
Efficient Pseudorandom Generators Based on
the DDH Assumption

Reza Rezaeian Farashahi1,2, Berry Schoenmakers1, and Andrey Sidorenko1

1 Dept. of Mathematics and Computer Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Dept. of Mathematical Sciences, Isfahan University of Technology,
P.O. Box 85145 Isfahan, Iran

Abstract. A family of pseudorandom generators based on the decisional
Diffie-Hellman assumption is proposed. The new construction is a mod-
ified and generalized version of the Dual Elliptic Curve generator pro-
posed by Barker and Kelsey. Although the original Dual Elliptic Curve
generator is shown to be insecure, the modified version is provably secure
and very efficient in comparison with the other pseudorandom generators
based on discrete log assumptions.
Our generator can be based on any group of prime order provided that an
additional requirement is met (i.e., there exists an efficiently computable
function that in some sense enumerates the elements of the group). Two
specific instances are presented. The techniques used to design the in-
stances, for example, the new probabilistic randomness extractor are of
independent interest for other applications.

1 Introduction

A pseudorandom generator is a deterministic algorithm that converts a short se-
quence of uniformly distributed random bits into a longer sequence of bits that
cannot be distinguished from uniformly random by a computationally bounded
algorithm. It is known that a pseudorandom generator can be constructed from
any one-way function [13]. Thus, intractability of the discrete logarithm prob-
lem suffices to construct a pseudorandom generator. Such a construction was
first proposed by Blum and Micali [2]. However, the Blum-Micali pseudorandom
generator and similar ones are inefficient in the sense that only a single bit is
output per modular exponentiation. In this paper, we show that the stronger
assumption that the decisional Diffie-Hellman problem is hard to solve (DDH
assumption) gives rise to much more efficient pseudorandom generators.

Using strong assumptions in order to improve performance of cryptographic
schemes is a common practice nowadays. In particular, several pseudorandom
generators based on strong number theoretic assumptions have been proposed
during the last decade. For instance, Patel and Sundaram [25], Gennaro [8] show
that efficient pseudorandom generators can be built if one assumes that comput-
ing discrete logarithms with short exponents is a hard problem. Steinfeld et al.
[29] propose an improved version of the well-known RSA generator assuming the

2

intractability of a strong variant of the RSA problem. In comparison with many
other assumptions, the DDH assumption is thoroughly studied (for more details
about intractability of the DDH problem, refer e.g. to [24]) and has become a
basis for a wide variety of cryptographic schemes.

Security of our construction is tightly related to the intractability of the DDH
problem.

1.1 Related Work

Our work is inspired by the publication of Barker and Kelsey [1], in which the
so-called Dual Elliptic Curve generator is proposed. Let P and Q be points on
a prime order elliptic curve over a prime field Fp such that p is close to 2256.
Let q denote the order of the curve. On input s0 chosen uniformly at random
from Zq the Dual Elliptic Curve generator produces two sequences of points
siP and siQ such that si is set to be the x-coordinate of si−1P , i = 1, 2, . . . , k.
The generator outputs k binary strings each string consisting of the 240 least
significant bits of the x-coordinate of siQ. The sequence of points siQ is shown
to be indistinguishable from the sequence of uniformly random points of the
elliptic curve under the assumption that the DDH problem and the non-standard
x-logarithm problem are intractable in E(Fp) [3]. However, the binary sequence
produced by the generator turns out to be distinguishable from uniform. The
reason is that points of the elliptic curve are transformed into random bits in an
improper way [10, 27].

Some ideas of the Dual Elliptic Curve generator are present in the earlier
work by Naor and Reingold [24]. Let p be a prime and let g be a generator
of a subgroup of Z∗

p of prime order q. Let a ∈ Zq be a fixed number. Naor and
Reingold [24] propose a simple function G that on input b ∈ Zq outputs (gb, gab).
If b is chosen uniformly at random, the output of the function is computationally
indistinguishable from uniform under the DDH assumption in the subgroup.
Note, however, that function G produces random elements of the subgroup rather
than random bits and therefore it is not a pseudorandom generator in the sense
of Definition 1 (converting random elements of the subgroup into random bits
is a nontrivial problem). Moreover, although function G doubles the input it
cannot be iterated to produce as much pseudorandomness as required by the
application. Namely, it is not clear how to produce a new value of b given two
group elements gb and gab. Accordingly, the goal of Naor and Reingold [24] is
to construct not a pseudorandom generator but a pseudorandom function, for
which function G turns out to be a suitable building block.

1.2 Our Contributions

We modify and generalize the Dual Elliptic Curve generator such that the mod-
ified version is provably secure under the DDH assumption. In comparison with
the original Dual Elliptic Curve generator, our generator can be based on any
group of prime order meeting an additional requirement (i.e., there exists an

3

efficiently computable function that in some sense enumerates the elements of
the group). The new generator is more efficient than all known pseudorandom
generators based on discrete log assumptions.

We present two specific instances of the new pseudorandom generator.
The first instance is based on the group of quadratic residues modulo a safe

prime p = 2q+1. This instance uses an elegant idea of Cramer and Shoup [5] who
show that there exists a simple bijective function that maps quadratic residues
modulo p to Zq.

The second instance is based on an arbitrary prime order subgroup of Z∗
p,

where p is prime but not necessarily a safe prime. To construct this instance, we
first propose a surprisingly simple probabilistic randomness extractor that pro-
vided with some extra randomness converts a uniformly random element of the
subgroup of order q into a uniformly random number in Zq, which in turn can be
easily converted into a string of uniformly random bits using, for instance, algo-
rithm Q2 from [15] (for an overview of probabilistic randomness extractors, refer
to [28]). Note that all (probabilistic and deterministic) extractors known so far
can only convert random elements of the subgroup into bits that are statistically
close to uniform.

We derive the security parameters of the new pseudorandom generators from
the corresponding security reductions. For this purpose, we make practical as-
sumptions about intractability of the discrete logarithm problems in the corre-
sponding groups.

2 Preliminaries

In this section, we introduce some conventions and recall basic definitions.

2.1 Notation

Let x and y be random variables taking on values in a finite set S. The statistical
distance between x and y is defined as

∆(x, y) =
1
2

∑
α∈S

|Pr[x = α]− Pr[y = α]|.

We say that algorithm D distinguishes x and y with advantage ε if and only if

|Pr[D(x) = 1]− Pr[D(y) = 1] | ≥ ε.

If the statistical distance between x and y is less than ε then no algorithm
distinguishes x and y with advantage ε (see, e.g., [20, Exercise 22]).

Throughout, we let Um denote a random variable uniformly distributed on
Zm. And, we say that an algorithm is T -time if it halts in time at most T .

4

2.2 Pseudorandom Generators

Consider a deterministic algorithm PRG : {0, 1}n 7→ {0, 1}M , where M > n.
Loosely speaking, PRG is called a pseudorandom generator if it maps uniformly
distributed input into an output which is computationally indistinguishable from
uniform. The input is called the seed and the output is called the pseudorandom
sequence. The precise definition is given below.

A T -time algorithm D : {0, 1}M 7→ {0, 1} is said to be a (T, ε)-distinguisher
for PRG if

|Pr[D(PRG(U2n)) = 1]− Pr[D(U2M) = 1] | ≥ ε. (1)

Definition 1 (Pseudorandom generator). Algorithm PRG is called a (T, ε)-
secure pseudorandom generator if no (T, ε)-distinguisher exists for PRG.

An important question is what level of security (T, ε) suffices for practical
applications of pseudorandom generators. Unfortunately, the level of security is
often chosen arbitrarily. Knuth ([17], p. 176) sets ε = 0.01 and consider several
values for T up to 53.5 ·1012 Mips-Years3. In [6], the security level is set to T = 1
Mips-Year and ε = 0.01. In [8], T = 3.5 · 1010 Mips-Years, ε = 0.01.

The fact that a pseudorandom generator is (T, ε)-secure does not automat-
ically mean that the generator is (T ′, ε′)-secure for all T ′ and ε′ such that
T ′/ε′ ≤ T/ε. For instance, if a pseudorandom generator is (T, 0.01)-secure it
does not necessarily mean that the generator is (T ′, 0.009)-secure even if T � T ′.
The reason is that a (T ′, 0.009)-distinguisher cannot always be transformed into
a (T, 0.01)-distinguisher. Indeed, the only way to improve the success probability
of the distinguisher is to run it several times on the same input. However, the
latter does not always help since there might be ”bad” inputs, that is, inputs for
which the success probability of the distinguisher is very low or equals 0.

It is reasonable to require that a pseudorandom generator is secure for all
pairs (T, ε) such that the time-success ratio T/ε is below a certain bound that is
set to be 280 time units throughout this paper (the time unit is defined in Section
2.4). Time-success ratio is a standard way to define security of cryptographic
schemes [20, 13].

2.3 Decisional Diffie-Hellman Problem

Let G be a multiplicative group of prime order q. For x, y ∈ G and s ∈ Zq such
that y = xs, s is called the discrete logarithm of y to the base x. We write
s = logx y. The discrete logarithm (DL) problem is to find s given x and y.

Definition 2 (DDH problem). Let XDDH ∈ G4 be a random variable uni-
formly distributed on the set consisting of all 4-tuples (x, y, v, w) ∈ G4 such that

3 A Mips-Year is defined as the amount of computation that can be performed in one
year by a single DEC VAX 11/780 (see also [19]).

5

logx v = logy w and let YDDH ∈R G4. Algorithm D is said to solve the deci-
sional Diffie-Hellman (DDH) problem in G with advantage ε if it distinguishes
the random variables XDDH and YDDH with advantage ε, that is,

|Pr[D(XDDH) = 1]− Pr[D(YDDH) = 1] | ≥ ε.

Related to the decisional Diffie-Hellman problem is the computational Diffie-
Hellman (CDH) problem (given x, y and xs, compute ys).

Clearly, the DL problem is at least as hard to solve as the CDH problem.
The CDH problem is proved to be equivalent to the DL problem under certain
conditions [21, 22]. Moreover, no groups are known such that the CDH problem is
strictly easier to solve than the DL problem. The common practice is to assume
that these two problems are equally hard.

On the other hand, there exist groups (e.g., Z∗
p) in which a random instance

of the CDH problem is believed to be hard while the DDH problem is easy. The
latter groups are referred to as the non-DDH groups [9]. Furthermore, Wolf [30]
shows that for all groups G an algorithm that solves the DDH problem in G is
of no help for solving the CDH problem in G. However, the computational gap
between the DDH problem and the CDH problem is difficult to estimate. It is
believed that except for the non-DDH groups, there is no way to solve the DDH
problem rather than to solve the CDH problem.

We do not use non-DDH groups in this paper. To compute security parame-
ters for the pseudorandom generators, we assume that the DDH problem and the
DL problem are equally hard, in agreement with common practice. We formalize
this as follows.

Let TDL be the running time of the best known algorithm for solving a
random instance of the DL problem in a group G. Of course, TDL depends
on the group G, that is, TDL = TDL(G). For instance, in the case of finite
fields, TDL corresponds to the running time of the discrete logarithm variant of
the Number Field Sieve, while for most of the ordinary elliptic curves the best
known algorithms are the exponential square root attacks.

Assumption 1 Unless G is a non-DDH group, no T -time algorithm solves the
DDH problem in G with probability ε if T/ε ≤ TDL(G).

2.4 Conventions

Time Units. A unit of time has to be set to measure the running time of the
algorithms. Throughout this paper, the unit of time is one DES encryp-
tion. According to the data from [19], a software implementation of DES is
estimated to take about 360 Pentium clock cycles. Therefore, we assign

1 time unit = 360 Pentium clock cycles.

Security level. The table by Lenstra and Verheul [19] implies that 280 DES
encryptions will be infeasible for classical computers until the year 2013.
Therefore, we set 280 time units as the security level to be reached.

6

Modular multiplication cost. In [19], it is reported that multiplication mod-
ulo p takes about (log2 p)2/24 Pentium clock cycles, that is,

(log2 p)2/(24 · 360) time units.

Complexity of discrete logarithm variant of the NFS. The discrete log-
arithm variant of the Number Field Sieve (NFS) algorithm solves the dis-
crete logarithm problem in a n-bit prime field in expected time L(n) =
A exp((1.9229 + o(1))(n ln 2)1/3(ln(n ln 2))2/3), where A is a constant. Fol-
lowing [19], we assume that the o(1)-term is zero and estimate the constant
A from experimental data. Unfortunately, practical experience with the dis-
crete logarithm variant of the NFS is limited. On the other hand, there are
several data points for the Number Field Sieve factoring algorithm. For in-
stance, factoring a 512-bit integer is reported to take about 3 · 1017 Pentium
clock cycles [19]. Since computing discrete logarithms in n-bit fields takes
about the same amount of time as factoring n-bit integers for any n in the
current range of interest (cf. [19]), this suggests that A ≈ 4.7 ·10−5 and thus

L(n) = 4.7 · 10−5 exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3) time units.

It is believed that the discrete logarithm problem in the extension field is as
hard as the discrete logarithm problem in the prime field of similar size (cf.
[18]).

3 DDH Generator

In this section, our main result is presented. We propose a new provably secure
pseudorandom generator. We call it the DDH generator, since the security of this
generator relies on the intractability of the DDH problem in the corresponding
group. In contrast with the Dual Elliptic Curve generator [1], the DDH gen-
erator can be based on any group of prime order provided that an additional
requirement is met (i.e., there exists an efficiently computable function enum
that ”enumerates” the elements of the group).

3.1 Construction of the Generator

Let G be a multiplicative group of prime order q and let enum : G × Zl 7→
Zq × Zl, l > 0, be a bijection. Thus, on uniformly distributed input, function
enum produces uniformly distributed output. Typically, but not necessarily, l is
chosen to be small. The advantage of a smaller l is that the seed of the generator
is shorter.

Let x, y ∈R G. The seed of the DDH generator (Algorithm 1) is s0 ∈R Zq and
randp0, randq0 ∈R Zl. The DDH generator transforms the seed into the sequence
of k pseudorandom numbers from Zq.

Note that the random elements x and y are not part of the seed. These
two elements are system parameters that are not necessarily kept secret. In the
security analysis of the generator we assume that x and y are known to the
distinguisher.

7

Algorithm 1 DDH generator
Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, k > 0
Output: k pseudorandom integers from Zq

for i = 1 to k do
Set (si, randpi)← enum2(x

si−1 , randpi−1)
Set (outputi, randqi)← enum2(y

si−1 , randqi−1)
end for
Return output1, . . . , outputk

3.2 Security Analysis

The following theorem implies that under the DDH assumption for group G an
output sequence of the DDH generator is indistinguishable from a sequence of
uniformly random numbers in Zq.

Theorem 2. Suppose there exists a T -time algorithm that distinguishes the out-
put of the DDH generator from the sequence of independent uniformly distributed
random numbers in Zq with advantage ε. Then the DDH problem in G can be
solved in time T with advantage ε/k.

Proof. Suppose there exists a T -time algorithm D that distinguishes the output
of the DDH generator from a sequence of independent uniformly distributed
random numbers in Zq with advantage ε, that is,

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε,

where U = (u1, . . . , uk), ui ∈R Zq, i = 1, . . . , k. Let j ∈R {1, 2, . . . , k}. Due to
the classical hybrid argument (see, e.g., [11, Section 3.2.3]),

|Pr[D(Zj) = 1]− Pr[D(Zj+1) = 1] | ≥ ε/k,

where

Zj =(u1, . . . , uj−1, output1, . . . , outputk−j+1),

Zj+1 =(u1, . . . , uj−1, uj , output1, . . . , outputk−j),

the probability is taken not only over internal coin flips of D but also over the
choice of j. Now, we show how to solve the DDH problem in G using the dis-
tinguisher D as a building block. Let (x, y, v, w) ∈ G4. A solver for the DDH
problem decides if logx v = logy w or v and w are independent uniformly dis-
tributed random elements of G as follows.

Select j ←R {1, 2, . . . , k}
Select r1, . . . , rj−1 ←R Zq, randp0 ←R Zl, randq0 ←R Zl

Set (s1, randp1)← enum(v, randp0)
Set (rj , randq1)← enum(w, randq0)
for i = 2 to k − j do

Set (si, randpi)← enum(xsi−1 , randpi−1)

8

Set (ri+j−1, randqi)← enum(ysi−1 , randqi−1)
end for
Set Z ← (r1, . . . , rk)
Return D(Z)
If there exists s0 ∈ Zq such that v = xs0 and w = ys0 then rj and rj+1 are

distributed as the first and the second outputs of the DDH generator respectively,
so Z is distributed as Zj .

Otherwise, if v and w are independent uniformly distributed random elements
of G then rj+1 is distributed as the first output of the DDH generator while rj

is uniformly distributed over Zq and independent of rj+1, so Z is distributed as
Zj+1.

Therefore, the above algorithm solves the DDH problem in G in time at most
T with advantage ε/k.

The DDH generator is not a pseudorandom generator in terms of Definition 1.
It outputs numbers in Zq rather than bits. However, converting random numbers
into random bits is a relatively easy problem. For instance, one can use Algorithm
Q2 from [15], which was presented without analysis. It can actually be shown,
however, that Algorithm Q2 produces on average n − 2 bits given a uniformly
distributed random number Uq, where n denotes the bit length of q. In the latter
case, the average number of bits produced by the generator is k(n− 2).

For the sake of simplicity, throughout this paper, we assume that q is close to
a power of 2, that is, 0 ≤ (2n− q)/2n ≤ δ for a small δ. So, the uniform element
Uq is statistically close to n uniformly random bits.

The following simple lemma is a well-known result (the proof can be found,
for instance, in [4]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between Uq and U2n is bounded above by δ.

The next statement implies that if q is close to a power of 2, the DDH
generator is a cryptographically secure pseudorandom generator under the DDH
assumption in G.

Corollary 1. Let 0 ≤ (2n−q)/2n ≤ δ. Suppose the DDH generator is not (T, ε)-
secure. Then there exists an algorithm that solves the DDH problem in G in time
at most T with advantage ε/k − δ.

Proof. Suppose there exists a distinguisher D : {0, 1}kn 7→ {0, 1} that runs in
time at most T and

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U2kn) = 1] | ≥ ε.

Let ui ∈R Zq, i = 1, . . . , k, and U = (u1, . . . , uk). Lemma 1 implies that the
statistical distance ∆(U,U2kn) ≤ kδ. Thus,

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε− kδ.

Now, the statement follows from Theorem 2.

9

4 Specific Instances of the DDH Generator

To implement the DDH generator, one has to choose the group G of prime order
q and function enum that enumerates the group elements. In this section, we
propose two specific instances of the DDH generator.

Throughout this section we assume that q is close to a power of 2, that is,
0 ≤ (2n − q)/2n ≤ δ for a small δ and some integer n. We like to emphasize
that this assumption is made for the sake of simplicity only. M denotes the total
number of pseudorandom bits produced by the generator.

4.1 Group of Quadratic Residues Modulo Safe Prime

To construct the first instance of the DDH generator, we use an elegant idea of
Cramer and Shoup [5] who show that there exists a simple deterministic function
that enumerates elements of the group of quadratic residues modulo safe prime
p.

Let p be a safe prime, p = 2q + 1, where q is prime. Let G1 be a group of
nonzero quadratic residues modulo p. The order of G1 equals q. Consider the
following function enum1 : G1 7→ Zq,

enum1(x) =

x, if 1 ≤ x ≤ q;
p− x, if q + 2 ≤ x < p;
0, otherwise.

It is shown in [5] that function enum1 is a bijection. Moreover, enum1 does not
require any additional input, so in terms of Section 3.1 l = 1.

Let x, y ∈ G1. Let s0 ∈R Zq be the seed. Generator PRG1 (Algorithm 4.1)
is a deterministic algorithm that transforms the seed into the sequence of kn
pseudorandom bits.

Algorithm 2 Generator PRG1

Input: s0 ∈ Zq, k > 0
Output: kn pseudorandom bits

for i = 1 to k do
Set si ← enum1(x

si−1)
Set outputi = enum1(y

si−1)
end for
Return output1, . . . , outputk

The next statement follows from Corollary 1.

Proposition 1. Suppose pseudorandom generator PRG1 is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G1 in time at
most T with advantage ε/k − δ.

10

The seed length n plays the role of security parameter of the generator.
Clearly, smaller n gives rise to a faster generator. On the other hand, for larger
n the generator is more secure. Our goal is to select n as small as possible such
that the generator is (T, ε)-secure for all T, ε such that T/ε < 280 time units.

For δ = ε/(2k), the generator is (T, ε)-secure if

2kT/ε < TDL(G1), (2)

where TDL(G1) is the running time of the fastest known method for solving the
discrete logarithm problem in G1. According to the current state of the art, we
set TDL(G1) to be the running time of the discrete logarithm variant of the
Number Field Sieve L(n) (see Section 2.4). Note that k = M/n. Then, (2) holds
if 2MT/(nε) < L(n). For M = 220 and T/ε = 280, the smallest parameter n
that satisfies the above inequality is n ≈ 1600.

Recall that q satisfies 0 ≤ (2n−q)/2n ≤ δ. We have assumed that δ = ε/(2k).
For M = 220, n = 1600, and ε = 2−80, this condition implies that 0 < 2n − q <
21500. There are plenty of safe primes p = 2q +1 such that 0 < 21600− q < 21500.

4.2 Arbitrary Prime Order Subgroup of Z∗
p

In this section, we show that the DDH generator can be based not only on
the group of quadratic residues modulo a safe prime but on any prime order
subgroup of Z∗

p, where p is a prime but not necessarily a safe prime.
Let q be a prime factor of p−1, p−1 = lq, l ≥ 2, such that gcd(l, q) = 1. If p

is a safe prime then l = 2. Denote by G2 a subgroup of Z∗
p of order q. Throughout

this section, multiplication of integers is done modulo p.
Let split2 : Z∗

p 7→ Zq ×Zl denote a bijection that splits an element of Z∗
p into

two smaller numbers. An example of split2 is a function that on input z ∈ Z∗
p

returns (z − 1) mod q and b(z − 1)/qc. Let t ∈ Z∗
p be an element of order l. Let

enum2 : G2 × Zl 7→ Zq × Zl be the following function:

enum2(x, rand) = split2(xtrand),

where x ∈ G2, rand ∈ Zl. The following lemma shows that enum2 is a bijection
and thus it is suitable for building the DDH generator.

Lemma 2. Function enum2 defined above is a bijection.

Proof. Let f : G2 × Zl 7→ Z∗
p be defined as f(x, rand) = xtrand mod p for x ∈ G2

and rand ∈ Zl. To prove the statement of the lemma, we first show that f is a
bijection.

Suppose that x1t
rand1 = x2t

rand2 for xi ∈ G2, randi ∈ Zl, i = 1, 2. Since x2 ∈
G2, x2 6= 0. Then, x1/x2 = trand1−rand2 ∈ G2, so tq(rand1−rand2) = 1. Therefore, l
divides q(rand1−rand2). Since gcd(q, l) = 1, it implies that l divides rand1−rand2.
The latter implies that rand1 = rand2 and thus x1 = x2.

Therefore, f is indeed a bijection and thus enum2 is also a bijection as a
composition of two bijective functions.

11

Let PRG2 denote the instance of the DDH generator that uses the group G2

and the function enum2 defined above. The next statement follows from Corollary
1.

Proposition 2. Suppose pseudorandom generator PRG2 is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G2 in time at
most T with advantage ε/k − δ.

Let m denote the bit length of p. At each step i = 1, . . . , n, pseudorandom
generator PRG2 computes xsi−1 and ysi−1 and then uses these elements to evalu-
ate the corresponding outcomes of function enum2. Therefore, each step implies
two modular exponentiations with n-bit exponents and two modular exponen-
tiations with (m − n)-bit exponents. Since PRG2 outputs n bits per step the
computational effort per output bit is proportional to m3/n. Our goal is now
to determine parameters m and n that minimize the computational effort under
the condition that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280.

For δ = ε/(2k), generator PRG2 is (T, ε)-secure if

2kT/ε < TDL(G2), (3)

where TDL(G2) is the running time of the fastest known method for solving the
discrete logarithm problem in G2. The best algorithms for solving the discrete
logarithm problem in G2 are Pollard’s rho method in G2 and the discrete loga-
rithm variant of the Number Field Sieve in the full multiplicative group Z∗

p. The
running time of Pollard’s rho method is estimated to be 0.88

√
q group operations

(cf. [19]). Since k = M/n, condition (3) implies that

2MT/(nε) < min[L(m), 0.88 · 2n/2m2/(24 · 360)].

For M = 220, T/ε = 280, the above condition is satisfied for m ' 1600, n ' 160.
The computational effort is minimized if n ≈ m.

In comparison with PRG1, the seed of PRG2 is somewhat longer, although if
n ≈ m it is roughly of the same size. Moreover, PRG2 is less efficient than PRG1

in terms of computational effort since computation of enum2 implies a modular
exponentiation while enum1 implies at most 1 integer subtraction. A significant
advantage of PRG2 versus PRG1 is that the former can be based on any prime
order subgroup of Z∗

p for any prime p provided that the size of the subgroup is
sufficiently large to resist Pollard’s rho attack.

4.3 Discussion

Function enum2 used as a building block of generator PRG2 is of independent
interest. The reason is that this function can be viewed as a probabilistic ran-
domness extractor (for an overview of probabilistic randomness extractors, refer
to [28]). Provided with some extra randomness, it converts a uniformly random
element of a subgroup of Z∗

p of order q into a uniformly random number in Zq,
which in turn can be easily converted into a string of uniformly random bits

12

using, for instance, algorithm Q2 from [15]. Note that all (probabilistic and de-
terministic) extractors known so far can only convert random elements of the
subgroup into bits that are statistically close to uniform.

The new extractor can be used not only for designing pseudorandom gener-
ators but also for key exchange protocols to convert the random group element
shared by the parties involved into the random binary string.

If the size of the subgroup q is sufficiently large, our extractor is more efficient
than the general purpose probabilistic randomness extractors (e.g., the universal
hash functions [13]) in terms of the number of extra random bits required. For
instance, if the statistical distance to be reached is 2−80 our extractor requires
less extra randomness than universal hash functions if the size of the subgroup
is at least p/2160. If the size of the subgroup is close to the size of the group p,
our extractor requires just few extra random bits.

The recently proposed deterministic extractor by Fouque et al. [7] does not
require any extra randomness to produce the output. However, it extracts sub-
stantially less than half of the bits of a uniformly distributed random element
of the subgroup. Our extractor does require extra randomness rand ∈ Zl, l ≥ 1,
but one gets this randomness back in the sense that the extractor outputs not
only the integer from Zq but also an element of Zl. The crucial advantage of our
extractor is that it extracts all the bits of the subgroup element.

5 Generator PRG1 versus Gennaro’s Generator

In this section, we compare PRG1 with the well-known Gennaro’s generator [8]
in the setting of concrete security. For both generators, we determine parameters
(e.g., the size of the seed) such that a desired level of provable security is reached,
while minimizing the computational effort per output bit.

Security of Gennaro’s generator is based on a variant of the discrete logarithm
problem, that is, the discrete logarithm with short exponent (DLSE) problem.
Let x, y be elements of a multiplicative group G. The c-DLSE problem is to
find s, 0 ≤ s < 2c, such that y = xs given x, y and the parameter c. Clearly,
the DLSE problem is not harder to solve than the original discrete logarithm
problem.

Now, we recall the basic results of [8].
Let g be a generator of Z∗

p, where p is an n-bit safe prime. For a nonnegative
integer x let `j(x) ∈ {0, 1} denote the j-th least significant bit of x:

x =
∑

j

`j(x)2j−1.

Let x1 ∈R Zp−1 be the seed. Gennaro’s generator (Algorithm 3) transforms
the seed into the pseudorandom sequence of length k(n− c− 1).

The following statement is the concrete version of Theorem 2 of [8].

Theorem 3 (Gennaro). Suppose Gennaro’s pseudorandom generator is not
(T, ε)-secure. Then there exists an algorithm that solves the c-DLSE in Z∗

p in
time 8c(ln c)(k/ε)3T with probability 1/2.

13

Algorithm 3 Gennaro’s pseudorandom generator
Input: x1 ∈ Zp−1, k > 0
Output: k(n− c− 1) pseudorandom bits

for i = 1 to k do
Set outputi ← `2(xi), `3(xi), . . . , `n−c(xi)

Set xi+1 ← g
Pn

j=n−c+1 `j(xi)2
j−1+`1(xi)

end for
Return output1, . . . , outputk

Gennaro’s generator outputs (n − c − 1) bits per modular exponentiation
with c-bit exponent. The standard right-to-left exponentiation costs on average
c/2 multiplications and c squarings. Assume that a squaring modulo p takes
about 80% of the time of a multiplication modulo p (cf. [18]). Then, the average
computational effort is 1.3cn2/(24 ·360(n−c−1)) time units per output bit. Our
goal is now to determine n and c that minimize the computational effort under
the condition that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280

with a natural limitation T ≥ 1 time unit.
Theorem 3 implies that Gennaro’s generator is (T, ε)-secure if

16c(ln c)(k/ε)3T < TDLSE(Z∗
p),

where TDLSE(Z∗
p) is the running time of the fastest algorithm for solving the

c-DLSE problem in Z∗
p. The fastest algorithms for solving the DLSE problem

are the discrete logarithm variant of the NFS and the Pollard’s lambda method.
The complexity of the latter is close to 2 · 2c/2 multiplications in Z∗

p, that is,
2c/2+1n2/(24 · 360) time units (cf. [26]). Note that k = M/(n − c − 1), where
M is the total number of pseudorandom bits produced by the generator. Thus,
Gennaro’s generator is (T, ε)-secure if

16c(ln c)M3T

ε3(n− c− 1)3
< min[L(n), 2c/2+1n2/(24 · 360)].

For M = 220, T/ε < 280 with a natural limitation T ≥ 1 the optimal parameters
are n ≈ 18000, c ≈ 520.

The secure length of the modulus turns out to be quite large. Recall that
generator PRG1 is provably secure for much smaller parameter n, namely, n ≈
1600. The reason is that the reduction in Theorem 3 is not tight in the sense that
a distinguisher for Gennaro’s generator is transformed into the far less efficient
solver for the DLSE problem (note that ε is raised to the power of 3 in the
statement of Theorem 3). On the contrary, the reduction in Theorem 2 is much
tighter.

To compare Gennaro’s generator with generator PRG1, we determine the
computational effort for both generators.

1. The average computational effort of Gennaro’s generator is 1.3cn2/(24 ·
360(n − c − 1)) time units per output bit. For n = 18000, c = 520, we
get about 1500 time units per output bit.

14

2. The generator PRG1 outputs n bits at the cost of 2 modular exponentia-
tions with n-bit exponent. The average computational effort for n = 1600 is
2.6n2/(24 · 360) ≈ 770 time units per output bit.

Thus, for M = 220 bits to be produced and for the level of security of 280

time units, generator PRG1 is about 2 times faster than Gennaro’s generator.
Furthermore, the seed length of generator PRG1 is more than 10 times shorter
(1600 bits versus 18000 bits).

We draw the attention of the reader to the way the comparison is done. At
first sight, it seems that Gennaro’s generator is more efficient than generator
PRG1 since Gennaro’s generator outputs almost n bits per modular exponenti-
ation with a short c-bit exponent, while generator PRG1 outputs n bits per 2
exponentiations with a full-size exponent. However, it should not be neglected
that the n’s in these two cases are different. Due to the tighter reduction, gen-
erator PRG1 is provably secure for much smaller n. This is the main reason why
generator PRG1 turns out to be more efficient for the same level of security.

6 Concluding Remarks and Open Problems

Independent of our work, Jiang recently proposed a pseudorandom generator
which is also provably secure under the DDH assumption [14]. The security
properties of Jiang’s generator are similar to ours (hence his generator compares
similarly to Gennaro’s generator). On the other hand, in comparison with our
construction Jiang’s generator has two major disadvantages. Firstly, Jiang’s gen-
erator can be based only on the group of quadratic residues modulo a safe prime
while our construction extends to many other groups of prime order. Secondly,
the seed of our generator PRG1 is twice as short as the seed of Jiang’s generator.

The seed length is a critical issue for pseudorandom generators. For instance,
if a pseudorandom generator is used as a keystream generator for a stream cipher
the seed length corresponds to the length of the secret key. Also, from a theoret-
ical point of view, the seed length is perhaps the most important parameter of
a pseudorandom generator, as discussed in detail in the recent paper by Haitner
et al. [12].

In this respect, we make the following observation. The seed of Jiang’s gen-
erator can be reduced in length by a factor of two, making it as short as the seed
of our generator PRG1, provided one assumes the intractability of the so-called
square decisional Diffie-Hellman problem (see, e.g., [31]). The modification to
Jiang’s generator is to update the state At as follows: set At = g|At−1|2p , using
the notation of [14], rather than setting At = g|At−2|p|At−1|p . Note, however, that
the square decisional Diffie-Hellman problem has not been studied as extensively
as the standard DDH problem.

Finally, we note that constructing an efficient provably secure pseudorandom
generator based on the intractability of the DDH problem on an ordinary elliptic
curve is an interesting open problem. For most ordinary elliptic curves, the best
known methods for solving the elliptic curve discrete logarithm problem are the

15

exponential square root attacks, so to reach a security level of 280 time units it
suffices to let the size of the group be about 160 bits. Hence, such an elliptic
curve based generator would allow for a considerable reduction of the seed length,
potentially to a seed of 160 bits only.

To implement the DDH generator based on an elliptic curve, one has to
construct an efficiently computable function that bijectively maps the points of
the curve to Zq, where q is the order of the group. This function seems to be
difficult to construct for ordinary elliptic curves. For some supersingular elliptic
curves, the function can be constructed (see, e.g., [16]). However, the latter
curves cannot be used for the DDH generator since the DDH problem in these
curves can be easily solved by computing Weil pairings [23].

Acknowledgements

We thank David Galindo for fruitful discussions. We also thank the anonymous
referee for pointing us to the paper of Jiang [14].

References

1. E. Barker and J. Kelsey, Recommendation for random number generation using
deterministic random bit generators, December 2005, NIST Special Publication
(SP) 800-90.

2. M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM Journal on Computing 13 (1984), no. 4, 850–864.

3. D. Brown, Conjectured security of the ANSI-NIST Elliptic Curve RNG, Cryptology
ePrint Archive, Report 2006/117, 2006, http://eprint.iacr.org/.

4. O. Chevassut, P. Fouque, P. Gaudry, and D. Pointcheval, The Twist-AUgmented
Technique for Key Exchange, Public Key Cryptography—PKC 2006, Lecture Notes
in Computer Science, vol. 3958, Springer-Verlag, 2006, pp. 410–426.

5. R. Cramer and V. Shoup, Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack, SIAM Journal on Com-
puting (2003), 167–226.

6. R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and Rabin bits,
Journal of Cryptology 13 (2000), no. 2, 221–244.

7. P. Fouque, D. Pointcheval, J. Stern, and S. Zimmer, Hardness of distinguishing the
MSB or LSB of secret keys in Diffie-Hellman schemes, ICALP (2), 2006, pp. 240–
251.

8. R. Gennaro, An improved pseudo-random generator based on the discrete logarithm
problem, Journal of Cryptology 18 (2005), no. 2, 91–110.

9. R. Gennaro, H. Krawczyk, and T. Rabin, Secure hashed Diffie-Hellman over non-
DDH groups, Cryptology ePrint Archive, Report 2004/099, 2004, http://eprint.
iacr.org/.

10. K. Gjøsteen, Comments on Dual-EC-DRBG/NIST SP 800-90, Draft De-
cember 2005, March 2006, http://www.math.ntnu.no/~kristiag/drafts/

dual-ec-drbg-comments.pdf.
11. O. Goldreich, Foundations of cryptography, Cambridge University Press, Cam-

bridge, UK, 2001.

16

12. I. Haitner, D. Harnik, and O. Reingold, On the power of the randomized iterate,
Advances in Cryptology—Crypto 2006, Lecture Notes in Computer Science, vol.
4117, Springer-Verlag, 2006, pp. 22–40.

13. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, Construction of a pseudo-
random generator from any one-way function, SIAM Journal on Computing 28
(1999), 1364–1396.

14. S. Jiang, Efficient primitives from exponentiation in Zp, ACISP, Lecture Notes in
Computer Science, vol. 4058, Springer-Verlag, 2006, pp. 259–270.

15. A. Juels, M. Jakobsson, E. Shriver, and B. K. Hillyer, How to turn loaded dice into
fair coins, IEEE Transactions on Information Theory 46 (2000), no. 3, 911–921.

16. B. S. Kaliski, Elliptic curves and cryptography: A pseudorandom bit generator and
other tools, Ph.D. thesis, MIT, Cambridge, MA, USA, 1988.

17. D. E. Knuth, Seminumerical algorithms, third ed., vol. 3, Addison-Wesley, Reading,
MA, USA, 1997.

18. A. K. Lenstra and E. R. Verheul, The XTR public key system, Advances in
Cryptology—Crypto 2000, Lecture Notes in Computer Science, vol. 1880, Springer-
Verlag, 2000, pp. 1–19.

19. , Selecting cryptographic key sizes, Journal of Cryptology 14 (2001), no. 4,
255–293.

20. M. Luby, Pseudorandomness and cryptographic applications, Princeton University
Press, Princeton, NJ, USA, 1994.

21. U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete algorithms, CRYPTO, 1994, pp. 271–281.

22. U. M. Maurer and S. Wolf, Diffie-Hellman oracles, CRYPTO, 1996, pp. 268–282.
23. A. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to

logarithms in a finite field, IEEE Transactions on Information Theory 39 (1993),
no. 5, 1639–1646.

24. M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-
random functions, Journal of the ACM 51 (2004), no. 2, 231–262.

25. S. Patel and G. S. Sundaram, An efficient discrete log pseudo random generator,
CRYPTO, 1998, pp. 304–317.

26. J. M. Pollard, Kangaroos, monopoly and discrete logarithms, Journal of Cryptology
13 (2000), no. 4, 437–447.

27. B. Schoenmakers and A. Sidorenko, Cryptanalysis of the Dual Elliptic Curve pseu-
dorandom generator, Cryptology ePrint Archive, Report 2006/190, 2006, http:

//eprint.iacr.org/.
28. R. Shaltiel, Recent developments in explicit constructions of extractors., Bulletin

of the EATCS 77 (2002), 67–95.
29. R. Steinfeld, J. Pieprzyk, and H. Wang, On the provable security of an efficient

RSA-based pseudorandom generator, Cryptology ePrint Archive, Report 2006/206,
2006, http://eprint.iacr.org/.

30. S. Wolf, Information-theoretically and computationally secure key agreement in
cryptography, Ph.D. thesis, ETH Zurich, 1999.

31. F. Zhang, R. Safavi-Naini, and W. Susilo, An efficient signature scheme from bi-
linear pairings and its applications, Public Key Cryptography 2004, Lecture Notes
in Computer Science, vol. 2947, Springer-Verlag, 2004, pp. 277–290.

