
Public-Key Puncturable Encryption: Modular
and Compact Constructions

Shi-Feng Sun1,2, Amin Sakzad1, Ron Steinfeld1, Joseph K. Liu1, and
Dawu Gu3

1 Faculty of Information Technology,
Monash University, Clayton, Australia

2 Data61, CSIRO, Melbourne, Australia
3 Department of Computer Science & Engineering,
Shanghai Jiao Tong University, Shanghai, China

Abstract. We revisit the method of designing public-key puncturable
encryption schemes and present a generic conversion by leveraging the
techniques of distributed key-distribution and revocable encryption. In
particular, we first introduce a refined version of identity-based revo-
cable encryption, named key-homomorphic identity-based revocable key
encapsulation mechanism with extended correctness. Then, we propose a
generic construction of puncturable key encapsulation mechanism from
the former by merging the idea of distributed key-distribution. Compared
to the state-of-the-art, our generic construction supports unbounded
number of punctures and multiple tags per message, thus achieving more
fine-grained revocation of decryption capability. Further, it does not rely
on random oracles, not suffer from non-negligible correctness error, and
results in a variety of efficient schemes with distinct features. More pre-
cisely, we obtain the first scheme with very compact ciphertexts in the
standard model, and the first scheme with support for both unbounded
size of tags per ciphertext and unbounded punctures as well as constant-
time puncture operation. Moreover, we get a comparable scheme proven
secure under the standard DBDH assumption, which enjoys both faster
encryption and decryption than previous works based on the same as-
sumption, especially when the number of tags associated with the ci-
phertext is large.
Keywords: Functional Encryption; Puncturable Encryption; Forward
Security

1 Introduction

Public Key Encryption (PKE) is a critical cryptographic tool for protecting the
confidentiality of messages transmitted over insecure communication channels,
which has been widely employed in practice such as messaging services. It is com-
monly agreed that the standard security for PKE is indistinguishability against
chosen-ciphertext attack (IND-CCA) that is guaranteed under the perfect se-
crecy of secret keys. However, as more and more cryptographic applications are
performed on poorly protected mobile devices, the threat of key compromise to

attackers through virus or physical access becomes more and more acute nowa-
days, and thus will lead to the lost of the security guarantees.

To deal with such kind of threat, numerous methods have been introduced,
including key-insulated cryptography [22], threshold cryptography [21], proactive
cryptography [36] and forward security [27,11]. As a promising approach, forward
security has been considered in a variety of cryptographic primitives, since the
initial introduction in the context of key exchange protocol [27] in 1989. However,
the first forward secure PKE (FS-PKE) was proposed by Canetti et al. [11] in
2003. In general, a forward secure PKE scheme is usually equipped with an
efficient update algorithm, by which the current secret key can be altered so
that it cannot be used to recover past messages. In other words, the decryption
capability for previous ciphertexts is revoked by updating the secret key.

Motivated by the problem that existing forward secure PKE schemes cannot
support fine-grained revocation of decryption capability (e.g., removing decryp-
tion capability for any individual ciphertext or all ciphertexts sent during a spe-
cial period), Green and Miers [26] introduced a new form of PKE — Public-key
Puncturable Encryption (PPE) — for achieving forward secure asynchronous
messaging. In general, this primitive supports multiple tags per message (or ci-
phertext), which may contain a unique message identifier (e.g., GUID) and some
additional metadata (e.g., the sender identity). This feature endows the recipient
with the ability of not only revoking individual ciphertext but also the entire
classes of ciphertexts (e.g., all ciphertext from the same sender), so it can achieve
forward security at a fine-grained level.

Briefly, PPE can be seen as a form of tag-based encryption [31] added with
an efficient key-update algorithm called Puncture algorithm. In particular, this
algorithm takes as input the current secret key SK and a tag t and outputs
a new (punctured) secret key SK ′ that can decrypt all ciphertexts except for
those encrypted under tag t. By this procedure, the secret key can be punctured
repeatedly and sequentially on many distinct tags, thus revoking the decryption
capability for the ciphertexts encrypted under (any of) these tags. Based on
the Key-Policy Attribute-Based Encryption (KP-ABE) scheme [35], Green and
Miers proposed the first concrete PPE scheme 1 in the random oracle model. Fur-
ther to reduce the decryption cost of PPE scheme alone, they put forward a new
variant of FS-PKE scheme, named Puncturable Forward Secure PKE (PFSE),
by combining their PPE scheme with a variant of Canetti et al. FS-PKE scheme
[11]. Subsequently, Günther et al. in [28] introduced the key encapsulation ver-
sion of PFSE (PFSKEM) and proposed a generic constriction of PFSKEM from
any one-time signature and hierarchical identity-based key encapsulation (HI-
BKEM) scheme [8] with special properties. In this work, we are more interested in
PPE itself. Recently, it has been employed widely to achieve other cryptographic
goals, such as constructing forward secure 0-RTT protocols [19], backward pri-
vate searchable encryption [10], forward secure proxy re-encryption [20], and

1 The proposed PPE scheme supports an arbitrary number of punctures, and the
decryption cost is linear in the number of punctures.

2

public-key watermarking schemes [15]. This demonstrates that PPE is a useful
and valuable cryptographic tool.

However, the existing PPE schemes suffer from different shortcomings. In
more details, the instantiations from [12,15] are given on the basis of indistin-
guishability obfuscation, which are more feasibility results than practical solu-
tions. The state-of-the-art construction is from Derler et al. [19,18], in which they
introduced a relaxed variant of PPE termed Bloom Filter Encryption (BFE).
Specifically, their basic construction from Identity-Based Encryption (IBE) [9]
features both efficient puncture and decryption procedure, but has a large ci-
phertext expansion. Moreover, they presented two generic constructions from
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [7] and Identity-Based
Broadcast Encryption (IBBE) [17] under the same framework, thus achieving
different tradeoffs between (public) key size and ciphertext size. For example,
the design from IBBE allows us to obtain the BFE schemes with compact ci-
phertexts. Due to relying heavily on Bloom filter [33], however, BFE is subject
to non-negligible correctness error. As argued in [15], this does not affect the
application of BFE to designing efficient forward-secure 0-RTT protocols, but
may limit its deployment in the scenarios requiring negligible correctness error.
In addition, BFE schemes only support a pre-determined number of punctures,
due to the inherent properties of Bloom filters, and a unique tag per ciphertext.
This makes it less fine-grained than the PPE scheme in [26], as for example it
cannot support the revocation of all ciphertexts from a single sender. In contrast,
the scheme by Green and Miers avoids these drawbacks, but still suffers from
some others, such as (1) the number of tags per ciphertext is bounded by some
pre-determined parameter d ∈ N at the setup, (2) the size of both public key
and ciphertext are linear in the pre-determined integer d, and (3) the security is
achieved in the random oracle model.

As great effort has been made to improve the performance, security and/or
functionality of attribute-based encryption (e.g., [4,34,38,2,14,1,24]) during the
past decade, it is also significant to design puncturable encryption with nice fea-
tures like unbounded tags (or attributes) per message. As emphasized in [34], it
is highly desirable in practice to make the parameters for secret key and encryp-
tion unbounded by the public parameters fixed at setup, otherwise the public
parameter size should be very huge and the scheme will be less flexible. This
feature is also important for PPE applications. For example, in asynchronous
messaging the decryption capability of metadata (possibly containing a huge
number of attributes) encrypted with such scheme can be flexibly revoked by
puncturing secret key on any type of attribute.

Based on previous discussions and the systemized work of [19], the natural
questions include:

1. How to design efficient PPE schemes with as many desired features as pos-
sible (e.g., negligible correctness error, unbounded punctures and compact
ciphertext)?

2. Is it possible to generically construct PPE with negligible correctness errors
from other cryptographic primitives?

3

In this work, we make affirmative progress to above questions by leveraging
the idea of distributed key-distribution and the revocation encryption technique.
In particular, we propose a generic construction of puncturable key encapsulation
mechanism by embedding the distributed key-distribution technique to a key
encapsulation version of revocation encryption system, and thus obtain a variety
of concrete PPE schemes featuring distinct characteristics. The high-level idea
is described below, and the main contributions are summarized in Section 1.2.

1.1 Technical Overview

In a PPE scheme, the secret key is punctured gradually; the punctured secret
key is updated as a new tag (to be punctured) arrives. The functionality of PPE
requires that the ciphertext can be decrypted only if no tag attached to the
ciphertext has been punctured. Our idea is inspired by the design of symmet-
ric puncturable encryption [37] and the distributed symmetric key-distribution
[32,23,16], so we concentrate on the key encapsulation version of PPE in this
work. To support unbounded punctures, the intuition is to distribute an (en-
capsulated) symmetric key in a similar way as in [26]. Basically, the idea is to
produce a share of the encryption/encapsulated key on-the-fly and to reconstruct
this key from all shares for completing the decryption. Similar to [37], one share
corresponds to one master secret key and each master key is used to puncture a
unique tag. In this framework, the crucial point is to make sure that the share
(indirectly) associated with tag t cannot be recovered once t belongs to the tag
list T of the ciphertext, which implies that the encapsulated key cannot be recon-
structed if some tag of the ciphertext is punctured. In other words, it is desired
that the share of the encryption key with respect to t cannot be recovered if
t ∈ T . We observe that it resembles revocation system [30] and can be achieved
by leveraging this well-studied cryptographic tool, in which the ciphertext under
revocation list T cannot be decrypted whenever user t is revoked (i.e., t ∈ T).
Following this way, we realize the puncture procedure by invoking the key gener-
ation algorithm of the revocation system. In particular, each time a new tag t is
to be punctured, a random value mskt is chosen for generating a corresponding
secret key skt and subtracted from the master secret key msk (of the revoca-
tion system). Finally, the remaining part “msk −

∑
t skt” is (implicitly) used

to produce a secret key sk0 for a distinguished tag t0, which is excluded in all
punctures and the tag list of each ciphertext. To that end, we further refine the
revocation system and introduce the concept of key-homomorphic revocation
system with extended correctness that is crucial for our construction (including
computing sk0) and the security proof. For more details, please refer to Section
2.3 and Section 3.

1.2 Our Contributions

In this work, we present a modular way of constructing puncturable encryption
inspired by the idea of distributed key-distributions. In particular, we first in-
troduce a variant of identity-based revocation system, named key-homomorphic

4

Table 1. Comparison of Public-Key Puncturable Encryption Schemes

Schemes
Public key Secret key Ciphertext Punctured Unbounded

size size overhead key size punctures ciphertext tags
(|G|, |GT |, H) |G| (|G|, λ-bit) |G| (Y/N, #) (Y/N, #)

[26] (O(n), 1, 1) 3 (O(n̂), 0) 3 · (i+ 1) (Y, –) (N, n)

[19]IBE (1, 0, k) m (1, k) O(m) (N, d) (N, 1)

[18]IBBE (O(k), 1, O(k)) m (2, 1) O(m) (N, d) (N, 1)

Sec. 4.1 (O(n), 1, 0) O(n) (2, 0) O(n) · (i+ 1) (Y, –) (N, n)

Sec. 4.2 (O(n), 1, 0) 3 (O(n), 0) 3 · (i+ 1) (Y, –) (N, n)

Sec. 4.3 (5, 1, 0) 3 (O(n̂), 0) 3 · (i+ 1) (Y, –) (Y, –)

Sec. 4.4 (O(n), 2, 0) O(n) (6, 0) O(n) · (i+ 1) (Y, –) (N, n)

| · |: the bit-length of a group element, e.g., |G|; H: a hash function; λ: a security
parameter; n̂: the number of tags attached to ciphertext; n: the upper-bound of
n̂ (i.e., |T | ≤ n); d: the upper-bound on # of allowed punctures; i = # of tags
associated with the current punctured key; m = −d · ln p/(ln 2)2 is the length of
Bloom filter with false positive probability p [19].

Table 2. Comparison of Public-Key Puncturable Encryption Schemes

Schemes
Puncture Encryption Decryption? Standard Negligible

Assumption
(H, exp) (pair, expT , exp) (pair, exp) model corr. error

[26] (1, O(n)) (0, 1, O(n̂n)) (3, O(n̂)) · (i+ 1) ×
√

DBDH

[19]IBE (k, 0) (k, k, 1) (1, 0) × × BCDH

[18]IBBE (k, 0) (0, 1, O(k)) (2, 2) × × GDDHE

Sec. 4.1 (0, O(n)) (0, 1, O(n̂)) (2, O(n̂)) · (i+ 1)
√ √

q-DBDHE

Sec. 4.2 (0, O(n)) (0, 1, O(n)) (2, O(n)) · (i+ 1)
√ √

DBDH

Sec. 4.3 (0, O(1)) (0, 1, O(n̂)) (3, O(n̂)) · (i+ 1)
√ √

q-MEBDH

Sec. 4.4 (0, O(n)) (0, 2, O(n̂)) (6, O(n̂)) · (i+ 1)
√ √

DLIN

?: decryption is done by a secret key punctured on i tags; n̂: the number # of tags
attached to ciphertext; n: the upper-bound of n̂ (i.e., |T | ≤ n); k = − log2 p is the
of H’s for a Bloom filter with false positive probability p [19].

identity-based revocable key encapsulation mechanism (KH-IRKEM) with ex-
tended correctness, and then propose a generic construction of puncturable key
encapsulation mechanism (PKEM) from any such kind of KH-IRKEM scheme.
Compared to the generic conversion of [19], our construction satisfies the stan-
dard correctness definition (i.e., negligible correctness error), enjoys more fine-
grained revocation of decryption capability, and supports an unbounded number
of punctures. Since the security and performance of our modular construction
depends only on the underlying IRKEM scheme, our PKEM scheme can achieve
the same level security as IRKEM without inducing additional security assump-
tions or computation redundancy. Based on the extensively-studied identity-
based revocation systems, we also give four PKEM instantiations with distinct
advantages, which are summarized as follows:

– Our first construction is the first PPE scheme that enjoys compact cipher-
texts. Precisely, the ciphertext overhead consists of only two group elements.

5

Moreover, it has a faster encryption and decryption procedure (exactly de-
cryption requires 33% less pairing computation) than the scheme by Green
and Miers [26], and can be proven selectively secure in the standard model.

– Our second scheme has a comparable storage cost with [26]. Both schemes
can be proven secure under the standard assumption —DBDH assumption,
but our scheme enjoys more efficient encryption and decryption, especially
when the number of tags encrypted is large. In more details, our encryp-
tion algorithm is independent of the number n̂ of tags encrypted and the
decryption requires 33% less pairing computation.

– Our third construction is proven secure under a stronger assumption, but fea-
tures compact public key and fast puncture procedure, both of which depend
not on the maximum number n of tags allowed per ciphertext. Moreover, it
is the first scheme that has no constraint on the number of tags attached to
ciphertext. It also enjoys a faster encryption algorithm compared to [26].

– As the first construction, our last scheme also features short ciphertexts,
exactly consisting of six group elements. In contrast, it has a slightly slower
encryption and decryption procedure, but can be proven adaptively secure
based on the standard DLIN assumption, rather than a “q-type” one.

For more details on the comparison with previous works, please refer to Table
1 and Table 2 as well as the analysis given in Section 5.

2 Background

In this section, we give the notations used in this work and recollect the syn-
tax and security of the relevant cryptographic primitives, such as public-key
puncturable encryption and identity-based revocation system.

Notations. Security parameter is denoted by λ. For a finite set S, we let s
$←− S

be the operation of sampling s uniformly at random from S. If S is a distribution,
it denotes the operation of sampling s according to S. We write a ← A(·) to
denote the process of running algorithm A(·) and assigning the result to a. If A(·)
is randomized, we use A(x; r) to denote the unique output of A(·) taking as input
x and randomness r. In addition, we denote by bold uppercase A (resp. lowercase
x) a matrix (resp. vector). Unless stated otherwise, all vectors are column vectors
and row vectors are written as xT. For two vectors x = (x1, x2, . . . , xn) ∈ Znp and
y = (y1, y2, . . . , yn) ∈ Znp , we denote their inner product as 〈x,y〉 =

∑n
i=1 xiyi.

For a matrix A = [ai,j] ∈ Zm×np and a group element g ∈ G, we write gA to
denote the matrix [gai,j] ∈ Gm×n. Also, we use [a, b] to denote the set {a, a +
1, . . . , b− 1, b} for integers b > a ≥ 0.

2.1 Bilinear Maps

We briefly review the relevant facts about bilinear maps. Let (G1,G2,GT) be
multiplicative cyclic groups of prime order p, and g, h be generators of G1 and G2

respectively. An efficiently computable mapping e : G1 ×G2 → GT is a bilinear
map if it satisfies the following properties:

6

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: for g ∈ G1, h ∈ G2, e(g, h) 6= 1GT

whenever g, h 6= 1G.

For matrices A,B ∈ Zm×np , we let e(gA, hB) = e(g, h)A
TB hereafter.

2.2 Puncturable Key-Encapsulation Mechanism

As mentioned in [19], a full-blown public-key puncturable encryption scheme
can be generically converted from any puncturable key-encapsulation mechanism
(PKEM), so next we only present the syntax and security of PKEM. Following
the definition given in [19], a PKEM scheme with key space K and tag space T
generally consists of four polynomial time algorithms (KeyGen, Enc, Punc, Dec)
with the specifications below:

– KeyGen(1λ, n) takes as input a security parameter λ and a maximum number
n of tags allowed for each ciphertext, and outputs a public and secret key
pair (PK,SK). Note that n ∈ N∪ {∞} and “∞” means the number of tags
per ciphertext is unbounded.

– Enc(PK, T) takes as input a public key PK and a set of tags T such that
|T | ≤ n, and outputs an encapsulated key K and a ciphertext CT .

– Punc(SKi−1, t) takes as input a secret key SKi−1 and a tag t, where SK0 =
SK, and outputs a new secret key SKi that can decrypt what SKi−1 can
except for those encrypted under tag t.

– Dec(SKi, CT, T) takes as input a secret key SKi and a ciphertext CT gen-
erated under a list of tags T , and outputs the encapsulated key K or ⊥ (the
latter indicates the decapsulation fails).

Definition 1 (Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, and T ⊆ T such
that |T | ≤ n, let (PK,SK) ← KeyGen(1λ, n) and (K,CT) ← Enc(PK, T),
then we have that Dec(SK, CT, T) = K. Moreover, for any ` times of invoking
SKi ← Punc(SKi−1, t

′) such that t′ /∈ T , it holds that

Pr[Dec(SK`, CT, T) = ⊥] ≤ negl(λ),

where the probability is taken over the random coins of all algorithms.

Remark 1. Our syntax is slightly different from [19]. In particular, our encryp-
tion algorithm also takes as input a list of tags T instead of only PK. Thus,
our puncture algorithm is operated on tag t rather than ciphertext CT . In this
way, many ciphertexts under the same tag t (e.g., all ciphertexts from the same
sender) can be revoked by executing the puncture algorithm once. In fact, our
PKEM is more similar to the key encapsulation version of public-key punc-
turable encryption initialized by Green and Miers [26], which enjoys fine-grained
revocation of decryption capability.

The security of PKEM is adapted from that of PPE in [26]. It is defined via
an IND-PUN-ATK game, which incorporates both CPA and CCA variants. The
game is played between a challenger and an adversary as follows.

7

Setup: On input a security parameter λ and a maximum number n of tags al-
lowed per ciphertext, the challenger runs (PK,SK)← KeyGen(1λ, n). Then
it returns PK and initializes two empty sets P, C and a counter i = 0.

Phase 1: The adversary adaptively issues the following queries
– Puncture(t′): On input a tag t′, the challenger increments counter i,

computes SKi ← Punc(SKi−1, t
′) and adds t′ to P.

– Corrupt(): The first time the adversary issues this query, the challenger
returns the most recent secret key SKi and sets C ← P. For subsequent
queries, directly returns ⊥.

– Decrypt(CT, T): On input a ciphertext CT and the associated tags T ,
the challenger returns K ← Dec(SKi, CT, T) if ATK = CCA, otherwise
returns ⊥.

Challenge: On input challenge tags T ∗ ⊆ T , the challenger directly rejects if
the adversary has previously issued a Corrupt query and T ∗∩C = ∅. Other-

wise, it picks b
$←− {0, 1},K1

$←− K and computes (K0, CT
∗)← Enc(PK, T ∗).

At last, it returns (Kb, CT
∗) to the adversary.

Phase 2: This phase is the same as Phase 1 except for the following restrictions
– Corrupt(): Returns ⊥ if T ∗ ∩ P = ∅.
– Decrypt(CT, T): Returns ⊥ if (CT, T) = (CT ∗, T ∗).

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 2 (Adaptive Security). A PKEM scheme PKEM = (KeyGen,Enc,
Punc,Dec) is IND-PUN-ATK secure for ATK ∈ {CPA, CCA} if for all proba-
bilistic polynomial time (PPT) adversary A, the advantage of A winning in the
IND-PUN-ATK game is

AdvIND-PUN-ATK
A,PKEM (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ),

where negl(λ) is a negligible function of λ.

We also define a weak security named selective security by an IND-sPUN-
ATK game. It is similar to the above game except that the adversary is required
to submit the challenge tag list T ∗ ⊆ T before the setup phase.

Definition 3 (Selective Security). A PKEM scheme PKEM = (KeyGen,Enc,
Punc,Dec) is IND-sPUN-ATK secure for ATK ∈ {CPA, CCA} if for all PPT
adversary A, the advantage of A winning in the IND-sPUN-ATK game is

AdvIND-sPUN-ATK
A,PKEM (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ).

2.3 Key-Homomorphic Identity-Based Revocation Mechanism

In this part, we first recall the syntax and security of identity-based revocation
scheme, and then introduce a new concept — key-homomorphic identity-based
revocable key encapsulation mechanism (KH-IRKEM) — for our application.

8

In fact, we do not need a full-blown revocation encryption scheme. Instead, an
identity-based revocable key encapsulation mechanism (IRKEM) is sufficient for
our application, where an encapsulated key can be recovered by a receiver if and
only if s/he is not revoked during the encapsulation phase.

More formally, an IRKEM scheme with master secret key space MSK, pri-
vate key space SK, encapsulated key space K and identity space ID is comprised
of a tuple of polynomial time algorithms (Params, MKGen, KeyExt, Enc, Dec):

– Params(1λ, n) takes as input a security parameter λ and a maximum number
n of revoked users, and outputs system parameters pp that is (implicitly)
taken as an additional input of the rest algorithms. Note that n ∈ N∪ {∞},
and “∞” indicates the number of revoked users is unbounded.

– MKGen(pp) takes as input public parameters pp and outputs a master public
key mpk and a master secret key msk.

– KeyExt(msk, id) takes as input a master secret key msk and an identity
id, outputs a private key skid for the identity id. When this algorithm is
randomized, the associated random coin space is assumed to be R.

– Enc(mpk,R) takes as input a master public key mpk and a list R of revoked
users, where |R| ≤ n, and outputs a symmetric key k and a ciphertext ct, such
that any user with private key skid for id /∈ R can recover the encapsulated
key k.

– Dec(skid, id, ct, R) takes as input a private key skid for an identity id and a
ciphertext ct associated with the revocation list R, and outputs an encapsu-
lated key k if id /∈ R and ⊥ otherwise.

Definition 4 (Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, R ⊆ ID such
that |R| ≤ n, let pp ← Params(1λ, n), (mpk,msk) ← MKGen(pp), (k, ct) ←
Enc(mpk,R), and skid ← KeyExt(msk, id) for id /∈ R, it holds that

Pr[Dec(skid, id, ct, R) = k] ≥ 1− negl(λ),

where the probability is taken over the randomness of the associated algorithms.

Remark 2. Similar to the definition of IBE in [5,6], we add a parameter gen-
eration algorithm to the specification of IRKEM, in order to make the public
parameters explicitly distinct from the master public key. This implies that the
parameters may not depend on the master secret key, although the master public
key might. In this work, the parameters may include the description of groups,
group generators and the like. For simplicity, we additionally assume that, as in
[6], the master secret key is randomly drawn from MSK and the master public
key is derived deterministically/probabilistically from it.

The security of IRKEM is defined by an IND-RL-ATK game, which incor-
porates both CPA and CCA variants. The game is played between a challenger
and an adversary, which is described as follows.

Setup: On input a security parameter λ and a maximum number n of re-
voked users, the challenger generates pp← Params(1λ, d) and (mpk,msk)←
MKGen(pp), then returns pp, mpk and initializes an empty set Q.

9

Phase 1: The adversary can adaptively issue the following queries

– Key Extract(id): On input an identity id, the challenger returns a
corresponding private key skid ← KeyExt(msk, id) and adds id to Q.

– Decrypt(id, ct, R): On input an identity id, a ciphertext ct and the
associated revocation list R, the challenger computes skid and returns
k ← Dec(skid, id, ct, R) if ATK = CCA, otherwise returns ⊥.

Challenge: On input a list of revoked identities R∗ ⊆ ID, the challenger di-

rectly rejects if Q \ R∗ 6= ∅. Otherwise, it picks b
$←− {0, 1}, k1

$←− K and
computes (k0, ct

∗) ← Enc(mpk,R∗). Finally, it sends (kb, ct
∗) back to the

adversary.

Phase 2: This is the same as Phase 1 except with below restrictions

– Key Extract(id): Returns ⊥ if id /∈ R∗.
– Decrypt(id, ct, R): Returns ⊥ if (ct, R) = (ct∗, R∗).

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 5 (Adaptive Security). An IRKEM scheme Σ = (Params,MKGen,
KeyExt,Enc,Dec) is IND-RL-ATK secure for ATK ∈ {CPA,CCA} if for all
λ ∈ N and PPT adversary A, the advantage of A winning in the IND-RL-ATK
game is

AdvIND-RL-ATK
IRKEM,A (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ).

Similar to the selective security of PKEM, we also define a selective security
for IRKEM by an IND-sRL-ATK game.

Definition 6 (Selective Security). An IRKEM scheme Σ = (Params,MKGen,
KeyExt,Enc,Dec) is IND-sRL-ATK secure for ATK ∈ {CPA,CCA} if for all
λ ∈ N and PPT adversary A, the advantage of A winning in the IND-sRL-ATK
game is

AdvIND-sRL-ATK
IRKEM,A (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ).

Next we introduce the additional properties of IRKEM, desired for our ap-
plications. The first is called Extended Correctness. Informally, this property
ensures that a legally encapsulated key can be computed correctly in an alter-
native way. It is formalized in Definition 7. To formally define this property, we
will write the random coin explicitly in the encapsulation algorithm.

Definition 7 (Extended Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, Ri ⊆
ID such that |Ri| ≤ n, any pp ← Params(1λ, n), (mpki,mski) ← MKGen(pp),
(ki, cti) = Enc(mpki, Ri; si), and ski ← KeyExt(mski, idi) for i ∈ {1, 2}, we

let (k̂, ĉt) = Enc(mpk1, R2; s2). Then an IRKEM scheme Σ is called extended
correct if for id1 /∈ R2 it satisfies that

Pr[Dec(sk1, id1, ct2, R2) = k̂] ≥ 1− negl(λ).

10

We note that the encapsulated key k̂ can be correctly recovered by k̂ ←
Dec(sk1, id1, ĉt, R2) in terms of the standard correctness (cf. Definition 4). Here,

it is further required that k̂ can be obtained by “decapsulating” other ciphertexts
generated under the same revocation list and random coins. Alternatively, this
property means decapsulating a ciphertext with a mismatched private key can
produce a legitimate encapsulated key. Thus we are able to compute a legally
encapsulated key in a different way than by running the encapsulation algorithm.

Hereafter, when the correctness is mentioned, it refers to both the regular
and the extended correctness, unless stated otherwise. Now we continue to define
the second property — key-homomorphism, which is critical for distributing the
encapsulated key. More specifically, this property should hold with respect to
both the encapsulated key and the private key, as formalized below.

Definition 8 (Key-Homomorphism). Let Σ = (Params,MKGen,KeyExt,Enc,
Dec) be an IRKEM scheme. We assume that the randomness space R (associated
with KeyExt(·) if it is randomized) and key spaces MSK,SK and K form four
groups (R, ∗), (MSK,+), (SK,⊗) and (K,�). Moreover, we assume that the en-
capsulated key is in the form of f(msk, s), where s ∈ S is the random coin con-
sumed in the encapsulation algorithm, i.e.,

(
k = f(msk, s), ct

)
= Enc(mpk,R; s).

Then the IRKEM scheme Σ is called key-homomorphic if it satisfies the above
correctness, and fulfills the following conditions for all id ∈ ID, msk,msk′ ∈
MSK, r, r′ ∈ R and s ∈ S:

1. KeyExt(msk, id; r)⊗ KeyExt(msk′, id; r′) = KeyExt(msk +msk′, id; r ∗ r′),

2. f(msk, s)� f(msk′, s) = f(msk +msk′, s).

This property plays an important role in our work, which reflects in both the
construction and the security analysis. We remark that if an IRKEM Σ is correct
in the sense of Definition 7 and secure (either selectively or adaptively), then
f(msk, s) associated with the second property of Definition 8 should depend on
msk non-trivially. Otherwise, if f(msk, s) = f ′(s) is independent of msk and Σ
is extended correct, then an adversary can break the security of Σ as follows.
After receiving the master public key mpk2 and the challenge ciphertext ct2 and
encapsulated key k2, she generates a new (msk1,mpk1), chooses an id1 /∈ R2

and computes sk1 ← KeyExt(msk1, id1). Then she can recover k2 = k̂ by using
the extended correctness property and break the security easily. Examples of
such schemes can be derived from transferring the lattice-based NIPEs (the first
two constructions) of [29] to IRKEMs by changing the encryption/decryption
functions to encapsulation/decapsulation functions similar to Subsections 4.1-
4.3. It is then easy to see that f(msk, s) is independent of msk. This implies
that the derived IRKEMs are not extended correct as they are proven to be
secure in [29].

In the following, we first propose a generic construction of PKEM from any
KH-IRKEM scheme with extended correctness, and then present several instan-
tiations with distinct features.

11

3 Construction of PKEM from KH-IRKEM

In this section, we present a generic construction of PKEM from any KH-IRKEM
scheme with extended correctness, as defined before. Let Σ = (IR.Params, IR.MKGen,
IR.KeyExt, IR.Enc, IR.Dec) be a KH-IRKEM scheme with identity space ID, then
a PKEM scheme Π = (KeyGen,Punc,Enc,Dec) with tag space T = ID is con-
structed from Σ as follows.

– KeyGen(1λ, n): On input a parameter λ and an index n ∈ N ∪ {∞}, it first
generates pp ← IR.Params(1λ, n) and (mpk,msk) ← IR.MKGen(pp). Then
it selects a distinguished tag t0 ∈ T , which will never be punctured and
encrypted later, and produces sk0 ← IR.KeyExt(msk, t0). Finally, it outputs
the public and secret key pair

(PK,SK) =
(
(pp,mpk), (sk0, t0)

)
.

– Punc(SKi−1, ti): On input a punctured secret key SKi−1 =
(
(sk0, t0), . . . ,

(ski−1, ti−1)
)

for tags {t`}i−1`=1 and a tag ti ∈ T \ {t0}, where SK0 = SK, it
randomly chooses mski ∈ MSK 2 and produces a new puncture secret key
SKi for {t`}i`=1 as below:

1. Computes sk′0 = sk0⊗IR.KeyExt(−mski, t0) and ski ← IR.KeyExt(mski, ti),
where sk0 in SKi−1 is updated to sk′0.

2. Sets SKi =
(
(sk′0, t0), (sk1, t1), . . . , (ski−1, ti−1), (ski, ti)

)
, where skj for

all j ∈ [1, i− 1] remains identical to SKi−1.

– Enc(PK, T): On input public key PK = (pp,mpk) and a list of tags T such
that |T | ≤ n and T ⊆ T \ {t0}, it computes(

f(msk, s), ct
)

= IR.Enc(mpk, T ; s)

and outputs (K,CT) = (f(msk, s), ct) along with T .
– Dec(SKi, CT, T): On input a punctured secret key SKi =

(
(sk0, t0), . . . ,

(ski, ti)
)

and a ciphertext CT along with tags T , it returns ⊥ if there exists
j ∈ [1, i] such that tj ∈ T . Otherwise, it recovers the encapsulated key as:

1. Computes kj = IR.Dec(skj , tj , CT, T) for all j ∈ [0, i].

2. Calculates K ′ =
i⊙

j=0

kj and outputs K ′.

The correctness follows from the (extended) correctness of the underlying
KH-IRKEM scheme and its key-homomorphic properties. To be more precise, we
assume that (K,CT) = IR.Enc(mpk, T ; s) and skj ← IR.KeyExt(mskj , tj) such
that tj /∈ T for all j ∈ [1, i]. The key-homomorphic property of IR.KeyExt(·, ·) in-
dicates the current key component sk0 (of SKi) is in the form of IR.KeyExt(msk−∑i
j=1mskj , t0). Then we have that

2 Recall that the master secret key is assumed to be randomly drawn from MSK, as
remarked in Section 2.3.

12

– k0 = IR.Dec(sk0, t0, CT, T) = f(msk −
∑i
j=1mskj , s), and

– kj = IR.Dec(skj , tj , CT, T) = f(mskj , s) for all j ∈ [1, i],

where the second equalities derive from the extended correctness of KH-IRKEM
scheme Σ. Finally, the key-homomorphism of f(·, ·) yields that

K ′ = f
(
msk −

i∑
j=1

mskj , s
)
�

i⊙
j=1

f(mskj , s) = f(msk, s).

We remark that the ciphertext CT taken in decapsulation process is gener-
ated under mpk, while the private keys skj are computed from new master secret
keys mskj rather than msk. In this case, the standard correctness is insufficient,
and hence the extended correctness is crucial for the correctness of our PKEM.

3.1 Security Analysis

We first show that the proposed PKEM scheme is IND-sPUN-CPA secure if the
underlying IRKEM scheme is IND-sRL-CPA secure. Then we further discuss its
adaptive security based on the adaptive security of the KH-IRKEM scheme.

Theorem 1. The proposed generic construction PKEM is IND-sPUN-CPA se-
cure, if the underlying IRKEM scheme is key-homomorphic and IND-sRL-CPA
secure. More precisely, for any PPT adversary A against the security of our
PKEM scheme, it holds that

AdvIND-sPUN-CPA
PKEM,A (λ) = AdvIND-sRL-CPA

IRKEM,B (λ),

where B is some PPT algorithm against the security of the IRKEM scheme.

Proof. The proof is conducted through a sequence of games that starts with
the real IND-sPUN-CPA game and ends with a game in which the adversary
has a negligible advantage. Moreover, each two successive games are shown to
be (computationally) indistinguishable. Hereafter, we let Wini denote the event
that the adversary A wins in game Gi. For sake of clarity, we assume that A
makes at most q puncture queries, say {t1, t2, . . . , tq}, and at least one of them,
say ti for some i ∈ [1, q], belongs to the set of challenge tags T ∗. It is also assumed
that, without loss of generality, the corrupt query is made after all q punctures.
Then the current punctured secret key is sent back to A directly.

Game G0: It is the real game played between a challenger and an adversary A,
as described in Section 2.2. In more details, A first submits a set of challenge
tags T ∗ such that |T ∗| ≤ n. After that, the challenger chooses a distinguished
tag t0 ∈ T and runs pp ← IR.Params(1λ, n), (mpk,msk) ← IR.MKGen(pp) and
sk0 ← IR.KeyExt(msk, t0) to produce the public and secret key pair (PK,SK) =(
(pp,mpk), (sk0, t0)

)
. In addition, it initializes an empty set P for keeping track

of puncture queries. Then it returns PK to the adversary A, and answers the
puncture queries and the challenge query as follows:

13

– Puncture(ti): The challenger chooses mski
$←− MSK, computes ski ←

IR.KeyExt(mski, ti) and updates the first component sk0 of SKi−1 as sk0 =
sk0 ⊗ IR.KeyExt(−mski, t0). Then it sets SKi =

(
(sk0, t0), . . . , (ski−1, ti−1),

(ski, ti)
)
, where SK0 = SK, and records ti to P. Finally, it returns SKq =(

(sk0, t0), (sk1, t1), . . . , (skq, tq)
)

to A after all q puncture queries.
– Challenge: On input the challenge T ∗ ⊆ T \{t0} 3, the challenger computes

(K∗0 , CT
∗) ← IR.Enc(mpk, T ∗) and randomly chooses K∗1

$←− K. Then it

selects b
$←− {0, 1} and outputs (K∗b , CT

∗).

Eventually, the adversary A outputs a guess b′, and wins the game if b′ = b. We
get from the security definition of PKEM (cf. Definition 2) that

AdvIND-sPUN-CPA
PKEM,A (λ) =

∣∣∣∣Pr[Win0]− 1

2

∣∣∣∣ .
Game G1: This game is identical to G0, except that the master secret keys
msk1,msk2, . . . ,mskq ∈ MSK are sampled beforehand instead of on-the-fly
and used straightforwardly to simulate the puncture queries. In particular, all
queries are answered as follows:

– Puncture(ti): The challenger computes ski ← IR.KeyExt(mski, ti) and up-
dates the first component of SKi−1 as sk0 = sk0⊗ IR.KeyExt(−mski, t0), by
directly using mski chosen before. After that, it sets SKi =

(
(sk0, t0), . . . ,

(ski−1, ti−1), (ski, ti)
)

and adds ti to P. Finally, it returns SKq =
(
(sk0, t0),

(sk1, t1), . . . , (skq, tq)
)

to A after all q puncture queries.
– Challenge: On input the challenge T ∗ ⊆ T \ {t0}, the challenger computes

(K∗0 , CT
∗) ← IR.Enc(mpk, T ∗) and randomly picks K∗1

$←− K. Then it out-
puts (K∗b , CT

∗) where b is chosen uniform randomly from {0, 1}.

At last, the adversary A outputs her guess b′. It can be seen from the above
that the way of sampling the master secret keys does not change the view of the
adversary. Therefore, it holds that

Pr[Win1] = Pr[Win0].

Game G2: It is the same as above game except that the component sk0 of the
finally corrupted secret key SKq is generated in a different way. Briefly, sk0 here
is generated in a direct manner rather than by sequential updates (i.e., sk0 =
sk0 ⊗ IR.KeyExt(−mski, t0)). More specifically, after receiving challenge tags T ∗

the challenger runs pp ← IR.Params(1λ, n) and (mpk,msk) ← IR.MKGen(pp),
and picks in advance msk1,msk2, . . . ,mskq ∈MSK that will be used to answer
the puncture queries issued by A later. Then it sets msk0 = msk −

∑q
i=1mski

and computes sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T .
After that, it returns PK = (pp,mpk) and simulates the puncture queries and
challenge query as below:

3 We always assume that T ∗ ∩ P 6= ∅, otherwise it will be rejected according to the
security definition.

14

– Puncture(ti): The challenger uses mski (chosen above) to compute ski ←
IR.KeyExt(mski, ti) for the i-th puncture query ti, and records ti to P. After
receiving all q puncture queries from A, it returns SKq =

(
(sk0, t0), . . . ,

(skq, tq)
)
. Recall that sk0 is generated at the beginning.

– Challenge: On input the challenge T ∗ issued by A, the challenger computes

(K∗0 , CT
∗) ← IR.Enc(mpk, T ∗) and chooses K∗1

$←− K. Then it chooses a
random bit b ∈ {0, 1} and returns (K∗b , CT

∗).

Finally, A outputs her guess b′. Clearly, the distribution of this game is
identical to G1, so we have

Pr[Win2] = Pr[Win1].

Game G3: In this game, we assume that, without loss of generality, the j-th
puncture query tj is the first tag belonging to the set T ∗ of challenge tags.
Notice that, there exists at least one puncture query contained in T ∗ in terms of
the security definition of PKEM (cf. Definition 2), and it is easy to find the index
j given T ∗. Then the difference of this game from G2 is the way of generating
sk0 and skj (associated with tj).

In particular, the challenger in this game runs pp ← IR.Params(1λ, n) and
(mpk,msk) ← IR.MKGen(pp), chooses msk0, . . . ,mskj−1, mskj+1, . . . ,mskq ∈
MSK uniformly at random, and sets mskj = msk−

∑q
i=0,6=jmski. Then it uses

msk0 to compute sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T
and uses mski to compute ski ← IR.KeyExt(mski, ti) for the i-th puncture query
ti, where i ∈ [1, q]. As for the challenge query, it is simulated in the same way
as before.

It is not difficult to seeA’s views in G2 and G3 are identical, as they rely essen-
tially on the identical distributions (msk,msk0 = msk −

∑q
i=1mski,msk1, . . . ,

mskq) and (msk,msk0, . . . ,mskj−1,mskj = msk −
∑q
i=1,6=jmski,mskj+1, . . . ,

mskq), respectively. Therefore, we get that

Pr[Win3] = Pr[Win2].

Now, what remains to do is to show the advantage of A winning in G3 is
negligible in λ. It is formally stated as the following lemma.

Lemma 1. Provided that the underlying IRKEM scheme Σ is IND-sRL-CPA
secure and key-homomorphic, then the advantage of A winning in G3 is negligible
in λ. That is, ∣∣∣∣Pr[Win3]− 1

2

∣∣∣∣ = AdvIND-sRL-CPA
IRKEM,B (λ),

where B is some PPT algorithm against the security of the IRKEM scheme.

Proof (of Lemma 1). Suppose for sake of contradiction that there is an efficient
adversary A winning in G3 with non-negligible advantage, then we can find an
efficient algorithm B that succeeds to break the IND-sRL-CPA security of the
underlying IRKEM scheme Σ as follows.

15

After receiving the set T ∗ of challenge tags from A, B(1λ) sets it as his
own challenge and submits T ∗ to the challenger of the IRKEM scheme. Then
B returns to A the response pp and mpk, such that pp ← IR.Params(1λ, n)
and (mpk,msk) ← IR.MKGen(pp). After that, B chooses uniformly at random
msk0, . . . , mskj−1, mskj+1, . . . ,mskq from MSK, and uses msk0 to compute
sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T chosen by himself.
Then B proceeds to simulate the puncture queries and the challenge query as
follows:

– Puncture(ti): For the i-th puncture query ti, B directly uses mski cho-
sen above to generate ski ← IR.KeyExt(mski, ti) if i 6= j. Otherwise, B
forwards tj ∈ T ∗ to the key extraction oracle of the IRKEM scheme and
gets the corresponding private key sk′j . Then B computes skj = sk′j ⊗
IR.KeyExt(−

∑q
i=0,6=jmski, tj). In addition, B adds ti to P. Once finishing the

simulation of all q puncture queries, B returns SKq =
(
(sk0, t0), (sk1, t1), . . . ,

(skq, tq)
)

to A.
– Challenge: B gets the response (to the challenge T ∗) from the challenger

of the IRKEM scheme. In particular, the response is (K∗b , CT
∗), such that

(K∗0 , CT
∗) ← IR.Enc(mpk, T ∗), K∗1

$←− K, and b
$←− {0, 1}. Then B outputs

(K∗b , CT
∗) to the adversary A.

At last, B outputs what A outputs. From the above, we can see that B
perfectly simulates G3, hence we have

AdvIND-sRL-CPA
IRKEM,B (λ) =

∣∣∣∣Pr[B(1λ,View) = b]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[Win3]− 1

2

∣∣∣∣ ,
where View is the view of B in the IRKEM game that consists of pp,mpk, sk′j
and (K∗b , CT

∗).

Putting all above equations together, we get the advantage of any PPT ad-
versary A against our PKEM scheme

AdvIND-sPUN-CPA
PKEM,A (λ) =

∣∣∣∣Pr[Win3]− 1

2

∣∣∣∣ = AdvIND-sRL-CPA
IRKEM,B (λ).

Theorem 2. The proposed generic construction PKEM is IND-PUN-CPA se-
cure, if the underlying IRKEM scheme is key-homomorphic and IND-RL-CPA
secure. More precisely, for any PPT adversary A against the security of our
PKEM scheme, it holds that

AdvIND-PUN-CPA
PKEM,A (λ) ≤ q · AdvIND-RL-CPA

IRKEM,B (λ),

where q is the maximum number of puncture queries issued by A and B is some
PPT algorithm against the security of the IRKEM scheme.

Proof (Sketch). To show the adaptive security of our PKEM scheme, we only
need to guess which puncture query is belonging to the set of challenge tags T ∗

in the previous proof. The probability of guessing it correctly is at least 1/q,
assuming that the upper-bound on the number of puncture queries issued by A
is q. For the detailed proof, please refer to the full version.

16

4 Instantiations of KH-IRKEM

In this section, we present several concrete IRKEM schemes derived from existing
Identity-Based Revocation (IBR) schemes or Non-zero Inner Product Encryp-
tion (NIPE) schemes, and show that they satisfy the desired properties for our
purpose. Particularly, the design of IRKEM schemes from the NIPE schemes fol-
lows the Embedding Lemma (see Proposition 1 in [3]), and thus the security of
the IRKEM schemes can be reduced to the NIPE schemes. Then by applying our
generic construction in Section 3, we obtain the first PKEM schemes that not
only support unbounded number of punctures, but also features constant-size
ciphertext, short public keys, or unbounded number of tags per ciphertext.

4.1 KH-IRKEM with Compact Ciphertexts

The first IRKEM scheme is derived from the NIPE scheme in [38], which is
proven secure under the n-DBDHE assumption below.

q-DBDHE Assumption. Let (G,GT) be cyclic groups of prime order p with
a symmetric bilinear pairing e : G × G → GT . The q-Decision Bilinear Diffie-
Hellman Exponent (n-DBDHE) problem is, given(

g, ga, g(a
2), . . . , g(a

q), g(a
q+2), . . . , g(a

2q), h, T
)

where a
$←− Zp, g, h

$←− G and T ∈ GT , to decide if T = e(g, h)a
q+1

or if T is
randomly chosen from GT .

Description. This scheme consists of five polynomial-time algorithms (Params,
MKGen, KeyExt,Enc,Dec) with the following specifications:

– Params(1λ, n): The algorithm takes a security parameter λ and an integer
n ∈ N, and generates a pair of bilinear groups (G,GT) of prime order p > 2λ

with bilinear map e. Then it randomly chooses β, b1, . . . , bn ∈ Zp and g ∈ G,
and computes h = gβ and hi = gbi for all i ∈ [1, n]. Finally, it outputs the
public parameters

pp =
(
(G,GT , e), g, h, {hi}i∈[1,n]

)
.

– MKGen(pp): Given the public parameters pp, it chooses α ∈ Zp uniformly at
random, and then computes and outputs the master secret key and master
public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈
Zp, this algorithm first defines a vector xid = (x1, . . . , xn) ∈ Znp such that

xi = idi−1 for all i ∈ [1, n], then it chooses r
$←− Zp and outputs the private

key skid = (d1, d2, k1, . . . , kn) ∈ Gn+2 as

d1 = gαhr1, d2 = gr, k1 = hr, ki =
(
h−xi
1 hi

)r
for ∀i ∈ [2, n].

17

– Enc(mpk,R): Given a master public key mpk and a revocation list R = {id1,
id2, . . . , idm} such that m < n, the algorithm generates the encapsulated key
k ∈ GT and ciphertext ct = (c1, c2) ∈ G2 as follows:

1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏
idj∈R(z− idj) =

m+1∑
i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m+ 1 < n.

2. Choose s
$←− Zp, then compute k = e(g, g)αs, c1 = gs and c2 =

(
h

n∏
i=1

hyii
)s

,

and finally output (k, ct).

– Dec(skid, id, ct, R): Given a private key skid for an identity id and a cipher-
text ct = (c1, c2) under the revocation set R, this algorithm returns ⊥ if
id ∈ R. Otherwise, it recovers the encapsulated key k by conducting the
following steps:

1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.

2. Compute k̂ = k1
∏n
i=2 k

yi
i and then return

k′ = e
(
c1, d1 · k̂

1
〈xid,yR〉

)
· e
(
c2, d

− 1
〈xid,yR〉

2

)
.

The regular correctness follows readily from the IBR scheme [4]. For com-
pleteness, it is analyzed in details as follows. First, we know from the definitions
of xid and yR that 〈xid,yR〉 6= 0 iff id /∈ R. Then we observe that

k̂ = hr
n∏
i=2

(
h−xiyi
1 ·hyii

)r
=
(
h
−
∑n

i=2 xiyi
1 ·(h

n∏
i=2

hyii)
)r

=
(
h
−〈xid,yR〉
1 ·(h

n∏
i=1

hyii)
)r
,

so when id /∈ R we have that

k′ = e
(
c1, d1

)
·
(
e(c1,k̂)
e(c2,d2)

) 1
〈xid,yR〉

= e
(
gs, gαhr1

)
·

 e
(
g,h
−〈xid,yR〉
1 ·h

n∏
i=1

h
yi
i

)rs
e
(
h

n∏
i=1

h
yi
i ,g
)rs

 1
〈xid,yR〉

= e(g, g)αs.

With regard to the extended correctness, it can be verified similarly. More
specifically, we let (msk′,mpk′) = (α′, e(g, g)α

′
) be another master secret and

public key pair, and skid′ = (d′1, d
′
2, k
′
1, . . . , k

′
n)← KeyExt(msk′, id′) be a private

key for identity id′, such that

d′1 = gα
′
hr
′

1 , d
′
2 = gr

′
, k′1 = hr

′
, k′i =

(
h
−x′i
1 hi

)r′
for ∀i ∈ [2, n],

where r′
$←− Zp and x′i = id′i−1. Then it is easy to get via the above analysis that

Dec(skid′ , id
′, ct, R) = e

(
c1, d

′
1 · k̂

1
〈x

id′ ,yR〉
)
· e
(
c2, d

′
2
− 1
〈x

id′ ,yR〉
)

= e(g, g)α
′s

18

conditioned on id′ /∈ R, where xid′ = (x′1, . . . , x
′
n) and k̂ = k′1

∏n
i=2 k

′
i
yi .

Key-Homomorphism. The encapsulated key in this scheme is in the form of
f(msk, s) = e(g, g)msk·s, where s is the random coin consumed in the encryption
algorithm. Next, we show for any identity id ∈ Zp, master secret keys α, α′ ∈ Zp
and randomness r, r′, s ∈ Zp that the key-homomorphic properties with respect
to KeyExt(·) and f(·) hold:

1. From the description above, we get that

KeyExt(α, id; r)⊗ KeyExt(α′, id; r′)
=
(
gαhr1, g

r, hr, (h−x2
1 · h2)r, . . . , (h−xn

1 · hn)r
)
⊗(

gα
′
hr
′

1 , g
r′ , hr

′
, (h−x2

1 h2)r
′
, . . . , (h−xn

1 hn)r
′)

=
(
gα+α

′
hr+r

′

1 , gr+r
′
, hr+r

′
, (h−x2

1 h2)r+r
′
, . . . , (h−xn

1 hn)r+r
′)

= KeyExt(α+ α′, id; r + r′)

where “⊗ ” over SK = Gn+1 is the coordinate-wise multiplication over G.
2. As for f(·), it is clear that

f(α, s)� f(α′, s) = e(g, g)αs · e(g, g)α
′s = e(g, g)(α+α

′)s = f(α+ α′, s),

where “� ” is the multiplication over GT .

Security. The IRKEM scheme above is IND-sRL-CPA secure under the n-
DBDHE assumption. This follows readily from the Embedding Lemma (see
Proposition 1 in [3]) and the proof of the NIPE scheme in [38].

Now following the proposed generic construction in Section 3, we get the
first PKEM scheme that features both unbounded punctures and constant-size
ciphertexts, but subject to a bounded-number of tags per ciphertext.

4.2 KH-IRKEM with Compact Private Keys

The second IRKEM scheme is based on another NIPE scheme in [38] and proven
secure under the DBDH assumption, which unlike the previous one is one of the
weakest bilinear assumptions.

DBDH Assumption. Let (G,GT) be cyclic groups of prime order p with a
symmetric bilinear pairing e : G×G→ GT . The Decision Bilinear Diffie-Hellman

(DBDH) problem is, given
(
g, ga, gb, gc, T

)
where a, b, c

$←− Zp, g
$←− G and T ∈

GT , to decide if T = e(g, h)abc or if T is a random element in GT .

Description. As before, this scheme consists of five polynomial-time algorithms
(Params,MKGen,KeyExt, Enc,Dec) as below:

– Params(1λ, n): This algorithm takes a security parameter λ and an integer
n ∈ N, and generates a pair of bilinear groups (G,GT) of prime order p >

2λ with bilinear map e and generator g
$←− G. Then it randomly chooses

β, b1, . . . , bn ∈ Zp, and computes h = gβ and hi = gbi for all i ∈ [1, n].
Finally, it outputs the public parameters

pp =
(
(G,GT , e), g, h, {hi}i∈[1,n]

)
.

19

– MKGen(pp): Given the public parameters pp, it randomly chooses α ∈ Zp
and outputs the master secret key and master public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈
Zp, the algorithm first defines a vector xid = (x1, . . . , xn) ∈ Znp such that

xi = idi−1 for all i ∈ [1, n], then it chooses r
$←− Zp and outputs the private

key skid = (k0, k1, k2) ∈ G3 as

k0 = gαhr, k1 =
(n∏
i=1

hxi
i

)r
, k2 = gr.

– Enc(mpk,R): Given mpk and a revocation list R = {id1, id2, . . . , idm} such
that m < n, the algorithm generates the encapsulated key k ∈ GT and
ciphertext ct =

(
c0, {ci,1}i∈[1,n]

)
∈ Gn+1 as:

1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏
idj∈R(z− idj) =

m+1∑
i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m+ 1 < n.

2. Choose s
$←− Zp, then compute k = e(g, g)αs, c0 = gs and ci,1 =

(hyihi)
s for ∀i ∈ [1, n], and finally output (k, ct).

– Dec(skid, id, ct, R): Given skid associated with id and ct =
(
c0, {ci,1}i∈[1,n]

)
associated with revocation set R, the algorithm returns ⊥ if id ∈ R. Other-
wise, it recovers the encapsulated key as follows:
1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.
2. Compute c1 =

∏n
i=1 c

xi
i,1 and then return

k′ = e
(
c0, k0 · k

1
〈xid,yR〉
1

)
· e
(
c1, k

− 1
〈xid,yR〉

2

)
.

The regular correctness is verified as follows. First, we know from the defini-
tions of xid and yR that 〈xid,yR〉 6= 0 iff id /∈ R. Then we observe that

c1 =
n∏
i=1

cxi
i,1 =

n∏
i=1

(
hxiyi · hxi

i

)s
=
(
h〈xid,yR〉 ·

n∏
i=1

hxi
i

)s
,

so when id /∈ R we have that

k′ = e
(
c0, k0

)
·
(
e(c0,k1)
e(c1,k2)

) 1
〈xid,yR〉

= e
(
gs, gαhr

)
·

 e
(
g,

n∏
i=1

h
xi
i

)rs
e
(
h〈xid,yR〉·

n∏
i=1

h
xi
i ,g
)rs
 1
〈xid,yR〉

= e(g, g)αs.

As for the extended correctness, it can be validated in a similar way, as
analyzed for the first construction. Here, we omit the details.

20

Key-Homomorphism. In this scheme, the encapsulated key is f(msk, s) =
e(g, g)msk·s as well, where s is the encryption randomness. The group operations
over e.g.,MSK,SK and K are defined as before. It is clear to see for all identity
id ∈ Zp, any master secret keys α, α′ ∈ Zp and randomness r, r′, s ∈ Zp, both
the key-homomorphic properties with respect to KeyExt(·) and f(·) hold:

1. KeyExt(α, id; r)⊗ KeyExt(α′, id; r′) = KeyExt(α+ α′, id; r + r′)
2. f(α, s)� f(α′, s) = f(α+ α′, s).

Security. The IRKEM scheme above is IND-sRL-CPA secure under the DBDH
assumption. This can be easily shown by following the proof of [38] and the
Embedding Lemma (cf. Proposition 1 in [3]).

Then by applying the conversion in Section 3, we obtain a PKEM scheme with
“compact” secret keys. Compared to the scheme [26] under the same assumption,
the communication cost is comparable, but the computation cost is better on
average, especially when the number of tags encrypted is large, e.g., n. In that
case, the number of exponentiation over G in our encryption is O(n) rather than
O(n2) as [26], and the number of pairings in decryption is d-less than [26], where
d is the number of punctures corresponding to the decryption key.

4.3 KH-IRKEM Supporting Unbounded Users

Next we give the third IRKEM scheme, in which the number of users per cipher-
text is unbounded compared to the previous ones. This scheme is derived from
the IBR scheme in [30] and proven secure under the q-MEBDH assumption.

q-MEBDH Assumption. Let (G,GT) be cyclic groups of prime order p with a
symmetric bilinear pairing e : G × G → GT . The q-decisional Multi-Exponent
Bilinear Diffie-Hellman (q-MEBDH) problem is, given

T, g, gs, e(g, g)α

∀1 ≤ i, j ≤ q gai , gais, gaiaj , gα/a
2
i

∀1 ≤ i, j, k ≤ q, i 6= j gaiajs, gαaj/a
2
i , gαaiaj/a

2
k , gαa

2
i /a

2
j

where α, s, a1, . . . , aq
$←− Zp, g

$←− G and T ∈ GT , to decide if T = e(g, g)αs or if
T is a random element from GT .

Description. This scheme consists of five polynomial-time algorithms (Params,
MKGen,KeyExt,Enc,Dec), which are described as follows:

– Params(1λ): The algorithm takes a security parameter λ, and generates a
tuple of bilinear groups (G,GT) of prime order p > 2λ with bilinear map e.
Then it randomly chooses b ∈ Zp and g, h ∈ G, and computes g1 = gb, g2 =

gb
2

and h1 = hb. At last, it outputs the public parameters

pp =
(
(G,GT , e), g, g1, g2, h, h1

)
.

21

– MKGen(pp): Given the public parameters pp, it randomly chooses α ∈ G and
outputs the master secret key and public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈ Zp,
it chooses r

$←− Zp and outputs the private key skid = (k0, k1, k2) ∈ G3 as

k0 = gαgr2, k1 = (gid1 h)r, k2 = g−r.

– Enc(mpk,R): Given mpk and a revocation list R = {id1, id2, . . . , idm}, the

algorithm selects s, s1, . . . , sm
$←− Zp such that s =

∑m
i=1 si, and generates

the encapsulated key k ∈ GT and ciphertext ct =
(
c0, {ci,1, ci,2}i∈[1,m]

)
∈

G2m+1 as follows:

k = e(g, g)αs, c0 = gs, ci,1 = gsi1 , ci,2 = (gidi2 h1)si for ∀i ∈ [1,m].

– Dec(skid, id, ct, R): Given a private key skid associated with id and a cipher-
text ct =

(
c0, {ci,1, ci,2}i∈[1,m]

)
under the revoked setR = {id1, id2, . . . , idm},

this algorithm returns ⊥ if id ∈ R. Otherwise, it recovers the encapsulated
key by computing:

k′ =
e(c0, k0)

e(
m∏
i=1

c
1/(id−idi)
i,1 , k1) · e(

m∏
i=1

c
1/(id−idi)
i,2 , k2)

The regular correctness can be verified as follows. In the case of id /∈ R, we
have that

e(
m∏
i=1

c
1/(id−idi)
i,1 , k1) · e(

m∏
i=1

c
1/(id−idi)
i,2 , k2)

=
m∏
i=1

(
e(ci,1, k1) · e(ci,2, k2)

)1/(id−idi)
=

m∏
i=1

(
e(gsi , (gid2 h1)r) · e((gidi2 h1)si , g−r)

)1/(id−idi)
=

m∏
i=1

e(g, g2)sir,

and then we get that

k′ = e(gs, gαgr2)/
m∏
i=1

e(g, g2)sir

= e(g, g)αs · e(g, g2)sr/e(g, g2)r·
∑m

i=1 si

= e(g, g)αs.

Regarding the extended correctness, it can be analyzed as previous construc-
tions, so we omit the details here.

Key-Homomorphism. In this scheme, the encapsulated key is the same as be-
fore, i.e., f(msk, s) = e(g, g)msk·s. The group operations are also defined simi-
larly, e.g., “⊗ ” over SK = G3 is the coordinate-wise multiplication over G and

22

� over K is the multiplication over GT . It is easy to verify that for any identity
id ∈ Zp, master secret keys α, α′ ∈ Zp and randomness r, r′, s ∈ Zp the following
properties hold:

1. KeyExt(α, id; r)⊗ KeyExt(α′, id; r′) = KeyExt(α+ α′, id; r + r′),
2. f(α, s)� f(α′, s) = f(α+ α′, s).

Security. The IRKEM scheme presented above is IND-sRL-CPA secure under
the q-MEBDH assumption. This holds straightforwardly, as this scheme is simply
the key encapsulation version of the IBR scheme of [30].

By combining this scheme with our generic construction in Section 3, we
obtain the first PKEM scheme that enjoys both compact master public key and
“compact” punctured secret key. Here, the compactness of the latter means the
key size depends only on the number of punctures, independent of the size of
revoked set. Moreover, the number of revoked tags per ciphertext is unbounded
in this scheme.

4.4 KH-IRKEM under DLIN Assumption

Finally, we present another IRKEM scheme featuring compact ciphertexts, which
is derived from the NIPE scheme of [13] (cf. Section A.2). In contrast to the con-
struction shown in Section 4.1, it is proven adaptively secure under the standard
DLIN assumption.

DLIN Assumption. Let (G1,G2,GT) be cyclic groups of prime order p with a
non-degenerate bilinear pairing e : G1×G2 → GT . The Decisional Linear (DLIN)
problem is to distinguish between the distributions

(
gx1 , gx2 , gx1y1 , gx2y2 , hy1+y2

)
and

(
gx1 , gx2 , gx1y1 , gx2y2 , hz

)
, where x1, x2, y1, y2, z

$←− Zp, g
$←− G1 and h

$←− G2.

Description. Similarly, this scheme is composed of five polynomial-time algo-
rithms (Params, MKGen, KeyExt,Enc,Dec):

– Params(1λ, n): It takes as input a security parameter λ and an integer n ∈ N,
and generates cyclic groups (G1,G2,GT) of prime order p > 2λ endowed with
a bilinear map e. Then it samples g ∈ G1, h ∈ G2, ai, bi ∈ Zp for i ∈ {1, 2},
and sets

A =

a1
a2

1 1

 and B =

 b1
b2

1 1

 .

After that, it chooses W1, . . . ,Wn
$←− Z3×3

p and outputs public parameters

pp =
(
(G1,G2,GT , e), g, gA, {gW

T
iA}i∈[1,n], h, hB, {hWiB}i∈[1,n]

)
.

– MKGen(pp): Given the public parameters pp, it chooses k
$←− Z3

p, and outputs
the master secret key and public key pair

(msk,mpk) =
(
k, e(g, h)A

Tk
)
.

23

– KeyExt(msk, id): Given a master secret key msk = k and an identity id ∈ Zp,
the algorithm defines a vector xid = (x1, . . . , xn) ∈ Znp such that xi =

idi−1 for all i ∈ [1, n], chooses r
$←− Z2

p and outputs the private key skid =
(k1, {k2,i}i∈[1,n]) ∈ (G3

2)n+1 as

k1 = hBr, k2,i = hxi·k+WiBr for ∀i ∈ [1, n].

– Enc(mpk,R): Given a master public key mpk and a revocation list R = {id1,
id2, . . . , idm} such that m < n, the algorithm produces the encapsulated key
k ∈ GT and ciphertext ct = (c1, c2) ∈ (G3

1)2 as:
1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏
idj∈R(z− idj) =

m+1∑
i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m+ 1 < n.

2. Select s
$←− Z2

p and compute

k = e(g, h)s
TATk, c1 = gAs and c2 = g(

∑n
i=1 yi·W

T
i)As.

– Dec(skid, id, ct, R): Given a private key skid for id and a ciphertext ct =
(c1, c2) under revocation list R, the algorithm returns⊥ if id ∈ R. Otherwise,
it recovers the encapsulated key k as follows:
1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.
2. Compute k2 =

∏n
i=1 k

yi
2,i and then output

k′ =
(
e(c1,k2)/e(c2,k1)

) 1
〈xid,yR〉 .

The regular correctness follows readily from the NIPE scheme of [13]. For
completeness, we present the details below. As analyzed before, it holds that
〈xid,yR〉 6= 0 iff id /∈ R. Further, we have that

k2 =

n∏
i=1

(
hxi·k+WiBr

)yi
= h(

∑n
i=1 xiyi)·k+(

∑n
i=1 yi·Wi)Br,

so when id /∈ R we get that

k′ =

(
e(gAs, h(

∑n
i=1 xiyi)·k+(

∑n
i=1 yi·Wi)Br)

e
(
g(
∑n

i=1
yi·WT

i
)As, hBr

)
) 1
〈xid,yR〉

=

(
e(gAs, h(

∑n
i=1 xiyi)·k)e(gAs, h(

∑n
i=1 yi·Wi)Br)

e
(
g(
∑n

i=1
yi·WT

i
)As, hBr

)
) 1
〈xid,yR〉

= e
(
gAs, h〈xid,yR〉·k

) 1
〈xid,yR〉 = e(g, h)s

TATk.

As for the extended correctness, it can be verified as before. In particular,

we let (msk′,mpk′) = (k′, e(g, h)A
Tk′) be another master key pair, and skid′ =

(k′1, {k′2,i}i∈[1,n])← KeyExt(msk′, id′) be a private key for id′, such that

k′1 = hBr′ and k′2,i = hx
′
i·k
′+WiBr′ for ∀i ∈ [1, n],

24

where r′
$←− Z2

p and x′i = id′i−1. Then it is not difficult to obtain that

Dec(skid′ , id
′, ct, R) =

(
e(c1,k

′
2)/e(c2,k

′
1)
) 1
〈x

id′ ,yR〉 = e(g, h)s
TATk′

conditioned on id′ /∈ R, where xid′ = (x′1, . . . , x
′
n) and k′2 =

∏n
i=1 k

′
2,i
yi .

Key-Homomorphism. In this scheme, the encapsulated key is in the form of

f(msk, s) = e(g, h)s
TATk, where s is the random coins of the encryption algo-

rithm. Similar to previous analysis, it is not difficult to observe that, for any
id ∈ Zp, master secret keys k,k′ ∈ Z3

p and randomness r, r′, s ∈ Z2
p, the follow-

ing key-homomorphic properties with respect to KeyExt(·) and f(·) hold:

1. KeyExt(k, id; r)⊗ KeyExt(k′, id; r′) = KeyExt(k + k′, id; r + r′),
2. f(k, s)� f(k′, s) = f(k + k′, s).

Security. This IRKEM scheme is IND-RL-CPA secure under the standard
DLIN assumption. This can be argued by following the analysis of [13] and the
Embedding Lemma (cf. Proposition 1 in [3]).

Then by plugging this scheme into our generic PKEM in Section 3, we obtain
the first PKEM scheme with short ciphertext based on the standard assumption.
Notice that, the other NIPE scheme (with short private key) in Section A.2 of
[13] satisfies the desirable properties as well. Thus a new PKEM scheme with
short secret key can be derived similarly, and we omit the details here.

5 Efficiency Comparison

In this part, we give a comprehensive comparison of our schemes with existing
works [26,19,18], as shown in Table 1 and Table 2 (cf. Section 1). In the compar-
ison, we use terms “exp” (resp. “expT ”) and “pair” to denote exponentiation in
G (resp. GT) and bilinear pairing over G, respectively. The column “unbounded
punctures” (resp. ciphertext tags) in Table 1 refers to if unbounded punctures
(resp. tags per ciphertext) is supported. For sake of simplicity, when comparing
with the scheme of Green and Miers [26], we additionally add to their public key
an element e(g1, g2) used in their encryption, thus the pairing computation in
encryption is replaced by an exponentiation in GT . In comparison with the basic
(i.e., IBE-based) BFE scheme of [19] and the IBBE-based BFE scheme of [18],
our schemes together with the scheme by Green and Miers support unbounded
punctures and n tags per ciphertext for n > 1, rather than bounded punctures
and unique tag in [19,18], but their scheme features fast puncture and decryption
procedures. Moreover, our schemes do not suffer from non-negligible correctness
errors and can be proven secure without random oracles. We note that, to com-
pare with the generic IBBE-based BFE scheme in [18], we instantiate it with
the efficient IBBE scheme featuring constant-size ciphertexts and private keys in
[17]. In this work, our main concern is the PPE schemes with negligible correct-
ness errors, so in the following the comparison is mainly conducted with Green
and Miers’s work [26].

25

Compared to the scheme of [26], our first scheme in Sec. 4.1 is based on a
stronger assumption than [26]. It has a large size of punctured secret key (linear
in the upper-bound n of tags per cipertext), but it features compact ciphertext
of which the overhead consists of only 2 group elements in G. Furthermore, it
requires much fewer exponentiation evaluations for encryption, which is reduced
from O(n̂n) to O(n̂), and 33% less pairing computation for decryption. For the
second scheme in Sec. 4.2, it also features compact4 punctured secret key as
[26]. Still, it is more efficient, especially for the case of encrypting messages
under a large number of tags. Regarding the third scheme in Sec. 4.3, it enjoys
the compact punctured secret key as well. In contrast, it also enjoys a short
public key and allows unbounded tags per ciphertext. The disadvantage lies
in that it relies on a stronger assumption q-MEBDH that appears less natural
than q-DBDHE. Finally, the fourth scheme enjoys a comparable performance
to the first one, but can achieve adaptive security under the standard DLIN
assumption instead of a “q-type” one. More details of efficiency comparison are
shown in Table 1 and Table 2.

We remark that here we focus on PPE itself and conduct no comparison of
the PKEM schemes with the PFSKEM scheme in [28]. PFSKEM is inspired by
the PFSE scheme in [26], which essentially combines the ideas of PPE and FS-
PKE [11] for further reducing the decryption cost and punctured key size of PPE
that grow linearly with the number of punctures. Similarly, we can also obtain
PFSE schemes with distinct features based on the proposed PKEM schemes.

In addition, we note that the decryption complexity of our PKEM schemes
is linear to the occurrence number of puncture operations (see Table 2). As
argued in [26], however, it can be substantially mitigated like in [25] where
the decryption of ABE is securely outsourced to a third party. Moreover, as the
decryption of our construction is highly parallelized, it can be further optimized.

6 Further Discussion

Following the essential idea, our generic construction of PKEM can be opti-
mized by further refining the correctness property of KH-IRKEM. To be more
precise, we can further improve the computation efficiency of both decryption
and puncture procedure by removing the use of distinguished tag t0.

In particular, the secret key SK in the optimized version is the same as
the master secret key msk of the underlying IRKEM, i.e., SK = msk such that
(mpk,msk)← IR.MKGen(pp). In the puncture procedure, the update on sk0 (i.e.,
sk′0 = sk0⊗IR.KeyExt(−mski, t0)) will be replaced by sequentially computing the
remaining share of msk, i.e., msk′0 = msk0−mski, in which case the punctured
secret key for tags {t`}i`=1 is in the form of SKi =

(
msk′0, (sk1, t1), . . . , (ski, ti)

)
andmsk0 is the first component of SKi−1. Note that in this case SK0 = msk. For
the decryption, the shared encapsulated key k0 corresponding to tag t0 is directly

4 The compact here means the size of punctured secret key depends only on the number
of punctures.

26

computed from the remaining share msk0 of msk, instead of running the decryp-
tion algorithm of IRKEM (i.e., k0 ← IR.Dec(sk0, t0, CT, T)). To this goal, it is
desired that a legally encapsulated key can be recovered correctly from msk0 and
CT along with the public parameters, as well. Therefore, the correctness prop-
erty in Definition 7 needs to be further extended to include the following con-
dition: there exists an efficiently computable key derivation function KDF, such
that k̂ = KDF(pp,msk1, ct2). Fortunately, all our instantiations satisfy this ad-
ditional property. In particular, the computation of k0 ← IR.Dec(sk0, t0, CT, T)
in the decryption will be replaced by k0 = KDF(pp,msk0, CT) and it is exactly
e(g, gs)msk0 in our instantiations, where g is part of pp, gs is part of CT and s
is the randomness of encryption.

As the optimized version do not change the asymptotic complexity of our
PKEM schemes, we do not analyze its performance in the efficiency comparison.

7 Conclusion

We propose a generic method to construct public-key puncturable key encap-
sulation mechanism. Thus, we get the first modular way of designing the full-
blown puncturable encryption with negligible correctness errors, by combining
it with the standard decapsulation mechanism. To the end, we introduce a new
concept of identity-based revocable encryption system, called key-homomorphic
identity-based revocable key encapsulation mechanism with extended correct-
ness. Furthermore, we present several instantiations of the new concept and
obtains four concrete public-key puncturable encryption schemes with distinct
features. Specifically, we get the first public-key puncturable encryption schemes
with compact ciphertexts, and the first scheme allowing for both unbounded
punctures and unbounded size of tag set in the ciphertext. We also get an effi-
cient scheme based on the standard DBDH assumption that features both faster
encryption and decryption when the size of tag set is large, compared to Green
and Miers scheme based on the same assumption. Although we obtains some
tradeoffs between distinct aspects in this work, it is still challenging to con-
struct adaptively secure puncturable encryption scheme with e.g., both compact
ciphertext and punctured keys in the standard model.

Acknowledgements The authors would like to thank the anonymous review-
ers for their comments and suggestions. Also, they are grateful to Dr. Jie Chen
for the helpful discussion. This work is supported in part by the Natural Sci-
ence Foundation of China (No. 61802255), the project on Security Protection
Technology of Embedded Components and Control Units in Power System Ter-
minal (2019GW–12), the Data61-Monash Collaborative Research Project, and
the Australian Research Council (ARC) Discovery Project (No. DP180102199).

References

1. Attrapadung, N.: Unbounded dynamic predicate compositions in attribute-based
encryption. In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-

27

national Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I. pp. 34–67 (2019)

2. Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., Yamada,
S.: Attribute-based encryption for range attributes. In: Security and Cryptography
for Networks - 10th International Conference, SCN 2016, Amalfi, Italy, August 31
- September 2, 2016, Proceedings. pp. 42–61 (2016)

3. Attrapadung, N., Libert, B.: Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In: Public
Key Cryptography - PKC 2010, 13th International Conference on Practice and
Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings.
pp. 384–402 (2010)

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Public Key Cryptography - PKC
2011 - 14th International Conference on Practice and Theory in Public Key Cryp-
tography, Taormina, Italy, March 6-9, 2011. Proceedings. pp. 90–108 (2011)

5. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Advances in Cryptology - ASIACRYPT 2011 - 17th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings. pp. 486–503 (2011)

6. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
Ibe, encryption and signatures. In: Advances in Cryptology - ASIACRYPT 2012 -
18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings. pp. 331–
348 (2012)

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May
2007, Oakland, California, USA. pp. 321–334 (2007)

8. Blazy, O., Kiltz, E., Pan, J.: (hierarchical) identity-based encryption from affine
message authentication. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part I. pp. 408–425 (2014)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings. pp.
213–229 (2001)

10. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. pp. 1465–1482 (2017)

11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Advances in Cryptology - EUROCRYPT 2003, International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings. pp. 255–271 (2003)

12. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Public-Key Cryptography - PKC 2017 -
20th IACR International Conference on Practice and Theory in Public-Key Cryp-
tography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II.
pp. 213–240 (2017)

13. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Advances in Cryptology - EUROCRYPT 2015 - 34th

28

Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. pp. 595–624
(2015)

14. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. IACR Cryptology ePrint Archive 2018, 116 (2018)

15. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

16. D’Arco, P., Stinson, D.R.: On unconditionally secure robust distributed key distri-
bution centers. In: Advances in Cryptology - ASIACRYPT 2002, 8th International
Conference on the Theory and Application of Cryptology and Information Security,
Queenstown, New Zealand, December 1-5, 2002, Proceedings. pp. 346–363 (2002)

17. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings. pp. 200–215 (2007)

18. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption
and applications to efficient forward-secret 0-rtt key exchange. IACR Cryptology
ePrint Archive 2018, 199 (2018)

19. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-rtt key exchange. In: Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III. pp. 425–455 (2018)

20. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Re-
visiting proxy re-encryption: Forward secrecy, improved security, and applications.
In: Public-Key Cryptography - PKC 2018 - 21st IACR International Conference on
Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part I. pp. 219–250 (2018)

21. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Advances in Cryptology
- CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings. pp. 307–315 (1989)

22. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Advances in Cryptology - EUROCRYPT 2002, International Conference on the
Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings. pp. 65–82 (2002)

23. Dodis, Y., Yampolskiy, A., Yung, M.: Threshold and proactive pseudo-random per-
mutations. In: Theory of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings. pp. 542–560 (2006)

24. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-lin. In: Advances in Cryptol-
ogy - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II. pp. 732–764 (2019)

25. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE ci-
phertexts. In: 20th USENIX Security Symposium, San Francisco, CA, USA, August
8-12, 2011, Proceedings (2011)

26. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. pp. 305–320 (2015)

27. Günther, C.G.: An identity-based key-exchange protocol. In: Advances in Cryptol-
ogy - EUROCRYPT ’89, Workshop on the Theory and Application of of Crypto-
graphic Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings. pp. 29–37
(1989)

29

28. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-rtt key exchange with full forward
secrecy. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III. pp. 519–548 (2017)

29. Katsumata, S., Yamada, S.: Non-zero inner product encryption schemes from var-
ious assumptions: Lwe, ddh and dcr. In: Lin, D., Sako, K. (eds.) Public-Key Cryp-
tography – PKC 2019. pp. 158–188 (2019)

30. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. pp. 273–285 (2010)

31. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Defi-
nitions, constructions, and applications (extended abstract). In: Theory of Cryp-
tography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA,
USA, February 19-21, 2004, Proceedings. pp. 171–190 (2004)

32. Martin, K.M., Safavi-Naini, R., Wang, H., Wild, P.R.: Distributing the encryption
and decryption of a block cipher. Des. Codes Cryptography 36(3), 263–287 (2005)

33. Mitzenmacher, M.: Bloom filters. In: Encyclopedia of Database Systems, Second
Edition (2018)

34. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Advances in Cryptology - ASIACRYPT 2012 - 18th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings. pp. 349–366 (2012)

35. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. pp. 195–203 (2007)

36. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: Proceedings of the Tenth Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991. pp. 51–
59 (1991)

37. Sun, S., Yuan, X., Liu, J.K., Steinfeld, R., Sakzad, A., Vo, V., Nepal, S.: Practical
backward-secure searchable encryption from symmetric puncturable encryption.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp.
763–780 (2018)

38. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Public-Key
Cryptography - PKC 2014 - 17th International Conference on Practice and The-
ory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings. pp. 275–292 (2014)

30

	Public-Key Puncturable Encryption: Modular and Compact Constructions

