
The Usefulness of Sparsifiable Inputs:
How to Avoid Subexponential iO

Thomas Agrikola1,?, Geoffroy Couteau2,?, and Dennis Hofheinz3,?

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 IRIF, Paris-Diderot University, CNRS, France

3 ETH Zurich, Switzerland

Work done while all authors were at
Karlsruhe Institute of Technology.

Abstract. We consider the problem of removing subexponential reduc-
tions to indistinguishability obfuscation (iO) in the context of obfuscating
probabilistic programs. Specifically, we show how to apply complexity
absorption (Zhandry, Crypto 2016) to the recent notion of probabilistic
indistinguishability obfuscation (piO, Canetti et al., TCC 2015). As a
result, we obtain a variant of piO which allows to obfuscate a large class
of probabilistic programs, from polynomially secure indistinguishability
obfuscation and extremely lossy functions. Particularly, our piO variant
is able to obfuscate circuits with specific input domains regardless of
the performed computation. We then revisit several (direct or indirect)
applications of piO, and obtain
– a fully homomorphic encryption scheme (without circular security

assumptions),
– a multi-key fully homomorphic encryption scheme with threshold

decryption,
– an encryption scheme secure under arbitrary key-dependent messages,
– a spooky encryption scheme for all circuits,
– a function secret sharing scheme with additive reconstruction for all

circuits,
all from polynomially secure iO, extremely lossy functions, and, depending
on the scheme, also other (but polynomial and comparatively mild)
assumptions. All of these assumptions are implied by polynomially secure
iO and the (non-polynomial, but very well-investigated) exponential DDH
assumption. Previously, all the above applications required to assume the
subexponential security of iO (and more standard assumptions).

Keywords: indistinguishability obfuscation, extremely lossy functions,
subexponential assumptions.

1 Introduction

Obfuscation. Code obfuscation has been formalized already in the early 2000s as
a cryptographic building block, by Hada [42] and Barak et al. [5], along with a
? Supported by ERC Project PREP-CRYPTO 724307.

2 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

number of early positive [23,45,47,56,61] and negative [5,38,61] results. However,
prior to the candidate obfuscation scheme of Garg et al. [31], only relatively few
positive results on obfuscation were known.

The first candidate obfuscator from [31] changed things. Their work identified
indistinguishability obfuscation (iO, cf. [5,39]) as an achievable and useful general
notion of obfuscation: it presented a candidate indistinguishability obfuscator,
along with a first highly non-trivial application. Since then, a vast number of
applications have been proposed, ranging from functional [31], deniable [59],
and fully homomorphic [25] encryption, over multi-party computation (e.g.,
[30]), to separation results (e.g., [46]). In the process, powerful techniques like
“puncturing” [59] have been discovered, which have found applications even
beyond obfuscation (e.g., in multi-party computation [8, 36], instantiating the
Fiat-Shamir paradigm [24], and verifiable random functions [9, 40]). Besides, the
notion of iO itself has been refined, and related to other notions of obfuscation [2,
10, 11, 20, 25, 50], and various different constructions of obfuscators have been
presented [3, 4, 13,53,54,57,63].

Subexponential assumptions. It is currently hard to find a cryptographic prim-
itive that can not be constructed from iO (in combination with another mild
assumption such as the existence of one-way functions). However, some of the
known iO-based constructions come only with subexponential reductions to iO.
For instance, the only known iO-based constructions of fully homomorphic en-
cryption [25], spooky encryption [27], and graded encoding schemes [29] suffer
from reductions with a subexponential loss.

Hence, while iO has generally been recognized as an extremely powerful
primitive (even to the extent being called a “central hub” for cryptography [59]),
it is not at all clear if this also holds for polynomially secure iO. Indeed, it is
conceivable that only polynomially secure iO exists, in which case much of iO’s
power stands in question.

More generally, subexponential reductions (in particular to iO) are undesirable.
Namely, the security of existing iO constructions is still not well-understood, and
in particular current state-of-the-art constructions of iO schemes (such as [4,53,54])
already require subexponential computational assumptions themselves. Hence,
assuming subexponential iO is a particularly risky bet. This suspicion is confirmed
in part by [58], who separate polynomial and subexponential security for virtual
black-box obfuscation.

Removing subexponential assumptions in general and from iO-based construc-
tions in particular has already explicitly been considered in [35,52] and [33,34,55]
respectively. These works offer general techniques and ideas to turn subexponen-
tial reductions into polynomial ones. For instance, [34,55] offer ways to replace
(subexponential) iO-based constructions with (polynomial) constructions based
on functional encryption. Of course, this requires a special structure of the prim-
itive to be implemented, and is demonstrated for several primitives, including
non-interactive key exchange and short signature schemes.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 3

Our contribution. In this work, we are also concerned with substituting subex-
ponential with polynomial reductions in iO-based constructions. Unlike [34,55],
however, we do not follow the approach of using functional encryption directly
in place of iO, but instead will employ extremely lossy functions (ELFs) [62] to
“absorb” subexponential complexity.4

We will implement a variant of probabilistic indistinguishability obfuscation
(piO, introduced in [25]) using polynomially secure iO (and ELFs). piO schemes
can be used to obfuscate probabilistic (i.e., randomized) programs, and are
currently the only way to obtain, e.g., fully homomorphic encryption (FHE)
schemes without circular security assumptions [25]. However, the only previous
construction of piO schemes required subexponentially secure iO [25]. Hence,
our construction yields the first FHE scheme from polynomially secure iO (and
ELFs). Similarly, we can turn the assumption of subexponentially secure iO into
polynomially secure iO (plus ELFs) in the construction of spooky encryption
from [27].

Both FHE and spooky encryption are quite powerful primitives, and we
obtain several “spin-off results” by revisiting their implications. For instance,
when instantiating the piO-based FHE construction of [25] with our piO scheme
and a suitable public-key encryption scheme, we obtain a fully key-dependent
message (KDM) secure public-key encryption scheme from (polynomially secure)
iO and the exponentially secure DDH assumption (and no further assumptions).
Under the same assumptions, we obtain multi-key FHE with threshold decryption
and function secret sharing schemes from the spooky encryption construction
from [27].

On the plausibility of ELFs. One could argue that we trade one exponential
assumption for another, and it is not clear that assuming polynomial iO and
exponential DDH is any better than assuming only subexponential iO in the first
place. Seconding Zhandry [62] here, we think that exponential DDH is a realistic
assumption that is far more popular, better-investigated, and arguably more
plausible than subexponential iO. Much of the currently deployed cryptography
relies on (in fact a strong variant of) exponential DDH, because parameters are
almost always chosen according to the best known attacks.

On the number of assumptions. Another natural observation is that iO for
general circuits is already an exponential family of assumptions in itself (one
for each obfuscated circuit). It might seem that this lets the challenge of relying
on polynomially secure iO instead of subexponentially secure iO appear less
appealing. We make two comments on that.

– First, being an exponential family of assumptions and assuming resistance
against subexponential adversaries are orthogonal issues. Many cryptographic

4 That means that our final schemes depend on ELFs, which are currently only known
to be instantiable from exponential assumptions. However, we stress that ELFs can be
built from exponential variants of very standard assumptions, such as the decisional
Diffie-Hellman (DDH) assumption.

4 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

assumptions have several dimensions of strengths, and relaxing the assumption
in any of these dimensions is desirable.5 In this work, we make progress in
one important dimension. By replacing subexponential iO by polynomial
iO plus exponential DDH, we effectively trade an exponential number of
subexponential hardness assumptions in exchange for a single (plausible,
well-studied) exponential hardness assumption (plus an exponential family of
polynomial hardness assumptions).

– Second, iO being an exponential family of assumptions can be considered an
artificial consequence of working on the general notion of iO for arbitrary
circuits. When using iO in concrete constructions (e.g. in all the constructions
described in this paper), one almost never needs to assume iO for all circuits.
It usually suffices to assume iO for a constant number of specific circuits
(namely those being obfuscated in the construction and the analysis). Hence,
iO is a small number of assumptions when used for building a cryptographic
primitive.

1.1 Technical overview

The piO construction of Canetti et al. To describe our ideas, it will be helpful to
briefly review the work of Canetti et al. [25]. In a nutshell, they define the notion
of piO as a way to obfuscate probabilistic programs, and show how to use piO
to implement the first FHE scheme without any circular security assumption.
Intuitively, where the notion of iO captures that the obfuscation iO(P) of a
deterministic program P does not leak anything beyond the functionality of P ,
piO captures the same for probabilistic programs P .6

They also show how to implement piO with an indistinguishability obfuscator
iO and a pseudorandom function (PRF) F . Namely, in order to obfuscate a
probabilistic program P , Canetti et al. obfuscate the deterministic program P ′

that, on input x, runs P (x) with random coins r = F (K,x). Here, K is a PRF
key hardcoded into P ′. The security proof uses “puncturing” techniques [59] and a
hybrid argument over all possible P -inputs x. More specifically, for each P -input
x, separate reductions to the security of iO and F show that the execution of
P ′(x) is secure.7

This proof strategy is very general and does not need to make any specific
assumptions about the structure of P . (In fact, this strategy can be viewed as a
specific form of “complexity leveraging”, technically similar to the conversion of
selective security into adaptive security, e.g., [16].) However, the price to pay is a
reduction loss which is linear in the size of the input domain (which usually is
5 For example, if a protocol relies on the subexponential hardness of LWE with
exponential modulus-to-noise ratio, it would be desirable to achieve the same while
relying only on polynomially secure LWE, even if the modulus-to-noise ratio remains
exponential.

6 This is of course an oversimplification. Also, [25] define several types of piO security
that provide a tradeoff between security and achievability.

7 Again, we are not very specific about the form of desired or assumed security. However,
we believe that for this exposition, these specifics do not matter.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 5

exponentially large). In particular, even after scaling security parameters suitably,
Canetti et al. still require subexponentially secure iO and PRFs.

More on previous works to remove subexponentiality. There are a number of known
ways to deal with subexponential reduction losses due to complexity leveraging
(or related techniques). For instance, various semi-generic (pre-iO) techniques seek
to achieve adaptive security (for different primitives) by establishing an algebraic
or combinatorial structure on the used inputs [17, 44, 49, 60], and can sometimes
be adapted to the iO setting [48]. But like the already-mentioned, somewhat
more general approaches [34,55], these works make specific assumptions about
the structure of the involved computations.

A somewhat more general approach (that works for more general classes of
programs) was outlined by Zhandry [62], who introduces the notion of “extremely
lossy functions” (ELFs). Intuitively, an ELF is an injective function G that can be
switched into an “extremely lossy mode”, in which its range is polynomially small.
Such an ELF can sometimes be used to “preprocess” inputs in a cryptographic
scheme, with the following benefit: a security reduction can switch the ELF
to extremely lossy mode, so that only a polynomial number of (preprocessed)
inputs G(x) need to be considered. This simplifies a potential hybrid argument
over all (preprocessed) inputs G(x), and can lead to a polynomial (instead of a
subexponential) reduction.

However, trying to apply this strategy to the construction and reduction of
Canetti et al. (as sketched above) directly fails. Namely, in their application,
inputs will be inputs x to an arbitrary (probabilistic) program P ; preprocessing
them with an ELF will destroy their structure, and it is not clear how to run P
on ELF-preprocessed inputs G(x). Indeed, applying ELFs to realize piO requires
fundamentally different techniques.

Main idea: piO with sparsifiable inputs. Instead, we will restrict ourselves to
programs P that take as input an element x from a small number of (arbitrary
but efficiently samplable) distributions. In other words, all possible inputs x
need to be in the range of one of a small number of efficient samplers Si. As
an example, for i ∈ {0, 1}, sampler Si could sample ciphertexts C that encrypt
plaintext i. Moreover, we require that all inputs to a program P to be obfuscated
are at some point actually sampled from some Si according to a certain process.

Obfuscating a given probabilistic program P (that takes as inputs one or
more x as above) now consists of two steps:
1. First, we encode all inputs x, in the sense that we compile Si to attach a

“certificate” aux to x. This certificate aux guarantees that x has really been
sampled using Si. Furthermore, the compiled sampler Si uses preprocessed
random coins of the form G(r) (instead of r) for an ELF G. (When G is
in injective mode, this does not affect the distribution of sampled x.) The
certificate aux additionally guarantees this choice of random coins.8

2. Second, we produce the actual obfuctation of the probabilistic program
P as follows. We use an indistinguishability obfuscator iO to obfuscate the

8 Looking ahead, this “certificate” will be implemented using a NIZK in our construction.

6 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

following (deterministic) variant P ′ of P : on inputs x1, . . . , x` with certificates
aux1, . . . , aux`, P ′ first checks the certificates auxi and aborts if one of them
is invalid. Next, P ′ runs P (x1, . . . , x`), with random coins F (K, (xi)

`
i=1) for

a PRF F and a hardcoded PRF key K. Finally, P ′ outputs P ’s output.
Maybe the most important property of this setup is that now the sets of inputs xi
are “sparsifiable” in the following sense. If we set G to extremely lossy mode, then
only a polynomial number of different random coins r can occur. Hence, each Si
will output one of only a small number of possible samples (e.g., encryptions C
generated with random coins from a small set). In that sense, the set of possible
inputs xi to P has been “sparsified”, and a hybrid argument over all possible
inputs as in [25] is possible with polynomial loss.

We stress that our technique of applying ELFs fundamentally differs from [62].
In [62], the constructed primitive itself ensures that G is applied on all inputs.
When approaching the challenge of constructing piO, however, the input to the
primitive must externally be sampled using random coins that are preprocessed
withG. This process is not under the control of the primitive and therefore requires
a mechanism certifying that inputs are generated according to this specific process.
We implement this mechanism using the combination of compiling the sampler
for the input distribution into a “certifying sampler” (step 1) and restricting
correctness of the obfuscated program (step 2).

Surprisingly, our piO scheme achieves the notion of “dynamic-input piO” [25], a
very strong variant of piO security. On a high level, dynamic-input piO guarantees
indistinguishability between obfuscations of probabilistic programs as long as
their output distributions on adversarially chosen inputs are indistinguishable.
This constitutes a very strong requirement and, in fact, implies differing-inputs
obfuscation [2, 5], a notion for which strong impossibility results exist [7, 32].
However, our obfuscator produces circuits which are only required to work on
inputs certifiably generated according to a specific process. Hence, our piO
scheme enjoys a restricted form of correctness. This enables us to circumvent the
impossibility results [7, 32].

Applications. One obvious question is of course how restrictive our assumption
on input domains really is. We show that our assumptions apply to two existing
piO-based constructions, with a number of interesting consequences.

First, we revisit the piO-based construction of fully homomorphic encryption
from [25]. Here, piO is used to obfuscate the FHE evaluation algorithm that
takes two ciphertexts (say, of two bit plaintexts b0 and b1) as input, and outputs
a ciphertext of the NAND of the two plaintexts (i.e., b0∧b1). If we set Sb to be a
sampler that samples an encryption of b, this setting perfectly fits our scheme.
Hence, we obtain first a leveled homomorphic encryption (LHE) scheme, and from
this an FHE scheme using the high-level strategy from [25]. Hence, putting this
together with our piO construction, we obtain an FHE scheme from polynomially
secure iO and an ELF (and no further assumptions).

We note that the above FHE scheme is also fully key-dependent message
(KDM, see [14]) secure when implemented with a suitable basic public-key
encryption scheme (such as the DDH-based scheme of [18]). In that case, the

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 7

FHE is secure even when an encryption of its own secret key Csk = Enc(pk, sk) is
public. However, such an encryption Csk can be transformed into an encryption
Enc(pk, f(sk)) of an arbitrary function of sk thanks to the fully homomorphic
properties of the FHE scheme. This leads to a conceptually very simple fully
KDM-secure encryption scheme from polynomial assumptions (and ELFs). (We
stress that we do not claim novelty for this observation. The connection between
FHE and KDM security has already been observed in [6], and [27] have observed
that the FHE construction of Canetti et al. preserves interesting properties of
the underlying encryption scheme. However, [27] do not explicitly mention KDM
security, and we find these consequences interesting enough to point out.)

As our second application, we consider spooky encryption (with CRS) intro-
duced by Dodis et al. [27]. Intuitively, a spooky encryption scheme features a
particular type of homomorphism in a multi-key, multi-ciphertext setting. More
precisely, given ciphertexts {ci = Enc(pki, xi)}i, a spooky encryption scheme al-
lows to produce ciphertexts {c′i}i with yi = Dec(ski, c

′
i) such that certain so-called

“spooky” relations between between the xi’s and the yi’s hold. An important
subclass of spooky relations allows to ensure that the yi’s are random subject
to

∑
i yi = f(x1, . . . , xn), for any polynomial-time computable function f . Dodis

et al. show that spooky encryption implies (among other things) function secret
sharing, and they give a piO-based instantiation of spooky encryption (without
the need of a CRS). At the heart of their construction is an obfuscated public
“spooky evaluation” algorithm with a hardcoded decryption key. Since this algo-
rithm also takes ciphertexts (and a public key) as input, its input domain can be
sparsified much like in the FHE case.

In contrast to the FHE application, however, the spooky encryption application
contains more technical subtleties. In particular, some inputs to the “spooky
evaluation” algorithm may depend on other inputs, and hence sparsifying inputs
needs to proceed in a certain order. The main difficulty here is to find a suitably
flexible definition of sparsification; we omit the details in this overview. We
note that our results of course also yield all applications of spooky encryption,
only from polynomially secure iO (and ELFs). In particular, we obtain a simple
protocol for function secret sharing for all functions (with additive reconstruction)
from these assumptions [21].

We believe that our new notion of obfuscation will prove useful in other
applications; for example, it would likely allow to improve the recent result of [26],
which constructed CCA1-secure FHE from subexponentially secure iO.

Follow-up work. In the recent work [28], Döttling and Nishimaki define the
notion universal proxy re-encryption (UPRE). UPRE schemes allow a proxy
to convert any ciphertext under any public key of any existing PKE scheme
into a ciphertext under any public key of any possibly different existing PKE
scheme. [28] instantiate UPRE based on probabilistic IO due to [25]. UPRE for
all PKE schemes (including non re-randomizable ones) requires dynamic-input
pIO, which implies differing-inputs obfuscation. However, [28] observe that our
notion of doubly-probabilistic IO suffices which yields an instantiation of UPRE
for all PKE schemes based on polynomial IO and exponential DDH.

8 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Organization. In Section 2, we introduce our notations and recall standard
preliminaries. Section 3 formally introduces our new variant of piO, called dpiO.
Section 4 shows how to instantiate dpiO using polynomially secure iO and ELFs.
Eventually, in Section 5 and the full version [1] we revisit the construction of
leveled homomorphic encryption from [25], using dpiO instead of piO. In the full
version [1], we revisit the construction of spooky encryption from [27] using dpiO
and analyze our new construction.

Acknowledgments

We would like to thank the anonymous reviewers for many helpful comments.

2 Preliminaries

Notations. Throughout this paper, λ denotes the security parameter. For a
natural number n ∈ N, [n] denotes the set {1, . . . , n}. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial
in the (implicit) security parameter λ. A positive function f is negligible if for
any polynomial p there exists a bound B > 0 such that, for any integer k ≥ B,
f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming probability
when its probability is at least 1− negl(λ) for a negligible function negl. Given
a finite set S, the notation x $← S means a uniformly random assignment of an
element of S to the variable x. The notation AO indicates that the algorithm
A is given oracle access to O. Let C = {Cλ}λ≥0 be a family of sets of (possibly
randomized) circuits, where Cλ contains circuits of size poly(λ). A circuit sampler
for C is a distribution ensemble D = {Dλ}λ≥0, such that Dλ ranges over triples
(C0, C1, z) with (C0, C1) ∈ C2

λ of identical size and taking inputs of the same
length, and z ∈ {0, 1}poly(λ). A class of samplers S is a set of circuit samplers for
C.

2.1 Indistinguishability Obfuscation for General Samplers

Indistinguishability obfuscation (iO) for general samplers was introduced in [25].
This notion generalizes the classical notion of iO introduced in [5]. Informally, an iO
scheme for a samplerD allows to obfuscate circuits sampled withD so that, given a
sample (C0, C1) from D, iO(C0) ≈ iO(C1). The standard notion of iO is recovered
by considering samplers over functionally equivalent deterministic circuits of
the same size. Stronger notions of obfuscation, denoted piO, can be defined for
samplers over probabilistic circuits, satisfying various indistinguishability notions.
We recall below the general definition of [25] of piO for a class of samplers (using a
different notion of correctness defined in [27]). The original correctness definition
states that an efficient adversary given oracle access to either the original circuit
or the obfuscation (with the restriction that no input can be queried twice), can
not tell the difference.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 9

Definition 1 (piO for a Class of Samplers [25, 27]). A uniform PPT
machine piO is an indistinguishability obfuscator for a class of samplers S over
a family C = {Cλ}λ≥0 of possibly randomized circuits if it satisfies the following
conditions:

Correctness. For every security parameter λ, every circuit C ∈ Cλ, and ev-
ery input x, the distributions of C(x) over the random coins of C and of
piO(1λ, C)(x) over the random coins of the obfuscator are identical.

µ-Indistinguishability. For every sampler D = {Dλ}λ≥0 ∈ S, and for every
non-uniform PPT machine A, it holds that

|Pr[(C0, C1, z)
$← Dλ : A(C0, C1, piO(1λ, C0), z) = 1]

−Pr[(C0, C1, z)
$← Dλ : A(C0, C1, piO(1λ, C1), z) = 1]| ≤ µ(λ).

We remark that the construction of piO from [25] satisfies this notion of
correctness if instantiated with a perfect puncturable PRF, see Definition 4.
Note that this does not extend to multiple evaluations of the obfuscated circuit.
Further, note that this notion of correctness implies that the obfuscated circuit
respects the support of the original circuit.

To recover the standard notion of iO, we introduce the class Seq of samplers
for functionally equivalent (possibly randomized) circuits, i.e., samplers over
triplets (C0, C1, z) such that |C0| = |C1|, and for any input x and random
coin r, C0(x; r) = C1(x; r). The standard iO notion is obtained by considering
piO over the subclass Sdet ⊂ Seq of samplers for deterministic functionally
equivalent circuits. We denote by AdviO(A) the advantage of a PPT adversary A
in distinguishing between the obfuscation of functionaly equivalent deterministic
circuits.

The work of [25] introduced four types of samplers over probabilistic circuits,
which define four corresponding variants of piO: dynamic-input piO, worst-case
piO, memoryless worst-case piO, and X-Ind piO. Informally, a dynamic-input
sampler is required to output (possibly randomized) circuits C0, C1 such that
the output of these circuits on a dynamically chosen input is computationally
indistinguishable. The corresponding notion, dynamic-input piO, is the strongest
notion defined in [25] and a randomized equivalent of the notion of differing-input
obfuscation. Therefore, it inherits the implausibility results of differing-input
obfuscation for general circuits [7, 32]. On the other hand, [25] shows that
the weaker notion X-Ind piO can be realized from subexponentially secure iO
(and subexponentially secure one-way functions). Below, we recall the notion of
dynamic-input samplers and dynamic-input piO from [25].

2.2 Dynamic-Input Samplers

Definition 2 (Dynamic-Input Indistinguishable Samplers [25]).
The class Sd-Ind of dynamic-input samplers for a circuit family C contains all
circuits samplers D = {Dλ}λ∈N for C with the following properties: for every non-
uniform PPT A = (A1,A2), the advantage Advd-Ind(A) := Pr[Exp-d-IndA(λ) =
1]− 1

2 of A in the experiment Exp-d-Ind represented in Figure 1 is negligible.

10 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Experiment Exp-d-IndA(λ)

(C0, C1, z)
$← Dλ

(x, st)
$← A1(C0, C1, z) // the challenge input is chosen dynamically

y
$← Cb(x) for b $← {0, 1}

b′
$← A2(st, C0, C1, z, x, y)

return b = b′

Fig. 1. Experiment Exp-d-Ind for the indistinguishability property of dynamic-input
samplers.

Definition 3 (dynamic-input piO). A uniform PPT machine is a dynamic-
input piO scheme if it is a piO for the class of dynamic-input samplers Sd-Ind

over C that includes all randomized circuits.

Note that the class Seq of samplers for functionally equivalent circuits that
we defined previously, is a subclass of Sd-Ind: any sampler for triples (C0, C1, z)
where C0 and C1 are functionally equivalent is trivially a dynamic-input sampler.

2.3 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [37] is a tuple of PPT
algorithms F = (F.KeyGen,F.Eval). Let K denote the key space, X denote the
domain, and Y denote the range. The key generation algorithm F.KeyGen on
input of 1λ, outputs a random key from K and the evaluation algorithm F.Eval
on input of a key K and x ∈ X , evaluates the function F : K × X → Y. The
core property of PRFs is that, on a random choice of key K, no probabilistic
polynomial-time adversary should be able to distinguish F (K, ·) from a truly
random function, when given black-box access to it. Puncturable PRFs (pPRFs)
have the additional property that some keys can be generated punctured at
some point, so that they allow to evaluate the PRF at all points except for
the punctured point. As observed in [19,22,51], it is possible to construct such
punctured keys for the original construction from [37], which can be based on
any one-way functions [43].

Definition 4 (Puncturable Pseudorandom Function [19, 22, 51]). A
puncturable pseudorandom function (pPRF) with punctured key space Kp is
a triple of PPT algorithms (F.KeyGen,F.Punct,F.Eval) such that
– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Punct(K,x), on input K ∈ K, x ∈ X , outputs a punctured key K{x} ∈ Kp,
– F.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′, outputs
an evaluation of the PRF.

We require F to meet the following conditions:

Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,
Pr[K

$← F.KeyGen(1λ),K{x} $← F.Punct(K,x) :

∀x′ ∈ X \ {x} : F.Eval(K,x′) = F.Eval(K{x}, x′)] = 1.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 11

Pseudorandom at punctured points. For all PPT adversaries A,

Advs-cPRF(A) := Pr[Exp-s-pPRFA(λ) = 1]− 1

2
is negligible, where Exp-s-cPRF is represented Figure 2.

We call a pPRF F perfect, if the distribution {F.Eval(K,x) | K $← F.KeyGen(1λ)}
is identical to the uniform distribution over Y, for all inputs x ∈ X .9

Definition 4 corresponds to a selective security notion for puncturable pseu-
dorandom functions; adaptive security can also be considered, but will not be
required in our work. For ease of notation we often write F (·, ·) instead of
F.Eval(·, ·).

Experiment Exp-s-pPRFA(λ)

(x∗, state)
$← A(1λ)

K
$← F.KeyGen(1λ), K{x∗} $← F.Punct(K,x∗)

b
$← {0, 1}, y0 ← F.Eval(K,x∗), y1 $← Y

b′
$← A(state,K{x∗}, yb)

return b = b′

Fig. 2. Selective security game for puncturable pseudorandom functions.

2.4 Extremely Lossy Function

In this section we present extremely lossy functions (ELFs) introduced in [62].
ELFs are an extremely powerful primitive for complexity absorption allowing to
replace subexponential or even exponential security assumptions with polynomial
ones. Informally, an ELF is a function that can be generated in two different
modes: an injective mode and an extremely lossy mode. In injective mode,
the range of the ELF has exponential size whereas the range comprises only
polynomially many elements in extremely lossy mode.

Definition 5 (Extremely Lossy Function [62]). An extremely lossy function
ELF is an algorithm ELF.Gen which, on input (M, r), where M is an integer and
r ∈ [M], outputs the description of a function G : [M]→ [N] such that
– G can be computed in time poly(logM)
– If r = M , G is injective with overwhelming probability (in logM) over the
randomness of ELF.Gen(M,M);

– For any r ∈ [M], |G([M])| < r with overwhelming probability (in logM) over
the randomness of ELF.Gen(M, r);

– Indistinguishability: For any large enough M , any polynomial P , and any
inverse polynomial function δ, there exists a polynomial Q such that for any
adversary A running in time at most P (logM) and any r ∈ [Q(logM),M],
the advantage of A in distinguishing ELF.Gen(M,M) from ELF.Gen(M, r) is
bounded by δ(logM).

9 Given any pPRF F′, we can build a perfect pPRF F by sampling two keys
K1

$← F′.KeyGen(1λ) and K2
$← Y in the key generation algorithm and defining the

evaluation algorithm to output F′.Eval(K1, x)⊕K2 on input of x, see [27].

12 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

In addition, we will consider extremely lossy functions satisfying strong
regularity, as defined below.

Definition 6 (Strong regularity). An ELF is strongly regular if for any (poly-
nomial) r, the distribution {x $← [M] : G(x)} is statistically close to uniform over
G([M]), with overwhelming probability over the choice of G $← ELF.Gen(M, r).

We note that, if an ELF is strongly regular, it is possible to efficiently
enumerate its image: the set of values obtained by evaluating an ELF on λr log r
random inputs, where r is a bound on the size of its image, contains the entire
image of the ELF with overwhelming probability.

Instantiating ELFs. A construction of strongly regular extremely lossy function
is given in [62]. It can be based on the exponential hardness of the decision Diffie-
Hellman assumption (or any of its variants, such as the decision linear assumption),
which we denote eDDH. The eDDH assumption for a group generator GroupGen
(which generates a tuple (G, p, g) where G is a group, p is its order, and g is
a generator of G) states that there exists a polynomial q such that for any
time bound t and probability ε, denoting κ ← log q(t, 1/ε), any adversary A
running in time at most t has advantage at most ε in distinguishing the following
distributions:

{(G, p, g)
$← GroupGen(1κ), (a, b, c)

$← Z3
p : (G, g, ga, gb, gc)},

{(G, p, g)
$← GroupGen(1κ), (a, b)

$← Z2
p : (G, g, ga, gb, gab)}.

As noted in [62], groups based on elliptic curves are plausible candidates for
groups where this assumption holds: in practical instantiations of DDH over
elliptic curves, the size of the group is chosen assuming that the best attack
takes time O(

√
p), hence disproving eDDH (which amounts to showing that

there is an attack which takes time less than pc for any constant c) would
have considerable practical implications. Furthermore, relying on some form
of exponential hardness assumption seems necessary, as a construction from
polynomial hardness only would have surprising complexity-theoretic implications.
More precisely, given access to only some super-logarithmic amount of non-
determinism (i.e. ω(log logM) bits, where [M] is the domain of the ELF), it
is easy to distinguish between injective and lossy mode of the ELF. This is
due to the fact that in lossy mode, the codomain of G has only polynomial
size which means that the restriction of G to the set D = [2ω(log logM)] (having
super-polynomial cardinality) is guaranteed to have a collision (which is not the
case in injective mode), and using only ω(log logM) bits of non-determinism this
collision can be guessed.

2.5 Non-interactive Zero-Knowledge proof system

A non-interactive zero-knowledge (NIZK) proof system for a language L with
witness relation R enables to prove in a non-interactive manner that some
statements are in L without leaking information about corresponding witnesses.
NIZK proof systems were originally introduced in [15].

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 13

Definition 7 (Non-interactive zero-knowledge proof system [41]). A
non-interactive zero-knowledge (NIZK) proof system for a language L ∈ NP
(with witness relation R) is a tuple of PPT algorithms NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) such that NIZK.Setup is a common reference string
generation algorithm, NIZK.Prove is a proving algorithm NIZK.Verify is a (deter-
ministic) verification algorithm.
– NIZK.Setup(1λ) outputs a common reference string crs.
– NIZK.Prove(crs, x, w), on input crs, a statement x and a witness w, outputs
a proof π.

– NIZK.Verify(crs, x, π), on input crs, a statement x and a proof π, outputs
either 1 or 0.

We require NIZK to meet the following properties:

Perfect completeness. For every (x,w) ∈ R, we have that
Pr[crs

$← NIZK.Setup(1λ), π $←NIZK.Prove(crs, x, w) :

NIZK.Verify(crs, x, π) = 1] = 1.
Statistical soundness. For every x 6∈ L with |x| = λ and every (possibly

unbounded) adversary A, we have that
Pr[crs

$← NIZK.Setup(1λ), π
$← A(crs, x) : NIZK.Verify(crs, x, π) = 1] < 2−λ.

Computational zero-knowledge. There exists a PPT algorithm Sim = (Sim0,
Sim1) such that for every PPT adversary A,

AdvZK(A) := |Pr
[
crs

$← NIZK.Setup(1λ) : ANIZK.Prove(crs,·,·)(crs) = 1
]

− Pr
[
(crs, τ)

$← Sim0(1λ) : ASim′1(crs,τ,·,·)(crs) = 1
]
|

is negligible in λ, where Sim′1(crs, τ, x, w) returns Sim′1(crs, τ, x) only if (x,
w) ∈ R.

For simplicity in the analysis we use a NIZK proof system that satisfies the fol-
lowing property: with overwhelming probability over the coins of NIZK.Setup(1λ),
there does not exist any pair (x, π) such that x /∈ L and NIZK.Verify(crs, x, π) = 1.
We call a NIZK that satisfies this property almost perfectly sound. We note that
there is a simple folklore method which allows to construct an almost perfectly
sound NIZK proof system starting from any statistically sound NIZK proof system.
Consider a 2−λ-statistically sound NIZK proof system, for statements x ∈ {0, 1}n,
for some polynomial n = n(λ). Using parallel repetitions, the soundness of the
proof system can be amplified to 2−λ−n.10 Then, it necessarily holds that for all
possible crs except a 2−λ fraction of them, there does not exist any pair (x, π)
where x /∈ L and π is an accepting proof. To realize this, let Ecrs

x denote the
event that there exists a proof π such that NIZK.Verify(crs, x, π) = 1. Then, by a
union bound argument, Prcrs[∃x ∈ {0, 1}n \ L : Ecrs

x] ≤
∑
x∈{0,1}n\L Prcrs[E

crs
x] ≤

2n · 2−λ−n. Hence, the NIZK proof system obtained via parallel repetitions is
almost perfectly sound.
10 That is, for any statement x 6∈ L, the probability Prcrs[∃π : NIZK.Verify(crs, x, π) =

1] ≤ 2−λ−n.

14 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

In [12] Bitansky et al. showed that statistically sound NIZK proof systems
can be obtained from polynomially secure indistinguishability obfuscation in
conjunction with polynomially secure one-way functions.

3 Indistinguishability Obfuscation of Probabilistic
Circuits over Distributions of Inputs

We first define the notion of a sampler with input. A sampler with input is a
family of PPT algorithms which, on input x, sample from some distribution Dx.
This notion is convenient to capture the fact that, in many scenarios, the inputs
to an obfuscated (probabilistic) circuit are sampled from some distribution Dx,
where x is some private input of a player.

Definition 8 (Sampler with Input). We say that SI = {SIλ}λ∈N is a family
of samplers with input, with input domain I = {Iλ}λ∈N, if for any λ ∈ N, SIλ
is a set of probabilistic algorithms running in polynomial time (in 1λ) with input
domain Iλ such that for any S ∈ SIλ, and x ∈ Iλ, S(x) samples from {0, 1}λ.

3.1 Doubly-Probabilistic Indistinguishability Obfuscation

Below, we define a variant of indistinguishability obfuscation, that takes into
account the fact that in many applications, obfuscated (probabilistic) circuits
might only have to be evaluated on inputs coming from specific distributions.
This is formalized by defining an encoding procedure for a sampler with input,
which additionally produces auxiliary material that an obfuscated circuit can
use to verify that its inputs were produced correctly, and by restricting the
correctness of the obfuscated circuit to only hold for such well-formed inputs. We
also refer to this auxiliary material as “certificate”.

However, this approach faces two issues. First, the inputs to an obfuscated
circuit might not be sampled “all at once” from a single distribution; rather, they
can come from different and independent sources. We capture this behavior by
defining `-source obfuscation, to account for the fact that different inputs might
have been sampled independently. Second, when inputs are sampled by different
parties, there might still be interdependencies which must be accounted for. For
example, a party might sample an input (e.g. a public key of an encryption
scheme), pass it to a second party, who then samples a second input from a
distribution that is parametrized by the first input (e.g. a ciphertext under
that public key). We handle this possibility by ordering the ` inputs to the
obfuscated circuit, and by considering a stateful sampler with input S: when S
is used to generate the i’th sample yi, it receives in addition to its input a state
stf(y1, . . . , yi−1), where stf is some fixed efficiently computable state function
(which depends on the particular application), and the yj are outputs sampled
by the first i− 1 sources. The state function captures the fact that a particular
application might define an arbitrary communication pattern, and specifies which
samples a party should have access to when generating his sample.

Additionally, we admit the possibility that a sampler produces some additional
correlated output, that will not serve as input to an obfuscated circuit. Hence,

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 15

there is no need to “certify” this input using the auxiliary information, and we
call this output unauthenticated output. Continuing the use case from above,
given a sampler producing some public key, the unauthenticated part of that
sampler’s output could be a corresponding secret key.

Definition 9 (Doubly-Probabilistic Indistinguishability Obfuscation
(dpiO)). Let ` be an integer. Let {stfλ : ({0, 1}λ ∪ {⊥})`−1 → Tλ}λ∈N be a
family of efficiently computable functions. Let SI = {SIλ}λ∈N be a family of
samplers with inputs, with input domain {Tλ × I}λ∈N. Let C = {Cλ}λ∈N be a
family of (probabilistic) circuits, and let CS be a class of circuit samplers over
C. An `-source dpiO scheme for (stf,SI, C,CS) is a triple of PPT algorithms
(Setup,Encode,Obfuscate) such that

– Setup(1λ), on input the security parameter (in unary), outputs public param-
eters pp;

– Encode(pp, S), on input the public parameters pp, and a sampler with input
S ∈ SIλ, outputs an encoded sampler S′;

– Obfuscate(pp, S, C), on input public parameters pp, a sampler with input
S ∈ SIλ, and a circuit C ∈ C`λ, outputs a circuit C ′ of size poly(λ, |C|). We
call C ′ an obfuscation of C with respect to S.

We further assume that the outputs of S on any input (state, x) is of the form (y; y′)
(looking ahead, we will call y the authenticated output, and y′ the unauthenticated
output). The scheme should satisfy the three properties given below.

Informally, the first security requirement ensures that, on any (adversarially
chosen) input x, state state, and sampler with input S, the sampler S′ obtained
by encoding S outputs samples of the form (y, aux; y′) where (y; y′) is distributed
as an output of S(state, x), and aux does not leak any non-trivial information
about the inputs. This is formalized by requiring the existence of a simulator
that can simulate aux given only y.

Definition 10 (Simulatability of Encodings). An `-source dpiO scheme
for (stf,SI, C,CS) satisfies simulatability of encodings if for any large enough
λ and any (stateful) PPT adversary A, there exists a PPT simulator Sim =
(Sim0,Sim1) such that the advantage of A in distinguishing the experiments
Exp0-enc and Exp1-enc represented on Figure 3 is negligible. We denote by Advenc(A)
the advantage of A in this experiment.

We now introduce the restricted correctness requirement. Intuitively, it states
the following: in an honest scenario, the inputs (y1, . . . , y`) should be constructed
using the sampler with input S. The restricted correctness property guarantees
that if the inputs have indeed been constructed “according to S”, then the
obfuscated circuit will behave correctly, and its output distribution (taken over
the coins of the obfuscator) will be (statistically) indistinguishable from the
output distribution of the circuit C (taken over its internal random coins). Note
that this statistical indistinguishability does not extend to multiple evaluations.

16 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Exp0-encA (1λ)

pp
$← Setup(1λ)

return b′ ← AO
enc
0 pp

Exp1-encA (1λ)

(pp, trap)
$← Sim0(1λ)

return b′ ← AO
enc
1 [pp,trap](pp)

Oracle Oenc
0 [pp]

on input (S, state, x) from A
S′ ← Encode(pp, S)

(y, aux; y′)
$← S′(state, x)

return (y, aux; y′)

Oracle Oenc
1 [pp, trap]

on input (S, state, x) from A

(y; y′)
$← S(state, x)

aux
$← Sim1(pp, trap, S, y, state)

return (y, aux; y′)

Fig. 3. Experiments Exp0-encA (1λ) and Exp1-encA (1λ) for the simulatability of encodings
in an `-source dpiO. The PPT algorithm A can interact polynomially many times
with either Oenc

0 [pp] or Oenc
1 [pp, trap]. A wins the experiment when it outputs b′ = b in

Expb-encA (1λ)

Additionally, when evaluated on such inputs, the obfuscated circuit respects the
support of the original circuit.

To make this definition meaningful, we need a way to let the obfuscated circuit
verify that the inputs are well-formed. Note that we do not want to ensure that
they were generated through S with uniformly random coins, but only that they
were generated through S with some random coins (and some input). To make
this verification possible, we let the parties generate their input using the encoded
sampler S′ instead. This encoded sampler should correctly sample as S, but it will
in addition produce auxiliary information which can be used by the obfuscated
program to verify that the inputs were honestly constructed (more formally, for
a given y, that there exists an input x, coins r, and an unauthenticated part y′
such that (y; y′) = S(x; r)).

A small technicality is that we must allow the sampler with input to depend
on state information, to capture the possible interdependencies between the
inputs. This means that the auxiliary information will have to certify that an
input was generated correctly, with respect to some state that the obfuscated
circuit might not have access too (which would prevent it from verifying the
certificate). However, this issue disappears by restricting the interdependencies
to only involve a state computed from the previous samples (as opposed to
more complex interdependencies which would involve, for example, the coins
used to produce these samples). In this case, the obfuscated circuit can check
the certificates in an incremental way: it first checks that y1 was correctly
constructed with respect to the state stλ(⊥, . . . ,⊥), then it checks that y2 was
correctly constructed with respect to the state stλ(y1,⊥, . . . ,⊥), and so on.

Definition 11 (Statistical Restricted Correctness). An `-source dpiO
scheme for (stf,SI, C,CS) satisfies restricted correctness if for any large enough
λ ∈ N, any S ∈ SIλ, (x1, . . . , x`) ∈ I`λ, and C ∈ C`λ, the advantage of any
(possibly unbounded) adversary A in distinguishing the experiments Exp0-rcorr

and Exp1-rcorr represented on Figure 4 is negligible. We denote by Advrcorr(A) the
advantage of A in this experiment. Additionally, we require that the encoded

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 17

Exp0-rcorrA (1λ)

pp
$← Setup(1λ)

S′ ← Encode(pp, S)

C′
$← Obfuscate(pp, S, C)

for j ∈ [`] do

statej ← stfλ(y1, . . . , yj−1,⊥, . . .)
(yj , auxj ; y

′
j)← S′(statej , xj)

z ← C′(y1, aux1, . . . , y`, aux`)

return A(z)

Exp1-rcorrA (1λ)

for j ∈ [`] do

statej ← stfλ(y1, . . . , yj−1,⊥, . . .)
(yj ; y

′
j)← S(statej , xj)

z ← C(y1, . . . , y`)

return A(z)

Fig. 4. Experiments Exp0-rcorrA (1λ) and Exp1-rcorrA (1λ) for the restricted correctness prop-
erty an `-source dpiO. A wins the experiment when it outputs b′ = b in Expb-rcorrA (1λ)

when b $← {0, 1}.

sampler and the obfuscated circuit respect the support of the original sampler
and the original circuit, respectively. That is for all pp ← Setup(1λ) and all
S′ ← Encode(pp, S) and all C ′ ← Obfuscate(pp, S, C), we have that for all in-
puts (state, x), S′(state, x) ∈ Supp(S(state, x)) and for all (y1, aux1, . . . , y`, aux`)
produced as in Exp0-rcorr, C ′(y1, aux1, . . . , y`, aux`) ∈ Supp(C(y1, . . . , y`)).

We now introduce the indistinguishability notion. It is close in spirit to the
standard indistinguishability notion for obfuscation of probabilistic circuits of [25].
However, in our scenario, the security notion must account for the fact that a set
of public parameters pp is generated in a setup phase; the indistinguishability
property of obfuscated circuits must therefore hold when (polynomially) many
circuits are obfuscated with respect to a single string of public parameters. This
suggests an oracle-based security notion.

Definition 12 (Indistinguishability with Respect to CS). An `-source
dpiO scheme for (stf,SI, C,CS) satisfies indistinguishability with respect to CS
if for every circuit sampler D = {Dλ}λ∈N ∈ CS, for any large enough λ, the
advantage of any PPT adversary A in distinguishing the experiments Exp0-ind

and Exp1-ind represented on Figure 5 is negligible. We denote by Advind(A) the
advantage of A in this experiment.

Expb-indA (1λ)

pp
$← Setup(1λ)

return b′ ← AO
ind
b [pp,Dλ](·)(pp)

Oracle Oind
b [pp, Dλ]

on input S from A

(C0, C1, z)
$← Dλ

C′
$← Obfuscate(pp, S, Cb)

return (C0, C1, z, C
′)

Fig. 5. Experiment Expb-indA (1λ) for the indistinguishability with respect to CS in an
`-source dpiO. The PPT algorithm A can interact polynomially many times with
Oind
b [pp, Dλ]. The oracle Oind

b [pp, Dλ] is stateful and has (pp, Dλ) hardcoded in its
description. A wins the experiment when it outputs b′ = b in Expb-indA (1λ) when b $←
{0, 1}.

18 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

4 Construction

In this section, we will construct an `-source dpiO scheme (for any constant `), for
samplers with input over an input domain I of polynomial size11, and dynamic-
input indistinguishable circuit-samplers. Our construction relies on polynomially-
secure indistinguishability obfuscation, a perfect puncturable pseudorandom
function, an almost perfectly sound non-interactive zero-knowledge proof system,
and an extremely lossy function.

4.1 Overview

We start by providing a high-level overview of our construction. The Setup
procedure generates parameters for the ELF and for the NIZK proof sys-
tem. To encode a sampler with input S, we define the encoded sampler S′
as follows: on input (state, x; r), S′ computes (y; y′)

$← S(state, x;G(r)) and
aux

$← NIZK.Prove(y, LG,Sstate, (y
′, x, r)), and outputs (y, aux; y′). Here, G is the

ELF defined by the public parameters, and the language LG,Sstate contains all values
y for which there exists (y′, x, r) such that (y; y′) = S(state, x,G(r)). We call
valid input a value y ∈ LG,Sstate. Note that when G is in injective mode, LG,Sstate will in
general be a trivial language. The simulatability of the encodings directly follows
from the injectivity of G, and the zero-knowledge property of the proof system.

We construct the Obfuscate algorithm for a circuit C as follows (we assume a
single source in this overview for simplicity). It first samples a pPRF key K for the
pPRF F. Then, it returns an obfuscation of the following circuit: on input (y, aux),
run NIZK.Verify on aux to check that y is a valid input (and output ⊥ otherwise).
Set r ← F (K, y), and output C(y; r). Restricted correctness follows from the
correctness of the NIZK scheme. For indistinguishability between obfuscations
of two dynamic-input indistinguishable circuits (C0, C1), we follow the standard
puncturing strategy of [25]: we proceed through a sequence of hybrids, with
successive modifications of the obfuscated circuit. For every possible input y, we
construct a sequence of hybrids where the outputs C0(y; r) are gradually replaced
by C1(y; r). Each replacement relies on the security of the iO scheme, the PRF
security, and the dynamic-input indistinguishability of C0 and C1.

The main issue of this approach is that the number of possible inputs y
(hence the number of hybrids) is exponential – indeed, this is the reason why
the piO scheme of [25] requires subexponentially secure primitives (iO and PRF).
To get around this issue, we first switch G to an appropriate extremely lossy
mode, that the adversary cannot distinguish from the injective mode. Now, the
soundness of the NIZK proof system ensures that all valid inputs y are of the
form S(state, x;G(r)) for some (x, r) (omitting y′ for simplicity). For a given
state, the quantity of such values is bounded by the size of the range of G (which
is polynomial), times the size of the input domain I. Therefore, in all applications
where the inputs to the obfuscated circuit are sampled using private inputs from
a small domain, we can base security on polynomially secure iO.
11 We note that the output domain of such samplers can be of exponential size.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 19

Setup(1λ)

crs
$← NIZK.Setup(1λ)

G
$← ELF.Gen(M,M)

return pp← (crs, G)

Encode(pp, S)

define S′pp as follows :

Circuit S′pp(state, x; r1, r2)

(y; y′)← S(state, x;G(r1))

π
$← NIZK.Prove(crs,

st = (G,S, state, y), w = (y′, x, r1); r2)

return (y, π; y′)

return S′pp

Obfuscate(pp, S, C)

K
$← F.KeyGen(1λ)

define C̄ as follows:

Circuit C̄[stf, (crs, G), S, C,K](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
r := F.Eval(K, (y1, . . . , y`))

y := C((y1, . . . , y`); r)

return y

Λ
$← iO(C̄)

return Λ

Fig. 6. Construction of `-source dpIO scheme dpiO = (Setup,Encode,Obfuscate).

4.2 Construction

For our construction, we employ a perfectly sound NIZK proof system for the
following (parametrized) language

LG,Sstate := {y | ∃(y′, x, r) : (y; y′) = S(state, x;G(r))}.
Let ` ∈ N be a constant, let {stfλ : ({0, 1}λ ∪ {⊥})`−1 → Tλ}λ be a family of

efficiently computable state functions, and let C = {Cλ}λ be a family of (ran-
domized) circuits with random space {0, 1}M (where M = M(λ) is polynomial).
Let SI be a family of samplers with input domain I of polynomial size. Further,
let Sd-Ind be the class of dynamic-input indistinguishable samplers (over C).

Theorem 13. If ELF is a strongly regular extremely lossy function, iO is a
perfectly correct polynomially secure IO scheme, F is a polynomially secure perfect
puncturable PRF, and NIZK is a perfectly sound polynomially zero-knowledge
NIZK proof system for the family of languages {LG,Sstate}state,G,S, then dpiO =
(Setup,Encode,Obfuscate) defined in Figure 6 is an `-source dpIO scheme for
(stf,SI, C,Sd-Ind).

As noted in Section 2.5, almost perfectly correct NIZKs can be constructed
from polynomially-secure indistinguishability obfuscation and extremely lossy
functions. ELFs also imply the existence of one-way functions, hence of perfect
puncturable PRFs [37,43]. Therefore, we get as corollary:

20 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Corollary 14. Assuming polynomially-secure indistinguishability obfuscation
and extremely lossy functions, there exists (for any constant `) an `-source
doubly-probabilistic indistinguishability obfuscation scheme for the class of dy-
namic-input circuit-samplers, and input-samplers with a polynomial size input
domain.

Proof (of Theorem 13). We prove that dpiO as defined in Figure 6 satisfies
simulatability of encodings (cf. Definition 10), statistical restricted correctness
(cf. Definition 11), and indistinguishability (cf. Definition 12).

Simulatability of encodings. We prove that there exists a PPT simulator
Sim = (Sim0,Sim1) such that for every PPT adversaryA, the advantage Advenc(A)
is negligible. By the zero-knowledge property of NIZK, there exists a simulator
(NIZK.Sim0,NIZK.Sim1). We construct a simulator Sim = (Sim0,Sim1) as follows:

– Sim0 produces the CRS using (crs, τ)
$← NIZK.Sim0(1λ), samples the param-

eters of the ELF G in injective mode, and outputs pp := (crs, G) together
with trap := τ .

– Sim1 on input (pp, trap), a sampler S, a state state, and a value y sam-
pled via (y; y′)

$← S(state, x), Sim1 produces a simulated proof via π
$←

NIZK.Sim1(crs, τ, (G,S, state, y)) and outputs aux := π.

Let A be a PPT adversary on the simulatability property of dpiO. We prove
indistinguishability between the real and the simulated distribution via a series
of hybrids starting from the simulated game Exp1-enc

A (1λ).

Game G0: This game is identical to Exp1-enc
A (1λ). We remark that in this game,

the tuple (y; y′) is produced using the adversarially chosen sampler S on input of
the adversarially chosen state state and input x supplied with true randomness.
Game G1: This game is identical to G0 except for the fact that for each
query (S, state, x), the sampler S is supplied with randomness G(r) for uniform r
(instead of true randomness). Due to the strong regularity of G and by a standard
hybrid argument over all queries, the statistical distance between G0 and G1 is
negligible.
Game G2: This game is the same as G1 with the difference that crs is pro-
duced honestly using NIZK.Setup(1λ). Additionally, for each adversarial query
(S, state, x), the proof π is produced honestly by NIZK.Prove(crs, (G,S, state, y),
(y′, x, r)), where G(r) are the random coins supplied to the sampler S. The view
of A in game G2 is distributed exactly as in the real game Exp0-enc

A (1λ).
We construct a PPT adversary B on the zero-knowledge property of NIZK. Given
a CRS crs, B samples an ELF G in injective mode and invokes A on input of
pp := (crs, G). Each time A queries its oracle on (S, state, x), B draws random
coins r and invokes the sampler S on input of (state, x) with random coins
G(r) to obtain (y; y′). In order to produce π, B calls its prove oracle on input
(G,S, state, y) with witness (y′, x, r). Therefore, if B is supplied with an honest
CRS and honestly generated proofs, B perfectly simulates G2 for A, else B
perfectly simulates G1. Hence, |Pr[out2 = 1]− Pr[out3 = 1]| ≤ AdvZK(B). This
concludes the proof.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 21

Restricted Correctness. Let S ∈ SIλ be an arbitrary sampler with input, let
y1, . . . , y` be arbitrary values from the input domain Iλ, and let C be a circuit
from the family C`λ. To prove the correctness of dpiO, we proceed over a series of
hybrids.

Game G0: This game is the ideal game Exp1-rcorr
A (1λ). As the sampler S is

called using true randomness whereas in Exp0-rcorr
A (1λ) samples are generated

using G(r), where r is truly random, we need an intermediate hybrid.
Game G1: This game is identical to G0 with the difference that each call of
the sampler S is supplied with G(r) as randomness (where r is sampled uniformly
for each call). Due to the strong regularity of G, and by a hybrid argument over
all calls of S, the statistical distance between G0 and G1 is negligible.
Game G2: This game is the real game Exp0-rcorr

A (1λ).
We now argue that the view of A in game G1 is distributed identically to
its view in G2. G2 samples public parameters pp via Setup(1λ) and S′ an
encoded sampler via S′ ← Encode(pp, S). Further, (yj , auxj) are sampled as
statej ← stf(y1, . . . , yj−1,⊥, . . . ,⊥) and (yj , auxj , y

′
j)

$← S′(statej , xj), for j ∈ [`].
Let Λ be the obfuscation Λ $← Obfuscate(pp, S, C) of the circuit C with respect to
sampler S. Due to the perfect correctness of iO, Λ has the same functionality as
C̄[stf, (crs, G), S, C,K], where K is a freshly generated key for the PRF F. Hence,
by the perfect completeness of NIZK, on input of ((y1, aux1), . . . , (y`, aux`)), Λ
evaluates the circuit C on input of (y1, . . . , y`) with random coins F (K, (y1,
. . . , y`)). Therefore, the view of A in the games G1 and G2 only differs in
the fact that G1 supplies C with true random coins whereas G2 supplies C
with F (K, (y1, . . . , y`)) as randomness. As F is a perfect PRF, the distribution
{F (K, (y1, . . . , y`)) |K $← F.KeyGen(1λ)} is identical to the uniform distribution
over the image of F . Therefore, the view of A in G1 and G2 is distributed
identically.

By construction, all S′ ← Encode(pp, S) respect the support of S. Furthermore,
by construction, perfect completeness of NIZK and perfect correctness of iO, for all
C ′ ← Obfuscate(pp, S, C) and all (y1, aux1, . . . , y`, aux`) produced as in Exp0-rcorr,
C ′(y1, aux1, . . . , y`, aux`) ∈ Supp(C(y1, . . . , y`)).
Security. Let D ∈ Sd-Ind be an arbitrary dynamic-input indistinguishable circuit
sampler over C. To prove that dpiO satisfies indistinguishability (Definition 12),
we proceed over a series of hybrids. Toward contradiction, assume that there
is a PPT adversary A distinguishing Exp0-ind

A (1λ) from Exp1-ind
A (1λ) with non-

negligible advantage ε over the random guess after making a polynomial number
Q of queries to the oracle.

Game G0. In this game, the challenger samples b $← {0, 1}, and sets up the
experiment Expb-indA (1λ). More precisely, A has access to the public parameters
pp and an oracle Oind

b [pp, Dλ], that on input of a sampler with input S, draws a
sample (C0, C1, z) from D and outputs (C0, C1, z) together with an obfuscation
Obfuscate(pp, S, Cb). A outputs a guess b′ and the challenger returns 1 if b′ = b.
By assumption, Pr[out0 = 1] = ε.

22 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Game G1. In this game, the challenger samples G as G $← ELF.Gen(M, t), where
t is a polynomial such that any PPT algorithm of circuit size s has advantage at
most ε/2 in distinguishing ELF.Gen(M,M) from ELF.Gen(M, t). The advantage
of A in this game is therefore lower bounded by ε/2: Pr[out1 = 1] ≥ ε/2.
Game G′1. This game proceeds exactly as G1, except that after sampling b $←
{0, 1}, the challenger always sets up the experiment Exp1-ind

A (1λ). The challenger
still returns 1 iff b′ = b.
By using a standard hybrid argument over the oracle queries, we prove that
|Pr[out1 = 1]− Pr[out′1 = 1]| ≤ Q · negl(λ), where Q is a polynomial in λ.
Game G1.q This game is identical to G1 except for the fact that the first q
oracle queries are answered using an obfuscation Λq of C1 instead of Cb. Hence,
Pr[out1.0 = 1] = Pr[out1 = 1] and Pr[out1.Q = 1] = Pr[out′1 = 1], where Q is the
number of adversarial oracle queries.
As |Pr[out1 = 1] − Pr[out′1 = 1]| ≤

∑Q
q=1|Pr[out1.q = 1] − Pr[out1.q+1 = 1]|, it

suffices to upper bound the distinguishing gap between G1.q and G1.q+1.
We observe that due to the (almost) perfect soundness of NIZK, the obfuscated
circuit in the q-th oracle answer simulates the randomized computation of the
circuit Cq,0 only on well-formed inputs, i.e. on outputs of Sq using random coins
from the range of G. As ELF is in extremely lossy mode, this set of well-formed
inputs is extremely sparsified. Therefore, by the strong regularity of ELF, we can
enumerate over all possible outputs at all input positions j ∈ [`]. Let Bq,j be the
set of all well-formed inputs for input position j:

Bq,j := {Sq(stf(y1, . . . , yj−1), x;G(r)) |
x ∈ Iλ, r ∈ {0, 1}M , yk ∈ Bk for k ∈ [j − 1]}.

The set Bq,j contains at most |I| · tj−1 elements. Further, let γq,1 < · · · < γq,t̄
be the ordered enumeration of all `-tuples in Bq :=

∏`
j=1Bq,j .

12 Hence, the
total number of well-formed inputs t̄ =

∏`
j=1|Bq,j | ≤ (|I| · t`−1)` ≤ |I|` · t(`2) is

polynomial in λ (given that ` is a constant, and |I| and t are polynomial).
Towards proving indistinguishability between G1.q and G1.q+1, we conduct a
hybrid argument over all well-formed inputs for the obfuscation Λq and gradually
replace the evaluation of circuit Cq,b with Cq,1. From here on, our proof strategy
is similar to the one employed in [25]. However, we only need to consider polyno-
mially many hybrids (as we assume |I| to be polynomial), hence we only lose a
polynomial factor to the underlying assumptions.
Game G1.q.i. In game G1.q.i the oracle answers the q-th query using an obfus-
cation of the circuit

C̄ ′[stf, (crs, G), Sq, Cq,b, Cq,1,Kq, γq,i]

that is defined in Figure 7 using iO.
12 We remark that the values of each set Bj can be computed efficiently by evaluating
S on all possible inputs from I × (

∏j−1
k=1Bj) and all possible images in the range

of G. Furthermore, it is possible to enumerate the image of G in polynomial time
because G is strongly regular.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 23

Circuit C̄′[stf, (crs, G), S, C0, C1,K, γi](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
γ := (y1, . . . , y`)

if γ < γi then r := F (K, γ); return C1(γ; r)

if γ = γi then r := F (K, γ); return Cb(γ; r)

if γ > γi then r := F (K, γ); return Cb(γ; r)

Fig. 7. Definition of the circuit C̄′.

The circuits C̄[stf, (crs, G), Sq, Cq,b,Kq] and C̄ ′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,1]
are functionally equivalent (on input x = ((y1, aux1), . . . , (y`, aux`)), both return
Cq,b(y1, . . . , y`) with randomness F (Kq, (y1, . . . , y`))). Hence, this game hop is
justified by the indistinguishability property of iO, more formally there exists a
PPT adversary B such that |Pr[out1.q = 1]− Pr[out1.q.1] = 1| ≤ AdviO(B).
We aim to reduce the game hop from Gb

1.q.i to Gb
1.q.i+1 to the dynamic-input

indistinguishability of the circuit sampler Dλ. For this purpose, we first need to
supply Cq,b with true randomness. Hence, we define an other series of hybrids
between G1.q.i and G1.q.i+1.
Game G1.q.i.1. This game is identical to G1.q.i except for the fact that we use
a punctured PRF key Kq{γq,i} $← F.Punct(Kq, γq,i) and obfuscate the circuit

C̄ ′′[stf, (crs, G), Cq,0, Cq,1,Kq{γq,i}, Y := Cq,b(γq,i;F (Kq, γq,i)), γq,i]

defined in Figure 8 using iO.
As F preserves the functionality under punctured keys, the circuits C̄ ′[stf, (crs, G),
Sq, Cq,0, Cq,1,Kq, γq,i] and C̄ ′′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq{γq,i}, Y := Cq,b(γq,i;
F (Kq, γq,i)), γq,i] are functionally equivalent. Hence, there exists a PPT adversary
B such that |Pr[out1.q.i = 1]− Pr[out1.q.i.1 = 1]| ≤ AdviO(B).
We note that the view of A in game G1.q.i.1 does not depend on the PRF key K.
This enables to exploit the selective security of F.

Circuit C̄′′[stf, (crs, G), S, C0, C1,K{γi}, Y, γi](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
γ := (y1, . . . , y`)

if γ < γi then r := F (K{γi}, γ); return C1(γ; r)

if γ = γi then return Y

if γ > γi then r := F (K{γi}, γ); return Cb(γ; r)

Fig. 8. Definition of the circuit C̄′′.

Game G1.q.i.2. In this game we replace the randomness F (Kq, (γq,i)) by true
randomness, i.e. we produce Y as follows: Y := Cq,b(γq,i;R). This game hop
is justified by the selective PRF property, more formally |Pr[out1.q.i.1 = 1] −
Pr[out1.q.i.2 = 1]| ≤ Advs-cPRF(B) for some PPT adversary B.

24 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

Game G1.q.i.3. Game G1.q.i.3 is the same as G1.q.i.2 except for the fact that Y is
produced using the circuit Cq,1, i.e. Y := Cq,1(γq,i;R). This game hop is justified
by the fact that the circuit sampler Dλ is a dynamic-input indistinguishable
sampler.
Game G1.q.i.4. This game is the same as G1.q.i.3 with the difference that we
again use pseudorandom coins to compute Y , i.e. Y := Cq,1(γq,i;F (Kq, γq,i)). For
every PPT adversary A there exists a PPT adversary B such that |Pr[out1.q.i.3 =
1]− Pr[out1.q.i.4 = 1]| ≤ Advs-cPRF(B).
As the pPRF F preserves functionality under punctured keys, the two circuits
C̄ ′′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq{γq,i}, Y := Cq,1(γq,i;F (Kq, γq,i)), γq,i] and C̄ ′[
stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,i+1] are functionally equivalent. Therefore, we
have that |Pr[out1.q.i.4 = 1]− Pr[out1.q.i+1 = 1]| ≤ AdviO(B).

Summing up, the advantage to distinguish G1 and G1.Q is bounded by |I|` ·
t`

2 · negl(λ). As ` is constant and |I|, t are polynomial, this quantity is negli-
gible. As the circuit obfuscated in G1.Q is now functionally equivalent to the
circuit obfuscated in G1

1, the game hop to G′1 is justified by the indistinguisha-
bility property of iO. More formally there exists a PPT adversary B such that
|Pr[out1.Q = 1]−Pr[out′1] = 1| ≤ AdviOB (λ). This implies that the advantage of A
in game G′1 is lower bounded by ε/2− negl(λ), which is non-negligible. However,
the view of A in G′1 is perfectly independent of b, hence its advantage in this
game cannot be non-zero; therefore, we reach a contradiction, which concludes
the proof. ut

4.3 Extension

We sketch a straightforward extension of our above construction. It follows easily
by inspection that the same proof strategy would work even if the ` sources, which
sample inputs accorded to an encoding of a sampler S with respect to public
parameters pp, are not required anymore to use the same public parameters.
The ` sources could even each use different public parameters (pp1, . . . , pp`).
The modified proof for this scenario would proceed by first switching the ELFs
in (pp1, . . . , pp`) to an extremely-lossy mode, through a sequence of ` hybrids.
Each extremely-lossy mode is chosen so that A as advantage at most ε/2` in
distinguishing it from the injective mode. By a union bound, A has therefore
advantage at most ε/2 in distinguishing the all-injective modes from the all-lossy
modes. Then, enumerating over all possible valid inputs to an obfuscated circuit
takes polynomial time as before, as each input of a source comes from a set
of polynomial size. Therefore, the exact same sequence of hybrids proves secu-
rity, with a polynomial loss in the underlying primitives. To adapt the security
properties of our definition of dpiO to this multi-parameter setting, it suffices to
let all experiments initially sample and send to the adversary ` public parame-
ters (pp1, . . . , pp`) instead of one. In the simulatability of encodings definition
(resp. in the indistinguishability definition), the adversary is allowed to specify
under which public parameters it wants to receive a (real or simulated) sample

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 25

(y, aux; y′) (resp. under which public parameters it wants Cb to be obfuscated in
the indistinguishability experiment).

It can prove convenient to simplify the construction in some applications
to allow different sources to use different public parameters. Let us illustrate
the syntax we adopt on an example: if (Setup,Encode,Obfuscate) is a 5-source
dpiO scheme, we denote by Obfuscate(pp1[1− 3], pp2[4, 5], , S, C) an obfuscation
of a circuit C, whose first three inputs should be sampled with respect to pp1,
and whose last two inputs should be sampled with respect to pp2. We will also
sometimes slightly abuse our notation, noting that an `-source dpiO scheme
directly implies an i-source dpiO scheme for i ≤ `, and allow an `-source scheme
to obfuscate a circuit C that takes i < ` inputs.

5 Leveled Homomorphic Encryption

In this section we show that our notion of dpIO from Section 3 can be applied
to construct leveled homomorphic encryption in a similar way as in [25]. This
construction leads to a transformation which operates on an encryption scheme
E, satisfying IND-CPA security (and possibly other security properties, e.g.,
KDM security), and produces a leveled homomorphic encryption scheme that
retains the security properties of E. We recall the definition of IND-CPA secure
encryption schemes in the full version [1].

Let stfλ be the trivial state function, i.e. stf : (y1, y2) 7→ ⊥ for each (y1, y2) ∈
({0, 1}λ∪{⊥})2. Let E = (E.KeyGen, E.Enc, E.Dec) be an IND-CPA-secure public-
key encryption scheme. Let the class SI contain all samplers Spk that on input of a
state state and an input x ∈ I := {0, 1}, produce an encryption y := E.Enc(pk, x)
and y′ := ⊥ ignoring state, where pk is a public key in the range of E.KeyGen(1λ).
Let C be the class of polynomially sized randomized circuits and let Sd-Ind be the
class of dynamic-input indistinguishable samplers over C.

Theorem 15. Let (Setup,Encode,Obfuscate) be a 2-source dpiO scheme for (stf,
SI, C,Sd-Ind) and let E be an IND-CPA secure public-key encryption scheme.
Then, LHE as defined in Figure 9 is an IND-CPA secure LHE scheme.

The proof strategy is similar as in [25]. Here we provide an informal sketch of
the proof and refer the reader to the full version [1] for the full proof. On a high
level, we want to reduce the security of LHE to the security of the underlying
encryption scheme E. However, the evaluation key ek contains information (even
though obfuscated) on the secret keys of each level. For the purpose of invoking
the security of E on the challenge ciphertext, we need to remove this dependency
on sk0. Therefore, we gradually (starting from level L) replace the obfuscations
of the circuits C with an obfuscation of trapdoor circuits tC that simply output
samples produced by the encoded sampler S′ on input of 0 (hence, not needing
any information on decryption keys). These two circuits only differ in the fact that
they sample from the same encoded sampler S′ using (possibly) different inputs.
Due to the simulatability of encodings and the IND-CPA security of E, the two
circuits are dynamic-input indistinguishable. Hence, by the indistinguishability

26 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

LHE.KeyGen(1λ, 1L)

for i ∈ {0, . . . , L} do

(pki, ski)
$← E.KeyGen(1λ)

ppi
$← Setup(1λ)

S′pki ← Encode(ppi, S
pki)

for i ∈ {1, . . . , L} do

Λi
$← Obfuscate

(
ppi−1, S

pki−1 , C[S′pki , ski−1]
)

pk := S′pk0 , sk := skL, ek := (Λ1, . . . , ΛL)

return (pk, ek, sk)

LHE.Enc(pk,m ∈ {0, 1})

parse pk =: S′pk0

(y, aux, y′)
$← S′pk0(⊥,m)

return c← (y, aux)

LHE.Dec(sk, c)

parse sk =: skL

parse c =: (y, aux)

return E.Dec(skL, y)

LHE.Eval(ek, C, (c1, . . . , cl))

for i ∈ {1, . . . , L} do
foreach gate g on level i do
// let αg , βg denote the respective inputs

γg := Λi(αg, βg)

Fig. 9. Description of the LHE scheme LHE. The circuit C is defined in Figure 10.

C[S′pk, sk′](xα, xβ)

α← E.Dec(sk′, xα)

β ← E.Dec(sk′, xβ)

(y, aux, y′)
$← S′pk(⊥, α∧β)

return (y, aux)

tC[S′pk](xα, xβ)

(y, aux, y′)
$← S′pk(⊥, 0)

return (y, aux)

Fig. 10. Definition of the circuits C and tC.

property of dpiO for Sd-Ind, an honest evaluation key and an evaluation key
consisting only of trapdoor circuits are indistinguishable.

Given these modifications, the challenge ciphertext c∗ consists of an encryption
of a bit b under pk0 accompanied by some auxiliary information produced by the
corresponding encoded sampler. This auxiliary information might leak information
on the bit b and thereby prevents to directly employ the IND-CPA security of E.
However, as dpiO satisfies simulatability of encodings, this auxiliary information
can be simulated without knowledge of b and, hence, contains no information
about b. Therefore, by the IND-CPA security of E, LHE is IND-CPA secure.
Given our construction of dpiO from Section 4, we obtain the following corollary:

Corollary 16. Assuming polynomially secure indistinguishability obfuscation
and extremely lossy functions, there exists a leveled homomorphic encryption
scheme.

Note that IND-CPA secure cryptosystems, as required in our construction, can be
constructed from (polynomially secure) IO and one-way function (the latter being
implied by ELFs). Previously, constructions of LHE were only known from the
learning with error assumption, or from subsexponentially secure indistinguisha-
bility obfuscation (together with lossy encryption, which can be based e.g. on
DDH). Using the generic transformation from leveled homomorphic encryption
to fully homomorphic encryption from [25], we also get:

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 27

Corollary 17. Assuming slightly-superpolynomially secure indistinguishability
obfuscation and extremely lossy functions, there exists a fully homomorphic
encryption scheme.

Due to space limitations we state here two corollaries concerning FHE and
KDM security and refer the reader to the full version [1] for a detailed discussion.

Corollary 18. Assuming polynomially-secure indistinguishability obfuscation
and extremely lossy functions, there exists a fully homomorphic encryption scheme.
Corollary 19. Assuming polynomially-secure indistinguishability obfuscation
and eDDH, there exists a fully KDM-secure encryption scheme.

References

1. Agrikola, T., Couteau, G., Hofheinz, D.: The usefulness of sparsifiable inputs: How
to avoid subexponential io. Cryptology ePrint Archive, Report 2018/470 (2018),
https://eprint.iacr.org/2018/470

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, Report 2013/689 (2013), http://
eprint.iacr.org/2013/689

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (Aug 2015)

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Heidelberg (Apr / May 2017)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001)

6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (May / Jun 2010)

7. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 792–821. Springer, Heidelberg (May 2016)

8. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg
(Apr / May 2018)

9. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 567–594. Springer, Heidelberg (Nov 2017)

10. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (Aug 2014)

11. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and ap-
plications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum,
J. (eds.) 45th ACM STOC. pp. 241–250. ACM Press (Jun 2013)

https://eprint.iacr.org/2018/470
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689

28 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

12. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (Mar 2015)

13. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS. pp. 171–190. IEEE Computer
Society Press (Oct 2015)

14. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (Aug 2003)

15. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th ACM STOC. pp. 103–112. ACM Press (May
1988)

16. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without
random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (May 2004)

17. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (Aug 2004)

18. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (Aug 2008)

19. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (Dec 2013)

20. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (Feb 2014)

21. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (Apr 2015)

22. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (Mar 2014)

23. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (Aug 1997)

24. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation in-
tractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Heidelberg
(Apr / May 2018)

25. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (Mar 2015)

26. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 213–240. Springer, Heidelberg (Mar 2017)

27. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its
applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (Aug 2016)

28. Döttling, N., Nishimaki, R.: Universal proxy re-encryption. Cryptology ePrint
Archive, Report 2018/840 (2018), https://eprint.iacr.org/2018/840

https://eprint.iacr.org/2018/840

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 29

29. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes from
obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770,
pp. 371–400. Springer, Heidelberg (Mar 2018)

30. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (Feb 2014)

31. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

32. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (Aug 2014)

33. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (Aug 2016)

34. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 156–181. Springer, Heidelberg (Apr / May 2017)

35. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polyno-
mial loss. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986,
pp. 419–442. Springer, Heidelberg (Oct / Nov 2016)

36. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Heidelberg (Apr / May 2018)

37. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press
(Oct 1984)

38. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS. pp. 553–562. IEEE Computer Society Press (Oct 2005)

39. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (Feb 2007)

40. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part II. LNCS, vol. 10678, pp. 537–566. Springer, Heidelberg (Nov 2017)

41. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (May / Jun 2006)

42. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (Dec 2000)

43. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

44. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(Aug 2008)

45. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidelberg
(Feb 2007)

46. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II.
LNCS, vol. 9986, pp. 121–145. Springer, Heidelberg (Oct / Nov 2016)

30 Thomas Agrikola, Geoffroy Couteau, Dennis Hofheinz

47. Hohenberger, S., Rothblum, G.N., shelat, a., Vaikuntanathan, V.: Securely obfuscat-
ing re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252.
Springer, Heidelberg (Feb 2007)

48. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (May
2014)

49. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (Aug 2009)

50. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 668–697. Springer, Heidelberg (Mar 2015)

51. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669–684. ACM Press (Nov 2013)

52. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 443–468.
Springer, Heidelberg (Oct / Nov 2016)

53. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 599–629. Springer, Heidelberg (Aug 2017)

54. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Heidelberg (Aug 2017)

55. Liu, Q., Zhandry, M.: Decomposable obfuscation: A framework for building appli-
cations of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 138–169. Springer, Heidelberg (Nov 2017)

56. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation.
In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
20–39. Springer, Heidelberg (May 2004)

57. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (Aug 2014)

58. Pass, R., shelat, a.: Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I. LNCS,
vol. 9562, pp. 3–17. Springer, Heidelberg (Jan 2016)

59. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM Press
(May / Jun 2014)

60. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (May 2005)

61. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC. pp. 523–532. ACM Press (May 2005)

62. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (Aug 2016)

63. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (Apr 2015)

	The Usefulness of Sparsifiable Inputs:How to Avoid Subexponential iO

