
Flexible Authenticated and Confidential
Channel Establishment (fACCE): Analyzing the

Noise Protocol Framework?

Benjamin Dowling1, Paul Rösler2, and Jörg Schwenk2

1 Applied Cryptography Group, Eidgenössische Technische Hochschule Zürich
benjamin.dowling@inf.ethz.ch

2 Horst-Görtz Institute for IT Security,
Chair for Network and Data Security, Ruhr University Bochum

{paul.roesler,joerg.schwenk}@rub.de

Abstract. The Noise protocol framework is a suite of channel estab-
lishment protocols, of which each individual protocol ensures various
security properties of the transmitted messages, but keeps specification,
implementation, and configuration relatively simple. Implementations of
the Noise protocols are themselves, due to the employed primitives, very
performant. Thus, despite its relative youth, Noise is already used by
large-scale deployed applications such as WhatsApp and Slack. Though
the Noise specification describes and claims the security properties of the
protocol patterns very precisely, there has been no computational proof
yet. We close this gap.
Noise uses only a limited number of cryptographic primitives which
makes it an ideal candidate for reduction-based security proofs. Due to
its patterns’ characteristics as channel establishment protocols, and the
usage of established keys within the handshake, the authenticated and
confidential channel establishment (ACCE) model (Jager et al. CRYPTO
2012) seems to perfectly fit for an analysis of Noise. However, the ACCE
model strictly divides protocols into two non-overlapping phases: the pre-
accept phase (i.e., the channel establishment) and post-accept phase (i.e.,
the channel). In contrast, Noise allows the transmission of encrypted
messages as soon as any key is established (for instance, before authenti-
cation between parties has taken place), and then incrementally increases
the channel’s security guarantees. By proposing a generalization of the
original ACCEmodel, we capture security properties of such staged chan-
nel establishment protocols flexibly – comparably to the multi-stage key
exchange model (Fischlin and Günther CCS 2014).
We give security proofs for eight of the 15 basic Noise patterns in the full
version (EPRINT 2019/436) and exemplify them by the proof of the XK
pattern in this article.

Keywords: Noise protocol framework; ACCE; Multi-Stage; Channel Establish-
ment
? The full version of this article is available in the IACR eprint archive as article
2019/436, at https://eprint.iacr.org/2019/436.

https://eprint.iacr.org/2019/436

1 Introduction

Noise is a protocol framework introduced by Trevor Perrin [32] for establish-
ing confidential channels between two parties in various application scenarios
that bases on a Diffie-Hellman group, a secure key derivation function (KDF),
a secure hash function, and a secure authenticated encryption with associated
data scheme (AEAD). Like TLS 1.2, Noise makes use of the derived keys during
channel establishment, which makes an analysis with respect to key indistin-
guishability as in traditional key exchange models infeasible. Furthermore, to
allow the transmission of messages as early as possible (to avoid latency costs),
protocols like TLS 1.3 and Noise amalgamate handshake and channel (at cost
of security guarantees for these early messages). In this work we analyze the
security of patterns from the Noise framework and, since previous modeling ap-
proaches cannot be used under the aforementioned conditions, introduce the
flexible ACCE model to prove fine-grained security guarantees of Noise.

The Noise Framework The Noise protocol framework is a tool box for defin-
ing simple and lightweight protocols for homogeneous environments. In this con-
text, homogeneous means that all parties in the environment agree upon the
protocol (including mechanisms for long-term key distribution, protocol version,
employed cryptographic primitives, . . .). In contrast, TLS allows the establish-
ment of a channel in highly federated environments, in which that information
has not been agreed upon by the protocol participants. This induces highly com-
plex implementations that contain version and cipher suite negotiation as well
as legacy code. Noise can disregard these issues (which in TLS regularly lead to
security vulnerabilities, e.g., [1, 31]) but still offers multiple protocol patterns
that allow a developer to choose a protocol fulfilling their application’s secu-
rity needs and considering the respective use case (long-term key distribution,
latency, . . .).

The Noise specification defines 15 core protocol patterns for different use-
cases, which may consist of one, two, or three handshake messages (cf. Figure 1)
– containing ephemeral and/or long-term Diffie-Hellman shares and (if a key is
already established) an AEAD ciphertext – and a channel. Each party can have
a long-term DH key pair, and potentially contributes one ephemeral DH key
share per protocol execution. The different patterns of Noise can hence be seen
as different distributions of the corresponding two to four public DH shares to
the handshake messages. The three-message patterns of Noise are novel in the
sense that classical three/four-message patterns for AKE protocols typically use
only one DH key exchange which is either static (TLS-DH) or ephemeral (signed
DH, Station-to-Station protocol, TLS 1.3, TLS-DHE, IPsec IKE, SSH) combined
with digital signatures (all of the above) or MACs (IPsec IKE Phase 2 with
forward-secrecy). Noise avoids authentication with MACs or digital signatures,
and provides entity authentication via long-term DH keys, key derivation, and
AEAD ciphertexts.

As a result, Noise is for its scope even more agile than TLS, allowing tailored
protocols for multiple use-cases with various security properties. Resulting from

2

Initiator A Responder B

“KEM-ACCE”=PKE

“ORKE-ACCE”

“AKE-ACCE”

ga, c0 = encKDF(gaB)(g
a,m0)

gb, c1 = encKDF(gaB ,gab)(g
a|c0|gb,m1)

c2 = encKDF(gaB ,gab)(g
a|c0|gb|c1, gA)

c3 = encKDF(gaB ,gab,gAb)(g
a|c0|gb|c1|c2,m3)

Fig. 1: The flexible structure of the Noise protocol framework, described conceptually
with the XK pattern (three passes) that is based on the NK pattern (two passes), which
is based on the N pattern (one pass). gA and gB denote the long-term public DH shares
of parties A and B, ga and gb denote their ephemeral shares, and enck(ad,m) is an
AEAD encryption.

its efficiency and flexibility, Noise is used by largely deployed protocols such as
WhatsApp [21, 33] (for client to server communication), Wiregurard [12, 13],
Slack, Amazon AWS1, and is potentially an ideal candidate for protecting the
transport layer in IoT networks. Despite being distributed in applications used
regularly by billions of users, there has not been a computational proof of Noise’s
security.2

Modularity in Cryptography and Real-World Definitions and analyses
in cryptography usually aim to be as modular as possible such that the results
are flexibly composable. In contrast, many real-world protocols are specifically
designed for one purpose such that modularity – especially regarding single com-
ponents of these protocols – is not necessary and maybe even undesired (e.g.,
due to worse performance).

For the generic (secure) composition of a key exchange protocol with a sym-
metric primitive (such as a symmetric channel), the key exchange protocol needs
to provide key indistinguishability for the established symmetric key (among
other properties; cf., Brzuska et al. [7]). However, if this symmetric key was used
by the key exchange itself, it is not indistinguishable from a random key space
element anymore (as an adversary can simply check whether the challenged key
was used). The same property needs to hold, and the same obstacle arises for
multi-stage key exchange protocols: in order to allow for generic compositions of
key exchange and symmetric protocols, the symmetric key must not be used by
the key exchange protocol itself in order to maintain modular composition.

Since many real-world protocols (such as TLS 1.2, Quic, Signal, Noise, TLS
1.3 and others) disregard modularity (in the sense that key exchange and channel
are inextricably intertwined), cryptographic analyses of these protocols chose one
out of the following three bypassing approaches: 1. pausing the protocol before
1 Both Slack and AWS use it in internal server-to-server communication.
2 Except for the single pattern that is employed in the Wireguard protocol [13, 28].

3

the key is internally used to prove key indistinguishability at that point (which
still prevents generic composition results as the protocol uses the key afterwards),
2. analyzing a modified version of the protocol in which key exchange and channel
are cleanly divided (which proves nothing about the actually used protocol), or
3. considering the security of the whole protocol instead of its single components
by applying the ACCE model. In this work we follow the latter approach and
– since no suitable ACCE model for staged protocols exist – propose a flexible
and generalized ACCE model.

Flexibility and Generalization for ACCE Originally the Authenticated
and Confidential Channel Establishment (ACCE) model was developed with the
strict separation between key establishment and communication channel in mind.
The security of ACCE, however, does not require this separation, because it only
targets on the confidentiality of transmitted messages and the authentication
among communicating parties.

Hence, our consideration of ACCE primitives differs from previous approaches
that originated from notions of composition. We instead see fACCE as a primi-
tive that is potentially built from authenticated key exchange (AKE) and secure
channel protocols, but not necessarily cleanly separated into the “pre-accept”
phase that establishes secrets and a “post-accept” phase that securely transmits
payloads. We directly model all communication (handshake and payload trans-
mission) via algorithms Enc and Dec which not only capture the secure channel
but also handshake operations for the channel establishment. As the bytes sent
over the network do not need to be further specified, we simply call them ci-
phertexts even though payload is not necessarily encrypted. We similarly view
a single dedicated session key as a legacy of instantiating ACCE protocols via
the composition of AKE and channel protocols. Since there are ways to secure
the transmission of payload data other than simply using a symmetric key –
consider asymmetric channels that use public key cryptography – we entirely
subsume session-specific information in the session state. Furthermore, we drop
length-hiding property [22] since we consider it not inherent in channel protocols.

After eliminating the boundary between handshake and channel, it is impor-
tant to note that a protocol that establishes a channel immediately (i.e., with
the first protocol message) cannot fulfill the same security guarantees as proto-
cols that take multiple round-trips before allowing the confidential transmission
of payload. This intuition can be compared to different security levels that are
achieved by key encapsulation mechanisms (KEM), one-round-key exchanges
(ORKE), and authenticated key exchanges (AKE) as depicted in Figure 1. For
example, one message patterns (i.e., KEM-DEM constructions) are, among other
deficiencies, subject to replay attacks if not equipped with expensive key update
mechanisms such as in [19]. As a result, such attacks must be considered when
designing an appropriate security model. Our model takes these different stages
of security goals into account by adding flexibility to the ACCE notion.

As such we follow a similar approach as the multi-stage key exchange (MSKE)
model. However, since our syntax allows for no distinction between stages (note
that the MSKE model obtains new keys for each stage from the protocol), we

4

assume the considered protocols to output a stage number ς with every encryp-
tion and decryption. With ς, the protocol indicates the ‘security level’ of the
transmitted message (e.g., towards an upper layer application). In the case of
an ACCE protocol in which all security properties are reached at once, this
stage number is equivalent to distinguishing between the pre- and post-accept
phase. In case of multi-stage protocols, a security classification can be useful in-
formation for an upper layer application that can then decide when to transmit
confidential content. Since there exists no other generic indication to differenti-
ate multiple stages based on our syntax3, it is essentially necessary for defining
security (independent of a specific protocol) that the protocol itself outputs the
stage numbers. Using these output stage numbers, one can specify for each stage
which properties need to be reached by the protocol in order to achieve security.
As a result, while one security property may not be reached in an early stage
(and thus the adversary could trivially attack communication in this stage), later
stages may reach this security property.

Further differences from the MSKE model are that we use a generic part-
nering notion (instead of protocol-dependent session identifiers), define authen-
tication flexibly (e.g., unilateral authentication does not necessarily mean server
authentication), provide a metric to meaningfully compare security statements
of differing yet similar protocols, and, due to the ACCE nature of our model,
provide valuable security statements on channels that are built using ‘internal’
symmetric keys (for which composition results of the MSKE models can natu-
rally provide no generic guarantees).4

Contributions Our contributions can be summarized as follows:

– We generalize and flexibilize ACCE by finding its core idea and removing
remnants of historic constructions and thereby propose a model to analyze
channel establishment protocols with multiple stages, fulfilling different se-
curity properties. Though this model is due to its flexibility rather complex,
we consider the overall generalizations useful for future analyses.

– We prove flexible ACCE security for the majority of Noise framework’s stan-
dard protocol patterns in the full version of this article [15], considering mul-
tiple fine-grained security properties of patterns. By focusing on the security
of the established channels instead of the established session keys, this allows
us to comprehend security claims of the Noise specification. Here we give an
intuition for our overall proof approach and depict the proof of pattern XK
in full details.

3 One could imagine that the round-trips in the protocol may serve as stages. However,
one can only define round-trips in a protocol execution if both session participants
can be observed (which is not the case when considering active adversaries).

4 The composition theorems by Fischlin and Günther [14, 16, 17] explicitly exclude
internally used keys (such that internal keys in Quic or TLS 1.3 cannot be used for
generic symmetric primitives).

5

1.1 Related Work

Computational security proofs for real world protocols have a long history (e.g.,
[11, 13, 14, 16, 27, 30]). As described earlier, due to the usage of the channel key
in the handshake of TLS 1.2, the ACCE model was introduced by Jager et al. [23]
(which was later also used in [3, 6, 8, 9]) as a proof of key indistinguishability was
impossible without considering a modified protocol variant. To further analyze
the security of TLS 1.2 without client authentication, Krawczyk et al. [27] and
Kohlar et al. [26] independently proposed a variant of the ACCE model.

The multi-stage key exchange (MSKE) model by Fischlin and Günther [16]
extends the Bellare-Rogaway model [2] (further extended by [14, 17]) similarly
as we extend the original ACCE model (by allowing protocols to reach different
security properties at different stages during the execution). Due to the issue of
key-usage during the handshake in Noise (as in TLS 1.2 or Signal) and further
model restrictions, the multi-stage key exchange cannot be applied here.

Giesen et al. [18] extended the ACCE model to consider multiple stages dur-
ing a protocol execution to analyze TLS renegotiation. Besides its static security
definition(s) and in addition to inheriting other unnecessary remnants of the
ACCE model, all stages necessarily consist of separate handshake and channel
phases (making it unapplicable for generic multi-stage protocols). Another step
towards considering stages in ACCE was taken by Lychev et al. [29] and more
recently by Chen et al. [10]. Their QACCE and msACCE models are, however,
strongly tailored to the respectively analyzed protocols (QUIC and TLS 1.3).
Blazy et al. [4] also proposed very recently a multistage ACCE model to analyze
a ratcheting protocol. Similarly, their model strongly depends on the analyzed
protocol, pursuing a contrary strategy to ours (i.e., a specialized instead of a
generic model).

Previous to our work, Dowling and Paterson [13] examined the WireGuard
key exchange protocol [12], itself based upon a single variant of Noise called pat-
tern IKpsk2. They show that analyzing WireGuard in a key-indistinguishability-
based security framework is impossible, as the protocol relies on an encrypted
message using the established session keys to act as a key-confirmation message.
They instead modify the WireGuard key exchange protocol to morally capture
the key confirmation message, and prove the modified construction secure. Re-
cently Lipp et al. [28] confirmed the security of the WireGuard protocol by an
automated analysis with CryptoVerif. Using this tool, they were able to pro-
duce a computational proof of security. Independently and concurrent to our
work, Kobeissi et al. [24, 25] published a framework for the formal verification
(and automatic code generation) of Noise patterns. In particular, they formalize
Noise patterns and use transition logic to create symbolic models of dynami-
cally chosen Noise patterns to allow automatic verification using ProVerif. This
is a strong indication for Noise’s security but the approach and the results can
barely be compared with computational, reduction-based proofs with respect to
generic security models. As their verification of all base Noise patterns is con-
ducted automatically with respect to the security statements from the Noise
specification and we provide a reduction-based proof of security in a general-

6

ized, flexible computational model manually, we see these two approaches to be
complementary. We note that symbolic analyses disregard the actual represen-
tation of algorithms’ input and output values. Thus, in symbolic analyses, cryp-
tographic primitives are highly idealized. Consequently, while reduction-based
proofs provide relations to well studied hardness assumptions, symbolic analy-
ses assume “unconditional” security of these primitives. Nevertheless, automatic
proofs are less error-prone and better scalable which enables Kobeissi et al. [25]
to apply their analysis of even more security properties (e.g., multiple variants of
forward-secrecy) on far more Noise patterns than our manual approach allows.

2 Preliminaries

Here we formalize the notation and provide intuitions for security assumptions
that we will utilize in our analysis of the Noise Protocol Framework. Standard
assumptions and security notions such as collision resistance for hash functions,
security of pseudo-random functions, and further variants of the PRF-Oracle-
Diffie-Hellman assumption can be found in the full version [15].

2.1 Notation

The following notation will be used throughout the paper. For q ∈ N by [q] we
denote the set {1, · · · , q}. For a function F : {0, 1}a → {0, 1}b, a describes the
input length and b describes the output length of the function. If a or b take the
“value” ∗ we say that the function is defined for inputs or outputs of arbitrary
length. Let S be a finite set and let |S| be its size. We say a value x is chosen
uniformly at random by x ←$ S. Let A be a probabilistic algorithm, we let
y ←$ A(x1, ...) denote runningA on input (x1, ...) with uniformly chosen random
coins, and assigning the output to y. If A is a deterministic algorithm, then
y ← A(x1, ...) denotes that y is computed by A using (x1, ...) as input. By y ←[r]
A(x1, ...) we denote that a probabilistic algorithm A is invoked deterministically
by consuming its random coins from r (i.e., each random coin from r is used at
most once). ε is the empty string and ⊥ is a special element indicating no input
or no output.

2.2 The PRF-Oracle-Diffie-Hellman Assumption

Here we give the symmetric variant of the generic PRF-ODH assumption, intro-
duced by Dowling and Paterson [13]. Our modification additionally allows to
capture a “dual-PRF” like assumption necessary for the Noise Protocol Frame-
work. The basic PRF-ODH assumption was introduced Jager et al. [22] and
discussed in detail by Brendel et al. [5].

Definition 1 (Dual generic PRF-ODH Assumption). Let G be a cyclic group
of order q with generator g. Let PRF : G × M → K be a function from a
pseudo-random function family that takes a group element k ∈ G and a salt

7

value m ∈ M as input, and outputs a value y ∈ K. We define a second PRF
family PRFd : M × G → K, by setting PRFd(m, e) = PRF(e,m). We define
a security notion, sym-lr-PRF-ODH security, which is parameterised by: l, r ∈
{n, s,m} indicating how often the adversary is allowed to query “left” and “right”
oracles (ODHu and ODHv), where n indicates that no query is allowed, s that a
single query is allowed, and m that multiple queries are allowed to the respective
oracle. Consider the following security game Gsym-lr-PRF-ODH

PRF,G,p,A between a challenger
C and adversary A.

1. The challenger C samples u, v ←$ Zp and provides g, gu, gv to the adversary
A.

2. If l = m, A can issue arbitrarily many queries to oracle ODHu, and if r = m
and sym = Y to the oracle ODHv. These are implemented as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(Su, x)
and returns y.

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G
and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(T v, x)
and returns y.

3. Eventually, A issues a challenge query x∗. It is required that, for all queries
(S, x) to ODHu made previously, if S = gv, then x 6= x∗. Likewise, it is
required that, for all queries (T, x) to ODHv made previously, if T = gu, then
x 6= x∗. This is to prevent trivial wins by A. C samples a bit b ←$ {0, 1}
uniformly at random, computes y0 = PRFλ(guv, x∗), and samples y1 ←$
{0, 1}λ uniformly at random. The challenger returns yb to A.

4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and
ODHv. These are handled as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

or if (S, x) = (gv, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(Su, x).

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G
or if (T, x) = (gu, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(T v, x).

5. At some point, A outputs a guess bit b′ ∈ {0, 1}.

We say that the adversary wins Gsym-lr-PRF-ODH
PRF,G,p,A if b′ = b and define the advantage

function
Advsym-lr-PRF-ODH

PRF,G,p,A = |2 · Pr[b′ = b]− 1|.
We define the advantage of A in breaking the dual security of PRF-ODH as:

Advd-PRF-ODH
PRF,G,p,A = max

{
Advsym-lr-PRF-ODH

PRF,G,p,A ,Advsym-lr-PRF-ODH
PRFd,G,p,A

}
Intuitively, the sym-lr-PRF-ODH assumption holds if the advantage Advsym-lr-PRF-ODH

PRF,G,p,A
of any PPT adversary A is negligible. For conciseness in the advantage state-
ments, we omit the d-PRF-ODH, and instead use sym-lr to specify which PRF-ODH
assumption we use. Further used variants of the assumption are in the full ver-
sion [15].

8

3 The Noise Protocol Framework

The Noise Protocol Framework (hereafter referred to as “Noise”) is a specifi-
cation that describes a framework with which two party channel establishment
protocols can easily be instantiated for multiple purposes. The core of the frame-
work is represented by the definition of 15 base protocol patterns. Each of these
patterns employs only four underlying cryptographic primitives: a Diffie-Hellman
group, a hash function, a key derivation function, and an AEAD cipher. Depend-
ing on how these cryptographic primitives are combined, the channel establish-
ment protocols achieve different cryptographic properties. The main properties
(in addition to confidentiality) are: 1. Authentication and integrity, 2. Key com-
promise impersonation (KCI) resistance, 3. Forward-secrecy, and 4. Resistance
against replay attacks. Another interesting security property that is achieved
by the protocols, but not explicitly claimed, is: 5. Resistance against reveals of
executions’ random coins.

The 15 patterns mainly differ in the setup in which they can be deployed.
There are patterns that do not require the initial distribution of users’ long-term
public keys (and either insist on the authentication of users by transmitting these
keys either in plaintext or encrypted, or alternatively disregard authentication
altogether), and patterns that are based on the previous distribution of users’
public keys. The out-of-band mechanism for public-key distribution is outside
the scope of the specification, but one can imagine scenarios in which these
keys are manually configured, can be acquired from a trusted third party, or are
shipped with the respective application that uses Noise.

While historic protocols strictly separated key establishment and channel,
recent specifications (such as TLS 1.3) also allow these phases to be interleaved.
This allows the early transmission of payload data but results in reduced – and
perhaps staged – levels of security for this data. The Noise specification provides
a detailed description of security properties for the data transmission in each
round-trip of the handshake and for the channel of each pattern [32].

While a key feature of Noise is the omission of a negotiation of a pattern or the
negotiation of the exact employed cryptographic algorithms (in contrast to TLS,
Noise is intended to be used in settings in which all participants are configured
equally), recent discussions on the mailing list consider negotiation as a feature
in the future5 – which we will not regard in our analysis. Also outside the scope
of our analysis, Noise allows further features such as symmetric pre-shared keys.

Implementation Assumptions The Noise specification provides suggestions for
some implementation details (but does not mandatorily require them). For our
analysis, we assume that the protocol implementation follows these suggestions:

– No padding is employed (i.e., the length of the plaintext message is the same
as the length of the encrypted message), and

5 https://moderncrypto.org/mail-archive/noise/2018/001495.html

9

https://moderncrypto.org/mail-archive/noise/2018/001495.html

– If an algorithm is called irregularly (an initiator receives before sending once,
a party waits for ciphertext but encryption is invoked, decryption fails, . . .),
then the respective algorithm outputs an empty state and aborts.

Furthermore, we do not consider the associated data input on sending and receiv-
ing payload after the handshake. As our syntax intentionally makes no difference
between handshake and channel, we cannot consider this additional feature of
the Noise channel, as it is not provided during the handshake. Finally, we assume
the protocols to output information on the current level of security (which we
explain in more details below).

3.1 Noise Protocol Patterns

Here we explain the details of Noise, necessary to understand the core protocols
and their properties.

A pattern is defined by the knowledge of each participant regarding the
long-term public key (or static public key) of the respective partner (before the
handshake and during the handshake). For unidirectional patterns, the single
letter of the pattern name indicates whether the initiator’s long-term public key
is not defined (N), trans(X)mitted during the handshake (X), or known by the
receiver in advance (K). It is clear that, for unidirectional patterns, the receiver’s
long-term public key needs to be known by the initiator in advance since oth-
erwise no payload can be encrypted to the receiver. In the two-letter names of
interactive patterns, the first letter indicates whether the initiator’s long-term
public key is not defined, X-mitted, or known by the responder, and the second
letter indicates the same for the responder towards the initiator. So in the XK
pattern, the initiator knows the responder’s long-term public key in advance and
the responder obtains the initiator’s long-term public key during the handshake.
At the top of Figure 2 (in which we depict three example Noise patterns) it is
denoted that the initiator knows the responder’s long-term public key and the
responder knows its long-term secret key for patterns N and NK a priori. For pat-
tern XK, the initiator additionally knows its own key pair (of which the public
key is sent to the responder during the protocol execution).

Finally, the Noise specification distinguishes whether the long-term public
key is sent in plain or encrypted (for the former, the letter would be I instead
of X). The specification defines all pairwise letter-combinations among the three
variants N, X, K, the unidirectional patterns N, X, K, and the three variants in which
the initiator sends its long-term (Identity) DH share in plaintext (i.e., I_).

At the left margin of Figure 1, we depict how the Noise patterns’ algorithms
are invoked for party A (matching our generic syntax, formally defined in Sec-
tion 5).

The handshake of a Noise pattern always starts with the initialization of the
local state st (via Init()). This local state contains:

1. ρ: a boolean that indicates the session’s role (initiator/responder),
2. pattern: the pattern name,

10

A: gB , only in XK: (A, gA) B: (B, gB)

Handshake
Initialization

h← H(pattern)
ck ← h; n← 0; ρ← i

h← H(h || ad); h← H(h || gB)

Init(A, gB , i,
pattern‖ad): 1

2

st ← 3
–”–

N

Handshake

a←$ Zp; h← H(h || ga)
(ck , k0)← KDF(ck , gaB , 2)
c0 ← enc(k0, n, h,m0)
h← H(h || c0); ς ← 1

Enc(A, st ,m0): 4

5

6

(st , (ga, c0), ς)←$ 7 –”–
ga, c0

NK

Handshake

b←$ Zp; h← H(h || gb)
(ck , k1)← KDF(ck , gab, 2)
c1 ← enc(k1, n, h,m1)
h← H(h || c1); ς ← 2

Dec(A, st , (gb, c1)): 8

9

10

(st ,m1, ς)←$ 11 –”–
gb, c1

XK

Handshake

c2 ← enc(k1, n+ 1, h, gA)
h← H(h || c2)
(ck , k2)← KDF(ck , gAb, 2)
c3 ← enc(k2, n, h,m2)
h← H(h || c3); ς ← 3

Enc(A, st ,m2): 12
13

14

15

16 –”–
c2, c3

Channel
Initialization

(ki, kr)← KDF(ck , ε, 2)
ni ← 0; nr ← 0

17

(st , (c2, c3), ς)←$ 18
(kr, ki)← KDF(ck , ε, 2)
ni ← 0; nr ← 0

Channel

C0 ← enc(ki, ni, ε,M0)
ni ← ni + 1; ς ← 4

Enc(A, st ,M0): 19
(st , C0, ς)← 20 –”–

C0

Fig. 2: Fully specified N,NK and XK patterns. mi are payload messages sent during the
handshake; Mi are payload messages sent after the handshake; ad is associated data
with which the handshake is initiated; –”– denotes that the respective operations for
receipt are processed (e.g., dec(c, ..) for c←enc(..)). Handshake initialization, channel
initialization, and channel are part of all patterns. Algorithm invocations and return
values in the left column depict the interaction of party A with the protocol (showing
the protocol’s syntax defined in Section 5). Blue marked parts are not specified by Noise
but are required for our analysis (thus we assume them to be part of the protocol).

3. (X, gX): the session owner’s long-term DH exponent and DH share (op-
tional),

4. gY : the intended partner’s long-term public DH share (optional),
5. (x, gx): the session’s ephemeral DH exponent and DH share (optional),
6. gy: the peer’s ephemeral public DH share (optional),
7. ck: the chaining key,
8. h: the hash variable,
9. k or ki, kr: the encryption key(s), and
10. n or ni, nr: the nonce(s) for encryption.

These values are set, considering the pattern name, associated data ad, and a
priori known long-term public DH shares of the partners (see Figure 2 lines 1-4).

For each encryption (via Enc) during the handshake (i.e., before all desired
security properties are reached), the following operations can be conducted:

11

(a) the generation of an ephemeral DH exponent and the transmission of the
respective DH public share,

(b) the plain or encrypted transmission of a long-term DH share,
(c) the computation of a DH secret from a public DH share of the partner and

their own DH exponent.

The actual operations in the protocol for operation (a) are 1. the sampling of a
DH exponent, 2. the hashing of its public share into h, and 3. the transmission of
this public share to the partner (lines 4,8). In case (b), the sender’s long-term DH
share is encrypted under the current key k and the resulting ciphertext is hashed
into h and sent to the partner (lines 12-13).6 If (c) a DH secret is computed, the
current ck together with this DH secret are given as input to an invocation of
the KDF (lines 5,9,14).

For each encryption during the handshake in which a key k was already
computed, a ciphertext under this current key k is derived by encrypting a
payload m or (if no payload exists yet) an empty string ε.7 This ciphertext is
sent to the partner and is also hashed into h. The current value of h is associated
data for every encryption (lines 6-7,10-11,15-16).

After all handshake ciphertexts are processed, the channel is initialized with
a symmetric key for each communication direction, derived by invoking the KDF
on the current chaining key ck (lines 17-18). In one-message patterns such as N,
payload can however only be sent from initiator to receiver.

Please note that we assume the protocol to additionally output information
on the current payload transmission’s level of security (represented by integer ς;
lines 7,11,16,20). We proposed to add this feature to the Noise specification via
the mailing list (as it could be useful to upper layer protocols). In Section 5, we
describe why this feature is necessary for a security analysis in a generic model
and in Section 6 we explain how this stage counter is naturally derived for the
Noise patterns.

Flexibility in N, NK, XK Figure 2 depicts the three Noise patterns N, NK, and XK.
As it can be seen, the XK pattern adds one further handshake ciphertext to the
NK pattern such that the initiator is authenticated, and the NK pattern adds one
handshake ciphertext to the N pattern, such that the responder is authenticated
and a bidirectional forward secure channel is established.

4 Replay Attacks, State Reveals, and Their Relation

In our model, presented in Section 5, we allow adversaries to reveal the secret
local states of session participants. Since this slightly raises the complexity of
6 For patterns in which the long-term DH share is sent in plaintext, this DH share is
directly hashed into h instead.

7 Note that we use the algorithm Enc generically for sending information to the ses-
sion partner. Confidentiality of payload is thereby not necessarily reached (see Sec-
tion 5.1).

12

the model – as it induces a more careful treatment of trivial attacks – we con-
textualize the meaning and explain the importance of this adversarial power (in
order to justify the increased complexity), and we give an intuition for relations
between state reveals and replay attacks on a high level (in order support com-
prehensibility of the model). This is aimed to give some initial motivation on
how we define the model formally in the next section.

Replay Attacks in Noise Replay attacks are an inevitable issue for early commu-
nication in many protocols – among them, many Noise patterns (e.g., patterns N,
NK, and XK, cf., Figure 2). When assuming long-term keys of parties to be con-
stant (and not variable; cf., [19]), the first ciphertext in a session, sent from an
initiator instance πsi of a party i to a responder instance πt1j of a party j, can
be replayed to all other (responder) instances πt2j , . . . , π

tn
j of party j. As long as

instances of party j are not synchronized, they will not detect this replay attack
(since the ciphertext is valid for all of them). Hence, they will all accept and
process this ciphertext and reply with individual (valid) ciphertexts.

We observe three conditions that allow for replay attacks and that are true for
seven out of the 15 standard patterns in Noise (cf., rows in Table 1 with rt = 0):
(1) parties’ long-term keys are static, (2) first ciphertexts in sessions from ini-
tiator to responder contain (confidential) payload already, and (3) there exists
no (specified) synchronization mechanism among instances of a party. As a re-
sult, such ciphertexts in these patterns are inevitably potential subject to replay
attacks.

Importance of State Reveal In general – independent of replay attacks – local
states of instances contain crucial session secrets. Since the primitive that we
consider in this work depicts not only the initialization of a session but the session
itself (in contrast to, e.g., authenticated key exchange), these considered local
secrets are stored and used until a session is terminated. For settings with long
session duration (e.g., IoT networks), it is reasonable to assume that adversaries
gain access to some instances’ local secrets during the session lifetime. As a
result, a realistic model should capture this adversarial power by allowing state
reveals in the security game.

If state reveals were not allowed, protocols that store valuable secrets un-
necessarily in the local state (e.g., own or partners’ long-term secrets) would be
declared secure even though this is intuitively insecure.

State Secrets under Replay Attacks In the following we describe an attack against
an intuitively insecure protocol that would formally be declared “secure” in a
model without state reveal. Consequently, we argue that such models are un-
suitable for assessing security.

1. An initiator instance πsi of party i sends the first ciphertext c0 in a session
directed to a responder instance of party j, containing an ephemeral public
encryption key pk∗, and stores the respective secret key sk∗ in its local state.
This ciphertext is not protected against replay attacks (for the reasons given
above).

13

2. This ciphertext c0 is forwarded to multiple responder instances πt1j , . . . , π
tn
j

of party j.
3. Each responder instance πtlj , l ∈ [n] encrypts its individual, independent,

confidential reply payload under pk∗ in a ciphertext c̃l. We note that this
payload is encrypted forward-securely as (sk∗, pk∗) are independent of i’s
and j’s long-term keys. Each instance πtlj sends a replay-resistant response cl1
back to instance πsi , such that cl1 contains c̃l.

4. Instance πsi will only receive and process one reply ct∗1 from an instance πt∗j
and will continue a long-lived session with it. Instance πt∗j encrypts all further
payload to πsi under pk∗ such that sk∗ remains in πsi ’s local state until the
session terminates.

5. All remaining involved sessions of party j will eventually terminate due to a
timeout.

6. If an attacker obtains the local state of πsi before its session with πt∗j termi-
nates, it will learn all confidential replies, encrypted in ciphertexts c̃1, . . . , c̃n
(in addition to the entire payload from πt

∗

j).

A model without state reveal declares all replies from instances πt1j , . . . , π
tn
j “se-

cure” even though their security crucially relies on the secrecy of πsi ’s local state.
Especially since countermeasures are trivial and highly efficient8, we consider this
example protocol insecure. This intuition matches the initial idea of the (key)
reveal query in the Bellare-Rogaway model [2]: “Compromise of a session key
should have minimal consequences” such that it should not “leak information
about other (as yet uncompromised) session keys”. Since we abstractly consider
all local secrets of an instance combined as a generic state st, this condition
should hold accordingly for its reveal. For protocols with early communication
(allowing for replay attacks), this condition can, however, only be met as soon
as a session has exactly two participants (i.e., the session continues with exactly
one responder).

Depiction in the Model The essence of the above attack is not that messages are
in danger due to replay attacks, but rather that secrets established during re-
play attacks may affect multiple instances. This effect must be reduced by secure
protocols as far and as soon as possible. In our model, stage counters rpi, rpr

indicate how soon initiators and responders have local states that are indepen-
dent of other instances’ secrets (see Section 5.3). Thereby, we define reveals of
their states harmless (for other instances) in case they are conducted after these
stages are reached. Even though this independence may not be reached immedi-
ately (due to replay attacks in early communication), our model transparently
indicates with these counters, how soon it is reached by protocols (see Table 1).

In our proof we explicitly emphasize the game hops in which it becomes
clear that secrets are independent of others that are in revealable states of other
instances.
8 E.g., πt1j , . . . , π

tn
j encrypt individual random symmetric keys k1, . . . , kl under pk∗

and encrypt their content under these symmetric keys respectively, then πsi can
erase sk∗ quickly such that its state is free of session-overlapping secrets.

14

5 Flexible ACCE Framework

The original ACCE model [22] and our generalization focus on the definition of
authentication and confidentiality of messages, transmitted via a communication
protocol (channel establishment). However in [22], traditional security goals like
authentication and forward-secrecy are required to be reached before the actual
channel is established.

Here we first provide a generic definition of the cryptographic primitive
fACCE, then describe the standard execution environment in which its secu-
rity is analyzed, further explain how we add flexibility to the adversary model
with respect to the considered security properties, and define fACCE security.

5.1 fACCE Primitive Description

Below we define the flexible ACCE primitive. Intuitively, fACCE is a protocol
that establishes a secure channel. Both the establishment of the channel and the
transmission of payload through the channel are handled by the same algorithms.
The special ‘security level’-output ς of encryption and decryption signals which
security properties are reached by the current algorithm invocation (e.g., to a
higher level application).

Definition 2 (Flexible ACCE). A flexible ACCE protocol fACCE is a tuple of
algorithms fACCE = (KGen, Init,Enc,Dec) defined over a secret key space SK,
a public key space PK, and a state space ST . The syntax of an fACCE protocol
is as follows:
– KGen→$ (sk, pk) generates a long-term key pair where sk ∈ SK, pk ∈ PK.
– Init(sk, ppk, ρ, ad)→$ st initializes a session to begin communication, where

sk (optionally) is the caller’s long-term secret key, ppk (optionally) is the
long-term public key of the intended session partner, ρ ∈ {i, r} is the ses-
sion’s role (i.e., initiator or responder), ad is data associated with this ses-
sion, and sk ∈ SK ∪ {⊥}, ppk ∈ PK ∪ {⊥}, ad ∈ {0, 1}∗, st ∈ ST .

– Enc(sk, st,m)→$ (st′, c, ς) continues the protocol execution in a session and
takes message m to output new state st′, ciphertext c, and stage ς that in-
dicates the security for the transmission via c of the input message, where
sk ∈ SK ∪ {⊥}, st, st′ ∈ ST ,m, c ∈ {0, 1}∗, ς ∈ N.

– Dec(sk, st, c)→$ (st′,m, ς) processes the protocol execution in a session trig-
gered by c and outputs new state st′, message m, and stage ς that indi-
cates the security for the output message during transmission via c, where
sk ∈ SK ∪ {⊥}, st ∈ ST , st′ ∈ ST ∪ {⊥},m, c ∈ {0, 1}∗, ς ∈ N. If st′ = ⊥ is
output, then this denotes a rejection of this ciphertext.

We define as a convention that for output stage numbers ς = 0, no security
properties (in particular, no confidentiality) for the respectively transmitted pay-
load has yet been reached.9 Further we assume that the output stage numbers
monotonically increase during a session (which is not a restriction).
9 It is important to note that the first stage may not necessarily be 0, e.g. 0-RTT
protocols that achieve confidentiality with the first message.

15

Please note that the syntax (and our security definition) leaves it to the
specific protocol how far it enforces a ping-pong communication within a session.
If the protocol automatically responds on received ciphertexts, we assume that
the environment (in our security experiment this is depicted by the adversary)
handles this.

We define the correctness of an fACCE protocol below. Intuitively an fACCE
protocol is correct if messages, decrypted from the established channel, were
equally sent to this channel by the partner.

Definition 3 (Correctness of fACCE). An fACCE protocol is correct if, for
any two key pairs (ski, pki), (skr, pkr) output from KGen or set to (⊥,⊥) respec-
tively, their session states Init(ski, pkr, i, ad)→$ sti, Init(skr, pki, r, ad)→$ str
with ad ∈ {0, 1}∗, and message-stage-ciphertext transcripts MSC ρ,MSC ρ̄ ← ε,
it holds for all sequences of operations ((op0, ρ0,m0), . . . , (opn, ρn,mn)) (for all
0 ≤ l ≤ n with opl ∈ {e, d}, ρl ∈ {i, r},ml ∈ {0, 1}∗) that are executed as
follows:
– if opl = e, invoke Enc(skρl , stρl ,ml) →$ (stρl , cl, ς l) and update MSC ρ ←

MSC ρ‖(ml, ς l, cl), or
– if opl = d, invoke Dec(skρl , stρl , cl) →$ (stρl ,ml

∗, ς
l
∗) on (ml

◦, ς
l
◦, c

l)‖MSC ρ̄

← MSC ρ̄ and update it accordingly,
that if ml

∗ 6= ⊥, then encrypted and decrypted messages and stage outputs equal
ml
∗ = ml

◦, ς
l
∗ = ς l◦, and that stage outputs increase monotonically (∀l∗ < l with

opl = opl∗ = e and ρl∗ = ρl it holds that ς l∗ ≤ ς l◦).

5.2 Execution Environment

Here we describe the execution environment for our fACCE security experiment.
In our model we allow the analysis of multiple security properties, and indeed
allow these properties to be reached at different points during the protocol exe-
cution. As a consequence, one can specify for each stage which properties need
to be reached by the protocol in order to achieve security. Since one security
property may not be reached in an early stage (thus the adversary could triv-
ially attack communication in this stage) and later stages may reach this security
property, we need to separate the security experiment challenges that the ad-
versary is to solve in each stage. We therefore define stage-specific challenge bits
and freshness flags (opposed to one single challenge bit and a static freshness
condition). The latter are dynamically checked and modified during the security
game. We note that due to allowing secure and insecure stages within the same
session, dependencies between messages may leak information to an attacker.

We consider a set of nP parties each (potentially) maintaining a long-term
key pair {(sk1, pk1), . . . , (sknP

, pknP
)}, (ski, pki) ∈ SK × PK. In addition to

the key pair, a variable corr i ∈ {0, 1} is stored for every party i ∈ [nP] by the
security experiment, that indicates whether ski was exposed to the adversary
(via OCorrupt, see Section 5.4).

Each party can participate in up to nS sessions. We denote both the set of
variables that are specific for a session s of party i as well as the identifier of this

16

session as πsi . In addition to the local variables specific to each protocol, we list
the set of per-session variables that we require for our model below. In order to
derive or modify a variable x of session π we write π.x to specify this variable.
– ρ ∈ {i, r}: The role of the session in the protocol execution (i.e., initiator or

responder).
– pid ∈ [nP]: The session partner’s identifier.
– ad: Data associated with this session (provided as parameter at session ini-

tialization to Init).
– Te[·], Td[·] ∈ {0, 1}∗: Arrays of sent or received ciphertexts. After every invo-

cation of Enc or Dec of a session πsi , the respective ciphertext is appended
to πsi .Te or πsi .Td respectively.

– st ∈ ST : All protocol-specific local variables10.
– rand ∈ {0, 1}∗: Any random coins used by πsi ’s protocol execution.
– (b1, b2, b3, ...): A vector of challenge bits the adversary is to guess (one bit

for each stage).
– (fr1, fr2, fr3, ...): A vector of freshness flags indicating whether the security

of a stage in the session is considered to have been trivially broken by ad-
versarial behavior.

At the beginning of the game, for all sessions πsi the following initial values are
set: πsi .Te, πsi .Td, ← ε, πsi .fr ς∗ ← 1 for all ς∗ ∈ N, and πsi .rand ←$ {0, 1}∗,
πsi .bς∗ ←$ {0, 1} for all ς∗ ∈ N are sampled.

Furthermore a set of ciphertexts Rpl ← ∅ is maintained in the security game,
that are declared to initiate a non-fresh (replayed) session.

Partnering In order to define security in a flexible manner, we need to define
partnering for sessions in the environment. Partnering is defined over the ci-
phertexts provided to/by the adversary via the oracles that let sessions encrypt
and decrypt (OEnc,ODec). Intuitively, a session has an honest partner if every-
thing that the honest partner received via ODec was sent by the session via OEnc
(without modification) and vice versa, and at least one of the two parties received
a ciphertext at least once11. This definition considers the asynchronous nature
of the established channel, leading to a matching conversation-like partnering
definition for fACCE.
Definition 4 (Honest Partner). πtj is an honest partner of πsi if all initial
variables match (πsi .pid = j, πtj .pid = i, πsi .ρ 6= πtj .ρ, πsi .ad = πtj .ad) and the
received transcripts are a prefix of the partner’s sent transcripts, respectively,
where at least one them is not empty (i.e., for a = |πtj .Td|, b = |πsi .Td| such that
a > 0 if πsi .ρ = i and b > 0 if πsi .ρ = r then ∀ 0 ≤ α < a : (πsi .Te[α] = πtj .Td[α])
and ∀ 0 ≤ β < b : (πsi .Td[β] = πtj .Te[β])). If πsi already received ciphertexts from
πtj, then πtj is an honest partner of πsi only if there exists no other honest partner
π∗ of πsi (i.e., if b > 0 then there is no π∗ such that π∗ is an honest partner of
πsi and π∗ 6= πtj).
10 See Subsection 3.1 Noise’s state definition.
11 Note that this definition of honest partnering is symmetric (i.e., if a session πsi has

an honest partner πtj , then this πtj has πsi as an honest partner as well).

17

Please note that after encrypting without decrypting yet, the initiator may have
multiple honest partners (if the resulting ciphertexts are forwarded to multiple
sessions). Due to the last requirement in Definition 4, our partnering notion
requires that, after decrypting once, a session must have no more than one honest
partner. Thereby partnering necessarily becomes a 1-to-1 relation as soon as the
initiator received once from the responder.

5.3 Flexible Security Notion

Our model enables us to analyze levels of authentication and confidentiality –
even for different stages within one protocol execution – and thereby to distin-
guish precisely if and when the following goals are reached: (a) Authentication
and Integrity, (b) Forward-secrecy, and (c) Resistance against replay attacks.
The extended version of this work [15] additionally considers KCI resistance and
resistance against randomness reveal.

Our security definition, therefore, is indexed by five integers, called counters,
(aui, aur, fs, rpi, rpr) that indicate from which stage the respective property
is achieved. Since properties can be established asymmetrically (e.g., a respon-
der authenticates itself to an unauthenticated initiator in the first stage), some
counters are indexed by role ρ ∈ {i, r} (for initiator and responder respectively).
One can think of each counter as a reference ‘rung’ on the ‘ladder’ of stages from
which on the specified security property is achieved by the respectively analyzed
protocol. Thus, as soon as the protocol outputs a certain stage that equals a
counter (the protocol says that it reached the indicated ‘rung’ on the ‘ladder’),
all messages that are transmitted thereafter (including the message just en-
crypted or decrypted) reach the corresponding security property.12 Please note
that some security properties, such as authentication, develop their effect in two
steps (see the trivial and real attacks in the description of oracle ODec in Section
5.4). We describe these counters below:

1. auρ defines the stage required for ρ to be authenticated. This means that it
is hard to break the authenticity and integrity of ciphertexts from a party
with role ρ (i.e., parties with role ρ̄ reject ciphertexts if the origin is not an
honest partner) if the stage number ς (output by Dec for the peer with ρ̄)
is greater or equal to auρ. Note that, since our partnering notion considers
FIFO channels, thereby also ciphertexts (and the order among them) are
authenticated that were sent and received before auρ was reached.

2. fs defines the stage from which forward-secrecy (with respect to both session
participants’ long-term secrets) is reached. It is hard, for a stage ς ≥ fs, to
break the confidentiality of ciphertexts, even if both parties were corrupted.

3. rpρ defines the stage from which a fully revealed session state of ρ cannot be
used to replay and reestablish the session. This means, for a session for which
stage ς ≥ rpρ was reached, a revealed session state must not contain secrets

12 Thereby only protocols are considered that monotonically increase security proper-
ties during sessions.

18

that affect the communication’s security of any non-partnered sessions (es-
pecially of other receivers). The second condition of our partnering notion
(cf., Definition 4) divides partners after replay attacks occur (i.e., marks
them unpartnered thereby). Hence, protocols must diverge session state(s)
of previous partners in case of such replay attacks, if partnering is used to
control (and forbid) session state reveals. Only replayed first ciphertext(s)
from an initiator to a responder do not to divide partners according to our
partnering notion. In case of such session initiating replays, other sessions’
states must be diverged by the protocol as soon as their stage has ς ≥ rpρ.

We remark that our partnering notion already defines session participants un-
partnered for all but one type of replay attacks: if ciphertexts, sent by an initiator
that has already received a ciphertext once, or sent by a responder, are replayed,
the respective receiver is defined to have no honest partner. In a security game
in which state reveals are defined to be harmless for unpartnered sessions (which
is the case for our model), this induces that such replay attacks force the pro-
tocol to diverge respective receivers’ session states from their previous partners’
session states. As a consequence, only replays of ciphertexts, sent by an initiator
to (multiple) responder(s) without any reply from the latter, must be considered
harmful in our security experiment. These replay attacks cannot be prevented
if the receiver’s long-term secret is defined static (which we do in contrast to
e.g., [19]) and the initiator has never received a ciphertext. Our definition of
replay attack resistance consequently focuses on the security damage that is
caused by such replay attacks: it considers how soon the secrets, established by
a (replayed) ciphertext, are independent among the sender and the (other) re-
ceivers of this replayed ciphertext. Hence, a session’s secrets are recovered from
a replay attack if they cannot be used to obtain information on other sessions’
secrets.

Besides the explained prevention of replay attacks due to our partnering
notion, ciphertexts that are transmitted before a stage ς > 0 is output are (as
also explained above) authenticated as soon as authentication is reached in a
later stage. Apart from this, no security guarantees are required for ciphertexts
transmitted under ς = 0.

If a property is never reached in the specified protocol, then the respective
counter is set to∞ (e.g., for protocol with unauthenticated initiators, aui =∞).

5.4 Adversarial Model

In order to model active attacks in our environment, the security experiment
provides the OInit,OEnc,ODec oracles to an adversary A, who can use them
to control communication among sessions, together with the oracles OCorrupt,
OReveal.

Since our security definition becomes simpler and more clear by considering
trivial attacks during the execution of the security game (not only as a separate
freshness condition evaluated after the adversary terminated), we describe the

19

excluded trivial attacks and rewarded real attacks inline. The considered secu-
rity properties are denoted as bullet point symbols below (in case they are not
generically applicable).

The game maintains a win flag (to indicate whether the adversary broke au-
thenticity or integrity of ciphertexts) and embeds challenge bits in the encryption
(in order to model indistinguishability of ciphertexts). In order to win the se-
curity game, adversary A either has to trigger win ← 1 or output the correct
challenge bit πsi .bς of a specific session stage ς at the end of the game.
– OInit(i, s, j, ρ, ad) initializes a session πsi (if not yet initialized) of party i to be

partnered with party j, invoking fACCE.Init(ski, pkj , ρ, ad) →[πs
i
.rand] π

s
i .st

under πsi .rand. It also sets πsi .ρ ← ρ, πsi .pid ← j, and πsi .ad ← ad. This
oracle provides no return value. Finally, the freshness flags are updated by
invoking Freshfs() (see Figure 3).

– OEnc(i, s,m0,m1) triggers the encryption of message mb for b = πsi .bς by
invoking Enc(ski, πsi .st,mb)→[πs

i
.rand] (st′, c, ς) for an initialized πsi if |m0| =

|m1| and for ς = 0 (i.e., confidentiality is not yet achieved) it must hold that
m0 = m1 as the challenge bit would otherwise be trivially leaked. It updates
the session specific variables πsi .st ← st′, returns (c, ς) to the adversary, and
appends c to πsi .Te if c 6= ⊥.

– ODec(i, s, c) triggers invocation of Dec(ski, πsi .st, c) →[πs
i
.rand] (st′,m, ς) for

an initialized πsi and returns (m, ς) if πsi has no honest partner, or returns
ς otherwise (since challenges from the encryption oracle would otherwise be
trivially leaked). Finally c is appended to πsi .Td if decryption succeeds.
Excluding trivial attacks:
fs: Since decryption can change the honesty of partners, the freshness flags

are updated regarding corruptions by invoking Freshfs() (see Figure 3).
au: The consideration of trivial attacks regarding authentication are a com-

bination of the stage at which the protocol reaches authentication and
corruptions of the participants’ long-term secrets. If the received cipher-
text was not sent by a session of the intended partner (i.e., there exists
no honest partner) and
1. party i is corrupted (i.e., corr i = 1), then all following stages are

marked un-fresh (πsi .fr ς∗ ← 0 for all ς ≤ ς∗), since this is a KCI
attack.13

2. neither party i nor the session’s intended partner are corrupted (i.e.,
corr i = corrπs

i
.pid = 0) and authentication of the partner was not

reached yet (i.e., ς < auπ
s
i .ρ̄), then all following stages are marked

un-fresh until authentication will be reached (πsi .fr ς∗ ← 0 for all
ς ≤ ς∗ < auπ

s
i .ρ̄), since this is a (temporary) trivial impersonation of

the partner towards πsi .14

13 Please note that resistance against KCI attacks is not required.
14 If the partner authenticates later, then the protocol must ensure that this early trivial

impersonation is detected. Consequently, this attack is not treated trivial anymore
after the partner’s authentication.

20

3. only the session’s intended partner is corrupted (i.e., corrπs
i
.pid =

1 6= corr i) and authentication of the partner was not reached yet or
is reached with this received ciphertext (i.e., ς ≤ auπ

s
i .ρ̄), then all

following stages are marked un-fresh (πsi .fr ς∗ ← 0 for all ς ≤ ς∗),
since this is (and will continue to be) a trivial impersonation of the
partner towards πsi .

Rewarding real attacks:
au: Similarly to detecting trivial attacks, real attacks are rewarded by consid-

ering when authentication is reached in the respective protocol execution
and if the participants’ long-term secrets are corrupted.
The adversary breaks authentication (and thereby win← 1 is set) if the
received ciphertext was not sent by a session of the intended partner but
was successfully decrypted (i.e., there exists no honest partner and the
output state is st′ 6= ⊥), the stage is still fresh (πsi .fr ς = 1), and
1. this is the first authenticated ciphertext (ς = auπ

s
i .ρ̄), and neither

party i nor the intended partner are corrupted (corr i = corrπs
i
.pid =

0), or
2. this is a later authenticated ciphertext (ς > auπ

s
i .ρ̄) and party i is

not corrupted (corr i = 0) as this would otherwise be a KCI attack.
– OCorrupt(i) → ski outputs the long-term secret key ski of party i, sets

corr i ← 1, and updates the freshness flags by invoking Freshfs().
– OReveal(i, s)→ πsi .st outputs the current session state πsi .st.
Excluding trivial attacks:
• Revealing the session-state trivially determines this session’s challenge
bits, since the state contains any used session keys15. Hence πsi .fr ς∗ ← 0
is set for all stages ς∗.

• Similarly, sufficient information is leaked to determine challenge bits em-
bedded in ciphertexts to and from all honest partners πtj (and to imper-
sonate πsi towards them). As such, πtj .fr ς∗ ← 0 is set for all stages ς∗ of
these honest partners.

rp: In case the revealed secrets enable the adversary to obtain secrets of
non-partnered sessions due to a replay attack (ς < rpπ

s
i .ρ where ς was

output by πsi ’s last OEnc or ODec query) then the first ciphertext in
this session is declared to induce non-fresh sessions via Rpl ← Rpl ∪ {c}
where c← πsi .Te[0] if πsi .ρ = i or c← πsi .Td[0] if πsi .ρ = r (such that all
sessions starting with this ciphertext are also marked non-fresh)16.

15 Since we do not consider forward-secrecy within sessions, the secret session state is
considered to harm security of the whole session lifetime independent of when the
state is revealed.

16 One can easily define this trivial attack more specifically depending on whether this
first ciphertext is authenticated and/or designated to a certain party. Depending
on that, the secrets established by this ciphertext would only be valid among spe-
cific session (cf. [20]). For clarity and simplicity, we generically treat the ciphertext
replayable solely. Please note that a state, revealed before the first ciphertext was
sent/received (i.e., c = ε), should not harm security of other sessions.

21

Freshness regarding Corruptions and Replays The definition of forward-secrecy,
based on counter fs, is straight forward: if either the own long-term secrets
or the intended partner’s long-term secrets were corrupted (i.e., corr i = 1 ∨
corrπs

i
.pid = 1), then only stages that provide forward-secrecy are marked fresh

for the respective session (i.e., πsi .fr ς∗ ← 0 for all ς∗ < fs). For sessions started
with a ciphertext marked in set Rpl (i.e., initiating insecure communication due
to the reveal of a replayable session), all stages are marked insecure. We formally
define these properties via function Freshfs() (see Figure 3).

Freshfs():
For all i ∈ [nP], for all s ∈ [nS]:

ctr← min(ς∗ : πsi .frς∗ = 1)
If corr i = 1 ∨ corrπs

i
.pid = 1:

ctr← max(ctr, fs)
If πsi .Te[0] ∈ Rpl ∧ πsi .ρ = i:

ctr←∞
If πsi .Td[0] ∈ Rpl ∧ πsi .ρ = r:

ctr←∞
πsi .frς∗ ← 0 for all ς∗ < ctr

Fig. 3: Function for updating freshness flags after each oracle invocation, consider-
ing long-term secrets’ corruption (w.r.t. forward-secrecy) and full state reveals (w.r.t.
replay attacks). The freshness flags up to (and excluding) the first secure stage are
reset (e.g., for corrupted long-term keys, all stages in affected sessions are reset until
forward-secrecy is reached).

5.5 Security Definition
The notion of fACCE security is captured as a game played by an adversary A in
which the sessions are implemented as described above. At the beginning of the
game, nP long-term key pairs (pki, ski) ∀i ∈ [nP] are generated via fACCE.KGen
and the respective public keys are provided toA as a parameter on the invocation
(i.e., the start of the game). A interacts with the game via the queries described
above and eventually terminates, potentially outputting a tuple (i, s, ς, b′).

We can now turn to defining (in-)security of a fACCE protocol.
Definition 5 (Advantage in Breaking Flexible ACCE). An adversary A
breaks a flexible ACCE protocol fACCE with authentication stages (aui, aur),
forward-secrecy stage fs, and replayability resistance stages (rpi, rpr), when A
terminates and outputs (i, s, ς, b′), if there either exists a session πsi such that
πsi .bς = b′, and πsi .fr ς = 1 (which we subsume as event guess), or win = 1.
We define the advantage of an adversary A breaking a flexible ACCE protocol
fACCE as AdvfACCE

A = (2 · Pr[guess]− 1) + Pr[win = 1].
Intuitively, a fACCE protocol is secure if it is correct and AdvfACCE

A is negligible
for all probabilistic algorithms A running in polynomial-time.

22

Necessity of Holistic Model Our definition of flexible ACCE considers multiple
security properties simultaneously (as opposed to having separate definitions for
each regarded security property). In order to reduce complexity, it could seem
useful to regard the security properties independently and then assemble the
results. In the full version [15, Appendix B] we explain why this approach would
produce more complexity, less comprehensibility, and is partially impossible.

6 Protocol Analyses

In this section, we provide an overview of our results of analyzing the Noise
Protocol framework in our new fACCE model. Our main contribution is the full
proofs of Noise Patterns N, NN, NX, NK, and X, XN, XX, XK. We focus on proving
these two protocol “families” to demonstrate how our analysis can capture the
wide variety of security properties that we show in Table 1, while also simplifying
our approach by the re-use of our proof strategies. We give a detailed look
of the proofs of Noise Pattern XK here and extend these proofs, considering
further security properties in the full model, together with the proofs for the
remaining mentioned patterns in the full version [15]. We present the analysis
of Noise Pattern XK here as it comprehensibly provides an idea of the general
proof structure and shows how Noise patterns can be built upon another. As the
handshake of XK extends NK’s handshake, which in turn extends the handshake
of N by a half round-trip respectively, each extension also results in further
security properties (see Figure 2 and Table 1).

Generic Proof Structure The modular design of the Noise Protocol Framework
allow us to write proofs that have a reasonably generic structure. While the
proof for each specific Noise Pattern is distinct, each proof is, on a high level,
split into two cases:

– The adversary has forged a ciphertext successfully, and sent it to a session
that does not detect the forgery (or abort the protocol run). This case may
be further split into multiple cases depending on which ciphertext in the
Noise Pattern the adversary has managed to forge.

– The adversary has guessed the challenge bit correctly when it terminates the
experiment.

We determine which OCorrupt queries cannot have been issued such that the
attacked stage is still ‘fresh’ (as the adversary would otherwise be unsuccessful).
Thus, each case has some queries that have not been issued to the session πsi and
its partner session (where πsi either accepted the forged ciphertext, or the adver-
sary output (i, s, ς, b′)). In both cases we use a tailored PRF-ODH assumption,
depending on which pair of queries (targeting long-term DH shares, state se-
crets, or, in the full model, ephemeral DH shares that depend on random coins)
have not been issued, to replace the appropriate Diffie-Hellman public values
and shared Diffie-Hellman secrets (using the ODH oracles to compute any addi-
tional secrets using the DH secret keys, if necessary). Afterwards, we iteratively

23

replace intermediate secrets derived during the protocol execution using PRF
assumptions on the underlying key derivation function. Finally, we use a single
(or potentially series of) AEAD assumption(s) to replace the encryptions of ci-
phertexts sent to, and decryption of ciphertexts arriving at, the session πsi . Any
adversary capable of distinguishing these changes is able to break one of the
underlying assumptions used, and depending on which case we are in, either:
1. The adversary is unable to forge a ciphertext to the session πsi , or 2. The
adversary is unable to guess the challenge bit b with non-negligible probability.

This (high-level) description effectively captures the strategy we use to prove
our statements about the Noise Patterns that we analyze.

Mapping Noise’s Security Statements to our Model’s Counters Here we de-
fine the exact modeled security via the stage counters (aui, aur, fs, rpi, rpr),
(kci, kcr, eck, rli, rlr)17, used in our theorems of each proof. We also explain
how they relate to the round-trips in the protocol execution of the respective
Noise pattern (we discuss generic mapping among stage counters and round-trips
in the full version [15, Appendix C.3]). For each of the base patterns of the Noise
specification, the stage at which the respective security property is reached is
listed in Table 1. As stage numbers ς output by the Enc,Dec algorithms are
defined as integers, we assume the Noise patterns to output a counter as stage
number with every algorithm invocation, starting by 1 and always incremented
by 1 until no further security properties are reached. In the case that the ini-
tiator’s first ciphertext provides no confidentiality, the stage output is 0 (see
column rt = 0.5 in Table 1) but the reply by the responder continues with ς = 2.

The counters/round-trips for authentication and KCI resistance (auρ, kcρ)
are directly lifted from the Noise specification [32]. As the definition of the
remaining security properties deviate from the specification (or are not specified
therein), the theorems’ stage counters are defined as the first round-trips and
stages that achieve the respective goals. Regarding forward-secrecy, the Noise
specification differentiates among role dependent weak and strong variants of
long-term secrets’ corruptions. However, our consideration of forward-secrecy
focuses on the relation between corruptions of long-term secrets and the reveal
of sessions’ random coins. Consequently, the counter fs is only partially derived
from the Noise specification.

Resistance against replay attacks in the Noise specification only considers
the adversary’s ability to successfully let multiple sessions receive the same sent
ciphertext. However, local state variables (like an ephemeral symmetric encryp-
tion key or a DH exponent), established by a ciphertext, can be exploited by
an adversary to attack other sessions that sent or received the same (replayed)
ciphertext. Such state variables may stay in the local state even after the replay
attack “is over” (i.e., after only a unique honest partner exist). As the adversary
is allowed to reveal the local state, our definition of replay attack resistance goes
beyond others in the literature (e.g., [17]) and the Noise specification: it says
that resistance against replay attacks is reached if the local state of a session
17 The latter are only relevant for the proofs in the full model.

24

is independent of any other session’s state (except from the respective unique
honest partner).

rt aui aur fs rpi rpr kci kcr eck rli rlr

N∗ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞
X∗ 0 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
K 0 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
NN∗ 0.5 ∞ ∞ 2 2 0 ∞ ∞ ∞ ∞ ∞
NK∗ 0 ∞ 2 2 2 2 ∞ 2 ∞ 1 ∞
NX∗ 0.5 ∞ 2 2 2 0 ∞ 2 ∞ 2 ∞
XN∗ 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 3
XK∗ 0 3 2 2 2 2 3 2 ∞ 1 3
XX∗ 0.5 3 2 2 2 0 3 2 ∞ 2 3
KN 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2
KK 0 1 2 2 2 2 3 2 1 1 2
KX 0.5 3 2 2 2 0 3 2 ∞ 2 2
IN 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2
IK 0 1 2 2 2 2 3 2 1 1 2
IX 0.5 3 2 2 2 0 3 2 ∞ 2 2

Table 1: Stages at which the respective security properties are reached. Stage x is
reached (and thus returned by the protocol via output ς) at round-trip RT(x) = x/2
(for RT(x) < rt no property is reached). The right half of columns depicts the counters
for security properties that are only considered in the full model. auρ, kcρ were extracted
from Noise’s specification [32]; fs, rpρ are related to their definition in the specification
(but adapted to our model). rlρ, eck were defined purely with respect to the model.
We give proofs for the patterns marked with a ∗.

6.1 Proof of Noise Pattern XK

Theorem 1. Noise protocol XK (as in Figure 2) is an fACCE-secure proto-
col with authentication levels au = (3, 2), forward-secrecy fs = 2, and re-
play resistance rp = (2, 2). For an adversary A against the flexible ACCE se-
curity game (defined in Section 5) one can efficiently define adversaries Bcoll
against the collision resistance of H, BPRF-ODH against the PRF-ODH assump-
tions ms-PRF-ODH, sn-PRF-ODH and sym-ms-PRF-ODH with respect to group
G and KDF, Baead against the AEAD security of AEAD, and Bprf against the
PRF security of KDF with:

AdvfACCE
XK,nP ,nS ,A ≤ 3 · Advcoll

H,Bcoll
+ n2

PnS ·
(
Advprf

KDF,Bprf
+ Advms-PRF-ODH

KDF,G,p,BPRF-ODH

+Advaead
AEAD,Baead

)
+ n2

Pn
2
S ·
(
Advaead

AEAD,Baead
+ Advsym-ms-PRF-ODH

KDF,G,p,BPRF-ODH

)
+ n2

Pn
2
S ·
(

max
{(

3 · Advprf
KDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · Advaead
AEAD,Baead

)
,(

2 · Advprf
KDF,Bprf

+ 3 · Advaead
AEAD,Baead

+ Advsn-PRF-ODH
KDF,G,p,BPRF-ODH

)})
.

25

Proof. We give below the proof of Noise Pattern XK. We split our analysis into
three cases, depending on how the adversary can win the experiment. For the
first two cases, the adversary causes win ← 1 if the received ciphertext was not
sent by a session of the intended partner, but was successfully decrypted in an
authenticated stage by either an initiator (Case A) or a responder (Case B)
session. For Case A A cannot have issued a OCorrupt(πsi .pid) query because
breaking authentication of a corrupted peer is a trivial attack (as aur = 2).
Similiarly, for Case B A cannot have issued a OCorrupt(πsi .pid) query as aui =
3). Next we focus on an adversary attempting to guess the challenge bit b for
any fresh session (Case C). Case C is further separated into two subcases,
depending on the combination of allowable OCorrupt queries A issues, as defined
in Section 5. We show that under such restrictions, A has a negligible advantage
in guessing a challenge bit b for the session πsi . We begin with the standard
fACCE experiment defined in Section 5, and treat Case A.

In Case A Game 1, we define an abort event that triggers if a hash col-
lision occurs. We do so by defining an algorithm Bcoll that computes all hash
values honestly, and aborts if there exist two evaluations (in,H(in)), (în,H(în))
such that in 6= în, but H(in) = H(în), outputting this pair to a hash collision
challenger if found. In the next two games (Game 2, Game 3) we guess the
index (i, s) of the session πsi , as well as the index j of the honest partner πtj and
abort if either A terminates and outputs (i∗, s∗, ς, b′) such that (i∗, s∗) 6= (i, s),
or if A initialises πsi such that πsi .pid 6= j. From now, the challenger playing
the fACCE game “knows” at the beginning of the experiment the index of the
session that A will target, and its intended partner j. In Game 4, we introduce
an abort event abortwin that triggers if the challenger sets win ← 1 when the
test session proceses the ciphertext (gb, c1). The rest of the game hops in Case
A now bound the advantage of A in causing abortwin to occur.

Case A Game 5 requires careful consideration: Note that by Game 2,
we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the
beginning of the experiment the index of the intended partner πsi .pid of the
session πsi . Thus, we define an algorithm BPRF-ODH that initializes a ms-PRF-ODH
challenger, embeds the DH challenge keyshare gu into the long-term public-key
of party j, embeds the DH challenge keyshare gv into the ephemeral public-
key of session πsi , replaces the computation of ck, k0 ← KDF(ck, gaB , 2) (in the
session πsi and its partner) with uniformly random values c̃k, k̃0, and gives pkj =
gu to the adversary with all other (honestly generated) public keys. However,
BPRF-ODH must account for all sessions t such that party j must use the private
key for computations. In the Noise Protocol XK, the long-term private keys are
used in the following ways: In sessions where the party j acts as the initiator,
they compute ck, k2 ← KDF(ck, gxu, 2). Similarly, in sessions where the party
acts as the responder, they compute ck, k0 ← KDF(ck, gxu, 2). To simulate this
computation, BPRF-ODH must instead use the ODHu oracle provided by the ms-
PRF-ODH challenger, specifically querying ODHu(ck, X), (where X is the Diffie-
Hellman public keyshare such that the private key is unknown to the challenger)

26

which will output KDF(ck, Xu). We note that aur = 2, and only after processing
(gb, c1) will πsi output ς = 2, and so A cannot issue a OCorrupt(j) query before
πsi processes ciphertext gb, c1. Thus we bound the probability of A distinguishing
this change by the security of the ms-PRF-ODH assumption.

In Case A Game 6 the challenger replaces the concretely computed values
ck, k1 ← KDF(c̃k, gab, 2) in πsi and its honest partner (if one exists), with uni-
formly random values c̃k, k̃1. As by Game 5, the input c̃k is already uniformly
random and independent of the protocol execution, distinguishing this game hop
can be reduced to the prf security of the KDF. Note that due to this change, the
state of πsi (containing only c̃k, k̃1 as secrets) is independent of other sessions
(making it useless to reveal their states; cf., counters rpi = rpr = 2).

Case A Game 7 proceeds identically toGame 6, except that the challenger
flips a bit b̄, and uses b̄ instead of πsi .b1 when responding to OEnc or ODec
queries from A directed to sessions πsi or πtj when using the key k̃1. We do so
by constructing an algorithm Baead that interacts with an aead challenger, and
forwards such OEnc or ODec queries to the aead challenger. This change reduces
to the aead security of the AEAD scheme, and since k̃1 is a uniformly random
and independent value by Game 6, this replacement is sound. The additional-
data field of c1 contains h = H(H(H(H(H(H(XK_label‖ad)‖gB)‖ga)‖c0)‖gb).
By Game 1 we abort the experiment if A causes a hash-collision to occur, and
by Game 4 we abort if no honest session owned by j has output gb, c1. An
adversary capable of causing win ← 1 when πsi processes the ciphertext gb, c1
can break the aead security of the underlying AEAD scheme, and thus A has no
advantage in causing abortwin to occur.

AdvfACCE, Case A
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

+Advaead
AEAD,Baead

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

)
We can now treat Case B.
The first four games (Game 1,2,3,4) proceed similarly to Case A. That

is, we abort when a hash-collision is detected, and guess the index (i, s) of the
first session πsi to set win← 1. However, in Game 3, we additionally guess the
index (j, t) of the intended partner session, and abort if our guess is incorrect.
Game 4 still introduces an abort event that occurs if win← 1 is set in the test
session, and the rest of the game hops bound the advantage of A in causing the
abort event to occur.

Case B Game 5 again requires careful consideration: Note that by Game 2,
we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary and by Game 3, we know at the begin-
ning of the experiment the index of the honest partner session (j, t) of the session
πsi . We take a similar approach to Game 5 of Case A. However, in this game
we replace the computation of ck, k2 ← KDF(ck, gAb, 2) with uniformly ran-
dom and independent values (c̃k, k̃2) in the test session and its honest partner.
Specifically, we define an algorithm BPRF-ODH that initialises a sym-ms-PRF-ODH
challenger, embeds the DH challenge keyshares gu into the long-term public-key

27

of party i, embeds the DH challenge keyshare gv into the ephemeral public-
key of session πtj , replaces the computation of ck, k2 ← KDF(ck, gAb, 2) (in
the session πsi and its partner) with uniformly random values c̃k, k̃2, and gives
pki = gu to the adversary with all other (honestly generated) public keys. How-
ever, BPRF-ODH must account for all sessions s such that party i must use the
private key for computations. In the Noise Protocol XK, the long-term private
keys are used in the following ways: In sessions where the party i acts as the ini-
tiator, they compute ck, k2 ← KDF(ck, gxu, 2). Similarly, in sessions where the
party acts as the responder, they compute ck, k0 ← KDF(ck, gxu, 2). To sim-
ulate this computation, BPRF-ODH must instead use the ODHu oracle provided
by the ms-PRF-ODH challenger, specifically querying ODHu(ck, X), (where X
is the Diffie-Hellman public keyshare such that the private key is unknown to
the challenger) which will output KDF(ck, Xu). However, BPRF-ODH must ac-
count for the fact that the private key of gv (the ephemeral public-key of πsi) is
actually used before the computation of ck, k2. In particular, it is used earlier
in the protocol to compute ck, k0 := KDF(ck, gav), where ga may have been
contributed by A. In this case, in order to compute ck, k0, BPRF-ODH must in-
stead use the ODHv oracle provided by the sym-ms-PRF-ODH challenger, specif-
ically querying ODHv(ck, ga), which will output KDF(ck, gav). We note that
aui = 3, and only after processing (c2, c3) will πsi output ς = 3, and so A
cannot issue a OCorrupt(i) query before πsi processes ciphertext c2, c3. Thus we
bound the probability of A distinguishing this change by the security of the
sym-ms-PRF-ODH assumption. Note that other session states are (and were)
independent of πsi ’s state as gA is not stored in a state, a collision with gb

would break the above game hop, and c̃k, k̃2 were randomly sampled (cf., coun-
ters rpi, rpr). Case B Game 6 proceeds identically to Game 5, except that
the challenger responds to OEnc or ODec queries directed to πsi or πtj outputting
ς = 3 from A (i.e. when using the key k̃2) and aborts if πsi decrypts c2, c3 suc-
cessfully, but it was not output by an honest partner. This changes reduces to
the AEAD security of the AEAD scheme. The additional-data field of c3 contains
h = H(H(H(H(H(H(H(H(XK_label‖ad)‖gB)‖ga)‖c0)‖gb)‖c1)‖c2). By Game 1
we abort the experiment if A causes a hash-collision to occur, and by Game 4
we abort if no honest session owned by j has output c2, c3. Now, A has no
advantage in triggering the event abortwin due to πsi processing c2, c3.

AdvfACCE, Case B
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advaead
AEAD,Baead

)
We can now treat Case C.

We follow now-standard procedure and define an abort event to trigger when
we find a hash-collision, guess the index (i, s) of the session πsi , and the index
(j, t) of the honest partner πtj . By Case A and Case B, there must exist such
an honest partner for the beginning of stage ς = 3. In what follows, we assume
without loss of generality that πsi is the initiator session. The analysis where πsi
is the responder session follows identically, except for a change in notation.

At this point, we need to split the analysis into two sub-cases:

28

1. Case C.1: A has not issued a OCorrupt(j) query during the experiment.
This allows us to prove the security of all stages ciphertexts.

2. Case C.2: A has issued a OCorrupt(j) query after πsi decrypts gb, c1 success-
fully (outputting ς = 2). Note that ifA issues a OCorrupt(j), then πsi .fr1 ← 0,
and thus A has no advantage in outputting (i, s, 1, b′). This allows us to prove
the security of ciphertexts belonging to stages ς ≥ 2. Note that if A did not
ever issue a OCorrupt(j) query, then the security analysis reverts to Case
C.1 since πsi .fr1 = 1, and we need to capture the security of the additional
stages’ ciphertext.

In Case C.1 Game 4, we replace ck, k0 by uniformly random c̃k, k̃0 in πsi
and its honest partner which is reduced to the ms-PRF-ODH assumption (the
challenger here acts as in Case A, Game 5). Here the session state is again
independent of other non-partnered sessions’ states. In Game 5 and Game 6,
we replace the values ck, k1 ← KDF(c̃k, gab, 2) with uniformly random values
c̃k, k̃1, and subsequently replace ck, k2 ← KDF(c̃k, gAb, 2) with uniformly ran-
dom values c̃k, k̃2 via the prf assumption on KDF. Similarly, in Game 7 we
replace ki, kr ← KDF(c̃k, ε, 2) with uniformly random values k̃i, k̃r.

In Case C.1 Game 8 the challenger flips a bit b̄ and uses b̄ instead of πsi .b1
when responding to OEnc(i, s,m0,m1) queries from A when Enc and Dec would
output ς = 1 (i.e. when using the key k̃0 replaced in Game 4). Specifically, the
challenger constructs an algorithm Baead that interacts with an AEAD challenger
in the following way: Baead acts exactly as in Game 7 except responding to
OEnc(i, s,m0,m1) or ODec(j, t, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 and instead forwards the queries to the AEAD
challenger’s oracles. Since k̃0 is a uniformly random and independent value (by
Game 4), this change is sound.

Case C.1 Game 9 and Game 10 proceed identically to Game 8 but flip
and use independent challenge bits when answering queries to OEnc if key k̃1
is used in stage ς = 2 (Game 9) and when key k̃2 is used in stage ς = 3
(Game 10). These changes in A’s advantage are bound by the advantage in
breaking the underlying aead assumption. Finally, in Game 11 keys k̃i, k̃r (re-
placed in Game 7) are used in stage ς = 4. These changes in A’s advantage are
bound by the advantage in breaking the underlying aead assumption. In Case
C.1, Game 11, the behaviour of πsi is independent on the test bits πsi .bς (where
ς ≥ 1) and thus A has no advantage in guessing these challenge bits nor in
causing πsi to set win← 1.

We now treatCase C.2, where A potentially has issued a OCorrupt(j) query.
Since fs = 2, by Table 1 any adversary that issues a OCorrupt(j) sets πsi .fr1 ← 0
and outputting (i, s, 1, b′) will lose A the game. Thus in Case C.2 we do not
prove the security of the first ciphertext’s payload data.

Case C.2 Game 4 requires additional care: Note that by Game 2, we know
at the beginning of the experiment the index of session πsi such that (i, s, ς ′, b′)
is output by the adversary and by Game 3, we know at the beginning of the ex-
periment the index of the honest partner session (j, t) of the session πsi . We take

29

a similar approach to Game 5 of Case A. However, in this game we replace
the computation of ck, k1 ← KDF(ck, gab, 2) with uniformly random and inde-
pendent values (c̃k, k̃1) in the test session and its honest partner. Specifically, we
define an algorithm BPRF-ODH that initialises a sn-PRF-ODH challenger, embeds
the DH challenge keyshares gu into the ephemeral public-key of party i (ga),
embeds the DH challenge keyshare gv into the ephemeral public-key of session
πtj (gb), and replaces the computation of ck, k1 ← KDF(ck, gab, 2) (in the session
πsi and its partner) with uniformly random values c̃k, k̃1. Note that BPRF-ODH can
use its internal knowledge of the long-term private keys of party i and party j to
compute (ck, k0) ← KDF(ck, guB , 2) and (ck, k2) ← KDF(ck, gAv, 2). However,
BPRF-ODH must account for A to issue OCorrupt(j) after πtj has computed the
ciphertext (gb, c1) and instead delivering (gb′, c′1) to πsi . To simulate this compu-
tation, BPRF-ODH must instead use the ODHu oracle provided by the sn-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman
public keyshare such that the private key is unknown to the challenger) which
will output KDF(ck, Xu). Thus we bound the probability of A distinguishing
this change by the security of the sn-PRF-ODH assumption. Due to this game
hop πsi ’s session state is independent of other non-partnered sessions’ states.

In Case C.2 Game 5 and Game 6, we replace ck, k2 ← KDF(c̃k, gAb, 2)
with uniformly random values c̃k, k̃2, and subsequently replace ki, kr← KDF(c̃k,
ε, 2) with uniformly random values k̃i, k̃r. Case C.2, Game 7 proceeds similarly
to Case C.1, Game 9 by encrypting mb̄ for a randomly flipped bit b̄ when Enc
and Dec would output ς = 2 (i.e. when using the key k̃1). Case C.1, Game 8
proceeds similarly to Case C.1, Game 10 by encrypting mb̄ for a randomly
flipped bit b̄ when Enc and Dec would output ς = 3 (i.e. when using the key
k̃2). Finally, Game 9 proceeds identically to Case C.1 Game 11 by encrypting
mb̄′ for another randomly flipped bit b̄′ when Enc and Dec would output ς = 4
(i.e. when using the keys k̃i, k̃r). In Case C.2, Game 9, the behaviour of πsi is
independent of the test bits πsi .bς (where ς ≥ 2) and thus A has no advantage
in guessing these challenge bits nor in causing πsi to set win← 1. Thus:

AdvfACCE,Case C
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

max
{(

3 · Advprf
KDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · Advaead
AEAD,Baead

)
,(

2 · Advprf
KDF,Bprf

+ 3 · Advaead
AEAD,Baead

+ Advsn-PRF-ODH
KDF,G,p,BPRF-ODH

)})
.

7 Discussion

The aim of our model is explicitly not to propose the next super-strong notion
of security (since all security properties can be analyzed optionally but not all
independently), but to propose a generic model- and proof-approach.

As the main reason for basing a protocol analysis on an ACCE model is
the intertwined design of the specific analyzed protocol (i.e., an atomic channel

30

establishment), it is surprising that all previous ACCE model definitions were
heavily influenced by the concept of composing a channel establishment protocol
cleanly from key exchange and channel. Consequently, our results systematize
and contribute to the understanding of the generic, composition-independent
primitive authenticated and confidential channel establishment.

Acknowledgments We thank Trevor Perrin, Sebastian Lauer, Sven Schäge,
Bertram Poettering, Marc Fischlin, members of the SKECH workshop 2018,
and the reviewers for insightful comments and discussions.

Bibliography

[1] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and
Yuval Shavitt. DROWN: breaking TLS using sslv2. In USENIX Security, 2016.

[2] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In CRYPTO, 1993.

[3] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg Schwenk, and Douglas
Stebila. Multi-ciphersuite security of the secure shell (SSH) protocol. In CCS,
2014.

[4] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete,
and Elena Pagnin. Said: Reshaping signal into an identity-based asynchronous
messaging protocol with authenticated ratcheting. In IEEE EuroS&P, 2019.

[5] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-
ODH: relations, instantiations, and impossibility results. In CRYPTO, 2017.

[6] Chris Brzuska and Håkon Jacobsen. A modular security analysis of EAP and
IEEE 802.11. In PKC, 2017.

[7] Chris Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Com-
posability of bellare-rogaway key exchange protocols. In CCS, 2011.

[8] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An
analysis of the EMV channel establishment protocol. In CCS, 2013.

[9] Christina Brzuska, Håkon Jacobsen, and Douglas Stebila. Safely exporting keys
from secure channels - on the security of EAP-TLS and TLS key exporters. In
EUROCRYPT, 2016.

[10] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina
Nita-Rotaru. Secure communication channel establishment: Tls 1.3 (over tcp fast
open) vs. quic. Cryptology ePrint Archive, Report 2019/433, 2019. https://
eprint.iacr.org/2019/433.

[11] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A formal security analysis of the signal messaging protocol. In
IEEE EuroS&P, 2017.

[12] Jason A. Donenfeld. Wireguard: Next generation kernel network tunnel. In NDSS,
2017.

[13] Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the
wireguard protocol. In ACNS, 2017.

[14] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-
graphic analysis of the TLS 1.3 handshake protocol candidates. In CCS, 2015.

31

https://eprint.iacr.org/2019/433
https://eprint.iacr.org/2019/433

[15] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible authenticated and
confidential channel establishment (facce): Analyzing the noise protocol frame-
work. Cryptology ePrint Archive, Report 2019/436, 2019. https://eprint.iacr.
org/2019/436.

[16] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of google’s
QUIC protocol. In CCS, 2014.

[17] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The
case of the TLS 1.3 handshake candidates. In IEEE EuroS&P, 2017.

[18] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS
renegotiation. In CCS, 2013.

[19] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-rtt key exchange
with full forward secrecy. In EUROCRYPT, 2017.

[20] Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk. Simple security
definitions for and constructions of 0-rtt key exchange. In ACNS, 2017.

[21] WhatsApp Inc. Whatsapp encryption overview, 2016. URL https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf. White paper.

[22] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of
tls-dhe in the standard model. In CRYPTO, 2012.

[23] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Authenticated
confidential channel establishment and the security of TLS-DHE. J. Cryptology,
30(4), 2017.

[24] Nadim Kobeissi. Noise explorer, 2018. URL https://noiseexplorer.com/.
[25] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. Noise explorer:

Fully automated modeling and verification for arbitrary noise protocols. In IEEE
EuroS&P, 2019.

[26] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of tls-dh and
tls-rsa in the standard model. Cryptology ePrint Archive, 2013. https://eprint.
iacr.org/2013/367.

[27] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In CRYPTO, 2013.

[28] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. A Mechanised
Cryptographic Proof of the WireGuard Virtual Private Network Protocol. In
IEEE EuroS&P, 2019.

[29] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru.
How secure and quick is quic? provable security and performance analyses. In
IEEE S&P, 2015.

[30] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security anal-
ysis of the TLS handshake protocol. In ASIACRYPT, 2008.

[31] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites: Exploiting
the ssl 3.0 fallback, 2014. URL https://www.openssl.org/~bodo/ssl-poodle.
pdf.

[32] Trevor Perrin. The noise protocol framework, 2017. URL http://noiseprotocol.
org/noise.html. Revision 33.

[33] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the end-to-
end security of group chats in signal, whatsapp, and threema. In IEEE EuroS&P,
2018.

32

https://eprint.iacr.org/2019/436
https://eprint.iacr.org/2019/436
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://noiseexplorer.com/
https://eprint.iacr.org/2013/367
https://eprint.iacr.org/2013/367
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html

	Flexible Authenticated and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol Framework

