
Two-Tier Signatures, Strongly Unforgeable
Signatures, and Fiat-Shamir without Random

Oracles

Mihir Bellare1 and Sarah Shoup1

Department of Computer Science and Engineering, University of California San
Diego, 9500 Gilman Drive, La Jolla, CA 92093-0404. E-mail: mihir@cs.ucsd.edu,

sshoup@cs.ucsd.edu ; URL: www-cse.ucsd.edu/users/mihir,
www-cse.ucsd.edu/users/sshoup

Abstract. We provide a positive result about the Fiat-Shamir (FS)
transform in the standard model, showing how to use it to convert three-
move identification protocols into two-tier signature schemes with a proof
of security that makes a standard assumption on the hash function rather
than modeling it as a random oracle. The result requires security of the
starting protocol against concurrent attacks. We can show that numerous
protocols have the required properties and so obtain numerous efficient
two-tier schemes. Our first application is a two-tier scheme based trans-
form of any unforgeable signature scheme into a strongly unforgeable one.
(This extends Boneh, Shen and Waters [8] whose transform only applies
to a limited class of schemes.) The second application is new one-time
signature schemes that, compared to one-way function based ones of the
same computational cost, have smaller key and signature sizes.

1 Introduction

Recall that the Fiat-Shamir (FS) transform [18] is a way to obtain a signature
scheme from a three-move identification protocol by “collapsing” the interaction
via a hash function. (Briefly, the signature consists of the two prover moves cor-
responding to a verifier challenge set to be the hash of the first prover move and
the message being signed.) There are lots of protocols to which the transform
can be applied, and the resulting signature schemes include some of the most effi-
cient known (eg. [35, 24, 23]). Furthermore, due to their algebraic properties, FS-
transform-derived signature schemes lend themselves nicely to extensions such
as to blind [33], multi [28] or group [7] signatures to name just a few. For these
reasons, the transform is popular and widely used.

Naturally, one would like that the constructed signature scheme meets the
standard notion of unforgeability under chosen-message attack (uf-cma) of [22].
Results of [33, 30, 1] say this is true in the random oracle (RO) model (meaning,
if the hash function is a random oracle) as long as the starting protocol is itself
secure (we will discuss in what sense later). However, Goldwasser and Tauman-
Kalai [21] show the existence of a protocol that, under the FS transform, yields a



signature scheme that is uf-cma secure when the hash function is a RO but is not
uf-cma secure for any “real” implementation of the hash function. This means
that the transform (at least in general) does not yield uf-cma secure schemes in
the standard model.

The question we ask is whether the FS transform can, however, yield weaker-
than-uf-cma but still useful types of signature schemes in the standard model.
We answer this in the affirmative. We show how the FS transform yields two-
tier signature schemes which are secure assuming only that the hash function is
collision-resistant and the starting protocol is secure. We exhibit some applica-
tions of two-tier signatures in general and FS-derived ones in particular, namely
for an efficient and general transform of uf-cma to strongly unforgeable (suf-cma)
signature schemes and to implement one-time signatures that are much shorter
than conventional ones of the same computational cost. Let us now look at all
this in more detail.

Two-tier schemes. In a two-tier scheme, a signer has a primary public key
and matching primary secret key. Each time it wants to sign, it generates a
fresh pair of secondary public and secret keys and produces the signature as
a function of these, the primary keys and the message. Verification requires
not only the primary public key but also the secondary one associated to the
message. Security requires that it be computationally infeasible to forge relative
to the primary public key and any secondary public key that was generated by
the signer, even under a chosen-message attack.

As the reader might rightfully note, two-tier signatures are not well suited
for direct signing in the standard PKI, because not just the primary but also the
secondary public keys would need to be certified. However, we do not propose
to use them in this direct way. Instead what we will see is that they are useful
tools in building other primitives.

Building two-tier signatures via FS. We adapt the FS transform in a nat-
ural way to convert a three-move identification protocol into a two-tier signature
scheme. (Briefly, the first prover move, rather than being in the signature, is now
the secondary public key. See Section 4 for details.) We show (cf. Theorem 2)
that the constructed two-tier scheme is secure assuming the protocol is secure
(we will see exactly what this means below) and the hash function is collision-
resistant. So security of FS-based two-tier signatures is guaranteed in the stan-
dard model unlike security of FS-based regular signatures which is guaranteed
only in the RO model.

Both the security of regular FS-based signatures (in the RO model) [30, 1]
and the security of our FS-based two-tier signatures (in the standard model)
are based on some security assumption about the starting protocol. (Naturally,
since otherwise there is no reason for the constructs to be secure.) There is,
however, a difference in the two cases. Recall that security of this class of pro-
tocols can be considered under three different types of attack: passive, where
the adversary merely observes interactions between the prover and honest ver-
ifier; active [18, 16], where the adversary plays a cheating verifier and engages
in sequential interactions with the honest prover; or concurrent [4], where, as a



cheating verifier, the adversary can interact concurrently with different prover
clones. For (uf-cma) security of FS-based regular signatures in the RO model,
it suffices that the protocol be secure against passive (i.e. eavesdropping) attack
[30, 1]. Our result showing security of FS-based two-tier signatures requires how-
ever that the protocol be secure against concurrent attack. Thus, part of what
makes it possible to dispense with random oracles is to start from protocols with
a stronger property. However, we show that the property is in fact possessed by
the bulk of example protocols, so that we lose very little in terms of actual con-
structions. Specifically it is easy to show appropriate security under concurrent
attack for the Schnorr [35], Okamoto [31], and GQ [24, 23] protocols as well as
others, using techniques from the original papers and more recent analyses [4,
2]. Thereby we obtain numerous specific and efficient constructions of two-tier
signatures via the FS transform.

We think this is an interesting application of concurrent security of protocols.
The latter is usually motivated as being important for certain communication
environments such as the Internet, while we are saying it is relevant to the
security of a protocol-based signature.

From uf-cma to suf-cma. Returning again to regular (rather than two-tier)
signatures, recall that strong unforgeability (suf-cma) is a stronger requirement
than the usual uf-cma of [22], requiring not only that the adversary can’t produce
a signature of a new message but also that it can’t produce a new signature of
an old message (i.e. one whose signature it has already obtained via its chosen-
message attack). The problem we are interested in is to convert a uf-cma scheme
into a suf-cma one without using random oracles. Our work is motivated by
Boneh, Shen and Waters [8] who turn Waters’ uf-cma scheme [38] into an suf-
cma one via a transform that applies to a subclass of signature schemes that
they call partitioned. Unfortunately, there seem to be hardly any schemes in
this class besides Waters’, so their transform is of limited utility. We, instead,
provide a general transform that applies to any uf-cma scheme. The transform
uses as a tool any two-tier scheme. Instantiating the latter with a FS-based
two-tier scheme we obtain efficient, standard model transforms. For example,
using the Schnorr scheme, our transform confers suf-cma while adding just one
exponentiation to the signing time and increasing the signature size by only
two group elements. Briefly, the idea of the transform is to have two signatures,
one from the original uf-cma scheme and the other from the two-tier scheme,
mutually authenticate each other. This application exploits the fact that our FS-
based two-tier signatures are themselves strongly unforgeable due to properties
of the starting protocols. (That is, if the adversary has seen the signature of m
relative to a secondary public key, it can produce neither a different signature
of m nor a signature of some m′ 6= m relative to the same secondary key.)

New one-time signatures. A two-tier signature scheme yields a one-time
signature scheme as a special case. (Restrict to a single secondary key.) Thus
we obtain FS-based strongly unforgeable one-time signatures. These turn out
to be interesting because they have smaller key and signature sizes than con-
ventional one-way function based one-time schemes of the same computational



cost. Specifically, say we are signing a 160-bit message (which is the hash of the
real message). Our Schnorr-instantiated FS-based one-time scheme implemented
over a 160-bit elliptic curve group has key size 480 bits, signature size 160 bits,
key-generation time 2 exponentiations, signing time 1 multiplication, and veri-
fying time 1 exponentiation. Let us contrast this with what is achieved by the
best one-way function based one-time signature schemes, namely those of [15, 6].
Unforgeability is proved by [15] under the assumption that the one-way function
is quasi-one-way. We observe that the scheme is strongly unforgeable under the
additional assumption that the function is collision-resistant. So, let us use SHA-
1 as the one-way function. The resulting schemes exhibit the following size to
computation tradeoff. For any positive integer t dividing 160, there is a one time
scheme with key and signature size (1 + 160/t) · 160 and key-generation, sign-
ing and verifying time (160/t) · 2t hash computations. An implementation with
the crypto++ library [12] indicates that an exponentiation in a 160-bit group
costs about 3, 300 hashes. To match the key-generation time of 2 exponentia-
tions (which is the largest of the computation times in our algebraic scheme)
we thus want to choose t such that (160/t) · 2t ≈ 6, 600. Let us (generously)
set t = 10. The key and signature size now becomes 2, 720 bits, which is much
more than in our scheme. (And at this point, while key-generation time in the
one-way function scheme is essentially the same as in our scheme, signing time
is much more.) Note we would get the same efficiency gains using the standard
Schnorr [35] scheme instead of our scheme, but the proof of the former uses
random oracles [32].

Our new one-time signature scheme is interesting for applications like the
DDN and Lindell constructions of IND-CCA public-key encryption schemes [14,
27], the IBE-based constructions of IND-CCA schemes of [9], and the composi-
tion of encryption schemes [13]. All of these make use of strongly unforgeable
one-time signatures, and the reduced key size of the latter results in reduced
ciphertext size for the encryption schemes they build.

Alternative two-tier schemes and their implications. We noted above
that two-tier schemes yield (strongly unforgeable) one-time ones as a special
case. Conversely, however, one can also construct a two-tier scheme from any
strongly unforgeable one-time scheme. (Set the primary keys to empty, and use
a new instance of the one-time scheme for each secondary key. See [5] for details.)

One implication of this observation is that we can obtain one-way function
based constructions of the primitives we have been discussing, thereby answering
the main foundational question about their existence. Specifically, as we discuss
in more detail in [5], it is easy to build UOWHF [29] based strongly unforgeable
one-time schemes. Since UOWHFs exist given any one-way function [34], we ob-
tain one-way function based two-tier schemes. We also obtain a one-way function
based transform of uf-cma signature schemes into suf-cma ones. This yields a
somewhat simpler construction of a one-way function based suf-cma signature
scheme than given by Goldreich in [19].

However, the above observation (that strongly unforgeable one-time schemes
yield two-tier schemes) also raises some questions. The first of these is, what is



the point of FS-based two-tier schemes given that there are other ways to build
two-tier schemes? However, the same question can be asked about the use of the
FS transform to build regular signatures, for of course regular signatures can be
built in other ways too. In both cases the point is that FS-based constructs have
efficiency or other properties not provided by other constructs. (Specifically,
FS-based two-tier schemes have smaller key and signature sizes than two-tier
schemes of the same computational cost built from any known strongly unforge-
able one-time schemes.) One might also ask what is the point of introducing
two-tier schemes at all. Indeed, we could have based our transform (of uf-cma
schemes into suf-cma ones) on strongly unforgeable one-time schemes rather
than on two-tier schemes, and we could have built FS-based strongly unforge-
able one-time schemes directly rather than building two-tier schemes. Two-tier
schemes however have the advantage over using one-time schemes that any key
information that is long-lived across multiple instances of a one-time scheme can
be re-used, resulting in shorter keys. This results in shorter signatures for the
suf-cma schemes built by our transform. Another advantage is improved concrete
security: the reduction from suf-cma signatures to two-tier and uf-cma signatures
is tight, whereas if we had used one-time signatures, we would incur a factor of
the number of signing queries. Furthermore our reductions from identification
protocols to two-tier schemes derived via the FS transform are tight too. Overall
it seemed simple and worthwhile enough to make the optimization (meaning to
introduce and use two-tier signatures) and hence we have done so.

Related work. Cramer and Damg̊ard [11] present a non-RO transform of pro-
tocols with certain properties into signature schemes. Their transform is not the
FS one (it is more complex and less efficient) but they obtain regular unforgeable
signature schemes while we obtain only two-tier schemes.

Independently of our work, others have extended [8] to provide general trans-
forms of unforgeable signature schemes into strongly unforgeable ones. The
transform of Huang, Wong and Zhao [26] is similar to the special case of ours
with a two-tier signature scheme built from a collision-resistant hash function
based one-time signature scheme. However, this yields large signatures. Teran-
ishi, Oyama and Ogata [37] present a discrete log, chameleon commitment based
transform that is very efficient.

2 Definitions

Notation and conventions. We denote by a1‖ · · · ‖an a string encoding of
a1, . . . , an from which the constituent objects are uniquely recoverable. We de-
note the empty string by ε. Unless otherwise indicated, an algorithm may be
randomized. A collision for a function h is a pair x, y of distinct points in its do-
main such that h(x) = h(y). If A is a randomized algorithm then y

$← A(x1, . . .)
denotes the operation of running A with fresh coins on inputs x1, . . . and letting
y denote the output. If S is a (finite) set then s

$← S denotes the operation of
picking s uniformly at random from S.



Signatures. A (digital) signature scheme DS = (KG,SGN,VF) is specified as
usual by three algorithms. Via (PK ,SK) $← KG a prospective signer can generate
its public and associated secret key. Via σ

$← SGN(SK ,M) the signer can produce
a signature σ on a message M ∈ {0, 1}∗. Via d ← VF(PK ,M, σ), a verifier can
run the deterministic verification algorithm to get a decision bit d ∈ {0, 1}. We
require perfect consistency, meaning that

Pr
[

VF(PK ,M, σ) = 1 : (PK ,SK) $← KG ; σ
$← SGN(SK ,M)

]
= 1

for all messages M . To define security consider the following game involving an
adversary A:

(PK ,SK) $← KG ; (M,σ) $← ASGN(SK,·)(PK) .

The adversary is given a signing oracle and the public key, and outputs a message
and candidate signature. Let M1, . . . ,Mq denote the messages queried by A to
its oracle in its chosen-message attack, and let σ1, . . . , σq denote the signatures
returned by the oracle, respectively. We say that A forges if VF(PK ,M, σ) = 1
and M 6∈ {M1, . . . ,Mq}. We say that A strongly forges if VF(PK ,M, σ) = 1 and
(M,σ) 6∈ {(M1, σ1), . . . , (Mq, σq)}. We let Advuf-cma

DS (A) and Advsuf-cma
DS (A)

denote, respectively, the probability that A forges and the probability that it
strongly forges. The first measure represents the standard uf-cma notion of [22],
while the second represents strong unforgeability (suf-cma).

Syntax of two-tier signature schemes. A two-tier signature scheme ds =
(pkg, skg, sgn, vf) is specified by four algorithms. They are called the primary
key-generation, secondary key-generation, signing and verifying algorithms, re-
spectively, and the last is deterministic. Via (ppk,psk) $← pkg, a prospective
signer generates a primary public key ppk and associated primary secret key
psk. Think of these as the keys at the first tier of the two-tier scheme. The
signer may then at any time generate a secondary public key spk and associated
secondary secret key ssk via (spk, ssk) $← skg(ppk,psk). These will be the second
tier keys, and there can be many of them. Via s

$← sgn(psk, ssk,m) the signer
can generate a signature of a message m. Via d ← vf(ppk, spk,m, s), a verifier
can produce a decision bit d ∈ {0, 1} indicating whether or not s is a valid sig-
nature of m relative to ppk, spk. We require perfect consistency, meaning that
for all messages m, vf(ppk, spk,m, s) = 1 with probability 1 in the following
experiment:

(ppk,psk) $← pkg ; (spk, ssk) $← skg(ppk,psk) ; s
$← sgn(psk, ssk,m) .

In usage, a signer will have a single primary key pair. It will, however, use
a fresh secondary key pair for each message, meaning the secondary key pairs
are one-time. Since generation of a secondary key pair does not require knowing
the message, this generation can either be done when the message to be signed
arrives, or off-line, in advance.

Security of two-tier signature schemes. To define security, consider the
following game. We let (ppk,psk) $← pkg, initialize a set U to ∅ and initialize



Oracle spkO()
i← i + 1

(spki, sski)
$← skg(ppk, psk)

Return spki

Oracle SignO(j, m)
If j > i OR j ∈ U then return ⊥
U ← U ∪ {j} ; mj ← m

sj
$← sgn(psk, sskj , mj)

Return sj

Fig. 1. Oracles for adversary attacking two-tier scheme ds = (pkg, skg, sgn, vf).

a counter i to 0. We then run an adversary A on input ppk with access to the
oracles shown in Figure 1. A can obtain a fresh secondary public key at any time
by calling its secondary public-key oracle spkO. A can obtain a signature of a
message m of its choice under an already generated secondary public key spkj

by calling the signing oracle SignO on inputs j,m, where j ≥ 1. However, A
cannot obtain more than one signature under a particular secondary public key.
(This restriction is enforced by the oracle via the set U .) Finally A outputs a
forgery, which must be a triple of the form (l,m, s). Let (j1,m1), . . . , (jq,mq)
denote the queries made by A to its SignO oracle in its chosen-message attack,
and let s1, . . . , sq denote the signatures returned by the oracle, respectively.
We say that A wins if vf(ppk, spkl,m, s) = 1 and 1 ≤ l ≤ i but (l,m, s) 6∈
{(j1,m1, s1), . . . , (jq,mq, sq)}. Here i is the final value of the counter, meaning
the number of queries A made to spkO. The probability that A wins is denoted
Advsuf-cma

ds (A).
Notice that this definition is of strong unforgeability, meaning this has been

built in as a requirement. We do this because it is what the applications need
and also what the FS-based constructs naturally provide.

Discussion. Two-tier schemes are hybrids of regular and one-time schemes. If
the secondary keys are empty, we have a regular scheme. If the primary keys are
empty, we have multiple instances of a one-time scheme.

3 From uf-cma to suf-cma

Suppose we are given a uf-cma signature scheme DS and want to transform
it into a suf-cma signature scheme DS, efficiently and without random oracles.
This problem was recently considered by [8] who provided a transform that
works under the assumption that the starting uf-cma scheme is what they call
“partitioned.” However, there are few examples of partitioned schemes. In this
section, we provide a general transform, namely one that applies to any starting
uf-cma scheme. It uses an arbitrary two-tier scheme as an auxiliary tool. The
transform does not use random oracles, and, when instantiated with appropriate
FS-based two-tier schemes, matches that of [8] in computational overhead while
providing signatures that are longer by only one group element.

The Transform. Let DS = (KG,SGN,VF) be the given uf-cma scheme. Let
ds = (pkg, skg, sgn, vf) be a (any) given two-tier scheme. We associate to these



the signature scheme DS = (KG,SGN,VF) defined as follows. The key-generation
algorithm KG runs KG to get (PK ,SK), runs pkg to get (ppk,psk), and returns
PK = PK‖ppk as the public key and SK = SK‖psk as the secret key. The new
signing and verifying algorithms are as follows:

Algorithm SGN(SK ,M)
Parse SK as SK‖psk

(spk, ssk) $← skg(ppk,psk)
M ← spk‖M
S

$← SGN(SK ,M)
s

$← sgn(psk, ssk, S)
S ← S‖spk‖s
Return S

Algorithm VF(PK ,M, S)
Parse PK as PK‖ppk
Parse S as S‖spk‖s
M ← spk‖M
If VF(PK ,M, S) = 0 then return 0
If vf(ppk, spk, S, s) = 0 then return 0
Return 1

The following implies that the constructed scheme DS is strongly unforgeable if
DS is unforgeable and the two-tier scheme ds is strongly unforgeable. The proof
may be found in [5].

Theorem 1. Let DS be the signature scheme associated to signature scheme
DS and two-tier signature scheme ds as described above. Let F be an adversary
attacking the strong unforgeability of DS and making at most q signing queries.
Then there exist adversaries F, f attacking the unforgeability of DS and the strong
unforgeability of ds, respectively, such that

Advsuf-cma
DS

(F ) ≤ Advuf-cma
DS (F ) + Advsuf-cma

ds (f) .

Furthermore F and f make at most q signing queries, and their running times
are that of F plus an overhead that is linear in q.

4 Constructions of two-tier schemes

Canonical identification protocols. The FS transform applies to a class
of protocols we call canonical identification protocols [1]. We need to have a
general syntax for these protocols since the transform and its proof will refer
to this. The protocol can be described as a tuple ID = (K, P, ChSet, V ). Via
(pk, sk) $← K, the (honest) prover generates its public and secret keys. Now the
public key pk is viewed as an input for the verifier, while sk is a private input
to the honest prover. The prover can now convince the verifier of its identity
via a three move interaction as depicted in Figure 2. We refer to the moves as
commitment, challenge, and response. The (honest) prover maintains a state St
whose initial value is its secret key sk. In its first move, it applies P to the current
conversation (which is ε) and current state (St = sk) to get a commitment Cm
and an updated state St. The former is sent to the verifier, who now draws its
challenge Ch at random from ChSet and sends this to the prover. The (honest)
prover now lets Rp

$← P (Cm‖Ch,St) and sends Rp back to the verifier. The
latter applies the deterministic function V to pk and the transcript Cm‖Ch‖Rp



Prover
Input: sk

(Cm, St)
$← P (ε, sk)

Rp
$← P (Cm‖Ch, St)

Cm -
Ch�
Rp -

Verifier
Input: pk

Ch
$← ChSet

Dec← V (pk,Cm‖Ch‖Rp)

Fig. 2. Canonical Protocol. Keys pk and sk are produced using key generation
algorithm K.

to output the decision Dec ∈ {0, 1}. We require perfect completeness, meaning
that for all (pk, sk) that can be output by K we have V (pk,Cm‖Ch‖Rp) = 1
with probability 1 in the following experiment:

(Cm,St) $← P (ε, sk) ; Ch
$← ChSet ; Rp

$← P (Cm‖Ch,St) . (1)

Examples of canonical identification protocols include the Schnorr protocol [35]
illustrated in Figure 3 and the Okamoto protocol [31] illustrated in Figure 4.

Security notions. The “master” property of protocols in this domain is special
soundness. We will consider it under different forms of attack, namely passive,
active and concurrent. (We only use the last in our results but for discussions it
is useful to see them all.) To define these consider the following game involving
an attacker I. The game begins by picking keys via (pk, sk) $← K. Then there are
two phases. In the first phase, adversary I gets to mount its attack on the honest
prover. In a passive attack, it gets an oracle that upon being invoked (with no
arguments) returns a random transcript of an interaction between the honest
prover (given input sk) and the verifier (given input pk). In an active or concur-
rent attack, I gets to play the role of verifier and interact with “clones” of the
honest prover. We can imagine a sequence Pj (j ≥ 1) of potential clones. Each
clone maintains a state Stj and has its own random coins. The game maintains
a counter a, initially 0, and a set A of clones that are activated, initially empty.
Adversary I can ask for a new clone to be activated, in which case the game
increments a, computes (Cma,Sta) $← P (ε, sk), and returns Cma to I. If the
attack is concurrent, it adds a to A, but if the attack is active, it replaces A by
{a}, meaning that only one clone can be activated at any time. If j ∈ A then I
can send clone Pj a message Chj representing the verifier move. Adversary I can
pick this value any way it wishes, in particular not necessarily at random like the
honest verifier. The game computes Rpj

$← P (Cmj‖Chj ,Stj), returns Rpj to I,
and removes j from A. (Which means no further interaction with Pj is possible.)
Note that the difference between an active and concurrent attack is that in the
former, the adversary is allowed to have only one clone (namely Pa) activated at
any time, corresponding to sequential interactions with the honest prover, while
in a concurrent attack, any number of clones may simultaneously be activated,



and I can choose a challenge sent to one of them as a function of all communica-
tions it has received from all clones so far. Note that in either case, the adversary
does not see or control the internal state of a prover clone. In no case can it reset
or backup a clone. After it has completed its attack (of whatever form), we enter
the second phase. The adversary outputs a pair (Cm,Ch1,Rp1), (Cm,Ch2,Rp2)
of transcripts where the commitment is the same. It wins if these transcripts are
accepting but (Ch1,Rp1) 6= (Ch2,Rp2). The probability that it wins is denoted
Advss-atk

ID (I), where atk = pa if the attack is passive; atk = aa if the attack is
active; and atk = ca if the attack is concurrent.

Discussion. The typical formulation of special soundness is that given a pair
(Cm,Ch1,Rp1), (Cm,Ch2,Rp2) of accepting transcripts where the commitment
is the same but Ch1 6= Ch2, one can easily find a matching secret key sk. This
implies in particular that the protocol is a proof of knowledge of the secret key
which in turn is crucial to proving security against impersonation under passive,
active or concurrent attack. (Impersonation means that after its attack, meaning
in the second phase, rather than outputting a pair of transcripts, the adversary
plays the role of prover in an interaction with the honest verifier and wins if it
can convice the latter to accept.) For our purposes, however, we work directly
with special soundness rather than any of its derivative properties. We directly
require that the probability of finding transcripts of the appropriate type is
negligible rather than relating this to finding the secret key. This is similar to
the security requirement used in [11], though they apply it to a different protocol-
based transform. Note we weaken the condition under which the adversary wins
from Ch1 6= Ch2 to (Ch1,Rp1) 6= (Ch2,Rp2). We will have to prove that the
resulting stronger security requirement is met by the constructs.

A Σ protocol is one that has special soundness and honest-verifier zero-
knowledge. We do not explicitly require the latter as part of special soundness,
although in establishing special soundness of particular protocols we might use
it. Note none of the example protocols in this domain are full (i.e. even against
cheating verifiers) zero-knowledge. Indeed, this is ruled out under blackbox sim-
ulation [20].

Special soundness is usually considered as a stand-alone property, but it is
natural to consider it under the three forms of attack that exist for identification
protocols as we have done.

For our particular transform, we require special soundness under concurrent
attack, rather than active or passive. This is necessary for our proof due to the
nature of two-tier signatures and our security definition. In our transform, each
request for a new secondary key will require the instantiation of a new clone.
Each clone will be required for a signature using its corresponding key, and since
the adversary is not required to sign on a key immediately after acquiring it, it
is necessary to have multiple clones active at a time. For this reason, we require
security under concurrent attack.

The transform. We now describe how to turn a canonical identification proto-
col ID = (K, P, ChSet, V ) into a two-tier signature scheme ds = (pkg, skg, sgn, vf)
via the Fiat-Shamir transform. We do not use a random oracle but instead a



family H : {0, 1}k × {0, 1}∗ → ChSet of collision-resistant (CR) hash functions
where each k-bit key K specifies a particular hash function H(K, ·) with range
the challenge set ChSet. (The keys will be random but public.) The primary
key generation algorithm pkg lets K

$← {0, 1}k and (pk, sk) $← K, and returns
(ppk,psk)← (K‖pk,K‖sk). The skg, sgn, and vf algorithms are as follows:

skg(ppk,psk)
Parse ppk as K‖pk
Parse psk as K‖sk
(Cm,St) $← P (ε, sk)
spk ← Cm
ssk ← Cm‖St
Return (spk, ssk)

sgn(psk, ssk,m)
Parse psk as K‖sk
Parse ssk as Cm‖St
Ch← H(K,Cm‖m)
Rp

$← P (Cm‖Ch,St)
s← Rp
Return s

vf(ppk, spk,m, s)
Parse ppk as K‖pk
Cm← spk
Ch← H(K,Cm‖m)
Rp← s
Dec← V (pk,Cm‖Ch‖Rp)
Return Dec

Note that in generating s, algorithm P will be executed with a challenge that,
unlike the one the honest prover expects to receive, is not random. The im-
plications for security are dealt with by the theorem that follows, but at this
point we need to first check that it does not lead to a violation of the perfect
consistency requirement of two-tier schemes. This is true because the protocol
has perfect completeness as per Equation (1), which means for all values of the
verifier challenge, the prover returns a response that leads the verifier to accept.

Security of the transform. Recall that the cr-advantage of an adversary
F attacking H is Advcr

H(F ), defined as follows:

Pr
[

H(K, x1) = H(K, x2) ∧ x1 6= x2 : K
$← {0, 1}k ; (x1, x2)

$← F (K)
]

.

The following says that if H is CR and ID is secure against concurrent attack
then the two-tier scheme derived via the FS transform is secure. The proof may
be found in [5].

Theorem 2. Let ds = (pkg, skg, sgn, vf) be the two-tier signature scheme asso-
ciated to canonical identification protocol ID = (K, P, ChSet, V ) and hash func-
tion H: {0, 1}k × {0, 1}∗ → ChSet via the Fiat-Shamir transform as described
above. Let f be an adversary attacking the strong unforgeability of ds and mak-
ing at most q signing queries. Then there exists an adversary I attacking the
special soundness of ID under concurrent attack, and an adversary F attacking
the collision-resistance of H, such that

Advsuf-cma
ds (f) ≤ Advss−ca

ID (I) + Advcr
H(F ) .

Furthermore I initiates at most q + 1 prover clones, and the running time of I
and F is that of f plus a constant amount of overhead.

To instantiate the above we now seek efficient protocols for which we can
prove special soundness under concurrent attack. There are actually several such
protocols. We illustrate by looking at a pair of examples that are representative
due to the proof techniques.

Definitions. In what follows, G denotes a group whose order p is a prime.
(For example an appropriate elliptic curve group, or a subgroup of the group of



Algorithm K
g

$← G∗

x
$← Zp

X ← gx

pk ← (g, X)
sk ← (g, x)
Return (pk, sk)

Prover
Input: sk = (g, x)

y
$← Zp

Y ← gy

z ← y + cx mod p

Y -
c�
z -

Verifier
Input: pk = (g, X)

c
$← Zp

If gz = Y Xc then Dec← 1
else Dec← 0

Return Dec

Fig. 3. Schnorr Protocol. Above, G is a group of prime order p, and ChSet = Zp.

integers modulo some prime q such that p divides q − 1.) Let G∗ = G− {1} be
the set of generators of G, where 1 is the identity element of G. We let DLogg(h)
denote the discrete logarithm of h ∈ G to base a generator g ∈ G∗. We assume
G, p are fixed and known to all parties. Let

Advdl
G(A) = Pr

[
x′ = x : g

$← G∗ ; x
$← Zp ; x′ $← A(g, gx)

]
denote the advantage of an adversary A in attacking the discrete logarithm (dl)
problem. An adversary A for the one more dl (omdl) problem [3] is given input
a generator g ∈ G∗ and has access to two oracles. The first is a challenge oracle
chO() that takes no inputs and, every time it is invoked, returns a random
element of G. The second is a dl oracle DLogg(·) that, given any W ∈ G, returns
DLogg(W ). Let W1, . . . ,Wq denote the responses to A’s queries to its challenge
oracle. A’s goal is to compute the discrete logarithms of all challenges, meaning
output w1, . . . , wq ∈ Zp satisfying gwi = Wi for all 1 ≤ i ≤ q. Of course this is
easy because it has a DLogg(·) oracle. To make the task non-trivial, however,
we restrict A to make strictly less queries to its DLogG(·) oracle than it does to
its challenge oracle. Let Advomdl

G (A) be the probability that A wins.

Schnorr identification protocol. The Schnorr identification protocol [35]
shown in Figure 3 is probably the most “canonical” example of a canonical
identification protocol. It is secure against impersonation under passive attack
under the dl assumption [35]. Security against impersonation under active (and
concurrent) attack, however, remained an open question for a while. Indeed,
it does not seem possible to prove this under the dl assumption. Eventually,
however, security against impersonation under active and concurrent attack was
proved by [4] under the one more dl (omdl) assumption. However, we need special
soundness rather than security under impersonation. Also, we need to show that
our strong form of special soundness holds, namely that the adversary not only
cannot find a pair of accepting transcripts (Cm,Ch1,Rp1), (Cm,Ch2,Rp2) with
Ch1 6= Ch2 but cannot even find such transcripts with Ch1 = Ch2 as long as
Rp1 6= Rp2. We revisit the proof to establish these things. We make use of the



Algorithm K
g1, g2

$← G∗

s1, s2
$← Zp

v ← g−s1
1 g−s2

2

pk ← (g1, g2, v)
sk ← (g1, g2, s1, s2)
Return (pk, sk)

Prover
Input: sk = (g1, g2, s1, s2)

r1, r2
$← Zp

R← gr1
1 gr2

2

y1 ← r1 + es1 mod p
y2 ← r2 + es2 mod p

R -
e�

(y1, y2) -

Verifier
Input: pk = (g1, g2, v)

e
$← Zp

If R = gy1
1 gy2

2 ve

then Dec← 1
else Dec← 0

Return Dec

Fig. 4. Okamoto Protocol. Above, G is a group of prime order p, and ChSet = Zp.

fact that the protocol has a “unique answer” property. The proof of the following
may be found in [5].

Proposition 1. Let ID = (K, P, ChSet, V ) be the Schnorr identification protocol
described in Figure 3. Let I be an adversary against the special soundness of ID
under concurrent attack. Then there exists an omdl adversary A such that

Advss−ca
ID (I) ≤ Advomdl

G (A) .

Furthermore the running time of A is that of I plus some overhead to compute
an inverse and product modulo p, and if I activates q clones, then A makes q+1
challenge queries.

We remark that the reduction is tight. In contrast, in the reductions showing
security against impersonation [4], Advomdl

G (A) is proportional to the square of
the probability that I succeeds in impersonation. This is an advantage to working
directly with special soundness rather than with impersonation. We now sketch
a proof based on the ideas of [4].

The two-tier scheme resulting from our FS-based transform instantiated with
the Schnorr protocol is very efficient. Generating a secondary key pair takes just
one group exponentiation, while signing only requires a multiplication modulo
p. In the context of our uf-cma to suf-cma transform of Section 3, this means
that the computational overhead for signing (added cost of signing in the suf-cma
scheme compared to that in the uf-cma scheme) is just one group exponentiation
and the bandwidth overhead (added length of a signature in the suf-cma scheme
compared to that in the uf-cma scheme) is one group element and one integer
modulo p.

Okamoto Identification Protocol. Okamoto’s protocol [31] is illustrated
in Figure 4. Its advantage is that security can be proved under the standard dl
assumption rather than the omdl assumption. (Yet in fact the efficiency is not



much different as we will see below.) The idea is that there are many secret keys
corresponding to a single public key and witness-indistinguishability [17] can be
used in the simulation. The protocol was proved in [31] to be secure against
impersonation under active attack assuming hardness of the dl problem, and the
proof extends to concurrent attacks. However, again, we need special soundness
rather than security under impersonation, and in our new, strong form. The
Okamoto protocol, however, does not have the unique answer property. But we
can still prove the security we need. We now state the result. The proof may be
found in [5].

Proposition 2. Let ID = (K, P, ChSet, V ) be the Okamoto identification proto-
col described in Figure 4. Let I be an adversary against the special soundness of
ID under concurrent attack. Then there exists a dl adversary A such that

Advss−ca
ID (I) ≤ 1

p
+ Advdl

G(A) .

Furthermore the running time of A is that of I plus the time to compute three
inverses and three products modulo p.

Again, the reduction is essentially tight due to working with special soundness,
whereas the reduction of [31] to establish security against impersonation incurs
the square loss we discussed in the context of Schnorr.

In the two-tier scheme resulting from our FS-transform instantiated with the
Okamoto protocol, generating a secondary key pair takes one group exponenti-
ation. (It is a multi-exponentiation, which has the same cost as a single one.)
Signing requires a couple of multiplications modulo p. So the computational cost
is the same as for Schnorr although security relies only on dl rather than omdl.
In the context of our uf-cma to suf-cma transform of Section 3, this means that
the computational overhead for signing is again just one group exponentiation.
But the bandwidth overhead is one group element and two integers modulo p,
slightly more than when we used the Schnorr scheme.

Additional Protocols. Above we have discussed two protocols that meet
our ss-ca security requirement. We have however identified several more with
the property in question. We omit proofs since they are similar to the ones given
here, and instead provide a brief discussion. Refer to [5] for a summary of these
protocols and the efficiency of the corresponding two-tier scheme. We exclude
the Fiat-Shamir protocol from this discussion, as it does not seem to meet our
strong form of the special soundness requirement. (It does not have the unique
answer property, and it seems nontrivial to fix this as we could with Okamoto.)

The GQ protocol [24] was proved secure against impersonation under con-
current attack in [4] under the assumption that RSA is secure against one more
inversion. (This is an RSA analogue of the omdl assumption. Both assumptions
were introduced in [3]. Security of GQ under active or concurrent attack under
the one-wayness of RSA remains open.) We can extend this proof to show it is
ss-ca under the same assumption in the same way that we extended the proof of
the Schnorr scheme. This protocol has Fiat-Shamir like efficiency yet has small
key sizes.



Shamir presented an identity-based identification scheme in [36]. A corre-
sponding standard (i.e. not identity-based) version was presented in [2], along
with a variant they called Sh∗ and proved secure against impersonation under
concurrent attack assuming security of RSA under one more inversion. This too
can be proved ss-ca under the same assumption. The protocol is however a mirror
image of GQ and has the same efficiency attributes as the latter.

Then there are pairings-based schemes. Both Hs-SI [2] and ChCh-SI [2] are ss-
ca secure under the one more computational Diffie-Hellman assumption. These
identification schemes were presented in [2] and are based upon existing IBS
(identity-based signature) schemes, namely those of Hess [25] and Cha and Cheon
[10]. Again, the proof of ss-ca extends the proofs of security against imperson-
ation of [2].

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to
signatures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In EUROCRYPT 2002, volume 2332 of LNCS. Springer-Verlag.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based iden-
tification and signature schemes. In EUROCRYPT 2004, volume 3027 of LNCS.
Springer-Verlag.

3. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, 16(3):185–215, 2003.

4. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of secu-
rity against impersonation under active and concurrent attacks. In CRYPTO 2002,
volume 2442 of LNCS. Springer-Verlag.

5. M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. Full version of current paper. Available from
authors’ web pages.

6. D. Bleichenbacher and U. Maurer. On the efficiency of one-time digital signatures.
In ASIACRYPT’96, volume 1163 of LNCS. Springer-Verlag.

7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
volume 3152 of LNCS. Springer-Verlag.

8. D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on com-
putational diffie-hellman. In PKC 2006, volume 3958 of LNCS. Springer-Verlag.

9. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT 2004, volume 3027 of LNCS. Springer-Verlag.

10. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In PKC 2003, volume 2567 of LNCS. Springer-Verlag.

11. R. Cramer and I. Damg̊ard. Secure signature schemes based on interactive proto-
cols. In CRYPTO’95, volume 963 of LNCS. Springer-Verlag.

12. W. Dai. Crypto++ Library. http://www.cryptopp.com/
13. Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In

TCC 2005, volume 3378 of LNCS. Springer-Verlag.
14. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on

Computing, 30(2):391–437, 2000.
15. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal

of Cryptology, 9(1):35–67, 1996.



16. U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988.

17. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd ACM STOC, 1990. ACM Press.

18. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, volume 263 of LNCS. Springer-Verlag.

19. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

20. O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof sys-
tems. SIAM Journal on Computing, 25(1):169–192, Feb. 1996.

21. S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm.
In 44th FOCS, 2003. IEEE Computer Society Press.

22. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–
308, Apr. 1988.

23. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted
to security microprocessor minimizing both transmission and memory. In EURO-
CRYPT’88, volume 330 of LNCS. Springer-Verlag.

24. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In CRYPTO’88, volume 403 of LNCS.
Springer-Verlag.

25. F. Hess. Efficient identity based signature schemes based on pairings. In SAC
2002, volume 2595 of LNCS. Springer-Verlag.

26. Q. Huang, D. S. Wong, and Y. Zhaoe. Generic transformation to strongly un-
forgeable signatures. Cryptology ePrint Archive, Report 2006/346, 2006. http:

//eprint.iacr.org/2006/346.
27. Y. Lindell. A simpler construction of cca2-secure public-key encryption under

general assumptions. Journal of Cryptology, 19(3):359–377, 2006.
28. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In ACM

CCS 01, 2001. ACM Press.
29. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic

applications. In 21st ACM STOC, 1989. ACM Press.
30. K. Ohta and T. Okamoto. On concrete security treatment of signatures derived

from identification. In CRYPTO’98, volume 1462 of LNCS. Springer-Verlag.
31. T. Okamoto. Provably secure and practical identification schemes and correspond-

ing signature schemes. In CRYPTO’92, volume 740 of LNCS. Springer-Verlag.
32. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EURO-

CRYPT’96, volume 1070 of LNCS. Springer-Verlag.
33. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind

signatures. Journal of Cryptology, 13(3):361–396, 2000.
34. J. Rompel. One-way functions are necessary and sufficient for secure signatures.

In 22nd ACM STOC, 1990. ACM Press.
35. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

4(3):161–174, 1991.
36. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO’84,

volume 196 of LNCS. Springer-Verlag.
37. I. Teranishi, T. Oyama, and W. Ogata. General conversion for obtaining strongly

existentially unforgeable signatures. In INDOCRYPT 2006, LNCS.
38. B. R. Waters. Efficient identity-based encryption without random oracles. In

EUROCRYPT 2005, volume 3494 of LNCS.


