumption that the under-
lying Zhu’s signature scheme is secure against adaptive chosen-message attack,
Fujisaki-Okamoto’s commitment scheme is statistically hiding and computation-
ally binding and Paillier’s encryption is semantically secure and one-way.

6 Conclusion

In this paper, we have demonstrated a gap between the security of a two-party
verifiably committed signatures and the security of multi-party verifiably com-
mitted signatures. We also have extended Dodis and Leyzin’s security model for
the two-party verifiably committed signatures to the multi-party setting. Finally,
we have implemented an efficient stand-alone and setup-free verifiably commit-
ted signatures in the multi-party setting and shown that our implementation is
provably secure under the joint assumptions that the underlying Zhu’s signature
scheme is secure against adaptive chosen-message attack, Fujisaki-Okamoto’s
commitment scheme is statistically hiding and computationally binding and Pail-
lier’s encryption is semantically secure and one-way.
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