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Abstract. We consider the NTRU encryption scheme as lately sug-
gested for use, and study the connection between inverting the NTRU
primitive (i.e., the one-way function over the message and the blinding in-
formation which underlies the NTRU scheme) and recovering the NTRU
secret key (universal breaking). We model the inverting algorithms as
black-box oracles and do not take any advantage of the internal ways
by which the inversion works (namely, it does not have to be done by
following the standard decryption algorithm). This allows for secret key
recovery directly from the output on several inversion queries even in
the absence of decryption failures. Our oracles might be queried on both
valid and invalid challenges e, however they are not required to reply
(correctly) when their input is invalid. We show that key recovery can be
reduced to inverting the NTRU function. The efficiency of the reduction
highly depends on the specific values of the parameters. As a side-result,
we connect the collisions of the NTRU function with decryption failures
which helps us gain a deeper insight into the NTRU primitive.
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1 Introduction

For every cryptosystem the connection between recovering the secret key
(i.e., universally breaking the system) and inverting the underlying (one-way)
encryption function is a question of fundamental importance. The classical ex-
ample is the basic Rabin cryptosystem [21] where the ability to invert instances
(i.e., finding modular square roots) was shown to be equivalent to the recovery
of the key, i.e., factoring; (recently, [20] extended this to all factoring based cryp-
tosystem with a single composite). For general RSA, the question whether one
can factor the modulus N querying (polynomially many times) an oracle that
inverts the function f(x) = xe (modN), remains a challenging open problem
for almost 30 years (some work in the opposite direction can be found in [3]).
Relating secret key recovery to ciphertext inversion may be used to strengthen
security claim (in case key recovery is believed to be hard), and at the same time
it opens the door to chosen ciphertext attacks as was originally pointed out by
Rivest regarding Rabin’s scheme.



We study this connection for the NTRU Encryption scheme (NTRUEncrypt)
[1] with respect to parameter sets where the secret key f has the shape f =
1 + p ∗ F for a binary polynomial F.

We note that given the state of the art, not much is known about the structure
of the NTRU encryption function and the one-way properties of the basic NTRU
operation, and unlike traditional public-key schemes NTRU lacks random self-
reducibility which is a property often used in understanding the structure. Our
investigation, in turn, is aimed at better understanding the one-way trapdoor
function that underlies NTRU.

Our conceptual goal has been a “black box” reduction, i.e., treating the
inversion oracle (device) as unknown (which is a stronger reduction than ones
that assume specific knowledge of how the inverting algorithm works). With
this goal in mind, we found that the problem of finding the secret key pair (i.e.
universally breaking the scheme) can be reformulated in a way that resembles the
problem of inverting a certain instance of NTRU. More specifically, rewriting the
key generation equation leaks a polynomial which, for specific parameter values,
can be efficiently transformed into a valid instance and thus be recovered using
a black box (hypothetical) inverting algorithm.
Related Work: To the best of our knowledge, our work is the first one that
studies the problem of NTRU universal breaking outside the CCA framework.
All previous key recovery attacks assume access to the decryption oracle, which
on input a (valid or invalid) ciphertext applies the standard NTRU decryption
process, and use its output to retrieve information about the secret key f. All the
known CCAs are not guaranteed to work unless the decryption process functions
in a very specific way. These attacks retrieve f indirectly and almost all of them
work only in the presence of decryption failures.

Jaulmes and Joux [15] were the first to present CCAs against NTRU. Even
though their attacks need just a small number of queries to recover f, they do not
seem to work for all instantiations of NTRU and require the whole output of the
decryption oracle for the recovery of f. In addition, they use invalid ciphertexts
of a very special shape and can thus be easily thwarted by a decryption machine
(which simply refuses to give an output when the input is an invalid ciphertext).

In [14] the authors present 3 new chosen-ciphertext attacks against optimized
NTRU (where f = 1+p∗F ). The attacks require a very small number of queries
to the decryption oracle while all the queries are on ciphertexts chosen offline
and independently of the previous outputs. The main drawback of the attacks is
that the oracle is queried again on invalid ciphertexts. In addition, the attacker
needs to see the whole output of the oracle in order to fully recover the secret key
f. The reaction attacks presented in [10] work for f of any shape and do not need
to view the output of the decryption in order to recover f . The knowledge of
whether the ciphertext decrypts correctly under the assumed decryption process
suffices for this type of attack. The number of queries to the decryption oracle
is, naturally, significantly larger than in [14].

In [12], the authors present attacks exclusively based on valid ciphertexts.
The attacker creates the ciphertexts by encrypting valid messages and checks



whether the receiver is able to decrypt them correctly (the output of the decryp-
tion is not required). These attacks work for any padding scheme and instanti-
ation of NTRU as long as there are decryption failures. Here again the number
of queries gets considerably large. In addition, these attacks seem to not have
been fully implemented.

Recently, Gama and Nguyen [5] presented new CCAs on NTRU which use
only valid ciphertexts chosen at random. Their attacks require the collection of
a small number of decryption failures in order to recover f (but still a large
number of tries in order to collect these failures). However, they require the full
output of the oracle (and not just a YES/NO answer) and work only in the
presence of decryption failures.

Table 1 summarizes the most representative CCAs against NTRUEncrypt.
It worths noting that almost all of them (with the exception of [15] and [14]) do
not work for the latest NTRU instantiations where no decryption failures occur.

Table 1. Known Chosen-Ciphertext Attacks against NTRU
Attack # Queries Dec.Failures ciphertexts type of reply Applicability shape of F Ref.

Jaulmes, Joux small - invalid full output unpadded version NTRU-1998 [15]
Hong et al. very small - invalid full output unpadded version 1 + p ∗ F [14]

Hoffstein,Silverman large required invalid YES/NO unpadded version any shape [10]
How.-Graham et al. large required valid YES/NO padded version any shape [12]

Gama, Nguyen small required valid full output padded version any shape [5]

Our Results: All the aforementioned attacks work in the CCA framework and
in particular assume access to the decryption oracle, while we assume access to
an inversion oracle. Although the two approaches are not directly comparable,
we present two main points that differentiate our analysis from the previous
works.
(i) We do not consider padding schemes: After [15], several padding schemes
have been proposed in order to enhance the security of NTRUEncrypt (seman-
tic and CCA security) in the random oracle model [2] (see for example [9], [16]
and several flaws pinpointed in [19] and [12]). However, here we are concerned
only in the connection between breaking the primitive (that is the NTRU “one-
way” function) and universal breaking. We work on the space of polynomials
rather than in the space of binary strings. Thus we are not concerned about how
the strings and the polynomials are connected. It is important to note that even
the “valid” spaces might differ. Valid challenges e as defined below might not
correspond to valid ciphertexts. Namely, there might be e = h ∗ r + m (mod q)
for (r,m) ∈ (B(dr),B) (valid challenge) which corresponds to an invalid cipher-
text because r and m may not be connected via the hash functions used by the
padding scheme. Therefore, our results do not work in the presence of a padding
scheme and thus they are unlikely to lead to a practical attack. Still, the study of
the unpadded version remains theoretically interesting and does say something
about the NTRU primitive itself.
(ii) The internal functionality of the oracle is not exploited: All the aforemen-
tioned attacks assume that the oracle uses the standard decryption process (mul-
tiplication of the ciphertext e with f and then reduction modulo p). They all
derive information about f indirectly from the effect this multiplication has on



the input of the oracle. On the contrary, here we view the inversion oracle as a
black box and make no assumption on the internal computations of the oracle.
This allows for key recovery even in the absence of decryption failures (NTRU-
2005). Given our “lack of knowledge” about the internals of the inversion box,
it is natural that we might require a relatively large number of oracle queries.
Indeed, the efficiency of the reduction highly depends on the Hamming weights
dF , dr of polynomials F and r respectively. In particular, the number of queries
required to recover the secret key is exponential to |dF − dr|.
Organization: In section 2 we give some notation and a brief description of
NTRUEncrypt. Section 3 defines formally the underlying NTRU primitive and
studies the connection between the number of collision pairs and decryption
failures. In section 4 we define the inversion oracle and its decision counterpart.
Subsequently, in section 5, we give the main results and analyze the number of
queries and the success probability for finding the secret key pair with respect
to each oracle. Finally in section 6 we present the conclusions and suggests
directions for future research.

2 NTRU Preliminaries

2.1 Definitions and Notation

We will use B to denote the set of all polynomials with binary coefficients.
Accordingly, we use B(d) to indicate the set of all polynomials with exactly d
1’s and all the other coefficients set to 0 (d is the hamming weight of the binary
polynomial). T will denote the set of ternary polynomials and T (d1, d2) the
set of polynomials with exactly d1 1s and d2 −1s. We also use the equivalence
in representation between polynomials and vectors. That is, each polynomial
p(x) =

∑k
i=0 pix

i of degree k corresponds to a vector ~p = [p0, p1, ..., pk] and vice
versa. We define the width of a polynomial p as

width(p) = max(p0, ..., pk)−min(p0, ..., pk).

NTRU was proposed in 1996 by Hoffstein, Pipher and Silverman [8]. All the
operations take place in the ring of truncated polynomials P = ZZq[X]/(XN−1).
That is all the polynomials involved are of degree at most N−1 with coefficients
lying in an interval of width q. In this ring, addition of two polynomials (denoted
“+”) is defined as pairwise addition of the coefficients of the same degree and
multiplication (denoted “*”) is defined as convolution multiplication. That is

f(x) ∗ g(x) = h(x) where hk =
∑

i+j≡k (modN)

fi · gj (mod q).

The operator “*” is both commutative and associative. We define the pseudo-
inverse of a polynomial p as the polynomial P ∈ P such that

P ∗ p ∗ s ≡ s (mod q)

for any polynomial s ∈ P such that s(1) ≡ 0 (mod q).



2.2 Overview of NTRUEncrypt

Below we describe in brief the NTRU Encryption Scheme. Further details
can be found in [8].

Parameter Set For key generation, encryption and decryption process the fol-
lowing parameters are used:
−N : Determines the maximum degree of the polynomials used. N is taken to be
a prime in order to prevent attacks described by Gentry [6] and sufficiently large
to prevent lattice attacks such as those described in [4] and [18]. The associated
NTRU lattice seems to have dimension 2N.
−q: Large modulus. It is a positive integer. Its value depends on the specific
instantiation.
−p: Small modulus. A small integer or a polynomial with small coefficients.
N, q and p depend on the desired security level. However (p, q) = 1 should always
hold, that is p, q should generate the unit ideal.
−Lf ,Lg : Private Key spaces. Sets of polynomials from which the private keys
are selected.
−Lm: Plaintext Space. Set of polynomials that represent encoded messages.
−Lr: Blinding value space. Set of polynomials from which the temporary blind-
ing value used during encryption is selected.
−ψ: A bijection between Lm (mod p) and Lm.
−center: Centering method. An algorithm that“ensures” that the reduction
modulo q is performed correctly during decryption.

Key generation

Input: A prime N, the moduli p, q and a description of the sets Lf ,Lg.
Output: The key pair (pk, sk) = (h, (f, fp)).
1. Choose uniformly at random polynomials f ∈ Lf and g ∈ Lg.
2. Compute fq ≡ f−1 (mod q) and fp ≡ f−1 (mod p). If fq or fp does not exist,

go to previous step.
3. Compute h ≡ fq ∗ p ∗ g (mod q).
4. Return (pk, sk) = (h, (f, fp)). h is the public key. The pair (f, fp) is the

private key.

Encryption

Input: A message m ∈ Lm and the public key h.
Output: A ciphertext e that corresponds to m.
1. Select uniformly at random a polynomial r ∈ Lr (blinding value).
2. return e = (h ∗ r +m) (mod q).



Decryption

Input: A ciphertext e and the private key pair (f, fp).
Output: The message m ∈ Lm that corresponds to the ciphertext e.
1. Compute a ≡ e ∗ f (mod q). (a ≡ r ∗ h ∗ f + f ∗m ≡ p ∗ r ∗ g + f ∗m (mod q)).
2. Using a and an appropriate centering algorithm find a polynomial A such that
A = p ∗ r ∗ g + f ∗m in ZZ and not only mod q.

3. Compute m (mod p) = fp ∗A (mod p).
4. Return ψ(mmod p) ∈ Lm which corresponds to the plaintext polynomial.

Remark 2.1. In most of the instantiations of the parameter set ([1], [13]), g is
also taken to be invertible mod q. In that case h is invertible too. In any case, h
is pseudo-invertible mod q with H being its pseudo-inverse.

Remark 2.2. As we mentioned in the introduction, in our analysis we do not
consider padding schemes. Therefore, in the encryption and decryption process,
we omit the parts that describe how padding is performed. For the padded
version of encryption and decryption algorithms the reader is referred to [16],
[1] and [13].

2.3 Instantiations of NTRU

Since its first publication, several variants of NTRUEncrypt have appeared in
the literature. This has made the analysis of NTRU a tricky task since different
choices of parameter sets might significantly affect the security of the underlying
NTRU primitive. Indeed, it is not yet known whether the proposed sets lead to
equivalent (in terms of security) primitives. A study of the connection of the
various instantiations and an analysis of their vulnerabilities with respect to
certain types of attack, consists a very challenging direction for future research.

In table 2 we summarize the main instantiations of NTRU3 (for further details
the reader is referred to [5, Section 2]). Sometimes, for efficiency reasons, a
combination of the above sets might be used. For example in NTRU-2001 q
might be a prime or in NTRU-2005 Lr and F might belong in X (d) which
denotes the set of (binary) polynomials of the from b1 + b2 ∗ b3 where bi are very
sparse binary polynomials with d 1s.

3 The NTRU “One-Way” Function

In this work we consider instantiations where f = 1 + p ∗ F. In these instan-
tiations, the NTRU function is defined as follows:
3 Recently, in order to secure against attacks presented in [11], the NTRU parameters

have been revised in [7]. The major difference is that polynomials F, g, r, m belong
to the space of trinary polynomials (that is their coefficients lie in the set {−1, 0, 1}).
Still, in most of the new parameter sets, f has the shape f = 1 + p ∗ F with p = 3.
We haven’t looked at reductions in these new sets, but we anticipate that similar
reduction arguments apply (though the number of queries required for the reduction
might grow larger since the search space grows).



Table 2. The Main NTRU Parameter Sets

Variant q p Lf Lg Lm Lr F Dec. Failures Ref.

NTRU-1998 2k ∈ [ N
2 , N ] 3 T (df , df − 1) T (dg, dg) T T (dr, dr) - YES [8]

NTRU-2001 2k ∈ [ N
2 , N ] 2 + x 1 + p ∗ F B(dg) B B(dr) B(dF ) YES [16]

NTRU-2005 prime 2 1 + p ∗ F B(dg) B B(dr) B(dF ) NO [13]

Definition 3.1 (The NTRU Function).

E : B(dr)× B → ZZNq

(r,m)→ h ∗ r +m (mod q)

The NTRU function, like the underlying functions of many other practical cryp-
tosystems, does not have a formal proof of security in that there exists no known
reduction that proves that its inversion is at least as hard as a well studied hard
problem. Its security appears to be related to the hardness of some lattice prob-
lems, namely the shortest and closest vector problems (SVP, CVP). In particular,
finding the secret key pair (f, g) can be reduced to finding the shortest vector
in a lattice constructed by the public information (LCS lattice defined in [4])
whereas inverting NTRU instances can be reduced to finding the closest lattice
vector to a point. However, it is possible that both NTRU problems are easier
than their lattice counterparts and thus the analogy between Finding NTRU
Key/Inverting challenges and SVP/CVP might be too loose.

The underlying NTRU problem can be summarized in the following definition
(first formally presented by Nguyen and Pointcheval in [19])

Definition 3.2 (The NTRU Inversion Problem). For a given security pa-
rameter k, which specifies N, p, q as well as a random public key h and e ≡
h∗r+m (modq) where m ∈ B and r ∈ B(dr), find m. Let SuccowNTRU (A) denote
the success probability of any adversary A.

Succ
ow
NT RU (A) = Pr

h
A(e, h) = m

˛̨
(h, sk)← K(1

k
),m ∈ B, r ∈R B(dr), e ≡ h ∗ r +m (mod q)

i
The probability is taken over all the random choices made by the key generation
and the encryption algorithm (h and r) as well as over all possible m ∈ B. Hence,
the security of NTRUEncrypt is based on the following assumption

Definition 3.3 (The NTRU Assumption). The NTRU Inversion Problem
is asymptotically hard to solve. That is, for any polynomially bounded adversary
A, SuccowNTRU (A) is negligible.

Since we are interested in efficient reductions , apart from the number of queries,
we also need to bound the output of the oracles upon being asked on a specific
challenge.

Definition 3.4 (Collision-Pair). A pair ((r1,m1), (r2,m2)) with (ri,mi) ∈
(B(dr),B), is a NTRU collision-pair if

(r1,m1) 6= (r2,m2) and E(r1,m1) = E(r2,m2).



Definition 3.5. The NTRU valid challenge space is denoted by Edr

q,h and con-
tains the image of all pairs (r,m) ∈ (B(dr),B) under NTRU function E . Namely,

Edr

q,h = {e ∈ ZZNq |∃r ∈ B(dr),m ∈ B : e ≡ h ∗ r +m (mod q)}.

Definition 3.6. Let e ∈ ZZNq be a (valid or invalid) challenge. The set preimg(e)
is the set of all pairs (r,m) ∈ (Lr,Lm) that give e under the NTRU function.
That is

preimg(e) = {xi = (ri,mi)|ri ∈ Lr,mi ∈ Lm, h ∗ ri +mi ≡ e (mod q)}

Obviously |preimg(e)| = 0 if e /∈ Edr

q,h and |preimg(e)| ≥ 1 otherwise. The
following proposition connects the number of collisions to the decryption failure
probability.

Proposition 3.1. On input e ∈ Edr

q,h, the standard NTRU decryption algorithm
will fail to decrypt correctly with probability at least 1− 1

|preimg(e)| .

Proof. We give an intuitive proof. A less intuitive (but more formal) proof can be
found in Appendix A. On input e, the standard NTRU process returns a unique
message m. But there are exactly |preimg(e)| distinct m′s that corresponds to
that e (see appendix A why these m′s are distinct). Assuming (naturally) that
e has emerged from the encryption of an (ri,mi) ∈ preimg(e) with probability

1
|preimg(e)| (uniformly), then the inversion algorithm recovers the correct pair
with probability at most 1

|preimg(e)| . We say “at most” because the decryption
algorithm might fail to recover any of the (ri,mi) ∈ preimg(e) (due to gap or
wrap failures). ut

The implications are straightforward. If e ∈ Edr

q,h decrypts correctly, then e has
a unique preimg. For example, for NTRU-2005, where decryption failures have
been eliminated, this means that each valid e has a unique preimg (r,m) ∈
(B(r),B). Notice that the uniqueness holds not only for m (something naturally
implied by perfect decryption) but for r as well. In addition, even for NTRU-
2001, where decryption failures are present, the fraction of valid e that have a
unique (r,m) ∈ (B(r),B) preimg is at least as large as the fraction of e that
decrypt correctly which is (exponentially) close to one. But even for the small
fraction of e that may have more than one preimages, we can argue that the num-
ber of preimages cannot grow exponentially large, otherwise the NTRU instance
can be efficiently broken. Indeed, if there is a challenge e which corresponds to
an exponential number of preimages, one can mount a birthday-type attack to
efficiently obtain two pairs (r1,m1), (r2,m2) both of which encrypt to e. We then
have

r1 ∗ h+m1 ≡ r2 ∗ h+m2 (mod q)⇒ (r1 − r2) ∗ h ≡ m2 −m1 (mod q)

But r1 − r2 and m1 − m2 have very small norms and can be therefore used
instead of f and g to invert most of the instances (of course, now the centering



algorithm will perform reduction mod q in an interval centered at zero since
r1 − r2 and m1 −m2 have coefficients in {−1, 0, 1}). We summarize the above
arguments in the following sentence which we only state as an assumption for
scientific accuracy.
The Preimage Assumption: For each e ∈ Edr

q,h the number of pairs (ri,mi) ∈
(B(dr),B) such that e ≡ h ∗ ri +mi (mod q) is polynomially bounded.

4 Modeling an Inverting Algorithm with Inversion
Oracles

We will use the word “challenge” for e (instead of“ciphertext”) in order to
avoid any confusion with Chosen-Ciphertext Attacks. An ideal inversion algo-
rithm would invert any valid challenge e in polynomial time given only the public
information. In the rest of this section we introduce our main inversion oracle
and its decision version.

Definition 4.1 (orc1). On input e ∈ ZZNq orc1 outputs the pair(s) (r,m) ∈
(B(dr),B) such that e ≡ h ∗ r+m (mod q) if e ∈ Edr

q,h. If e /∈ Edr

q,h, orc1 gives an
undefined reply denoted by “?”.

We also consider the decision version of orc1.

Definition 4.2 (orc1DEC). On input e ∈ ZZNq , orc1DEC outputs “YES” if e ∈
Edr

q,h and “?” otherwise.

Remark 4.1. Both orc1 and orc1DEC , as defined above, can be used to fully
distinguish valid and invalid challenges. More interestingly, orc1 (and orc1DEC

with a further search similar to the one described in the proof of theorem 5.3),
might recover the correct message polynomials even in cases where the standard
decryption might have failed (recall that the NTRUEncrypt standard decryption
process in the initial instantiations has non-zero failure probability). However,
the goal here is to study how easy the key recovery problem becomes in the
presence of inverting algorithms, rather than argue about properties of the al-
gorithms themselves.

5 Universal Breaking from Inversion Oracles

We denote the problem of finding the NTRU secret key pair as UBNTRU
(Universal Breaking).

Definition 5.1. We say that UBNTRU is (p, orc,Q)-solvable if there exists an
algorithm, polynomial in the number Q of queries, which fully recovers f with
probability at least p by querying oracle orc at most Q times.



5.1 Universal Breaking Using orc1

Transforming the Secret Key Equation to a Valid Inversion Instance
From the key generation process we have

h ≡ fq ∗ p ∗ g (mod q)⇒ f ∗ h ≡ p ∗ g (mod q)⇒ h ∗ (1 + p ∗ F ) ≡ p ∗ g (mod q)
⇒ pq ∗ h+ pq ∗ h ∗ p ∗ F ≡ g (mod q)⇒ pq ∗ h+ h ∗ F ≡ g (mod q).

from which we can either get

h ∗ F − g ≡ −pq ∗ h(mod q)⇒ h ∗ F + u− g ≡ u− pq ∗ h(mod q)

where u(X) = XN−1 +XN−2 + ...+ 1 or alternatively

pq ∗ h ≡ −h ∗ F + g (mod q)⇒ pq ∗ h+ h ∗ u ≡ h ∗ u− h ∗ F + g (mod q).

If we now define ḡ = u− g, F̄ = u− F these two give

u− pq ∗ h ≡ h ∗ F + ḡ(mod q)
pq ∗ h+ h ∗ u ≡ h ∗ F̄ + g (mod q) (1)

where h∗u = (
∑
hi,
∑
hi, ...,

∑
hi)T . Summarizing, let d = min{|dF −dr|, |N−

dF − dr|}.
Then the problem of key recovery takes the following form

t ≡ h ∗ v + w (mod q) (Secret Key Equation)

where

– (I) d = |dF − dr|. Then t ≡ u− pq ∗ h (mod q), v = F and w = u− g.
– (II) d = |N − dF − dr|. Then t ≡ pq ∗h+h ∗u (modq), v = u−F and w = g.

with u(X) = XN−1 + XN−2 + ... + 1 (or ~u = (1, 1, ..., 1)T ). It is important to
note that in both cases w, v are binary. By definition, orc1 guarantees to output
the correct pair(s) only when e ∈ Edr

q,h, that is when the blinding polynomial r
used for encryption has exactly dr 1’s. Thus, in any case, in order to construct
a polynomial that is“useful” for orc1, we need to transform (using an efficient
and invertible transformation) the known polynomial t into a polynomial that
belongs to the challenge space recognized by orc1. The steps of this transfor-
mation depend, as we show below, on the difference d = |dv − dr| between the
hamming weights of the polynomials v and r. We highlight below the aforemen-
tioned transformation.
(I) Let us consider the first case where d = |dF − dr|.
We get the following two subcases:

(a) dF ≥ dr : Then dF − dr = d. We then have

t ≡ h ∗ v + w (mod q), where t ≡ u− pq ∗ h (mod q), v = F and w = u− g.



•Suppose that d = 0 (Binary polynomials F and r have exactly the same
hamming weight). Then we query orc1 on t ∈ Edr

q,h and by the definition of
the oracle, we expect to get F, ḡ (and thus f, g).
•Suppose that d = 1 and let i be an index such that Fi = 1. Then h ∗F + ḡ,
can be rewritten in the following form

h ∗ F + ḡ = h ∗ (F +Xi −Xi) + ḡ,

Thus

t ≡ h∗ (F −Xi) +h∗Xi+ ḡ (modq)⇒ t−h∗Xi ≡ h∗ (F −Xi) + ḡ (modq).

But F −Xi ∈ B(dr). Querying orc1 on t − h ∗Xi, we can recover F −Xi

and consequently F (if we know i).
•Generalizing to arbitrary d = dF − dr. Suppose that we know indices
i1, i2, ..., id such that Fi1 = Fi2 = ... = Fid = 1. Then

t− h ∗ (Xi1 +Xi2 + ...+Xid) ≡ h ∗ (F −Xi1 −Xi2 − ...−Xid) + ḡ (mod q).

where again t − h ∗ (Xi1 + Xi2 + ... + Xid) ∈ Edr

q,h. If we query orc1 on
t− h ∗ (Xi1 +Xi2 + ...+Xid) we can recover F −Xi1 −Xi2 − ...−Xid and
consequently F.
It only remains to determine the cost of finding d indices i1, i2, ..., id ∈
{0, 1, ..., N − 1} such that Fi1 = Fi2 = ... = Fid = 1.

(b) dF < dr : Then d = dr − dF .
•Suppose that for the indices i1, i2, ..., id we know that Fi1 = Fi2 = ... =
Fid = 0. Then

t+ h ∗ (Xi1 +Xi2 + ...+Xid) ≡ h ∗ (F +Xi1 +Xi2 + ...+Xid) + ḡ (mod q).

If we query orc1 on t+ h ∗ (Xi1 +Xi2 + ...+Xid) we can recover F +Xi1 +
Xi2 + ...+Xid and consequently F.

(II) The case where d = |N − dF − dr| is similar to case (I). Next we study the
cost of finding the correct indices i1, i2, ..., id that allow the reconstruction of F.

Computing the cost of finding the correct indices We consider case (Ia).
The analysis of the cases (Ib),(IIa) and (IIb) is completely similar.

The input is a polynomial c with N coefficients, M of which equal 1 (of
course M ≤ N). We need to guess d indices (d ≤ M) i1, ..., id such that ci1 =
... = cid = 1 with the least possible number of tries. The only feedback we get is
a “YES” whenever ci1 = ... = cid = 1 holds (and then we are done) and “NO” in
all other cases. Let µ(N,M, d) denote the minimum number of guesses required
in the worst case, if we follow an optimal strategy and µ̄(N,M, d) the expected
number of guesses.

Theorem 5.1. (i) µ(N,M, d) ≤
(
N−M+d

d

)
.

(ii) µ̄(N,M, d) ≤ (N
d )

(M
d ) .



Proof. (i) We restrict our guesses to the first N −M +d positions of the polyno-
mial. Suppose that the firstN−M+d positions contain at most d−1 1’s. Then the
total number of 1’s in the whole vector would be at most d−1+(M−d) = M−1
which yields a contradiction. Thus, in the worst case, we have to try at most(
N−M+d

d

)
possible (non ordered) d-tuples.

(ii) At each step we pick a set of d indices at random from all the sets of car-
dinality d that have not been picked in previous guesses. Obviously this yields
a smaller expected number of steps than if we just picked from all possible sets
(examined or not). The number of guesses in the latter scenario follows the ge-

ometrical distribution with p = (M
d )

(N
d ) . Thus the expected number of the former

strategy is at most (N
d )

(M
d ) . ut

We note that the above bounds are rather gross estimates of the values µ and µ̄.
The problem of minimizing the number of guesses is mainly a learning problem
of independent interest.

Corollary 5.1. UBNTRU is (1, orc1, µ(N, dF , dF−dr))-solvable under the Preim-
age Assumption.

Proof. Getting back to case (Ia) of our problem, we are searching for d = dF −dr
1s in a vector with M = dF 1s in order to transform t ≡ u − pq ∗ h (mod q)
which belongs to EdF

q,h to a t′ ∈ Edr

q,h and then query orc1 on t′. After at most
µ(N, dF , dF−dr) guesses the decryption oracle outputs a pair (r,m) ∈ (B(dr),B).
Because of the Preimage Assumption, the pairs returned upon querying the
oracle on a valid challenge e are polynomially bounded. This means that the
dominant factor is the number of queries addressed to orc1 till the correct set of
indices is guessed. Then, hopefully, the r returned equals F−Xi1−Xi2−...−Xid

and so F can be reconstructed correctly. There might be an exception to that.
There might be a d-tuple of indices (i′1, ..., i

′
d) such that t − h ∗ (Xi′1 + ... +

Xi′d) ∈ Edr

q,h but Fi′j = 0 for some j ∈ 1, ..., d. Fortunately, we can detect these
exceptions by reconstructing F ′. Then either F ′ /∈ B(dF ) or g′ /∈ B, where
g′ ≡ pq ∗ (1 + p ∗ F ′) ∗ h (mod q). The preceding analysis, however, guarantees
that with at most µ(N, dF , dF − dr) queries to orc1, we will have ended up with
the correct r from which F can be reconstructed in a straightforward way. Thus,
the success probability after µ(B, dF , dF − dr) queries is 1. ut

The same result applies to cases (Ib), (IIa) and (IIb) where d is defined properly.
Hence, an upper bound for the number of the oracle queries is

(N − dr)!
d!(N − dr − d)!

=
(N − dr)!
d!(N − dF )!

But (N−dr)!
d!(N−dr−d)! ≤

(N−dr)d

d! . This means that if d is a (relatively small) constant,
we can solve UBNTRU in a polynomial number of queries to orc1.

On the contrary, the cost of the reduction grows exponentially on d. That
means that, in instantiations where d = ω(log1+εN) for some positive ε, the
reduction is no longer polynomial.



Probabilistic Analysis The following theorem bounds the number of queries to
orc1 when the success probability of solving UBNTRU is lower-bounded by ε.

Theorem 5.2. UBNTRU is

(
ε, orc1,

(
N

dF−dr

)
·

(
1− (1− ε)

1

( dF
dF−dr

)
))

-solvable.

Proof. Consider again the game of guessing d coefficients. We have in total T =(
N

dF−dr

)
possible (non-ordered) d-tuples (d = dF −dr), S =

(
dF

dF−dr

)
of which are

“winning”. The probability that after Q guesses we have no winning guess is

Pr(fail, Q) =
(

1− S

T

)
·
(

1− S

T − 1

)
· · ·
(

1− S

T −Q+ 1

)
=
Q−1∏
i=0

(
1− S

T − i

)
≤
Q−1∏
i=0

e−
S

T−i ,

where we have used that for x ≥ 0, 1− x ≤ e−x .Thus

Pr(fail, Q) ≤ e−S·
PQ−1

i=0
1

T−i = e−S·(HT−HT−Q),

where Hk =
∑k
i=1

1
k is the k-th Harmonic number. Let ε be the success probabil-

ity, that is the probability that we guess a correct d-tuple in the first Q queries
to orc1. Then using the approximation Hk = ln k for the harmonic number , we
get

1− ε = Pr(fail, Q) ≤ e−S·(HT−HT−Q) ≈ e−S·(lnT−ln(T−Q)) = T−S(T −Q)S .

Thus

1− ε ≤
(

1− Q

T

)S
⇒ Q ≤ T · (1− (1− ε) 1

S ),

which completes the proof. ut

5.2 Replacing orc1 with its Decision Version

Let us now consider the decision version of orc1, orc1DEC . The main result
is summarized in Theorem 5.3. First we introduce Assumption 1 that simplifies
the proof of the main result and makes the combinatorial arguments more clear.
We then introduce a weaker assumption (Assumption 2) and sketch how one
could recover the secret key under the latter.
Assumption 1: Let T denote the set of all polynomials with coefficients in
{−1, 0, 1}. In addition let (r1,m1), (r2,m2) ∈ (T ,B) with r1(1) = r2(1) and
Eq,h(r,m) = h ∗ r +m (mod q). Then

Eq,h(r1,m1) = Eq,h(r2,m2)⇔ (r1,m1) = (r2,m2).



Theorem 5.3. UBNTRU is (1, orc1DEC ,
(
N−dr

dF−dr

)
+ N + dr − dF − 1)-solvable

under Assumption 1.

Proof. We consider again the game of guessing d 1-coefficients where now we
choose the indices (i1, i2, ..., id) according to the lexicographical ordering. We
first exclude the M − d rightmost coefficients (coefficients that correspond to
positions N −M + d, ..., N − 1) from our search. We begin with (0, 1, ..., d− 1)
and feed orc1DEC with t− h ∗ (1 +X + ...+Xd−1). At each step (and as long
as we get “NO” answers by orc1DEC) we move the rightmost index 1 position
to the right until it reaches the boundary position (position N −M + d− 1 ) or
another index. When that happens, we move the rightmost index that can be
moved 1 position to the right and initialize all its right indices right next to it
(on the right). In order to make the algorithm clear, we give an example.
Let N = 7,M = 5, d = 3. The boundary value is N −M + d− 1 = 4. Then the
sequence of indices we examine is the following.
(0,1,2), (0,1,3), (0,1,4), (0,2,3), (0,2,4),(0,3,4), (1,2,3), (1,2,4), (1,3,4), (2,3,4).

Notice that the number of combinations we examine is at most
(
N−M+d

d

)
,

that is the algorithm checks all the possible (non ordered) d-combinations of
the first N −M + d coefficients. According to theorem 5.1 at least one of those
d-tuples will result to a “YES” answer from orc1DEC . Suppose that orc1DEC

responds “YES” after Q queries (of course Q ≤
(
N−M+d

d

)
) and let (i∗1, ..., i

∗
d) be

the configuration of indices for which the answer is “YES”. Then we know that
t− h ∗ (Xi∗1 + ...+Xi∗d) ∈ Edr

q,h. But

t− h ∗ (Xi∗1 + ...+Xi∗d) ≡ h ∗ (F −Xi∗1 − ...−Xi∗d) + ḡ (mod q).

We claim that Fi∗1 = ... = Fi∗d = 1. Indeed, suppose that Fi∗j = 0 for some j.
Then F −Xi∗1 − ...−Xi∗d is no longer binary (it has at least one -1 coefficient)
but still E(F −Xi∗1 − ...−Xi∗d , ḡ) ≡ E(r,m) for a pair (r,m) ∈ (B(dr),B) (recall
that t − h ∗ (Xi∗1 + ... + Xi∗d) ∈ Edr

q,h). This yields a contradiction according to
our assumption. Thus with at most

(
N−M+d

d

)
we find d indices that correspond

to 1 coefficients in F.
It only remains to recover the rest of the coefficients of F. To do this we

make a simple observation. For each configuration of indices, there exists one
configuration previously examined that differs in exactly one index4. Indeed, if
we move the leftmost index that has been moved one position to the left we get
a configuration of indices that has already been examined. Since the previous
configuration has yielded a “NO” answer the different index corresponds to a 0
coefficient in F. So, after at most

(
N−M+d

d

)
queries we know d coefficients of F

that are equal to 1 and one 0 coefficient. Let Fk = 0 the known 0 coefficient. We

4 There is an exception to that. When (i∗1, ..., i
∗
d) = (0, 1, ..., d−1), there is no previous

configuration at all. If this is the case, we can determine the rest coefficients by simply
querying orc1DEC on t−h∗(Xi∗1 + ...+Xi∗d−1 +Xi) for each unknown coefficient Fi.

Then because of the assumption, Fi = 1 if and only if t−h∗(Xi∗1 +...+Xi∗d−1 +Xi) ∈
Edr

q,h.



also know that

t− h ∗ (Xi∗1 + ...+Xi∗d) ≡ h ∗ (F −Xi∗1 − ...−Xi∗d) + ḡ (mod q).

Thus for all other unknown coefficients

Fi = 1 if and only if F −Xi∗1 − ...−Xi∗d +Xk −Xi ∈ B(dr)

or, because of the assumption, if and only if

t− h ∗ (Xi∗1 + ...+Xi∗d −Xk +Xi) ∈ Edr

q,h.

So we only have to query orc1DEC N−d−1 more times to fully recover F. Now,
settingM = dF , d = dF−dr, we get that we need at most

(
N−dr

dF−dr

)
+N+dr−dF−1

queries in total to recover F, which completes the proof. ut
Interestingly, a similar result holds if we relax Assumption 1 to Assumption 2.
Assumption 2: Let T as in Assumption 1. The number of pairs (ri,mi) ∈
(T ,B) with constant value ri(1) that encrypt to the same e ∈ ZZNq under Eq,h is
polynomially bounded.

Theorem 5.4. UBNTRU is (1, orc1DEC ,O(N)·
(
N−dr

dF−dr

)
)-solvable under Assump-

tion 2.

Proof (Sketch). In the presence of (polynomially many) collisions, we just need
to do an extra checking every time orc1DEC responds “YES” in order to see if
the d-tuple of indices selected is the one that leads to the correct reconstruction
of F (see details of the proof for theorem 5.3). For each checking a computational
overhead of O(N) queries is added (the checking works in a way similar to the
checking in the proof of theorem 5.3). In that case the total number of queries
to orc1DEC is multiplied by a factor of at most O(N). ut
Remark 5.1. The above analysis implies that if dF − dr is small with respect
to N , we can universally break NTRUEncrypt if we have a polynomial time
distinguisher between valid and invalid challenges.

Decryption Oracles and Real NTRU Parameters The applicability of our
reductions is enhanced by the set of parameters that have been proposed from
time to time. Indeed both in [13] and in [1] it is suggested that during the key
generation process, dF is set equal to dr. In addition, in the web challenges pub-
lished by NTRU Cryptosystems (www.ntru.com/cryptolab/challenges.htm),the
parameter sets proposed are as shown in the table below

Security N q dF dg dr

Medium 251 128 72 71 72
High 347 128 64 173 64

Highest 503 256 420 251 170

For the Medium and High level of security dr = dF , which, suggests that for
theses values of parameters the problems of inverting a challenge e and finding
the secret key pair, are structurally the same. For the highest level of security,
however, d = 420 + 170− 503 = 87 which does not allow for efficient reductions.



6 Conclusions

We have shown how inversion black-box oracles that output message poly-
nomials corresponding to valid challenges e or that serve as decision oracles lead
to a secret key recovery in the current NTRU system where f = 1 + p ∗ F. The
cost of recovering the secret key depends on the difference between the Hamming
weights of the polynomials F and r in an exponential fashion. The reductions
presented do not work in the presence of a padding scheme and thus seem un-
likely to lead to any practical attacks. Still, this fundamental connection teaches
us about the very structure of the cryptosystem in general. The implication is
quite straightforward and should be carefully interpreted: Finding an algorithm
that inverts NTRU instances in recent NTRU instantiations (and for certain
parameter values), opens the door to secret key recovery within a small number
of queries to that algorithm. It is important to note that there is nothing partic-
ular that makes the secret key recovery harder than inverting random instances
(see equation Secret Key Equation). Indeed, the target challenge t is no less
“random” than any other inversion instance, since F, g are random polynomials.

As a related future direction, we believe that coming up with more efficient
reductions which further exploit the structure of the NTRU function is an inter-
esting field for investigation. Finally, another challenging direction would be to
extend the range of behavior of the black-box oracles to non-ideal ones (that fail
with some probability to return the correct preimage even when being queried
on valid challenges).
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A Proof of Theorem 3.1

Proof. For each pair (ri,mi) ∈ preimg(e), we define ai = p ∗ g ∗ ri + f ∗ mi

where, as usual, f, g are the secret and auxiliary key respectively. Equation
e ≡ h ∗ ri + mi (mod q) gives f ∗ e ≡ ai (mod q). We need the following two
lemmas.

Lemma A.1. If (ri,mi), (rj ,mj) are two distinct pairs that belong to preimg(e),
then (ri 6= rj) ∧ (mi 6= mj).

Proof. Suppose on the contrary, that there exist (ri,mi), (rj ,mj) with (ri,mi) 6=
(rj ,mj) such that (ri = rj) ∨ (mi = mj). Then we have the following two cases

(a) ri = rj : Then

h ∗ ri +mi ≡ h ∗ rj +mj (mod q)
ri=rj⇒ mi ≡ mj (mod q).

But both mi,mj ∈ Lm and thus have small coefficients (with respect to q).
Therefore mi = mj holds over the integers which yields a contradiction.

(b) m1 = m2 : Then we have

h ∗ r1 ≡ h ∗ r2 (mod q)⇒ h ∗ (r1 − r2) ≡ 0 (mod q)

But h has a pseudo-inverse, that is there exists a polynomial H ∈ P such that
H ∗h∗ s ≡ s (modq) for any polynomial s with s(1) ≡ 0 (modq). Now notice
that (r1−r2)(1) = r1(1)−r2(1) = dr−dr = 0 (in all instantiations of NTRU
the value r(1) is a public constant). This gives that H ∗ h ∗ (r1 − r2) ≡ r1 −
r2 (modq), which combined with the above equation gives r1−r2 ≡ 0 (modq).
This implies that r1 = r2 since both r1 and r2 have very small coefficients.

ut

Lemma A.2. ai 6= aj over ZZ ∀ i 6= j. That is ais are pairwise distinct.

Proof. Suppose that there exist distinct indices i, j such that ai = aj . First
observe that (ri 6= rj) ∧ (mi 6= mj), otherwise we would have

p ∗ g ∗ ri + f ∗mi = p ∗ g ∗ rj + f ∗mj
×fq⇒ h ∗ ri +mi ≡ h ∗ rj + f ∗mj (mod q)

which clearly contradicts lemma A.1. If we multiply both sides with fp (recall
that fp ∗ f = 1 + p ∗ k for a polynomial k) we get

p ∗ fp ∗ g ∗ ri + (1 + p ∗k) ∗mi = p ∗ fp ∗ g ∗ rj + (1 + p ∗k) ∗mj over the integers

which gives mi ≡ mj (mod p). But p and the modulo p reduction process are
selected in such a way that m (mod p) for a polynomial m ∈ Lm uniquely de-
termines m. Otherwise the decryption would be ambiguous. This means that
mi = mj over the integers which gives a contradiction. ut



Back to the proof of 3.1, we have that for each pair of distinct indices i, j ai 6= aj
but ai ≡ aj (mod q) for all pairs that collide to the same e, since ai ≡ aj ≡
f ∗ e (mod q). This means that there exists at most one index i such that all the
coefficients of ai lie in the interval dictated by the centering algorithm (let’s say
[A,A+q−1]). Indeed, if again ai, aj , i 6= j had all their coefficients in [A,A+q−1]
(of range q) the equation ai ≡ aj (mod q) would imply ai = aj over the integers
(contradiction).

Thus, the centering algorithm (and the inversion part of the decryption al-
gorithm in general) works properly for at most one pair (ri,mi) ∈ preimg(e).
All the decryption algorithm sees is the challenge e and has no information on
the preimage pair (r,m). Assuming (naturally) that e has emerged from the
encryption of each (ri,mi) ∈ preimg(e) with probability 1

|preimg(e)| (uniformly),
with probability at most 1

|preimg(e)| the inversion algorithm recovers the correct
pair. Thus we conclude that

Pr[Decryption succeeds|input is e] ≤ 1
|preimg(e)|

.

ut
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