
Security of Digital Signature Schemes in
Weakened Random Oracle Models

Akira Numayama1, Toshiyuki Isshiki1,2, and Keisuke Tanaka1

1 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{numayama.a.aa@m, keisuke@is}.titech.ac.jp

2 NEC Corporation, 1753 Shimonumabe Nakahara-ku Kawasaki, Kanagawa 211-8666, Japan
t-issiki@bx.jp.nec.com

Abstract. We formalize the notion of several weakened random oracle mod-
els in order to capture which property of a hash function is crucial to prove the
security of a cryptographic scheme. In particular, we focus on augmenting the
random oracle with additional oracles that respectively return collisions, second-
preimages, and first-preimages. We study the security of the full domain hash
signature scheme, as well as three variants thereof in the weakened random ora-
cle models, leading to a separation result.

Keywords: random oracle model, digital signature, collision, preimage.

1 Introduction

Background. When analyzing the security of cryptographic schemes, we often idealize
hash functions as truly random functions called random oracles. A number of schemes
were proposed and proved secure in the random oracle model (ROM) [1–5].

When it comes to implementations of the cryptographic schemes, we have to replace
the random oracles by cryptographic hash functions. This replacement might make the
cryptographic schemes insecure.

An important thing is that one should carefully observe the properties of the ROM,
which are necessary for proving the security of the schemes, and replace the random or-
acles with some suitable hash functions. For example the security of the hash-and-sign
type signature schemes, which are secure in the ROM, relies on the collision resistance
property of the ROM. If one can obtain two distinct m,m′ such that h(m) = h(m′)
and the signature σ = Sig(h(m)), then (m′, σ) is a valid forgery. Therefore, this case
requires that a hash function is collision resistant.

Recent progress [6, 7] on the attacks against cryptographic hash functions such as
SHA-1 and MD5, raises the question on the assumption that hash functions are collision
resistant. Therefore, it is interesting to know whether the collision resistance property
of the ROM is necessary for proving the security of the schemes. More generally, it is
worth classifying the schemes by the properties of the ROM that their security essen-
tially rely on.



Previous works. Recent works [8–11] introduced variants of the random oracle model,
where some properties of the ROM are weakened. If one can prove that a cryptographic
scheme is secure in the ROM but not in a weakened random oracle model, then the
security of the scheme essentially relies on the difference between these models.

Unruh [8] proposed a random oracle model where oracle-dependent auxiliary inputs
are allowed. In this setting, the adversary of some cryptographic protocol obtains an
auxiliary input that can contain information about the random oracle (e.g. collisions).
He showed that the RSA-OAEP encryption scheme [2] is secure in the random oracle
model even in the presence of oracle-dependent auxiliary inputs.

Nielsen [9] proposed the non-programmable random oracle model where the ran-
dom oracle is not programmable. In this model, one cannot set the value that the ran-
dom oracle answers to some appropriate value. The author showed that a non-interactive
non-committing encryption scheme exists in the ROM (assuming trapdoor permutations
exists), but not in the non-programmable random oracle model.

Liskov [10] proposed the models of weak hash functions where there exist the ran-
dom oracle and the additional oracles that break some properties of the ROM. He listed
several such oracles that provide, for example, collisions. He also proposed a general
construction of a hash function from weak hash functions. Pasini and Vaudenay [11]
applied Liskov’s idea to the security analysis of digital signature schemes. They con-
sidered the security of hash-then-sign type signature schemes in the random oracle
model with an additional oracle that returns first-preimages. In the security analysis of
signature schemes in their model, the reduction algorithm simulates both the random
oracle and the additional oracle.

Our contributions. By using Liskov’s idea, we propose the following three models: the
collision tractable random oracle model (CT-ROM), the second-preimage tractable ran-
dom oracle model (SPT-ROM), and the first-preimage tractable random oracle model
(FPT-ROM). The CT-ROM (resp. SPT-ROM, FPT-ROM) consists of the random oracle
and the collision (resp. second-preimage, first-preimage) oracle that returns collisions
(resp. second-preimages, first-preimages).

Our models are a bit different from those of Liskov with respect to: first, in our
model, the collision oracle may not provide a collision even if there are collisions, while
in the Liskov model it always provides a collision; second, in our model, the second-
preimage (resp. first-preimage) oracle provides ⊥ if there is no second-preimage (resp.
first-preimage). Liskov only considered compression functions, where there are some
collisions and preimages with high probability. When taking into account expanding
functions, the Liskov model turns out to be too strong.

Notice here that it can be shown that the security with respect to the random oracle
model with oracle-dependent auxiliary input implies the security with respect to the CT-
ROM, since the oracle-dependent auxiliary input can contain a sufficiently long list of
collisions. For the security with respect to the SPT-ROM and the FPT-ROM, the proof
technique employed in [8] cannot be applied to our models. This is because the random
oracle model with oracle-dependent auxiliary input does not capture the attack models
with adaptive queries.

In almost all the proofs employing the random oracles, the reduction algorithms
simulate the random oracles with embedding the target problem instances. We give

2



new oracle simulation methods that are applicable for our models. These methods are
useful to simulate both the random oracle and the additional oracles when analyzing the
security of cryptographic schemes.

In our models, we consider the security of two RSA-based signature schemes: RSA-
FDH [3] and RSA-PFDH [12], which are simple and popular. In particular, we focus on
the existential unforgeability under the adaptive chosen message attack [13], and show
the following statements.

1. RSA-FDH is not secure in the CT-ROM.
2. RSA-PFDH is secure in the CT-ROM, but not secure in the SPT-ROM.

Moreover, we slightly modify RSA-PFDH to obtain two variants which we call RSA-
PFDH+ and RSA-PFDH⊕. We consider their security and show the following state-
ments.

3. RSA-PFDH+ is secure in the SPT-ROM, but not secure in the FPT-ROM.
4. RSA-PFDH⊕ is secure in the FPT-ROM.

We summarize the security of the four schemes in Table 1.

scheme\model ROM CT-ROM SPT-ROM FPT-ROM
RSA-FDH secure insecure
RSA-PFDH secure insecure
RSA-PFDH+ secure insecure
RSA-PFDH⊕ secure

Table 1. Security of four schemes.

In conclusion, we show the relations among our models. Let S be a security notion
and M1,M2 models. Let S/M1 ⇒ S/M2 and S/M1 ; S/M2 be as follows.

– S/M1 ⇒ S/M2: for any signature scheme Σ if Σ meets a security notion S in the
model M1, then Σ also meets S in the model M2.

– S/M1 ; S/M2: there exists a signature scheme Σ such that Σ meets a security
notion S in the model M1 while Σ doesn’t meet S in the model M2.

It is clear from the definitions of the models that the following relations hold for any
security notion S (see Section 3).

S/ROM⇐ S/CT-ROM⇐ S/SPT-ROM⇐ S/FPT-ROM

From Table 1, under the RSA assumption we can show the separations for the security
notion S′: the existential unforgeability under the adaptive chosen message attack, that
is, the following relations hold.

S′/ROM; S′/CT-ROM; S′/SPT-ROM; S′/FPT-ROM

3



Organization. In Section 2, we give some notation. Our models are presented in Sec-
tion 3. We discuss the security of the schemes in Section 4. Finally, in Section 5, we
make a few remarks on our models and schemes.

2 Preliminaries

2.1 Notation

IfD is a distribution, x← D denote that x is sampled according toD, and let fD(x) be
the probability mass function of distributionD. Let B(N, p) be the binomial distribution
with N trials and success probability p.

Let S be a finite set. Let s← S denote that s is sampled from the uniform distribu-
tion on S . #S denotes the number of elements in S .
IfA is a probabilistic machine and x is an input, letA(x) denote the output distribution
ofA on input x.
Let φ be a boolean function. Let Prs[d ← D : φ(s, d)] be the probability that φ(s, d) is
true after sampling s← S and d ← D.
Let “∥” denote concatenation, and w1 ∥ w2

p
←− w that string w is parsed as w1 and w2.

Finally, for a table T = {(x, y)}, we define T(y) = {(x̃, ỹ) ∈ T | y = ỹ}.

2.2 Digital Signature Schemes

We review a model of digital signature schemes.

Syntax. A digital signature scheme over message spaceM is defined by the following
three algorithms.

– The key generation algorithm Gen. On input 1k, where k is the security parameter,
the algorithm produces a public/secret key pair (pk, sk).

– The signing algorithm Sig. Given a secret key sk and a message m ∈ M, the
algorithm produces a signature σ on the message m.

– The verification algorithm Ver. Given a public key pk, a message m, and a signature
σ, the algorithm outputs a bit τ. If τ = 1 the signature is accepted with respect to
pk and rejected otherwise.

We require that for all (pk, sk) output by Gen(1k) and for all message m ∈ M,
Ver(pk,m,Sig(sk,m)) = 1 should be satisfied.

In the rest of the paper we omit pk, sk and write Ver(m, σ) as Ver(pk,m, σ), and
Sig(m) as Sig(sk,m) for short.

Security Notions. A widely accepted standard security notion was defined by Gold-
wasser, Micali and Rivest [13], as the existential unforgeability under the adaptive cho-
sen message attack (EUF-CMA).

Definition 1. A polynomial-time oracle query machineA is said to break the signature
scheme (Gen,Sig,Ver) if after making signing queries adaptively, it outputs, with non-
negligible probability, a valid forgery that was never queried.

Definition 2 (EUF-CMA). A signature scheme (Gen,Sig,Ver) is said to be secure if
there is no polynomial-time oracle query machine that breaks the scheme.

4



3 Our models

We formalize the notion of weakened random oracle models that were mentioned by
Liskov [10]. Each of our models provides a random oracle together with another oracle
that breaks some property of the random oracle model. First we review the random
oracle model, and then propose three models.

3.1 The Random Oracle Model (ROM)

Let X,Y be finite sets. The random oracle model has a hash function h chosen randomly
from all of the functions from X to Y and the random oracle associated with h. A hash
function h can be considered as a hash table Th which defines the correspondence of
the elements in X with the elements in Y . In this model, all of the parties (including the
adversary) have access to the random oracle. When the hash value of x is queried, the
random oracle answers the corresponding value y in Th.

In almost all the proofs employing the random oracles, the reduction algorithms
simulate the random oracles with embedding the target problem instances. We consider
how to simulate the random oracle except for the embedding. In a standard way, we
simulate the random oracle maintaining a table T that is initially empty as follows.
When the hash value of x is queried, if there is an entry (x̃, ỹ) ∈ T such that x = x̃, then
return ỹ; otherwise pick uniformly y← Y , insert (x, y) in the hash table T, and return y.

Alternatively, we propose a different algorithm RO to simulate the random oracle.
We manage a hash table T and a table L that are initially empty. The table T does the
same role as above, whereas the table L manages the number of elements in X that map
to y ∈ Y . For example, if there is (y, n) ∈ L then it is expected that there are exactly n
elements in X that map to y ∈ Y . When we insert (x, y) in the hash table T such that y
is not yet in T, we also determine the number n of preimages of y and add (y, n) to the
table L.

Algorithm RO(x):

1. If there is an entry (x̃, ỹ) ∈ T such that x = x̃, then return ỹ.
2. Compute the following value:

p =

∑
(ỹ,ñ)∈L(ñ − #T(ỹ))

#X − #T
.

(p is the probability to answer ỹ ∈ Y that is not new, i.e. (x̃, ỹ) ∈ T for some x̃.)
3. Flip a biased coin with probability Pr[α = 0] = p.

(Decide whether the simulation returns a new value or not. “α = 0” indicates “not
new”, and “α = 1” indicates “new”.)

4. If α = 0,
then pick y according to the following distribution, and go to Step 8.

y← D,

where fD(y) =
n − #T(y)∑

(ỹ,ñ)∈L(ñ − #T(ỹ))
for (y, n) ∈ L.

5



5. If α , 0,
then pick uniformly y← Y \∪(ỹ,ñ)∈L{ỹ}.

6. Pick n′ according to the following binomial distribution:

n′ ← B(#X −
∑

(ỹ,ñ)∈L
ñ − 1,

1
#Y − #L

).

(n′ is the number of preimages of y excluding (x, y).)
7. Set n = n′ + 1 and insert (y, n) in L.

8. Insert (x, y) in T, and return y.

Remark 1. In the rest of the paper, we denote by Th the table in the ROM (CT-ROM,
SPT-ROM, FPT-ROM), and denote by T and L the tables in the simulation.

In order to analyze this algorithm, we assume that we can efficiently sample from
the binomial distribution B(N, p) perfectly. There are quite many papers on the efficient
sampling from the binomial distribution [14]. However, we could neither find precise
analysis of their methods nor analyze precisely by ourselves. Therefore, we have to
employ the following assumption in the analyses of all of our simulations.

Assumption 1. There is a polynomial-time machineA such that the distributionA(N, p)
output by the algorithm A is equal to the binomial distribution B(N, p), where N is a
positive integer and 0 ≤ p ≤ 1.

Lemma 1. The simulation of the random oracle is perfect. That is, the distribution on
the outputs of the random oracle is equal to the distribution on the outputs of Algorithm
RO.

Proof. We consider the probability that Algorithm RO replies y∗ as the hash value of
x∗. Fix the tables T and L at an arbitrary point according to Algorithm RO . Let T∗ and
L∗ be the tables after replying y∗ for the hash value of x∗.

First, we consider the case where y∗ is not new (i.e. (y∗, n∗) ∈ L). Note that in this
case L∗ = L. Let old(x∗, y∗) be the event T∗ = T ∪ (x∗, y∗) ∧ L∗ = L.

According to our method, for any y∗ that is not new, we have

Pr[old(x∗, y∗)] = p × n∗ − #T(y∗)∑
(ỹ,ñ)∈L(ñ − #T(ỹ))

=
n∗ − #T(y∗)

#X − #T
. (1)

Second, we consider the case where y∗ is new (i.e. (y∗, n∗) < L). Let NX = #X −∑
(ỹ,ñ)∈L ñ and NY = #Y − #L. The former represents the number of elements in X that

are not to be assigned to some ỹ such that there is (ỹ, ñ) ∈ L, and the latter represents
the number of elements in Y that are not defined in L. Let new(x∗, y∗, n∗) be the event
T∗ = T ∪ (x∗, y∗) ∧ L∗ = L ∪ (y∗, n∗).

6



According to our method, for any y∗ that is new and for any n∗ = n′ + 1 such that
0 ≤ n′ ≤ NX − 1, we have

Pr[new(x∗, y∗, n∗)] = (1 − p) × 1
NY
×

(
NX − 1

n′

)
(

1
NY

)n′(1 − 1
NY

)NX−1−n′

= (1 − p)
n′ + 1

NX

(
NX

n′ + 1

)
(

1
NY

)n′+1(1 − 1
NY

)NX−1−n′ .

Notice here that #T =
∑

(ỹ,ñ)∈L #T(ỹ), and we have

1 − p = 1 −
∑

(ỹ,ñ)∈L(ñ − #T(ỹ))
#X − #T

=
NX

#X − #T
.

Therefore we have

Pr[new(x∗, y∗, n∗)] =
n∗

#X − #T

(
NX

n∗

)
(

1
NY

)n∗(1 − 1
NY

)NX−n∗ . (2)

Now let us consider what the probabilities given by Equations (1) and (2) imply.
Both of the probabilities are equivalent to the probability that a hash function h chosen
in the ROM satisfies (x∗, y∗) ∈ Th and #Th(y∗) = n∗ under the condition where (x, y) ∈
Th for any (x, y) ∈ T and #Th(y) = n for any (y, n) ∈ L.

Therefore the distribution on the outputs of the random oracle is equal to the distri-
bution on the outputs of Algorithm RO. ⊓⊔

3.2 The Collision Tractable Random Oracle Model (CT-ROM)

Let X,Y be finite sets. The collision tractable random oracle model has the collision
oracle that is used to find collisions, in addition to a hash function h chosen randomly
from all of the functions from X to Y and the random oracle associated with h. In this
model the adversary has access to the collision oracle.

When the hash value of x is queried, the random oracle answers the corresponding
value y in Th. When a collision is queried, the collision oracle answers as follows. The
collision oracle picks uniformly one entry (x, y) ∈ Th. If there is no other entry (x′, y) ∈
Th, then answers ⊥. Otherwise, it picks uniformly one entry (x′, y) ∈ Th satisfying
x , x′ and answers (x, x′).

For this model, in addition to Algorithm RO, we construct an algorithm CO. Al-
gorithms RO and CO are used to simulate the random oracle and the collision oracle,
respectively. Algorithm CO uses the tables T and L that are commonly used in Algo-
rithm RO.

Algorithm CO():

1. Pick uniformly x← X.
2. In order to obtain the hash value y = h(x), run Algorithm RO(x).

7



3. If n = 1 for (y, n) ∈ L, then return ⊥.
4. If n , 1 for (y, n) ∈ L, then compute the following value:

q(y,n) =
#T(y) − 1

n − 1
.

(q(y,n) is the probability to answer x̃ ∈ X that is not new.)
5. Flip a biased coin with probability Pr[β = 0] = q(y,n).
6. If β = 0, then pick uniformly one entry (x̃, y) ∈ T satisfying x , x̃ and return (x, x̃).
7. If β , 0, then pick uniformly x′ ← X such that there is no entry (x′, ỹ) ∈ T for any
ỹ ∈ Y .

8. Insert (x′, y) in T, and return (x, x′).

Corollary 1. The simulations of the random oracle and the collision oracle are perfect.
That is, the distribution on the outputs of the random oracle and the collision oracle is
equal to the distribution on the outputs of Algorithms RO and CO.

Proof. From Lemma 1, the simulation of the random oracle is perfect. In this simu-
lation, the table L indicates that the number of preimages of y. This implies that the
simulation of the collision oracle are perfect. ⊓⊔

3.3 The Second-Preimage Tractable Random Oracle Model (SPT-ROM)

Let X,Y be finite sets. The second-preimage tractable random oracle model has the
second-preimage oracle that is used to find second-preimages, in addition to a hash
function h chosen randomly from all of the functions from X to Y and the random
oracle associated with h. In this model the adversary has access to the second-preimage
oracle.

When the hash value of x is queried, the random oracle answers the corresponding
value y in Th. When a second-preimage of (x, y) is queried, the second-preimage oracle
answers as follows. If it has not answered that h maps x to y, it answers ⊥. If there is
only one entry (x̃, ỹ) ∈ Th such that y = ỹ, then it answers ⊥. Otherwise, it answers
uniformly one x′ such that (x′, y) ∈ Th satisfying x′ , x.

For this model, in addition to Algorithm RO, we construct an algorithm SPO. Al-
gorithms RO and SPO are used to simulate the random oracle and the second-preimage
oracle, respectively. Algorithm SPO uses the tables T and L that are commonly used in
Algorithm RO.

Algorithm SPO(x, y):

1. If (x, y) < T, then return ⊥.
2. If n = 1 for (y, n) ∈ L, then return ⊥.
3. If n , 1 for (y, n) ∈ L, then compute the following value:

q(y,n) =
#T(y) − 1

n − 1
.

4. Flip a biased coin with probability Pr[β = 0] = q(y,n).

8



5. If β = 0, then pick uniformly one entry (x̃, y) ∈ T satisfying x , x̃ and return x̃.
6. If β , 0, then pick uniformly x′ ← X such that there is no entry (x′, ỹ) ∈ T for any
ỹ ∈ Y .

7. Insert (x′, y) in T, and return x′.

Corollary 2. The simulations of the random oracle and the second-preimage oracle are
perfect. That is, the distribution on the outputs of the random oracle and the second-
preimage oracle is equal to the distribution on the outputs of Algorithms RO and SPO.

3.4 The First-Preimage Tractable Random Oracle Model (FPT-ROM)

Let X,Y be finite sets. The first-preimage tractable random oracle model has the first-
preimage oracle that is used to find first-preimages, in addition to a hash function h
chosen randomly from all of the functions from X to Y and the random oracle associated
with h. In this model the adversary has access to the first-preimage oracle.

When the hash value of x is queried, the random oracle answers the corresponding
value y in Th. When a first-preimage of y is queried, the first-preimage oracle answers
as follows. If there is no (x̃, ỹ) ∈ Th such that y = ỹ, then answers ⊥. Otherwise it
answers uniformly one x̃ such that (x̃, ỹ) ∈ Th satisfying y = ỹ.

For this model, in addition to Algorithm RO, we construct an algorithm FPO. Al-
gorithms RO and FPO are used to simulate the random oracle and the first-preimage
oracle, respectively. Algorithm FPO uses the tables T and L that are commonly used in
Algorithm RO.

Algorithm FPO(y):

1. If there is no entry (y, ñ) ∈ L then pick n according to the binomial distribution:

n← B(#X −
∑

(ỹ,ñ)∈L
ñ,

1
#Y − #L

).

2. Insert (y, n) in L.
3. If n = 0 for (y, n) ∈ L, then return ⊥.
4. If n , 0 for (y, n) ∈ L, then compute the following value:

q(y,n) =
#T(y)

n
.

5. Flip a biased coin with probability Pr[β = 0] = q(y,n).
6. If β = 0, then pick uniformly one entry (x̃, y) ∈ T and return x̃.
7. If β , 0, then pick uniformly x ← X such that there is no entry (x, ỹ) ∈ T for any
ỹ ∈ Y .

8. Insert (x, y) in T, and return x.

Corollary 3. The simulations of the random oracle and the first-preimage oracle are
perfect. That is, the distribution on the outputs of the random oracle and the first-
preimage oracle is equal to the distribution on the outputs of Algorithms RO and FPO.

9



Proof. From Lemma 1 the simulation of the random oracle is perfect. Now let us con-
sider the case where the table L is updated in Algorithm FPO. In the following, we use
the same notation as in Lemma 1. The number n∗ is defined according to the binomial
distribution described in Steps 1 and 2. The probability that the table L is updated to
be L∗ such that L∗ = L ∪ (y∗, n∗) in Steps 1 and 2 is equal to the probability that a
hash function h chosen in the FPT-ROM satisfies #Th(y∗) = n∗ under the condition that
(x, y) ∈ Th for any (x, y) ∈ T and #Th(y) = n for any (y, n) ∈ L. In Algorithm FPO,
the table L correctly indicates the number of the preimages of y. This implies that the
simulations of the random oracle and the first-preimage oracle are perfect. ⊓⊔

4 Security of Signature Schemes

In this section, we consider the security of RSA-FDH [3] and RSA-PFDH [12] in four
variants of the random oracle models. We also propose new signature schemes called
RSA-PFDH+ and RSA-PFDH⊕, and consider the security in four variants of the random
oracle models.

We review the RSA assumption on which the security of four schemes are based.

Definition 3 (The RSA Generator). The RSA generator RSA, which on input 1k, ran-
domly choose distinct k/2-bit primes p, q and computes the RSA modulus N = pq. It
randomly picks e ← Zφ(N) and computes d such that ed = 1 mod φ(N), where φ(·) is
Euler’s totient function. Finally the RSA generator RSA outputs (N, e, d).

Assumption 2 (The RSA Assumption). A polynomial-time machineA is said to solve
the RSA problem if given an RSA challenge (N, e, z) where N, e is generated by RSA(1k)
and z← Z∗N , it outputs z1/e mod N with non-negligible probability.

The RSA assumption is that there is no polynomial-time machine that solves the RSA
problem.

4.1 RSA-FDH

In this section, we show that RSA-FDH [3] is secure in the ROM, but not secure in the
CT-ROM.

The Scheme. We review RSA-FDH [3] .
LetM = {0, 1}l be the message space and h a hash function such as

h : {0, 1}l → {0, 1}k.

Then RSA-FDH is described as follows.

Gen(1k) Sig(m) Ver(m, σ)
(N, e, d)← RSA(1k) y← h(m) y← σe mod N
pk← (N, e) σ← yd mod N if h(m) = y
sk← (N, d) return σ return 1
return (pk, sk) else

return 0

10



The Security. RSA-FDH is secure in the ROM. More precisely the following proposi-
tion was proved [3, 15]. We omit the proof, see [3, 15] for details.

Proposition 1. In the ROM, if the RSA assumption holds, there is no polynomial-time
oracle query machine that breaks RSA-FDH by making queries to the signing oracle
and the random oracle for h.

We show that RSA-FDH is insecure in the CT-ROM.

Theorem 1. In the CT-ROM, there exists a polynomial-time oracle query machine A
that breaks RSA-FDH by making queries to the signing oracle and the collision oracle
for h with probability at least 1 − e−(2l−1)/2k

.

Proof. We construct an algorithmA as follows.

1. Query to the collision oracle, and obtain ξ.
2. If ξ =⊥ then abort, otherwise (m1,m2)

p
←− ξ, where h(m1) = h(m2).

3. Query the signature of m1 to the signing oracle, and obtain a signature σ.
4. Output (m2, σ) as a valid forgery.

If A does not abort, then A can output a valid forgery. Therefore it is sufficient to
bound the probability that A aborts (abort). In the following we use the same notation
as in Section 3. Let X = {0, 1}l,Y = {0, 1}k, and N = #X, p = 1

#Y . Then we have

Pr[abort] = Pr[ξ =⊥]
= Pr

x,h
[#Th(y) ≤ 1 for (x, y) ∈ Th]

= Pr[n′ ← B(N − 1, p) : n′ = 0]

= (1 − p)N−1

≤ e−p(N−1).

For example, in the case of #X = #Y ≥ 2, we can bound this value as

Pr[abort] ≤ e−(1−p) ≤ e−1/2.

ThereforeA can output a valid forgery with probability at least 1 − e−1/2. ⊓⊔

4.2 RSA-PFDH

In this section, we show that RSA-PFDH [12] is secure in the CT-ROM, but not secure
in the SPT-ROM.

The Scheme. We review RSA-PFDH [12].
LetM = {0, 1}l be the message space and h hash function such as

h : {0, 1}l+k1 → {0, 1}k.

Then RSA-PFDH is described as follows.

11



Gen(1k) Sig(m) Ver(m, σ)

(N, e, d)← RSA(1k) r ← {0, 1}k1 (r, x)
p
←− σ

pk← (N, e) y← h(m ∥ r) y← xe mod N
sk← (N, d) x← yd mod N if h(m ∥ r) = y
return (pk, sk) σ← (r, x) return 1

return σ else
return 0

The Security. We show RSA-PFDH is secure in the CT-ROM. Intuitively, in order to
break RSA-PFDH in a straightforward way, it would be necessary to obtain a collision
m ∥ r,m′ ∥ r′ such that h(m ∥ r) = h(m′ ∥ r′) and the signature of m. However the
randomness in the signature makes it difficult to make use of collisions, which are also
randomly provided by the collision oracle.

Theorem 2. In the CT-ROM, for all polynomial-time oracle query machines that break
RSA-PFDH with probability ϵeuf by making qs, qh, and qc

h queries to the signing ora-
cle, the random oracle for h, and the collision oracle for h, respectively, there exists a
probabilistic machine that solves the RSA problem with probability ϵrsa such that

ϵeuf ≤ ϵrsa +
1

2k − Q1
+

(Q1)2

2k +
qsQ2

2k1
+ (1 − Q2

2l+k1
)−1 (Q1)2

2k − Q1
,

where Q1 = qs + qh + qc
h + 1 and Q2 = qs + qh + 2qc

h + 1.

Proof. (Sketch) We start with the original attack game with respect to EUF-CMA in
the CT-ROM, and modify it step by step in order to obtain a game directly related to
the adversary which solves the RSA problem. Let (N, e, y) be the RSA challenge. Let
dist(i, j) be the difference between the probability that the adversary outputs a valid
forgery in the Gamei and that in the Game j.

– Game0: The original attack game with respect to EUF-CMA in the CT-ROM.
– Game1: We replace the random oracle and the collision oracle with Algorithms RO

and CO in Section 3, respectively. Let us denote by T and L the tables commonly
used in Algorithms RO and CO. Then, we have

dist(0, 1) = 0.

– Game2: We remove Steps 2–4 in Algorithm RO, and set α = 1 (i.e. Algorithm RO
always answers a new value). Then, we have

dist(1, 2) ≤ (1 − Q2

2l+k1
)−1 (Q1)2

2k − Q1
.

– Game3: When the signing algorithm runs Algorithm RO on input m ∥ r, if (m ∥ r, ỹ)
is already in the table T for some ỹ, then Algorithm RO aborts. Then, we have

dist(2, 3) ≤ qsQ2

2k1
.

12



– Game4: Instead of randomly choosing y ∈ ZN and setting h(m ∥ r) = y, Algorithm
RO chooses y as follows.
• If the hash value is queried by the signing algorithm,

1. then, Algorithm RO randomly chooses x ∈ ZN and y← xe mod N.
2. If (m̃ ∥ r̃, y) is already in the table T for some m̃, r̃, then Algorithm RO

aborts.
• If the hash value is queried by the adversary,

1. then, Algorithm RO randomly chooses x ∈ ZN and y← zxe mod N.
2. If (m̃ ∥ r̃, y) is already in the table T for some m̃, r̃, then Algorithm RO

aborts.
Then, we have

dist(3, 4) ≤ (Q1)2

2k .

– Game5: We modify the signing algorithm in the computation yd to search (x, y)
such that xe = y, instead of using the secret key d. Then, we have

dist(4, 5) = 0.

If the adversary outputs a valid forgery (m∗, σ∗) in the last game, it satisfies the equation
h(m∗ ∥ r∗) = y = (x∗)e mod N where (r∗, x∗)

p
←− σ∗. In order to satisfy the equation,

the adversary must have queried the hash value of m∗ ∥ r∗ with probability at least
1 − 1

2k−Q1
, and then we know the value x such that y = zxe mod N. We can invert the

RSA challenge z by computing z1/e = x∗/x−1 mod N. ⊓⊔

Next, we show that RSA-PFDH is insecure in the SPT-ROM.

Theorem 3. In the SPT-ROM, there exists a polynomial-time oracle query machineA
that breaks RSA-PFDH by making queries to the signing oracle, the random oracle for
h, and the second-preimage oracle for h, with probability at least 1 − e−(2l+k1−1)/2k − 1

2l .

Proof. We construct an algorithmA as follows.

1. Query the signature of m to the signing oracle, and obtain a signature σ.
2. (r, x)

p
←− σ.

3. Query the hash value of m ∥ r to the random oracle for h, and obtain y = h(m ∥ r).
4. Query the second-preimage of (m ∥ r, y) to the second-preimage oracle, and obtain
ξ.

5. If ξ =⊥ then abort1, otherwise m′ ∥ r′
p
←− ξ, where h(m ∥ r) = h(m′ ∥ r′).

6. If m′ = m then abort2, otherwise σ′ ← (r′, x).
7. Output (m′, σ′) as a valid forgery.

If A does not abort, then A can output a valid forgery. Therefore it is sufficient to
bound the probability that A aborts. In the following we use the same notation as in
Section 3. Let X = {0, 1}l+k1 ,Y = {0, 1}k, and N = #X, p = 1

#Y . Then, we have

Pr[abort] ≤ Pr[abort1] + Pr[abort2].

13



The first probability is evaluated in a similar way as in Theorem 1. We have

Pr[abort1] = (1 − p)N−1 ≤ e−p(N−1).

The second probability is bounded as

Pr[abort2] = Pr[m = m′] ≤ 1
2l .

Thus, we have

Pr[abort] ≤ e−p(N−1) +
1
2l .

For example, in the case of #X = #Y ≥ 2, we can bound this value as

Pr[abort] = e−(1−p) +
1
2l ≤ e−1/2 +

1
2l .

Therefore,A can output a valid forgery with probability at least 1 − e−1/2 − 1
2l . ⊓⊔

4.3 RSA-PFDH+

In this section, we propose RSA-PFDH+, and show that RSA-PFDH+ is secure in the
SPT-ROM, but not secure in the FPT-ROM.

The Scheme. We construct RSA-PFDH+.
LetM = {0, 1}l be the message space and g, h hash functions such that

g : {0, 1}k1 → {0, 1}k1 , h : {0, 1}l+k1 → {0, 1}k.

Then RSA-PFDH+ is described as follows.

Gen(1k) Sig(m) Ver(m, σ)

(N, e, d)← RSA(1k) r ← {0, 1}k1 (r, x)
p
←− σ

pk← (N, e) s← g(r) y← xe mod N
sk← (N, d) y← h(m ∥ s) s← g(r)
return (pk, sk) x← yd mod N if h(m ∥ s) = y

σ← (r, x) return 1
return σ else

return 0

The Security. We show RSA-PFDH+ is secure in the SPT-ROM. Intuitively, the adver-
sary similar to that described in Theorem 3 does not work well. The reason is as follows.
The adversary queries the signature of m, and obtain σ = (r, x). For s = g(r), y = h(m ∥
s), the adversary then queries the second-preimage of y to the second-preimage oracle
for h, and obtain m′ ∥ s′. However the adversary would not know a preimage of s′, and
would not obtain r′ such that s′ = g(r′). Therefore this straightforward way does not
work.

14



Theorem 4. In the SPT-ROM, for all polynomial-time oracle query machines that
break RSA-PFDH+ with probability ϵeuf by making qs, qg, qh, and qsp

g , q
sp
h queries to

the signing oracle, the random oracles for g, h, and the second-preimage oracles for
g, h, respectively, there exists a probabilistic machine that solves the RSA problem with
probability ϵrsa such that

ϵeuf ≤ ϵrsa +
1

2k − (qs + qh)
+

(qs + qh)2

2k +
qsQh

2k1
+

qsp
g (qs + qg)
2l+k1 − Qh

+
(qs + qg)Qh

2k1 − (qs + qg)
+ (1 − Qh

2l+k1
)−1 (Qh)2

2k − (qs + qh)
+ (1 −

Qg
2k1

)−1 (Qg)2

2k1 − (qs + qg)
,

where Qh = qs + qh + qsp
h + 1,Qg = qs + qg + qsp

g + 1.

Proof. (Sketch) We start with the original attack game with respect to EUF-CMA in the
SPT-ROM, and modify it step by step in order to obtain a game directly related to the
adversary which solves RSA problem. Let (N, e, y) be the RSA challenge.

– Game0: The original attack game with respect to EUF-CMA in the SPT-ROM.
– Game1: We replace the random oracles for g and h with Algorithms ROg and ROh,

and also replace the second-preimage oracles for g and h with Algorithms SPOg
and SPOh in Section 3, respectively. Let us denote by T1 and L1 the tables com-
monly used in Algorithms ROg and SPOg, and also denote by T2 and L2 the tables
commonly used in Algorithms ROh and SPOh.

– Game2: We remove Steps 2–4 in Algorithms ROg and ROh, and set α = 1 (i.e.
Algorithms ROg and ROh always answer a new value).

– Game3: In Algorithm ROg at Step 5 (i.e. s← {0, 1}k1 \∪(s̃,ñ)∈L1
{s̃}), if (m̃ ∥ s, ỹ) is

already in the table T2 for some r̃, then Algorithm ROg aborts.
– Game4: In Algorithm SPOh at Step 6 (i.e. m′ ∥ s′ ← {0, 1}l+k1 \∪(m̃∥s̃,ỹ)∈T2

{m̃ ∥ s̃}),
if (r̃, s′) is already in the table T1 for some r̃, then Algorithm SPOh aborts.

– Game5: When the signing algorithm runs Algorithm ROh on input m ∥ s, if (m ∥
s, ỹ) is already in the table T2, then Algorithm ROh aborts.

– Game6: Instead of randomly choosing y ∈ ZN and setting h(m ∥ s) = y, Algorithm
ROh chooses y as follows.
• If the hash value is queried by the signing algorithm,

1. then, Algorithm ROh randomly chooses x ∈ ZN and y← xe mod N.
2. If (m̃ ∥ s̃, y) is already in the table T2 for some m̃, s̃, then Algorithm ROh

aborts.
• If the hash value is queried by the adversary,

1. then, Algorithm ROh randomly chooses x ∈ ZN and y← zxe mod N.
2. If (m̃ ∥ s̃, y) is already in the table T2 for some m̃, s̃, then Algorithm ROh

aborts.
– Game7: We modify the signing algorithm in the computation yd to search (x, y)

such that xe = y, instead of using the secret key d. Then, we have

If the adversary outputs a valid forgery (m∗, σ∗) in the last game, it satisfies the equation
h(m∗ ∥ s∗) = y = (x∗)e mod N where (r∗, x∗)

p
←− σ∗, s∗ = g(r∗). In order to satisfy the

equation, the adversary must have queried the hash value of m∗ ∥ s∗, and then we know
the value x such that y = zxe mod N. We can invert the RSA challenge z by computing
z1/e = x∗/x−1 mod N. ⊓⊔

15



Next, we show that RSA-PFDH+ is insecure in the FPT-ROM.

Theorem 5. In the FPT-ROM, there exists a polynomial-time oracle query machineA
that breaks RSA-PFDH+ by making queries to the signing oracle, the random oracles
for g, h, and the first-preimage oracles for g, h, with probability at least 1−e−(2l+k1−1)/2k−
e−(1− 1

2k1
) − 1

2l − 1
2k1

.

Proof. We construct an algorithmA as follows.

1. Query the signature of m to the signing oracle, and obtain a signature σ.
2. (r, x)

p
←− σ.

3. Query the hash value of r to the random oracle for g, and obtain s = g(r).
4. Query the hash value of m ∥ s to the random oracle for h, and obtain y = h(m ∥ s).
5. Query the first-preimage of y to the first-preimage oracle for h, and obtain ξ.
6. m′ ∥ s′

p
←− ξ, where h(m′ ∥ s′) = h(m ∥ s).

7. If m′ ∥ s′ = m ∥ s then abort1.
8. If m = m′ then abort2.
9. Query the first-preimage of s′ to the first-preimage oracle for g, and obtain η.

10. If η =⊥ then abort3, otherwise r′
p
←− η.

11. σ′ ← (r′, x).
12. Output (m′, σ′) as a valid forgery.

If A does not abort, then A can output a valid forgery. Therefore it is sufficient to
bound the probability that A aborts. In the following we use the same notation as in
Section 3. Let X = {0, 1}l+k1 ,Y = {0, 1}k, R = {0, 1}k1 ,S = {0, 1}k1 ,g : R → S , and
N1 = #X, p1 =

1
#Y N2 = #R, p2 =

1
#S . Then, we have

Pr[abort] ≤ Pr[abort1] + Pr[abort2] + Pr[abort3].

The first probability is evaluated in the a similar way as in Theorem 1. We have

Pr[abort1] = (1 − p1)N1−1 ≤ e−p1(N1−1).

The second probability is bounded as

Pr[abort2] = Pr[m = m′] ≤ 1
2l .

Next, we evaluate the third probability as

Pr[abort3] = Pr[η =⊥]
= Pr
g,r,s′

[(r, s) ∈ Tg ∧ #Tg(s′) = 0]

= Pr
g,r,s′

[(r, s) ∈ Tg ∧ #Tg(s′) = 0 ∧ s = s′]

+ Pr
g,r,s′

[(r, s) ∈ Tg ∧ #Tg(s′) = 0 ∧ s , s′].

16



The first probability is bounded as

Pr[s = s′] ≤ 1
2k1
.

The second probability is bounded as

Pr
g,r,s′

[(r, s) ∈ Tg ∧ #Tg(s′) = 0 | s , s′] = Pr[n← B(N2 − 1, p2) : n = 0]

= (1 − p2)N2−1

< e−p2(N2−1)

= e−(1− 1
2k1

)
.

Thus, we have

Pr[abort] < e−p1(N1−1) +
1
2l +

1
2k1
+ e−(1− 1

2k1
)
.

For example, in the case of #X = #Y ≥ 2, we can bound this value as

Pr[abort] < e−(1−p1) +
1
2l +

1
2k1
+ e−(1− 1

2k1
)

< e−1/2 + e−(1− 1
2k1

)
+

1
2l +

1
2k1
.

Therefore, A can output a valid forgery with probability at least 1 − e−1/2 − e−(1− 1
2k1

) −
1
2l − 1

2k1
. ⊓⊔

4.4 RSA-PFDH⊕

In this section, we propose RSA-PFDH⊕, and show that RSA-PFDH⊕ is secure in the
FPT-ROM.

The Scheme. We construct RSA-PFDH⊕.
LetM = {0, 1}l be the message space and h a hash function such that

h : {0, 1}l+k → {0, 1}k.

Then RSA-PFDH⊕ is described as follows.

Gen(1k) Sig(m) Ver(m, σ)

(N, e, d)← RSA(1k) r ← {0, 1}k1 (r, x)
p
←− σ

pk← (N, e) w← h(m ∥ r) y← xe mod N
sk← (N, d) y← w ⊕ r w← h(m ∥ r)
return (pk, sk) x← yd mod N if w ⊕ r = y

σ← (r, x) return 1
return σ else

return 0

17



The Security. We show RSA-PFDH⊕ is secure in the FPT-ROM. Intuitively, the adver-
sary similar to that described in Theorem 5 does not work well. The reason is as follows.
The adversary queries the signature of m, and obtain σ = (r, x). For w = h(m ∥ r), the
adversary queries the first-preimage of w to the first-preimage oracle, and obtain m′ ∥ r′.
However, r′ would not equal to r. Therefore this straightforward way does not work.

Theorem 6. In the FPT-ROM, for all polynomial-time oracle query machines that
break RSA-PFDH+ with probability ϵeuf by making qs, qh, and q f p

h queries to the sign-
ing oracle, the random oracle for h, and the first-preimage oracle for h, respectively,
there exists a probabilistic machine that solves the RSA problem with probability ϵrsa
such that

ϵeuf ≤ ϵrsa +
1

2k − Q
+

Q2

2k−1 +
qsQ
2k + (1 − Q

2l+k )−1 Q2

2k − Q
,

where Q = qs + qh + q f p
h + 1.

Proof. (Sketch) We start with the original attack game with respect to EUF-CMA in the
FPT-ROM, and modify it step by step in order to obtain a game directly related to the
adversary which solves RSA problem. Let (N, e, y) be the RSA challenge.

– Game0: The original attack game with respect to EUF-CMA in the FPT-ROM.
– Game1: We replace the random oracle and the first-preimage oracle with Algo-

rithms RO and FPO in Section 3, respectively. Let us denote by T and L the tables
commonly used in Algorithms RO and FPO.

– Game2: We remove Steps 2–4 in Algorithm RO, and set α = 1 (i.e. Algorithm RO
always answers a new value).

– Game3: When the signing algorithm runs Algorithm RO on input m ∥ r, if (m ∥
r, w̃) is already in the table T for some w̃, then Algorithm RO aborts.

– Game4: Instead of randomly choosing w ∈ ZN and setting h(m ∥ r) = w, Algorithm
RO chooses w as follows.
• If the hash value of is queried by the signing algorithm,

1. then, Algorithm RO randomly chooses x ∈ ZN and y ← xe mod N. Then
Algorithm RO sets w = y ⊕ r.

2. If (m̃ ∥ r̃, w) is already in the table T for some m̃, r̃, then Algorithm RO
aborts.

• If the hash value is queried by the adversary,
1. then, Algorithm RO randomly chooses x ∈ ZN and y ← zxe mod N. Then

Algorithm RO sets w = y ⊕ r.
2. If (m̃ ∥ r̃, w) is already in the table T for some m̃, r̃, then Algorithm RO

aborts.
– Game5: Instead of randomly choosing m ∥ r ∈ X and setting h(m ∥ r) = w,

Algorithm FPO chooses m ∥ r as follows.
• If a first-preimage is queried by the adversary,

1. then, Algorithm FPO randomly chooses x ∈ ZN and y← zxe mod N. Then
Algorithm FPO sets r = y ⊕ w and randomly chooses m.

2. If (m̃ ∥ r, w̃) is already in the table T for some m̃, w̃, then Algorithm FPO
aborts.

18



– Game6: We modify the signing algorithm in the computation yd to search (x, y)
such that xe = y, instead of using the secret key d.

If the adversary outputs a valid forgery (m∗, σ∗), then it satisfies the equation h(m∗ ∥
r∗) ⊕ r∗ = y = (x∗)e mod N where (r∗, x∗)

p
←− σ∗. In order to satisfy the equation,

the adversary must have queried the hash value of m∗ ∥ r∗, and then we know the
value x such that y = zxe mod N. We can invert the RSA challenge z by computing
z1/e = x∗/x−1 mod N. ⊓⊔

5 Concluding Remarks

In this paper, by applying Liskov’s idea, we have proposed the weakened random oracle
models, i.e. the CT-ROM, the SPT-ROM, and the FPT-ROM.

The main purpose of this paper is to focus on the random oracle model and to
capture its crucial properties which make the cryptosystems secure. Note that Halevi
and Krawczyk [16] posed a question of exhibiting variants of the random oracle model
where one can argue about functions that “behave randomly but are not collision resist-
ant”. Our formalization of the CT-ROM gives a partial answer to their question.

We do not intend to model the attacks recently presented by Wang et al. against
MD5, SHA-1, etc [6, 7]. One important extension/generalization of our research would
be to study the weakness of cryptosystems by taking into consideration the recently
presented attacks. This direction is out of our scope in this paper.

Another direction of research would be to replace the basic property of the ROM
that each entry is chosen uniformly at random and independent of the other entries.
For example, we can extend our result concerning the FPT-ROM to the random per-
mutation model. In this case, we would consider the oracles for both directions of the
permutation, that is, the ideal cipher with a fixed key.

In order to show the differences of our models, we have focused on the RSA-based
signature schemes. By replacing the RSA function with a trapdoor one-way permuta-
tion with the multiplicatively homomorphic property (i.e. f (x · y) = f (x) · f (y)), we can
generalize our results. The efficiency of the reduction would be the same as that of the
RSA-based schemes. If a trapdoor one-way permutation does not have the multiplica-
tively homomorphic property, we can still generalize our results, but the reductions are
not tight. When f has the multiplicatively homomorphic property, then we can embed
the information of y (the challenge instance of one-wayness) into all of the hash val-
ues queried by the adversary. When f does not have the multiplicatively homomorphic
property, we cannot embed in a similar way as in the case with the multiplicatively
homomorphic property. Therefore we have to choose one hash value to embed the in-
formation of y.

In order to analyze the security of schemes, we have assumed that we can efficiently
sample from the binomial distribution B(N, p) perfectly. We could relax this perfectness
to statistically closeness by modifying the security proofs. Making polynomial-time
algorithms or analyzing precisely the algorithms proposed before are also interesting
problems found in this paper.

It is also interesting to analyze the security of other cryptosystems, e.g., encryption,
identification, in our models.

19



Acknowledgements

We are grateful to Martijn Stam for giving us many valuable comments on both techni-
cal and editorial problems in the initial version of this paper. His suggestions also helps
us to improve the representation of this paper. We would also like to thank anonymous
referees for their constructive comments including possible future works. We mention
some of these in the concluding remarks.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: ACM Conference on Computer and Communications Security. (1993) 62–73

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In Advances in Cryptology –
EUROCRYPT ’94. Volume 950 of LNCS., Springer-Verlag (May 1994) 92–111

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and
Rabin. In Advances in Cryptology – EUROCRYPT ’96. Volume 1070 of LNCS., Springer-
Verlag (May 1996) 399–416

4. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J.
Cryptology 13(3) (2000) 361–396

5. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA
assumption. J. Cryptology 17(2) (2004) 81–104

6. Wang, X., Yu, H.: How to break MD5 and other hash functions. In Advances in Cryptology
– EUROCRYPT 2005. Volume 3494 of LNCS., Springer-Verlag (May 2005) 19–35

7. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In Advances in Cryptology
– CRYPTO 2005. Volume 3621 of LNCS., Springer-Verlag (August 2005) 17–36

8. Unruh, D.: Random oracles and auxiliary input. In Advances in Cryptology – CRYPTO
2007. Volume 4622 of LNCS., Springer-Verlag (August 2007) 205–223

9. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In Advances in Cryptology – CRYPTO 2002. Volume 2442 of
LNCS., Springer-Verlag (August 2002) 111–126

10. Liskov, M.: Constructing an ideal hash function from weak ideal compression functions.
In Selected Areas in Cryptography (SAC 2006). Volume 4356 of LNCS., Springer-Verlag
(August 2007) 358–375

11. Pasini, S., Vaudenay, S.: Hash-and-sign with weak hashing made secure. In ACISP 2007.
Volume 4586 of LNCS., Springer-Verlag (July 2007) 338–354

12. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In Advances in
Cryptology – EUROCRYPT 2002. Volume 2332 of LNCS., Springer-Verlag (April 2002)
272–287

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing 17(2) (1988) 281–308

14. Ahrens, J.H., Dieter, U.: Computer methods for sampling from Gamma, Beta, Poisson and
Binomial distributions. Computing 12 (1974) 223–246

15. Coron, J.S.: On the exact security of full domain hash. In Advances in Cryptology –
CRYPTO 2000. Volume 1880 of LNCS., Springer-Verlag (August 2000) 229–235

16. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In
Advances in Cryptology – CRYPTO 2006. Volume 4117 of LNCS., Springer-Verlag (August
2006) 41–59

20


