
Proxy Signatures Secure Against Proxy Key
Exposure

Jacob C. N. Schuldt1, Kanta Matsuura1, and Kenneth G. Paterson2 ?

1 Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

{schuldt, kanta}@iis.u-tokyo.ac.jp
2 Information Security Group,

Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, UK
kenny.paterson@rhul.ac.uk

Abstract. We provide an enhanced security model for proxy signatures
that captures a more realistic set of attacks than previous models of
Boldyreva et al. and of Malkin et al.. Our model is motivated by concrete
attacks on existing schemes in scenarios in which proxy signatures are
likely to be used. We provide a generic construction for proxy signatures
secure in our enhanced model using sequential aggregate signatures; our
construction provides a benchmark by which future specific construc-
tions may be judged. Finally, we consider the extension of our model
and constructions to the identity-based setting.

Keywords: proxy signatures, provable security.

1 Introduction

A proxy signature scheme allows an entity, the delegator, to delegate his signing
capabilities to another entity, the proxy, which can then construct signatures on
behalf of the delegator. A signature constructed by the proxy, called a proxy
signature, will not only convince a verifier that the signature was indeed con-
structed by the proxy, but also that the proxy was delegated the signing rights of
the delegator. In a multi level scheme, the proxy has the option of re-delegating
the signing rights obtained from the delegator, to another proxy.

The concept of proxy signatures was first proposed by Mambo, Usuda and
Okamoto in [24]. Among the ideas presented in [24], the concept of delegation
by warrant, in which a signed warrant is used to describe the delegation, has
received the most attention. Kim, Park and Won [16] expanded on this idea
and suggested that a proxy key could be generated from the warrant. One of
the main advantages of the use of warrants is that it is possible to include any
type of security policy in the warrant to describe the restrictions under which the

? This author’s research was supported by the European Commission under contract
IST-2002- 507932 (ECRYPT).

delegation is valid. Most proxy signature schemes uses a variant of this approach
and it is often expected that new proxy signature schemes will implement the
functionality of warrants.

Since their introduction, many proxy signature schemes have been proposed
(e.g. see [24, 27, 18, 19, 2, 35, 26]) and many extensions (e.g. see [32, 36, 29, 17, 30])
have been considered. However, the initial security notion introduced by Mambo,
Usuda and Okamoto (slightly expanded by Lee, Kim and Kim [18]), was based
on a list of security aims, and no security model in which schemes could be
analysed was given. The lack of formal security definitions had a huge impact on
the security of the initially proposed schemes. Many constructions were shown to
be insecure, then fixed, only to be shown insecure again (e.g. see [24, 18, 19, 31]).
This not only illustrates the need for well defined security models and a rigorous
security analysis, but also indicates that the security of proxy signatures is more
subtle than was initially assumed.

Security models for proxy signatures. Boldyreva, Palacio and Warinschi [2] were
the first to introduce a proper security model for proxy signatures and to propose
a provably secure proxy signature scheme. These results provided a significant
improvement over previous treatments of proxy signatures in terms of security
analysis and also highlighted security concerns with the trivial scheme in which
the delegator signs the public key of the proxy and proxy signatures are con-
structed with the private key of the proxy. Malkin, Obana and Yung [22] later
proposed an extended security model, allowing multi-level proxy signatures, and
showed that proxy signatures are equivalent to key-insulated signatures [8]. How-
ever, if we consider the typical environments in which proxy signatures will be
used, then these models do not capture all desired properties of proxy signatures.
We expand on this next.

The use of warrants demands special attention in both the definition and se-
curity model of proxy signatures. If warrants are not explicitly modeled, it might
be possible for an adversary to alter the warrant under which a proxy has made
a signature on the delegator’s behalf, even though the scheme has been proved
secure. This is clearly an undesirable property, since users of proxy signatures
should be able to rely on warrants not being mutable once a proxy signature has
been created. Even though the schemes presented in [2] use warrants, these are
not a part of the presented security model. However, the model presented in [22]
rectifies this and explicitly models the warrants.

The security models of [2, 22] are both in the registered key model, meaning
that the adversary is required to submit both the public and the private key of all
users used in the security game, except the challenge user. Although this might
be convenient when constructing proofs of security, it does not capture attacks
where the adversary derives and registers a public key for which he cannot
compute the corresponding private key. These types of attacks are also known
from multi- and aggregate signatures (e.g. see [1, 5]), and are relevant in practice
since users may not be required to prove knowledge of their private key when
registering a public key (for example, due to efficiency concerns). Furthermore,
the attacks seem to pose a real threat to some proxy signature schemes. As

an example of this, consider the construction proposed by Zhang, Safavi-Naini
and Lin [35]. This construction efficiently combines the Boneh-Lynn-Shacham
signature scheme [6] with the identity-based signature scheme of Hess [15] to
create a proxy signature scheme. But the construction is insecure in a security
model which does not use the registered key model. In this case, an adversary
will be able to produce proxy signatures on behalf of a user, without that user
having delegated his signing rights (details of this are given in Appendix A).
This illustrates the need for a security model which can guarantee security of
a proxy signature scheme when used in the more practical setting where the
registered key model is not required.

Proxy signatures are often proposed for use in applications where signing
is done in a potentially hostile environment. In this setting, it is assumed that
secure storage is available for a long term key pair (e.g. key storage in a TPM
within a laptop), but that it is not possible to perform all signature computa-
tions within the fully trusted device due to the number of signature requests or
the amount of data that needs to be signed. Hence, these computations are per-
formed on a less trusted device (e.g. by the operating system on a laptop which
might become infected with malware). To limit the potential damage resulting
from compromise of the less trusted device, a limited set of signing rights for
the long term key pair can be delegated to this device, which can then act as a
signing proxy. Thereby, only the limited proxy key is exposed in a compromise.
However, this raises the concern that compromised proxy keys might somehow
leak information about the long term key. This is relevant not only in the case
where delegation is performed to protect a long term key, but also in the gen-
eral case of delegation of signing rights from one entity to another. The security
model of [2] does not model this possibility, since an adversary is not allowed
to gain access to any proxy keys. The model of [22] has only limited support
for proxy key exposure, since an adversary is only allowed access to proxy keys
which a user has obtained by self-delegation, i.e. by delegating his signing rights
to himself. However, this is not sufficient to guarantee security in an environ-
ment where any proxy key can potentially be exposed, and the assumption that
only self-delegated proxy keys are at risk of being exposed seems unnatural and
restrictive. Indeed, systems that rely on proxy key material (of any type) not
revealing information about long term keys are already in use today (e.g. in
applications such as the Grid Security Infrastructure [9]). So it is important to
extend the adversarial capabilities to allow a richer set of proxy key exposures
in order to correctly model the threats against these systems. However, if the
adversary gains access to arbitrary proxy keys, many of the existing proxy signa-
ture schemes become insecure. In particular, the scheme proposed by Malkin et
al. [22, 23] will be insecure, since private keys double as proxy keys in an ordinary
delegation (i.e. a non-self-delegation). Schemes where this is not the case might
also be vulnerable. For example, the triple Schnorr scheme whose security is an-
alyzed by Boldyreva et al. [2] has the weakness that an adversary can compute
the (long term) private key of a user upon exposure of a proxy key for a dele-
gation procedure for which the adversary has a transcript (details of this attack

are given in Appendix B). Lastly, we emphasize that to model the compromise
of a proxy correctly, the adversary should be given access to all information held
by the proxy. For example, a closer look at [22, 23] reveals that the adversary
there is given access to an oracle that returns a single self-delegated proxy key,
but that the proxy information in the concrete scheme can potentially contain
many keys (the scheme generates all keys used as self-delegated proxy keys in
the initial key generation phase, and therefore should include any keys needed
for further delegation in the proxy information). We argue that the approach
taken in [22] is not sufficient to model the threat posed by a proxy compromise.

Our contributions. First and foremost, we define a refined security model for
proxy signatures along with the security notion Proxy Signature Unforgeability
Under an Adaptive Chosen Message Attack with Proxy Key Exposure (ps-uf-pke).
In addition to more accurately capturing the threats against proxy signatures,
we claim that our model and security notion are more direct and clear when
compared to the model given in [22]. Hence they more easily allow proposed
schemes to be proven secure. Our model is strictly stronger than the models of
[2] and [22] in that our model allows an adversary to gain access to any proxy
key and does not require the registered key model. Hence, a scheme secure in
our model will also be secure in the models of [2] and [22], whereas the converse
does not necessarily hold (in fact, as mentioned above, the schemes proposed in
[2] and [22] will be insecure in our model).

We then present a simple generic construction for proxy signatures using
sequential aggregate signatures. This is closely related to the delegation-by-
certificate and aggregate-based constructions of [2], but our security proof is
in our enhanced security model. We discuss how the construction can be instan-
tiated (in the random oracle model) to give efficient proxy signature schemes
with security relying on either the bilinear Diffie-Hellman assumption or the as-
sumption that RSA is a claw-free permutation. We also discuss how a scheme
secure in the standard model can be obtained.

Lastly, we sketch how to extend our security model to the identity-based
setting and give a fairly simple generic construction that is secure in the extended
model. We also discuss the possibilities for instantiating this construction.

Since our constructions are relatively simple and easy to prove secure, they
provide a performance benchmark, both in terms of security and efficiency, for
any new proxy signature schemes.

2 Preliminaries

Notation. Let PK = (pk1, . . . , pkn) be a list of public keys (or any other strings).
We use the notation PKi...j with i ≤ j to indicate the sublist of keys from the
i-th key to the j-th key in PK, e.g. PK2...4 = (pk2, pk3, pk4). By PK.(pkn+1) we
mean that the key pkn+1 is appended to the end of PK. Lastly we will use the
notation m1||m2 to mean the concatenation of the strings m1 and m2. When
elements that are not strings appear in a concatenation, we will assume that
they will be encoded as a string before the actual concatenation takes place.

Signature schemes. We briefly recall the definitions of an ordinary signature
scheme and a sequential aggregate signature scheme.

A signature scheme, S, is given by the following algorithms:

– Setup which on input a security parameter 1k generates a set of global system
parameters params. We assume that params are made publicly available and
will not write params as an explicit argument to the functions defined below.

– KeyGen which generates a public/private key pair (pk, sk).
– Sign which on input (sk,m), where m is a message to be signed, generates

a signature σ on m.
– Verify which on input (pk,m, σ), outputs either accept or reject.

A signature scheme is said to be sound if for all (pk, sk) ← KeyGen and all
messages m, we have that

Pr[Verify(pk,m, Sign(sk,m)) = accept] = 1

where the probability is taken over all random coin tosses made in the KeyGen,
Sign and Verify algorithms. A signature σ is said to be valid on m under public
key pk if Verify(pk,m, σ) = accept.

The standard notion of security for signature schemes is Existential Unforge-
ability under a Chosen Message Attack (euf-cma) [11].

A sequential aggregate signature scheme, AS, is given by the following algo-
rithms:

– Setup and KeyGen which are similar to the corresponding algorithms of a
ordinary signature scheme.

– AggSign which takes as input (sk,m, σagg), where sk is a private key, m is a
message to be signed and σagg is a sequential aggregate signature on messages
(m1, . . . ,mn) under public keys (pk1, . . . , pkn), constructed by previous calls
to AggSign. The output of AggSign is a sequential aggregate signature σ′agg

on messages (m1, . . . ,mn,m) under public keys (pk1, . . . , pkn, pk) where pk
is the public key corresponding to sk. Note that we can construct an ordinary
signature scheme by using an “empty” sequential aggregate signature as part
of the input to AggSign.

– AggVerify takes as input ((pk1, . . . , pkn), (m1, . . . ,mn), σagg) and outputs
accept or reject.

A sequential aggregate signature scheme is said to be sound if for all n ≥ 1,
all (pki, ski) ← KeyGen i ∈ {1, . . . , n}, all messages (m1, . . . ,mn) and all se-
quential aggregated signatures constructed as σi ← AggSign(ski,mi, σi−1), i ∈
{1, . . . , n} with σ0 = ∅, we have that

Pr[AggVerify((pk1, . . . , pkn), (m1, . . . ,mn), σn) = accept] = 1

where the probability is taken over all random coin tosses used in the KeyGen,
AggSign and AggVerify algorithms. Validity of sequential aggregate signatures
is defined as one would expect.

There exist two different security notions for sequential aggregate signatures,
introduced by Lysyanskaya et al. [21] and Lu et al. [20], respectively. The differ-
ence between the two notions is that the latter requires the registered key model
whereas the former does not. In this paper we will insist that the registered key
model is not required and use the notion defined in [21], referred to as Existential
Unforgeability in the Sequential Aggregate Chosen-Key Model.

3 Proxy Signatures

Before formally defining a proxy signature scheme, we will briefly discuss a few
basic assumptions and the format of a proxy signature.

We will assume that users can be uniquely identified by their public keys. So
a delegation chain consisting of an original delegator and a number of proxies
will be uniquely identified by an ordered list of their public keys. This require-
ment can be met in practice by requiring the certification authority not to issue
certificates for two different users on the same public key. This simple expedient
is much simpler to realise than relying on proofs of knowledge (that are implicit
in the registered key model).

A proxy signature scheme is required to implement a proxy identification
algorithm, which, when given a valid proxy signature, outputs the identities
(i.e. public keys) of the proxies in the delegation chain. Since we require this
function to be publicly available (i.e. no secret information is required to run
the algorithm), we have chosen to explicitly include a list PK of the public
keys in the proxy signature itself. This does not represent a restriction, since the
requirement of a public identification algorithm forces the keys to be part of a
proxy signature anyway. For simplicity, we will also require the original delegator
to add his public key to PK, making a proxy signature “self-verifiable”, i.e. only
the signature and a message is required for verification.

It will also be required that a proxy signature contains a list of warrants
W for the delegation chain. It is common not to specify the format of warrants
since a concrete security policy might depend on the particular usage of the
proxy signatures. However, it is also common to assume that some information
about the delegation is a part of the warrant to prevent trivial attacks against the
scheme. We consider the combination of these two assumptions to be bad practice
and suggest that the definition of a proxy scheme should explicitly include all
elements which are required for the scheme to be secure. This will help prevent
implementation flaws from the use of non-standard or perhaps empty warrants.

A multi-level proxy signature scheme is an extension of an ordinary signature
scheme S = {Setup, Keygen, Sign, Verify} with the following additional algo-
rithms:

– (Delegate, ProxyKeyGen) which is a pair of randomized interactive algo-
rithms for delegation of signing rights.
• Delegate is run by the delegator with input (PK,W, pkd, pkp, sk,w),

where PK and W are lists of (public keys of) previous delegators and

previous warrants in the delegation chain, pkd and pkp are the public keys
of the delegator and the proxy, sk is the private key for which signing
rights are delegated, and w is the warrant for the current delegation.
If the delegator is delegating his own signing rights (i.e. the lists PK
and W are empty), we will set sk = skd where skd is the private key of
the delegator itself. However, if the delegator is delegating signing rights
for a proxy key psk he has obtained playing the role of a proxy in a
previous delegation, we will set sk = psk. Delegate will interact with
ProxyKeyGen to perform the delegation, but will have no local output.

• ProxyKeyGen is run by the proxy and takes as input (pkd, pkp, skp) where
pkd is the public key of the delegator and (pkp, skp) is the public/private
key pair of the proxy. Upon completion of the interaction with Delegate,
ProxyKeyGen returns the local output (PK ′,W′, psk), where PK ′ and
W′ are lists of public keys of the delegators and warrants in the delegation
chain, extended with the public key of the proxy and the warrant of the
current delegation, and psk is a private proxy key which can be used to
create proxy signatures on behalf of the delegator.

– ProxySign is run by the proxy and takes as input (PK,W, psk,m) where
PK and W are the delegators and warrants in the delegation chain, psk is
a proxy key and m is a message to be signed. The output of ProxySign is
a proxy signature (PK,W, pσ) where pσ is a signature on the message m
created with the proxy key psk. We say that the proxy signature is generated
by the proxy on behalf of the delegator.

– ProxyVerify is run by the verifier and takes as input (m, (PK,W, pσ))
where m is a message and (PK,W, pσ) is a proxy signature as generated
by the ProxySign algorithm. The output of ProxyVerify is either accept
or reject. Note that ProxyVerify does not take any public keys as input
since these are assumed to be part of PK in the proxy signature itself.

Note that a properly generated proxy signature will have one more element
in PK than in W since no warrant will be added by the signing proxy. From
the explicit inclusion of both PK and W in the proxy signature, it is clear that
the public keys of the delegators and the warrants in the delegation chain can
be extracted from a proxy signature. Hence, there is no need to define functions
which provides this functionality.

The above definition can be seen as a multi-level extension of the definition
given in [2], but with explicit modeling of warrants. Compared to the definition
given in [22], there are only minor differences which do not impact the function-
ality of the scheme.

Notation for delegation. To make the notation more clear, we will write

(PK ′,W′, psk)←
[
Delegate(PK,W, pkd, pkp, sk,w);

ProxyKeyGen(pkd, pkp, skp);

]
for the interaction between the algorithms Delegate and ProxyKeyGen with the
inputs (PK,W, pkd, pkp, sk,w) and (pkd, pkp, skp) respectively, and let psk be
the proxy key output by ProxyKeyGen.

Soundness. We say that a proxy signature scheme is sound if, firstly, the basic
signature scheme S is sound, and secondly, for all n ≥ 1, for all possible dele-
gation chains of users with public/private key pairs and proxy keys generated
as

(pki, ski)← KeyGen for i ∈ {1, . . . , n}, psk1 ← sk1 and

(PKi,Wi, pski)←
[
Delegate(PKi−1,Wi−1, pki−1, pki, pski−1,wi−1);

ProxyKeyGen(pki−1, pki, ski);

]
for i ∈ {2, . . . n},

and all messages m satisfying the warrants Wn = (w1, . . . ,wn−1), we have that

Pr [ProxyVerify(m, ProxySign(PKn,Wn, pskn,m)) = accept] = 1,

where the above probability is taken over all random coins used by the KeyGen,
Delegate, ProxyKeyGen and ProxySign algorithms.

4 Security Model

We define the security notion Existential Unforgeability under an Adaptive Cho-
sen Message Attack with Proxy Key Exposure (ps-uf-pke) for multi-level proxy
signature schemes. The security notion is based on the security game defined be-
low, played between a challenger C and an adversary A. We first introduce some
notation and features of the security model, and then give formal definitions.

In the game, A will control all but a single user, u∗, whose public/private
key pair (pk∗, sk∗) will be generated by the challenger, and only pk∗ will be
made available to A. The public/private key pairs of all the other users will be
generated by A, and it will not be required of A to register generated keys or
prove knowledge of the private keys corresponding to the public keys used in the
game. This means that A is allowed to generate and use public keys for which
he cannot compute the private key.

The goal of the adversary in the game is to produce a forgery. In this case,
a forgery is one of the following: (i) an ordinary signature which verifies under
u∗’s public key, (ii) a proxy signature that appears to be constructed by u∗ on
behalf of one of the users controlled by the adversary, or (iii) a proxy signature
on behalf of u∗ that is computed by one of the users controlled by the adversary
which has not been delegated the signing rights of u∗. We will of course have
some requirements on the forgeries to exclude trivial cases, e.g. it is required
for a type (i) or type (ii) forgery that the signature was not obtained in a
query to the challenger. However, when considering a message/proxy signature
pair (m, (PK,W, pσ)) produced by the adversary as a type (ii) forgery, we will
treat any query on a different m or with a different PK or W list, as being
unrelated. By this we mean that a forgery will be considered to be valid even if
the adversary, for example, has received a proxy signature on the same message
m from the same delegation chain PK, but with a different set of warrants W′.

Lastly, in a type (iii) forgery we will allow the adversary to place u∗ anywhere
in the delegation chain except as the last proxy, which would make the forgery
a type (ii) forgery (i.e. we will not restrict u∗ to be the original delegator).

For convenience, during the game the challenger will maintain two sets of lists:
pskList(∗, ∗) and delList(∗, ∗, ∗). Each list pskList(PK,W) holds all proxy keys
generated by u∗ in delegations from the delegation chain with the public keys in
the list PK and with the warrants in the list W. This list will be used by the
challenger to respond to the various queries made by the adversary during the
game. Each list delList(PK,W,w) holds the public keys of users to whom u∗

has re-delegated the signing rights of one of the keys in pskList(PK,W) with
the warrant w. This list is only used to define valid type (iii) forgeries. If u∗

delegates the signing rights of his own private key under the warrant w, the
public key of the proxy will be stored in delList({}, {},w) using empty lists, {},
as the previous public key and warrant lists.

The security game is formally defined as follows:

Setup The challenger C runs Setup with input 1k and generates the pub-
lic/private key pair of u∗ by running (pk∗, sk∗) ← KeyGen. C then passes
pk∗ to the adversary A and stores sk∗.

Queries While A is running, it can adaptively make any of the following queries
which are answered by C:
1. Ordinary signature. On input m from A, C runs σ ← Sign(sk∗,m) and

returns σ to A.
2. Delegation to u∗. On input pkd from A, C interacts with A through

the delegation protocol by running ProxyKeyGen(pkd, pk
∗, sk∗). Upon

completion, C will obtain the proxy information (PK ′,W′, psk). If no
pskList(PK ′,W′) list exists, C creates one and adds psk to it. Otherwise,
C just adds psk to the existing pskList(PK ′,W′) list.

3. Delegation from u∗. For clarity, we will define an oracle for each of the
three different types of delegation the adversary can request u∗ to per-
form:
(a) Delegation of sk∗. On input (pkp,w) from A, C interacts with A by

running Delegate({}, {}, pk∗, pkp, sk
∗,w). Upon completion of the

delegation protocol, C adds pkp to the list delList({}, {},w).
(b) Re-delegation of psk. On input (PK,W, j, pkp,w) where j ∈ N, C

looks up the j-th proxy key, pskj , in pskList(PK,W). If no such key
exists, C returns ⊥ to A. Otherwise, C interacts with A by running
Delegate(PK,W, pk∗, pkp, pskj). When the delegation is complete,
C adds pkp to delList(PK,W,w).

(c) Self-delegation. On input (PK,W, j,w), C sets sk = sk∗ if PK =
W = {} and j = 1. Otherwise, C sets sk to be the j-th proxy key
in pskList(PK,W) (if this proxy key does not exist, C returns ⊥ to
A). Then C interacts with itself by running

(PK ′,W′, psk)←
[
Delegate(PK,W, pk∗, pk∗, sk,w);

ProxyKeyGen(pk∗, pk∗, sk∗);

]

When the delegation is complete, C adds psk to pskList(PK ′,W′)
and send the transcript of the delegation to A.

4. Proxy signature. On input (PK,W, j,m), C looks up the j-th proxy key,
pskj , in pskList(PK,W) and returns ⊥ to A if no such key exists. Oth-
erwise, C computes (PK ′,W, pσ) ← ProxySign(PK,W, pskj ,m) and
sends (PK ′,W, pσ) to A.

5. Proxy key exposure. On input (PK,W, j), C returns the j-th proxy key
in pskList(PK,W) if such a key exists. Otherwise, C returns ⊥ to A.

Forgery The adversary outputs a forgery and halts. The forgery can be of one
of the following forms:
(i) Ordinary signature of u∗. The adversary outputs (m,σ). This forgery

is said to be valid if Verify(pk∗,m, σ) = accept and m has not been
submitted in an ordinary signature query.

(ii) Proxy signature of u∗. The adversary outputs a message/signature tuple,
(m, (PK,W, pσ)), where the last key in PK is pk∗. This forgery is said
to be valid if ProxyVerify(m, (PK,W, pσ)) = accept, (PK,W, ∗,m)
has not been submitted in a proxy signature query and (PK,W, ∗) has
not been submitted in a proxy key exposure query.

(iii) Proxy signature on behalf of u∗. The adversary outputs a message/signature
tuple, (m, (PK,W, pσ)), as a forgery, where the last key in PK is differ-
ent from pk∗. Let PK = (pk1, . . . , pkn). The forgery is said to be valid
if ProxyVerify(m, (PK,W, pσ)) = accept and there exists an 1 ≤ i∗ ≤
n−1 such that pki∗ = pk∗, pki∗+1 6∈ delList(PK1...i∗ ,W1...i∗−1,wi∗) and
(PK1...i∗ ,W1...i∗−1, ∗) has not been submitted in a proxy key exposure
query.

If the forgery output by the adversary is valid, return 1 as a result of the
game. Otherwise, return 0.

Note that a type (ii) forgery (m, (PK,W, pσ)) is not considered to be valid in
our model if the adversary has exposed any of the proxy keys generated by u∗ in
a delegation from the users PK with the warrants W , or requested a signature on
m with one of these keys. Multiple keys can exists if the delegation is randomized
and the adversary makes identical delegation requests multiple times. However,
since all signatures created with these proxy keys will verify under the same
conditions, a compromise of just one of them should be considered as a complete
compromise of the delegation from the users PK under warrants W .

Let Gmps-uf-pke
PS,A (k) be the outcome of running the above security game with

proxy signature scheme PS, adversary A and security parameter k. We then
define the advantage of the adversary in the security game as

Advps-uf-pke
PS,A (k) = Pr[Gmps-uf-pke

PS,A (k) = 1]

where the probability is taken over all random coins tosses made by the adversary
and the challenger.

Definition 1 An adversary A is said to be a (ε, t, qd, qs)-forger of a proxy signa-
ture scheme if A has advantage at least ε in the above game, runs in time at most

t and makes at most qd and qs delegation and signing queries to the challenger.
A proxy signature scheme is said to be (ε, t, qd, qs)-secure if no (ε, t, qd, qs)-forger
exists.

5 Proxy Schemes Based on Sequential Aggregation

We will now present a generic proxy signature construction that satisfy the
security definition given in Section 4, using a sequential aggregate signature
scheme that is existentially unforgeable in the sequential aggregate chosen-key
model. To guarantee that no information about a user’s long term secret key is
leaked if proxy keys are exposed, we will let a proxy generate a fresh independent
key pair (pk, sk) in a delegation, create a certificate for pk and keep sk as the
proxy key. The generated public keys will be stored in a separate list FK. To
avoid trivial attacks against the scheme, we will use the idea of Boldyreva et
al. [2], and introduce symbols dlg, sgn and prx, which will be attached to the
content being signed in, respectively, a delegation, an ordinary signature and a
proxy signature.

Construction 1 Let AS = {Setup′, KeyGen′, AggSign, AggVerify} be a sequen-
tial aggregate signature scheme and let the symbols dlg, sgn and prx be defined
as different strings. Then a multi-level proxy signature scheme can be constructed
as follows:

– Setup, KeyGen. Same as the corresponding algorithms from the sequential
aggregate signature scheme.

– Sign(sk,m) Compute σ ← AggSign(sk, sgn||m, ∅), where ∅ indicates an
“empty” sequential aggregate signature, and return σ as a signature.

– Verify(pk,m, σ) Return the output of AggVerify(pk, sgn||m,σ).
– Delegate(PK,W, pkd, pkp, sk,w) Depending on (PK,W), take one of the

following actions:
• If PK and W are empty lists (i.e. sk is an ordinary private key), con-

struct the lists PK ′ = (pkd, pkp), FK = () and W′ = (w). Compute
σdel ← AggSign(sk, dlg||PK ′||FK||W′, ∅) and send the delegation mes-
sage (PK ′, FK,W′, σdel) to the proxy.
• If PK and W are not empty (i.e. sk is a proxy key), construct PK ′ =
PK.(pkp) and W′ = W.(w). Parse sk as (FK, σdel, skprx), compute

σ′del ← AggSign(skprx, dlg||PK ′||FK||W′, σdel)

and send the delegation message (PK ′, FK,W′, σ′del) to the proxy.
– ProxyKeyGen(pkd, pkp, skp) When (PK ′, FK,W′, σdel) is received from the

delegator, generate a fresh proxy key pair (pk′p, sk
′
p)← KeyGen and construct

FK ′ = FK.(pk′p). Compute σ′′del ← AggSign(skp, dlg||PK ′||FK ′||W′, σ′del),
set psk = (FK ′, σ′′del, sk

′
p) and output (PK ′,W′, psk).

– ProxySign(PK,W, psk,m) Parse the proxy key psk as (FK, σdel, skp) and
compute pσ ← AggSign(skp, prx||PK||FK||W||m,σdel). Return the tuple
(PK,W, (FK, pσ)) as a proxy signature.

– ProxyVerify(m, (PK,W, (FK, pσ))) Assume that PK contains n + 1 ele-
ments. Construct

mi = dlg||PK1...i+1||FK1...i||W1...i for i ∈ {1, . . . , n} and
m = (m1, . . . ,mn, prx||PK||FK||W||m).

Return the output of AggVerify(PK,m, pσ).

Theorem 2 Let AS be a (t, qs, ε)-unforgeable sequential aggregate signature
scheme. Then Construction 1 yields a (t′, q′s, q

′
d, ε
′)-unforgeable proxy signature

scheme where ε = ε′/2qd, t = t′ and qs = q′s + q′d.

The proof of this theorem is given in Appendix C.
The above construction can be instantiated with a number of different se-

quential aggregate signature schemes to give proxy signature schemes with var-
ious security properties. For example, if the (fully aggregate) scheme of Boneh
et al. [5] is used, we obtain a proxy signature scheme which is secure in the
random oracle model under the Computational co-Diffie-Hellman assumption, a
natural generalization of the CDH assumption suited to bilinear groups. Notice,
however, that since a proxy signature will potentially include many public keys,
but only one aggregate signature, the most efficient scheme (in terms of proxy
signature size) is achieved by minimizing the size of the public keys and not the
size of the aggregate signature. The scheme of [5] easily allows this modification,
and using this we obtain a very efficient scheme, even if only single-level dele-
gations are considered. Instantiating the scheme with the MNT elliptic curves
[25], we can achieve a public key size of 168 bits and an aggregate signature size
of 1008 bits, giving a proxy signature size of 1512 bits, all for a security level of
approximately 80 bits. Hence, the scheme provides proxy signatures which are
less than half the size of the triple Schnorr signatures as they are presented in [2],
while satisfying a stronger definition of security and providing self-verifiability
and multi-level capabilities. Note, however, that the triple Schnorr scheme allows
faster verification.

To achieve an RSA-based proxy signature scheme, we can use the sequen-
tial aggregate signature technique proposed by Lysyanskaya et al. [21], which
is secure in the random oracle model given that a claw-free permutation family
is used in the construction. Note that the RSA-based instantiation proposed in
[21] has the disadvantage that the aggregate signature will grow with one bit
for each signer. To avoid this expansion, the slightly more computationally ex-
pensive RSA-family of trap-door permutations with common domain proposed
by Hayashi et al. [13] can be used. It should be mentioned that to avoid the
need for key certification, a few extra properties are needed to guarantee that
each public key does define a permutation over the common domain; details are
in [21]. However, with these minor changes, we obtain a scheme at the 80-bit
security level having an aggregate signature size of 1024 bits and, assuming that
all users use the same encryption exponent, a public key size of 1024 bits, giving
a proxy signature size of 4096 bits for a single-level delegation.

Lastly, it is also possible to construct a scheme which is secure in the standard
model. However, the sequential aggregate scheme proposed by Lu et al. [20]
cannot be used for this purpose since this scheme is dependent on the registered
key model for security. In fact, to our knowledge, it is still an open problem to
construct an efficient sequential aggregate signature scheme which is secure in
the standard model and which does not require the registered key model. This
leaves only the “trivial” construction from an ordinary signature scheme (in
which the aggregate signature is simply a concatenation of ordinary signatures).
Using this together with, for example, the signature scheme of Boneh and Boyen
[3], gives a scheme which is secure, albeit somewhat inefficient, in the standard
model under the q-Strong Diffie-Hellman assumption. Instantiating the scheme
with an elliptic curve similar to the one suggested above, it is possible to achieve
a public key size of 336 bits (assuming all users use the same group generator
and that redundant parts of the public key are left out), a signature size of 1176
bits, and a proxy signature size of 4536 bits for a single-level delegation, all at a
security level of 80 bits. We note that if one is willing to downgrade the security
requirements and use the registered key model, the scheme of Lu et al. [20] can
be used, but a direct application will not be efficient due to the large size of the
public keys.

6 Identity-based Constructions

Identity-based cryptography was originally proposed by Shamir [28] more than
two decades ago, but identity-based encryption was first efficiently instantiated
recently by Boneh and Franklin [4]. The construction methods presented in [4]
inspired the extension of many existing cryptographic primitives to the identity-
based setting along with efficient constructions. Among these, specific identity-
based proxy signatures were also constructed (see, for example, [34, 33, 12]).

Both our definition of a proxy signature scheme given in Section 3 and the se-
curity model presented in Section 4, can easily be extended to the identity-based
setting. However, due to space restrictions, we will not give the full definitions
here, but only briefly discuss the changes needed to obtain the identity-based
formulations.

Identity-based proxy signatures. First of all, in an identity-based setting, the
presence of a master entity is assumed. The role of the master entity is to
initially generate a set of public system parameters and a master key, which
the master entity will use to generate private keys corresponding to identities
in the scheme. An identity-based signature scheme is given by the algorithms
IBS = {Setup, Extract, Sign, Verify}, where Setup generates the system pa-
rameters and the master key, Extract generates a private key for an identity
and Sign and Verify implement similar functionality to the corresponding al-
gorithms of an ordinary signature scheme, with the exception that public keys
are replaced by identities. An identity-based proxy signature scheme extends an
identity-based signature scheme with the algorithms {Delegate, ProxyKeyGen,

ProxySign, ProxyVerify}, which implement similar functionality to the corre-
sponding algorithms for an ordinary proxy signature scheme, with the exception
that all public keys are replaced by identities.

Security model. The security notion Identity-Based Proxy Signature Unforge-
ability Under an Adaptive Chosen Message Attack with Proxy Key Exposure
(id-ps-uf-pke) can be defined by introducing the following changes to the se-
curity game in Section 4:

Setup The adversary is no longer given a public key pair, but only the system
parameters.

Queries The adversary is allowed to make similar queries to those in the ordi-
nary security game, using identities instead of public keys. The adversary will
furthermore be allowed to adaptively request the private keys of identities.

Forgery The adversary is allowed to choose an identity ID∗ for which he will
produce a forgery (in the ordinary game the adversary was forced to produce
a forgery for pk∗ chosen by the challenger), but it is required that he has
not requested the private key of ID∗ during the game. Besides this, the
restrictions on the forgery from the ordinary game apply.

With the above changes to the security game, the advantage of the adversary
can be defined exactly as in the ordinary security game and (ε, t, qd, qs)-security
for an identity-based proxy signature scheme can be formulated exactly as in
Definition 1.

Construction Having defined the identity-based security model, it remains to be
seen if Construction 1 will yield a secure identity-based proxy signature scheme,
using an identity-based sequential aggregate signature scheme [14]. Looking at
the definition of ProxyKeyGen reveals one problem though: a proxy is required
to generate a fresh key pair in a delegation. This represents a limitation in the
identity-based setting, since only the master entity can generate a private key
corresponding to a given identity3. However, note that it is not necessary for
the key pair generated in ProxyKeyGen to be identity-based (i.e. consist of an
identity and a private key) for the overall scheme to maintain its identity-based
properties. In fact, a key pair from an ordinary sequential aggregate signature
scheme will suffice. Since signatures from an ordinary and an identity-based
sequential aggregate signature scheme cannot generally be aggregated in the
same signature, σdel and pσ in Construction 1 will have to be split into two
parts – one part containing aggregated identity-based signatures and the other
containing aggregated ordinary signatures. However, with these small changes,
a secure identity-based proxy signature scheme can be obtained.

Theorem 3 Let a (t′, q′s, ε
′)-unforgeable sequential aggregate signature scheme

and a (t′′, q′′s , ε
′′)-unforgeable identity-based sequential aggregate signature scheme

3 We note that a user can generate private keys for new identities if a hierarchical
identity-based signature scheme is used, but due to space limitations, we will not
discuss this alternative approach here.

be given. Then the above modifications to Construction 1 yields a (t, qs, qd, ε)-
unforgeable identity-based proxy signature scheme where ε = qdε

′ + ε′′, t =
min(t′, t′′) and qs + qd = min(q′s, q

′′
s).

The proof of this theorem is very similar to that of the proof of Theorem 2
and will not be given here. The main difference from the proof of Theorem 2 is
that a successful forgery against the identity-based proxy signature scheme will
potentially lead to either a forgery of the identity-based or the ordinary signature
scheme, depending on the type of the proxy signature forgery. However, these
different types of proxy signature forgeries are already considered in the proof of
Theorem 2 although only a forgery for the single underlying scheme is produced.

When instantiating the above construction, all of the options for an ordi-
nary sequential aggregate signature scheme discussed in Section 5 can be used.
However, the choice of an identity-based sequential aggregate signature scheme
is less obvious. One would imagine that the scheme by Gentry and Ramzan
[10] would be an ideal candidate, but this scheme is based on all users agreeing
on a random string w, which is used in the signing process, before signatures
can be aggregated, and the scheme will become insecure if the same w is used
for different aggregate signatures4. The latter property means that the Gentry-
Ramzan scheme does not have the full flexibility of a sequential aggregate signa-
ture scheme, since an existing aggregate signature cannot be aggregated with two
different signatures to yield two new aggregate signatures. In our construction,
this would mean that a proxy could only delegate the signing rights of a proxy
key once. To our knowledge, no other identity-based sequential aggregate signa-
ture scheme (which provides full aggregation) has been proposed, and it remains
an open problem to construct such a scheme. However, schemes that provide
partial aggregation (i.e. the size of the aggregate signature is not independent
of the number of signers) have been proposed and can be used to instantiate
our construction. For example, the scheme proposed by Herranz [14], which is
secure in the random-oracle model under the Computational co-Diffie-Hellman
assumption, can be used to achieve a fairly efficient scheme.

7 Conclusion

In this paper, we have motivated the introduction of a new security model for
proxy signatures that enhances the existing models of [2, 22]. The new model
incorporates warrants, allows unregistered public keys, and lets the attacker re-
cover proxy private keys. These extensions were motivated by practical consid-
erations as well as attacks on existing schemes. We showed how our new security
definition could be achieved through a generic construction involving sequen-
tial aggregate signatures, and considered concrete and efficient instantiations of
the construction. Finally, we sketched how our models and constructions can be
extended to the identity-based setting.
4 This is not just a property of the security proof given in [10], but will enable an

adversary to construct selective forgeries.

In the full version, we complete the routine investigation of the security and
performance trade-offs of our schemes and provide the full details of the identity-
based setting. We also consider how hierarchical identity-based signatures can
be used to construct efficient identity-based proxy signatures.

References

1. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM Conference on Computer and Communica-
tions Security, pages 390–399. ACM, 2006.

2. Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy sig-
nature schemes for delegation of signing rights. Cryptology ePrint Archive, Report
2003/096, 2003. http://eprint.iacr.org/.

3. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Cachin
and Camenisch [7], pages 56–73.

4. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2001.

5. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifi-
ably encrypted signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT
2003, volume 2656 of LNCS, pages 416–432. Springer, 2003.

6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. J. Cryptology, 17(4):297–319, 2004.

7. Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EURO-
CRYPT 2004, Proceedings, volume 3027 of LNCS. Springer, 2004.

8. Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-
insulated signature schemes. In Yvo Desmedt, editor, Public Key Cryptography,
volume 2567 of LNCS, pages 130–144. Springer, 2003.

9. Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security ar-
chitecture for computational grids. In ACM Conference on Computer and Com-
munications Security, pages 83–92, 1998.

10. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryp-
tography, volume 3958 of Lecture Notes in Computer Science, pages 257–273.
Springer, 2006.

11. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

12. Chunxiang Gu and Yuefei Zhu. An efficient id-based proxy signature scheme from
pairings. Cryptology ePrint Archive, Report 2006/158, 2006. http://eprint.

iacr.org/.
13. Ryotaro Hayashi, Tatsuaki Okamoto, and Keisuke Tanaka. An RSA family of

trap-door permutations with a common domain and its applications. In Feng Bao,
Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography, volume
2947 of LNCS, pages 291–304. Springer, 2004.

14. Javier Herranz. Deterministic identity-based signatures for partial aggregation.
Cryptology ePrint Archive, Report 2005/313, 2005. http://eprint.iacr.org/.

15. Florian Hess. Efficient identity based signature schemes based on pairings. In Kaisa
Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595
of LNCS, pages 310–324. Springer, 2002.

16. Seungjoo Kim, Sangjoon Park, and Dongho Won. Proxy signatures, revisited. In
Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors, ICICS, volume 1334 of
LNCS, pages 223–232. Springer, 1997.

17. S. Lal and A. K. Awasthi. Proxy blind signature scheme. Cryptology ePrint
Archive, Report 2003/072, 2003. http://eprint.iacr.org/.

18. Byoungcheon Lee, Heesun Kim, and Kwangjo Kim. Strong proxy signature and
its application. In SCIS, pages 603–608, 2001.

19. Jung-Yeun Lee, Jung Hee Cheon, and Seungjoo Kim. An analysis of proxy signa-
tures: Is a secure channel necessary? In Marc Joye, editor, CT-RSA, volume 2612
of Lecture Notes in Computer Science, pages 68–79. Springer, 2003.

20. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. Cryp-
tology ePrint Archive, Report 2006/096, 2006. http://eprint.iacr.org/.

21. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Cachin and Camenisch [7],
pages 74–90.

22. Tal Malkin, Satoshi Obana, and Moti Yung. The hierarchy of key evolving sig-
natures and a characterization of proxy signatures. In Cachin and Camenisch [7],
pages 306–322.

23. Tal Malkin, Satoshi Obana, and Moti Yung. The hierarchy of key evolving sig-
natures and a characterization of proxy signatures. Cryptology ePrint Archive,
Report 2004/052, 2004. http://eprint.iacr.org/.

24. M. Mambo, K Usuda, and E. Okamoto. Proxy signatures for delegating signing
operation. In Proceedings of the 3st ACM conference on Computer and Commu-
nications Security, pages 48–57, 1996.

25. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Transactions, Fundamentals., E84-A, No.
5:1234–1243, 2001.

26. Takeshi Okamoto, Atsuo Inomata, and Eiji Okamoto. A proposal of short proxy
signature using pairing. In ITCC (1), pages 631–635. IEEE Computer Society,
2005.

27. Takeshi Okamoto, Mitsuru Tada, and Eiji Okamoto. Extended proxy signatures
for smart cards. In Masahiro Mambo and Yuliang Zheng, editors, ISW, volume
1729 of LNCS, pages 247–258. Springer, 1999.

28. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO
84, pages 47–53, 1984.

29. Hung-Min Sun. An efficient nonrepudiable threshold proxy signature scheme with
known signers. Computer Communications, 22(8):717–722, 1999.

30. Guilin Wang. Designated-verifier proxy signature schemes. In Ryôichi Sasaki,
Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura, editors, SEC, pages 409–424.
Springer, 2005.

31. Guilin Wang, Feng Bao, Jianying Zhou, and Robert H. Deng. Security analysis
of some proxy signatures. In Jong In Lim and Dong Hoon Lee, editors, ICISC,
volume 2971 of LNCS, pages 305–319. Springer, 2003.

32. Huaxiong Wang and Josef Pieprzyk. Efficient one-time proxy signatures. In Chi-
Sung Laih, editor, ASIACRYPT, volume 2894 of LNCS, pages 507–522. Springer,
2003.

33. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. ID-based proxy signature using
bilinear pairings. Cryptology ePrint Archive, Report 2004/206, 2004. http://

eprint.iacr.org/.

34. Fangguo Zhang and Kwangjo Kim. Efficient ID-based blind signature and proxy
signature from bilinear pairings. In Reihaneh Safavi-Naini and Jennifer Seberry,
editors, ACISP, volume 2727 of LNCS, pages 312–323. Springer, 2003.

35. Fangguo Zhang, Reihaneh Safavi-Naini, and Chih-Yin Lin. New proxy signature,
proxy blind signature and proxy ring signature schemes from bilinear pairing. Cryp-
tology ePrint Archive, Report 2003/104, 2003. http://eprint.iacr.org/.

36. K. Zhang. Threshold proxy signature schemes. In Proc. 1st International Infor-
mation Security Workshop, pages 282–290, 1997.

A Key Registration Attack on ZSL-scheme

We briefly illustrate how an adversary can mount an attack on the proxy signa-
ture scheme proposed by Zhang, Safavi-Naini and Lin [35], if key registration is
not required as a part of the security model.

In the construction presented in [35], delegation is done by letting the dele-
gator construct a Boneh-Lynn-Shacham signature [6] on the warrant w, i.e. by
computing σd = sdH(w) (where sd ∈ Zq is the private key of the delegator and
H is a hash function onto a bilinear group G of prime order q), and then sending
σd to the proxy. Upon receiving σd, the proxy generates a private proxy key psk
by computing his own signature on the warrant, σp = spH(w), where sp ∈ Zq is
the private key of the proxy, and setting psk = σd + σp = (sd + sp)H(w).

A proxy signature is then created by using the identity-based signature
scheme of Hess [15], letting w act as the signing identity and psk as the pri-
vate key for this identity. A verifier can construct a master public key for the
Hess signature scheme in which psk is the private key of w, by summing the pub-
lic keys for the delegator and the proxy, i.e. by setting pkd + pkp = (sd + sp)P
where P generates G, and then verify the proxy signature as a signature by the
identity w.

However, this construction is insecure if the registered key model is not used.
This can easily be seen as follows: let pk∗ = s∗P be the public key of the
challenge user and let the adversary choose the public key pk = saP − pk∗

for a malicious proxy (note that the adversary cannot compute the private key
corresponding to this public key). Then, for any warrant w, the adversary can
compute saH(w) = (sa − s∗ + s∗)H(w) = σ∗ + σa and thereby construct the
private key needed for creating proxy signatures on behalf of the challenge user,
without the challenge user having delegated his signing rights.

B Proxy Key Exposure Attack on BPW-scheme

We briefly illustrate how an adversary can recover the private key of the user in
the triple Schnorr proxy signature scheme analyzed by Boldyreva, Palacio and
Warinschi [2], if a proxy key is exposed.

The key observation is that the value t = G(0||pkd||pkp||w, Y)·skp+s mod q
is a part of the proxy key, where G is a hash function, pkd and pkp are the public
keys of the delegator and the proxy, w is a warrant, (Y, s) are values sent by the

delegator to the proxy in a delegation, and skp is the private key of the proxy.
Since it is not assumed that there is a secure channel between the delegator and
the proxy, (Y, s) can be observed by the adversary, and if a proxy key is exposed,
the adversary can recover the private key skp of the proxy, simply by computing
skp = (t− s) ·G(0||pkd||pkp||w, Y)−1 mod q.

C Proof of Theorem 2

Proof. The proof is by contradiction: we will assume that an adversary A that
(t′, q′s, q

′
d, ε
′)-breaks Construction 1 exists, and from this, construct an adversary

B that (t, qs, ε)-breaks the underlying sequential aggregate signature scheme.
Initially, B will be given a challenge public key pk′ and access to a sequential

aggregate signing oracleOsig(m,σagg) for the secret key sk′ corresponding to pk′.
Firstly, B flips a fair coin c. If c = 0, B sets pk∗ = pk′ and sk∗ = ∅. Otherwise, B
generates a fresh key pair (pk∗, sk∗)← KeyGen, and chooses i∗ ∈ {1, . . . , q′d} (B
will later use pk′ instead of a fresh key in the i∗-th delegation query by A). For
ease of notation, we define the following function for signature generation by B:

SignB(sk,m, σagg) =
{
Osig(m,σagg) if sk = ∅
AggSign(sk,m, σagg) otherwise

B runs A with input pk∗. As the challenger in the security game, B will
maintain a set of lists pskList(∗, ∗) whileA is running. Each list pskList(PK,W)
will hold all proxy keys generated by B for the delegation chain with the public
keys PK and the warrants W. While running, A can make various queries which
B will answer as follows (note that, to answer the queries, B simply implements
the challenger by using his access to the signing oracle and taking into account
the value of c):

– Ordinary signature. On input m from A, B returns SignB(sk∗, sgn||m, ∅).
– Delegation to u∗. A submits the delegation message (PK,FK,W, σdel). If
c = 0, or c = 1 and this is not the i∗-th delegation query, B generates
a fresh key pair (pk, sk) ← KeyGen, constructs FK ′ = FK.(pk) and
sets skprx = sk. If c = 1 and this is the i∗-th delegation query, B con-
structs FK ′ = FK.(pk∗) and sets skprx = ∅. Then B computes σ′del ←
SignB(skprx, dlg||PK||FK ′||W, σdel) and stores psk = (FK ′, σ′del, skprx) in
pskList(PK,W).

– Delegation from u∗. There are three different types of queries A can make:
1. Delegation of sk∗ On input (pkp,w) from A, B constructs the lists PK ′ =

(pk∗, pkp), FK = () and W′ = (w). Then B computes the signature
σdel ← SignB(sk∗, dlg||PK ′||FK ′||W′, ∅) and sends the delegation mes-
sage (PK ′, FK,W′, σdel) to A.

2. Re-delegation of psk. On input (PK,W, j, pkp,w) from A, where j ∈
N, B looks up the j-th proxy key in pskList(PK,W) and parses it as
(FK, σdel, skprx). Then B constructs PK ′ = PK.(pkp) and W′ = W.(w),
computes σ′del ← SignB(skprx, dlg||PK ′||FK||W′, σdel), and sends the
delegation message (PK ′, FK,W′, σ′del) to A.

3. self-delegation. Depending on the input (PK,W, j,w) submitted by A,
B will do one of the following:
• If PK and W are empty (self-delegation of sk∗), B constructs the

lists PK ′ = (pk∗, pk∗), FK = () and W′ = (w), and sets skself = sk∗

and σself = ∅.
• If PK and W are not empty (delegation of psk), B looks up the j-

th proxy key in pskList(PK,W) and parses it as (FK, σdel, skprx).
Then B constructs PK ′ = PK.(pk∗) and W′ = W.(w), and sets
skself = skprx and σself = σdel

Then B computes σ′del ← SignB(skself , dlg||PK ′||FK||W′, σself). Now,
if c = 0, or c = 1 and this is not the i∗-th delegation query, B gen-
erates (pk, sk) ← KeyGen and constructs FK ′ = FK.(pk). Otherwise,
B just constructs FK ′ = FK.(pk∗) and sets sk = ∅. Finally, B com-
putes σ′′del ← SignB(skself , dlg||PK ′||FK ′||W′, σ′del), stores the proxy
key psk = (FK ′, σ′′del, sk) in pskList(PK ′,W′) and sends the transcript
(PK ′, FK,W′, σ′del) to A.

– Proxy signature. On input (PK,W, j,m) from A, B looks up the j-th proxy
key, in pskList(PK,W) and parses it as (FK, σdel, skprx). Then B com-
putes the signature pσ ← SignB(skprx, prx||PK||FK||W||m,σdel) and re-
turns (PK,W, (FK, pσ)) to A.

– Proxy key exposure. On input (PK,W, j), B looks up the j-th proxy key in
pskList(PK,W) and parses it as (FK, σdel, skprx). If skprx = ∅, B aborts.
Otherwise, B returns (FK, σdel, skprx) to A.

Note that pk∗ will be drawn from the same distribution as public keys generated
by KeyGen and that B’s choice of c will be completely hidden from A, unless an
abort occurs.

If B is not forced to abort, A will eventually output a forgery. We will classify
forgeries into two different categories:

Category A forgeries are either a valid type (i) forgery (m,σ), a valid type (ii)
forgery (m, (PK,W, (FK, pσ))) where the last key in FK was not generated
by B, or a valid type (iii) forgery (m, (PK,W, (FK, pσ))) where the (i∗−1)-
th key in FK was not generated by B.

Category B forgeries are all valid forgeries that are not in Category A, i.e. a
type (ii) or type (iii) forgery where B has generated the public key in FK
which corresponds to u∗’s position in the delegation chain of the forgery.

Informally, Category A forgeries correspond to forgeries where A has forged
a signature under u∗’s long term key, and Category B forgeries correspond to
forgeries where A has forged a signature under one of the keys generated by u∗

in a delegation, but for which A has not received the corresponding private key.
Consider the case where c = 0. In this case, B sets pk∗ = pk′. If A constructs

a valid Category A forgery, then

– if the forgery is of type (i) i.e. (m,σ), then A will not have requested a
signature on m (since the forgery is valid), and B will therefore not have

submitted (sgn||m, ∅) to his own signing oracle. Hence, σ is a valid forgery
of a sequential aggregate signature of length 1 on the message sgn||m under
the the public key pk∗ = pk′.

– if the forgery is of type (ii) i.e. (m, (PK,W, (FK, pσ))), where the last
key pkn ∈ PK is equal to pk∗ = pk′, then B will not have submitted
(dlg||PK||FK||W, σdel) for any σdel to his own signing signing oracle (since
this is a Category A forgery). Hence, pσ will be a valid forgery of a sequential
aggregate signature containing a signature on the message dlg||PK||FK||W
under pk∗ = pk′.

– if the forgery is of type (iii) i.e. (m, (PK,W, (FK, pσ))), pσ will be a valid
forgery for the same reasons as in a type (ii) forgery, just having pk∗ ap-
pearing at a different position in PK.

If A, on the other hand, constructs a Category B forgery, B will abort.
Now consider the case where c = 1. In this case B inserts pk′ as a fresh

key in a delegation query. If A outputs a Category A forgery, B will abort.
However, if A outputs a category B forgery (m, (PK,W, (FK, pσ))), which will
be of either type (ii) or type (iii), pσ will be a sequential aggregate signature
containing a signature under a key pk generated by B in a delegation query
(i.e. pk will appear as the last key in FK ′ for a proxy key (FK ′, σdel, skprx) ∈
pskList(PK1...i,W1...i−1) for some i), and for which A has not asked for the
proxy key containing the corresponding private key. With probability 1/qd, B
will have chosen pk = pk′. In this case, B outputs pσ as a valid forgery for the
underlying sequential aggregate signature scheme. Otherwise, B will abort.

Note that if c = 0, B provides a perfect simulation for A and does not need
to abort before A outputs a forgery. Also note that if c = 1, A is constructing
a Category B forgery and B has guessed the correct value of i∗ (i.e. guessed the
key pki∗ which A will use in a forgery and inserted pki∗ = pk′), B will not have
to abort either since A will not compromise the key pki∗ in order to produce a
valid forgery.

Let E1 be the event that A produces a Category A forgery, E2 be the event
that A produces a Category B forgery, and E3 be the event that B guesses the
correct value of i∗ in a Category B forgery. The success probability ε′ of A can be
expressed as ε′ = Pr[E1] + Pr[E2]. The success probability of B can be expressed
as

ε = Pr[c = 0 ∧ E1] + Pr[c = 1 ∧ E2 ∧ E3]
= 1/2 Pr[E1] + Pr[E3|c = 1 ∧ E2] Pr[c = 1|E2] Pr[E2]
= 1/2 Pr[E1] + 1/qd · 1/2 · Pr[E2]
≥ ε′/2qd

Hence, the theorem follows.

