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Abstract. Recently, Beullens, Kleinjung, and Vercauteren (Asiacrypt’19)
provided the first practical isogeny-based digital signature, obtained from
the Fiat-Shamir (FS) paradigm. They worked with the CSIDH-512 pa-
rameters and passed through a new record class group computation.
However, as with all standard FS signatures, the security proof is highly
non-tight and the concrete parameters are set under the heuristic that
the only way to attack the scheme is by finding collisions for a hash
function.
In this paper, we propose an FS-style signature scheme, called Lossy
CSI-FiSh, constructed using the CSIDH-512 parameters and with a se-
curity proof based on the “Lossy Keys” technique introduced by Kiltz,
Lyubashevsky and Schaffner (Eurocrypt’18). Lossy CSI-FiSh is provably
secure under the same assumption which underlies the security of the
key exchange protocol CSIDH (Castryck et al. (Asiacrypt’18)) and is
almost as efficient as CSI-FiSh. For instance, aiming for small signature
size, our scheme is expected to take around ≈ 800ms to sign/verify while
producing signatures of size ≈ 280 bytes. This is only twice slower than
CSI-FiSh while having similar signature size for the same parameter set.
As an additional benefit, our scheme is by construction secure both in
the classical and quantum random oracle model.

1 Introduction

1.1 Background

Isogeny-based cryptography is one of the promising candidates for post-quantum
cryptography. While isogeny problems offer simple and efficient solutions to en-
cryption schemes (or equivalently, key-exchange protocols) [8, 25], they turned
out to be rather elusive to use for constructing signature schemes.

At the highest level, all isogeny-based signatures we know thus far are based
on the Fiat-Shamir paradigm [1, 18]: prepare a hard relation R based on an
isogeny problem, construct an identification protocol (or sigma protocol) for R,
and use a cryptographic hash function to compile the identification protocol
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into a signature scheme in the random oracle model (ROM). Both the two cen-
tral isogeny problems — the computational supersingular isogeny (CSSI) prob-
lem [13] and the group action inverse problem (GAIP) [8] — have been the basis
for constructing signatures. Those based on CSSI, proposed in [21, 42], produce
signatures of size at least 12KB even in the most optimized variant [21]. On the
other hand, relying on GAIP and employing the Fiat-Shamir with aborts strat-
egy [31], De Feo and Galbraith introduced a compact isogeny-based signature
named SeaSign [12]. Despite the inefficiency in the signature generation and
verification, SeaSign provides signatures of a remarkably small size (less than
1 kilobyte at the 128-bit security level).

Very recently, a new record class group computation has allowed Beullens,
Kleinjung and Vercauteren [6] to improve SeaSign and obtain the first practical
isogeny-based signature scheme, named CSI-FiSh. Their computation has shed
light on the structure of the ideal class group determined by a specific set of
CSIDH parameters, named CSIDH-512 [8]. This granted a proper uniform sam-
pling from the ideal class group, and canonical representation of its elements,
which enabled to overcome the costly remedy made by SeaSign. That is, the
adoption of a redundant representation of class group elements and performing
rejection sampling. The result is practical efficiency in both signature generation
and verification while maintaining the short signature size offered by SeaSign.
However, one important remark is that, since CSI-FiSh is specific to the spe-
cial set of parameters CSIDH-512, it can offer at most the same security level
provided by a hard problem defined over the CSIDH-512 parameters. Specifi-
cally, CSI-FiSh relies on the GAIP problem, which is believed to have 128-bits
of classical and (at most) 64-bits of quantum security over the CSIDH-512 pa-
rameters [8, 34].

Tight Security. Fiat-Shamir (FS) signatures [1,18] admit an intuitive and sim-
ple construction in the ROM, however, they are notorious for having a very
loose reduction. Since a loose reduction forces for a stronger hardness assump-
tion, and consequently a less efficient scheme, it has been the focus of several
works to tighten the reduction loss, e.g., [3, 19,22,26,32,33,37].

To give a more precise perception of the security loss, assume we had a FS
signature that is secure based on the hardness of a particular hard problem Π.
Then, the security proof of FS signatures in the classical ROM dictates that the
reduction algorithm can break the underlying problemΠ with advantageQ−1·ε2,
where Q is the number of hash evaluations an adversary can perform and ε is the
advantage of an adversary breaking the security of the FS signature. Therefore,
if we want to instantiate the FS signature with provably secure parameters, we
must assume the hardness of the problem Π for a security level that is much
higher than expected. For instance, if we aim for 128-bits of security for the
FS signature (i.e., ε = 2−128), then assuming a modest Q ≈ 240, we require at
least 296-bits of security for the hard problem Π. Since a hard problem with a
higher level of security must necessitate larger parameters, this leads to inefficient
schemes.
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This undesirable loss in security and efficiency is common to all standard FS
signatures and CSI-FiSh is no exception. However, one large difference between
CSI-FiSh and other FS signatures is that CSI-FiSh relies on a hard problem
defined for a specific security level — the GAIP problem over the CSIDH-512
parameters. For the time being, no other parameter sets are known to provide
the nice algebraic structure required for CSI-FiSh. This is in sharp contrast
with FS signatures based on other hardness assumptions since most hardness
assumptions can “absorb” the reduction loss by setting the parameters larger.
Since GAIP over the CSIDH-512 parameters only offers 128-bits of classical
security, we cannot argue any notion of provable security for CSI-FiSh if we
aim for 128-bits of security. Concretely, if we plug in Q ≈ 240 as above, we can
only provably argue 44-bits of security for CSI-FiSh. Moreover, if we aim for
quantum security, the situation is worse since the reduction algorithm can break
the underlying problem Π with only advantage Q−6 ·ε3 [16,30]. We note that the
currently available resources would probably allow other record computations for
bigger parameters for which GAIP is believed to have a much higher security
level; however, the benefit of having a higher security level would likely be beaten
by the significant slow-down in efficiency.

In practice, this inconvenient reduction loss in FS signatures is usually over-
looked or simply ignored, and the parameters are set assuming that the best
attack against the FS signature is (roughly) finding a collision in the hash func-
tion. In [6], the parameters for CSI-FiSh are set under this simplified assumption
as well. Considering this undesirable gap between practice and theory, a natural
question which arises is:

Can we design an isogeny-based signature scheme as efficient as CSI-
FiSh with provable secure parameters?

1.2 Our Contribution

In this work, we provide a partial answer to the above problem and propose a
new signature scheme, Lossy CSI-FiSh, with the following features:

– It is tightly secure under a natural hardness assumption over the CSIDH-512
parameters, that is, the decisional CSIDH (D-CSIDH) assumption.
We note D-CSIDH is not a new assumption introduced in this paper, as it
was originally defined by Stolbunov in his PhD thesis [39, Problem 2.2] and
implicitly underlies the security of the key exchange protocol CSIDH [8].4

– It is almost as efficient as CSI-FiSh. Compared to CSI-FiSh, the signature
size is the same, the public key is only twice as large, and the runtime of the
signature generation and verification is estimated to be (at most) twice as
slow. For instance, aiming for small signature size, our scheme is expected
to take around ≈ 800ms to sign/verify while producing signatures of size

4 Roughly, this is parallel to the relation between the Diffie-Hellman (DH) protocol
and the decisional DH assumption [15]. For a more formal discussion, we refer to
Section 3.1.
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≈ 280 bytes. This is still 150 times faster and around 3 times smaller than
an optimized version of SeaSign for the same parameter set.

– It is secure both in the classical and quantum ROM (QROM). In particular,
we do not require a separate construction using the Unruh transform [40] to
achieve security in the QROM.

We obtain our results by following the line of work that constructs lossy
identification protocols to obtain tightly secure FS signatures [2, 26, 27, 41]. A
lossy identification protocol comes with an additional lossy statement generator
that produces lossy statements which are computationally indistinguishable from
honestly generated statements for the hard relation R induced by some hardness
assumption. Moreover, relative to the lossy statements, the protocol admits sta-
tistical soundness. That is, not even a computationally unbounded adversary can
successfully impersonate a prover. Using the result of Kiltz, Lyubashevsky, and
Schaffner [27] (see Theorem 2.1), a lossy identification protocol directly provides
us an FS signature with a tight reduction in the classical and quantum ROM.

The idea to use a lossy identification protocol to achieve tight security for
isogeny-based FS signatures was also considered by De Feo and Galbraith for
SeaSign [12, Section 8]. In particular, they proposed to take a very large ideal
class group (determined by a big prime p) and then only a small subset as the
space of possible private keys (that results in valid public keys being chosen from
a set of roughly the same cardinality). The signature generation and verification
processes are not altered from the standard SeaSign scheme. The result is that
the lossy variant inherits the inefficiency of the main scheme, with the increment
of the prime p further aggravating the issue. It is evident that the above approach
does not extend to the current version of CSI-FiSh, which requires the specific
CSIDH-512 parameter set.

The lossy identification protocol proposed in this work — which arises from
the observation that the D-CSIDH relation over the CSIDH-512 parameters nat-
urally admits a lossy mode — appears to be much simpler and it smoothly leads
to a practical signature scheme. Our identification protocol enjoys the same opti-
mizations used in [12] and [6]. Using D-CSIDH instead of GAIP as the underlying
assumption, we encounter an obstacle that stems from the fact that D-CSIDH
does not provide natural random self-reducibility properties. However, we dis-
cuss that this issue does not have much of a big impact on the concrete choice
of parameters.

Related Works. There are only a handful of efficient signature schemes that
are tightly and provably secure in the (Q)ROM that we are aware of. The
lattice-based Gentry-Peikert-Vaikuntanathan (GPV) signature [23] or its much-
optimized successor FALCON [20] have tight security in the (Q)ROM. One no-
table feature is that the construction natively supports tight security in both clas-
sical and quantum ROM without incurring any overhead. Dilithium [17], which
is a lattice-based FS-type signature, also has tight security in the (Q)ROM [27].
To achieve tight security, they must modify the public key of their non-tightly
secure scheme to obtain a lossy mode. Unfortunately, when using a lattice-based
hard problem (that is, the learning with errors problem), this comes at the cost
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of making the public key size at least 5 times larger and the signature size at least
2 times larger, e.g., public key and signature size grows from (1472, 2701) bytes
up to (7712, 5690) bytes. As we mentioned above, SeaSign [12] goes through
the lossy argument as well. They require to use of a non-standard variant of the
GAIP problem and makes it difficult to assess the increase in signature and pub-
lic key sizes. We like to highlight that although we go through the same paradigm
of lossy arguments, Lossy CSI-FiSh is based on a standard assumption and does
not incur a large blow up in size; the public key is only 2 times larger and the
signature size remains the same compared to the non-tight variant CSI-FiSh.
Finally, the hash-based signature SPHINCS+ [4] also enjoys tight security in the
(Q)ROM under several heuristic assumptions on the underlying cryptographic
hash function.

Roadmap. The rest of the paper is organized as follows. In Section 2 we give a
brief preliminary on identification protocols and class group actions. In Section 3
and 4 we introduce the new lossy identification protocol and we adapt it using the
optimizations proposed in [6,12] to enlarge the challenge space. In Section 5 we
describe the signature scheme obtained through the Fiat-Shamir transform, and
we compare it to CSI-FiSh in terms of bandwidth and computational complexity.
In Section 6 we report concluding remarks.

2 Preliminaries

2.1 Identification Protocols

Given two sets X and Y, a subset R ⊂ X × Y is a polynomially computable
binary relation on X × Y if, given (X,W) ∈ X × Y , we can check (X,W) ∈ R in
time poly(|X|). The language LR corresponding to R is the set {X ∈ X | ∃W ∈
Y : (X,W) ∈ R}, where we call W a witness for the statement X ∈ LR.

An identification protocol ID for a relation R is a three-move interactive pro-
tocol between a prover and a verifier. Informally, a prover holding a statement-
witness pair (X,W) ∈ R can prove to the verifier that they indeed possess a valid
witness W without revealing any more than the mere fact that they know W.

Definition 2.1 (Identification Protocol). An identification protocol ID for
a relation R consists of four PPT algorithms (IGen,P = (P1,P2),V), where V is
deterministic and we assume P1 and P2 share states. Let ComSet, ChSet, and
ResSet be the commitment space, challenge space, and response space, respec-
tively. Then, an identification protocol is defined in the following way.

– The key generation algorithm IGen takes the security parameter 1λ as input,
and outputs a statement-witness pair (X,W) ∈ R.

– The prover, on input (X,W), first executes com← P1(X,W), and then sends
the commitment com to the verifier.

– The verifier chooses a random challenge ch ← ChSet and sends ch to the
prover.
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– The prover, given ch, runs resp← P2(X,W, com, ch) and returns a response
resp to the verifier. Finally, the verifier runs V(X, com, ch, resp) and outputs
1 if they accept, 0 otherwise.

The protocol transcript (com, ch, resp) ∈ ComSet × ChSet × ResSet is said to be
valid in case V(X, com, ch, resp) outputs 1.

We require the following properties from an identification protocol ID. Some of
them may seem non-standard, however, they are all necessary to argue security
of the Fiat-Shamir transform in the (quantum) random oracle model. We note
that some of the properties are simplified and stronger than those in [27], e.g.
we ignore negligible correctness errors. This is done without loss of generality,
since our proposed identification protocol satisfies all the stronger properties.

Correctness. The following holds for all (X,W) ∈ R:

Pr

V(X, com, ch, resp) = 1

∣∣∣∣∣∣
com← P1(X,W),

ch← ChSet,
resp← P2(X,W, com, ch)

 = 1.

(Perfect) Honest-Verifier Zero-Knowledge (HVZK). There exists a PPT simu-
lator algorithm Sim that takes as inputs a statement X ∈ LR and a challenge
ch ∈ ChSet, and outputs a commitment com and a response resp such that
(com, ch, resp) is a valid transcript for X. Moreover, the output distribution of
Sim on input (X, ch) is equal to the distribution of those outputs generated via
an honest execution conditioned on the verifier using ch as the challenge. We
note we can consider relaxed variants of HVZK where the distributions are only
required to be computationally indistinguishable.

Min-Entropy. The identification protocol ID has α bits of min-entropy if

Pr
(X,W)←IGen(1λ)

[
min-entropy(com | com← P1(X,W)) ≥ α)

]
≥ 1− 2−α.

(Optional) Perfect Unique Response. With overwhelming probability over the

random choice of (X,W) ← IGen(1λ), for any com ∈ ComSet and ch ∈ ChSet,
there exists a unique response resp ∈ ResSet that leads to a valid transcript
(com, ch, resp). This property is required when aiming for strong unforgeabil-
ity (i.e., su-cma) of the FS signature scheme. As we will see, our identification
protocol supports this property by default.

(Optional) Commitment Revocability. With overwhelming probability over the

random choice of (X,W) ← IGen(1λ), for any ch ∈ ChSet and resp ∈ ResSet,
there exists a unique commitment com ∈ ComSet that makes (com, ch, resp) a
valid transcript. Such a commitment can be publicly computed by means of an
algorithm taking (X, ch, resp) as input. This property is unnecessary from a secu-
rity stand point and only allows for shorter signatures. Again, our identification
protocol supports this property by default.
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To achieve a tight security proof for Fiat-Shamir signatures (formally defined
later), we further require the identification protocol to satisfy some notion of
lossiness defined below.

Definition 2.2 (Lossy Identification Protocol). An identification protocol
ID is called lossy - and denoted by IDls - if it admits an extra PPT algorithm
LossyIGen, named lossy key generation algorithm, that on input 1λ outputs Xls ∈
X \ LR.

We require a lossy identification protocol IDls to satisfy the following two prop-
erties.

Indistinguishability of Lossy Statements. We ask that a statement generated with
the lossy key generation algorithm is indistinguishable from a statement gener-
ated by the real key generation algorithm. Let us define the following advantage
for an adversary A:

AdvlossyA (λ) :=|Pr[A(Xls) = 1 | Xls ← LossyIGen(1λ)]−
Pr[A(X) = 1 | (X,W)← IGen(1λ)]|

We say the lossy identification protocol satisfies indistinguishability of lossy
statements if for any PPT (or quantum PT) adversary we have AdvlossyA (λ) =
negl(λ).

Statistical Lossy Soundness. The definition of statistical lossy soundness relies on
the following game, named lossy impersonation game, played by an adversary A
and a challenger.

Setup: The challenger runs Xls ← LossyIGen(1λ) and provides the adversary A
the lossy statement Xls.

Commitment and challenge selection: On input Xls the adversaryA selects
a commitment com ∈ ComSet and sends it to the challenger. The challenger
responds by returning a random challenge ch ∈ ChSet.

Output: A outputs a response resp ∈ ResSet. The adversary A wins the game
if (com, ch, resp) is a valid transcript for Xls.

We say IDls is εls-lossy sound if for any unbounded (possibly quantum) adversary
A the winning probability in the above game is less than εls.

2.2 Digital Signature Schemes

Here we introduce the definition of standard signature schemes.

Definition 2.3. A signature scheme ΠS consists of three PPT algorithms
(S.KeyGen,S.Sign,S.Vrfy) such that:

– S.KeyGen(1λ)→ (vk, sk): On input a security parameter 1λ, the key genera-
tion algorithm outputs a pair of verification and signing keys (vk, sk);
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– S.Sign(sk,M)→ σ: On input a signing key sk and a message M, the signing
algorithm outputs a signature σ;

– S.Vrfy(vk,M, σ) → 1/0: On input a verification key vk, a message M and a
signature σ, the verification key outputs 1 (accept) or 0 (reject).

We require a signature scheme ΠS to satisfy the following two properties.

Correctness. For every security parameter 1λ, with λ ∈ N, and every message M
the following holds:

Pr

[
S.Vrfy(vk,M, σ) = 1

∣∣∣∣ (vk, sk)← S.KeyGen(1λ),
σ ← S.Sign(sk,M)

]
= 1.

Unforgeability. We define the strong unforgeability under chosen message attack
su-cma by the following game played by an adversary A and a challenger.

Setup: The challenger runs (vk, sk)← S.KeyGen(1λ) and provides the adversary
A the verification key vk. It also prepares an empty set S = ∅.

Signing Queries: The adversary A may adaptively submit messages M to the
challenger. The challenger responds by returning σ ← S.Sign(sk,M) to A. It
then updates the set S ← S ∪ {(M, σ)}.

Output: Finally, A outputs a forgery (M∗, σ∗). We say the adversary A wins if
(M∗, σ∗) 6∈ S and S.Vrfy(vk,M∗, σ∗) = 1.

We define the advantage of A as the probability it wins the above game, that is,
Advsu-cma

A (1λ) := Pr[A wins].

Definition 2.4 (Su-cma Security). We say a signature scheme ΠS is su-cma
secure if for all PPT adversaries A, we have Advsu-cma

A (λ) = negl(λ).

2.3 Pseudorandom Functions

Consider a mapping PRF : K×X → Y, where K is a key space. We say PRF is a
pseudorandom function if for all PPT (or quantum) adversaries, their advantage
defined below is negligible:

AdvPRFA (λ) :=
∣∣∣Pr[APRF(K,·)(1λ) = 1 | K ← K]− Pr[ARF(·)(1λ) = 1]

∣∣∣ ,
where RF : X → Y is a perfect random function. In practice, any standard hash
function (e.g., SHA-3) is believed to be a (quantumly) secure PRF.

2.4 Fiat-Shamir Transformation

The original Fiat-Shamir transformation [1, 18] turns a (not necessarily lossy)
identification protocol ID into a digital signature scheme by means of a crypto-
graphic hash function H : {0, 1}∗ → ChSet modeled as a classical random oracle
(RO). For each parallel execution of ID, the challenge is obtained as H(com,M),
where M is the message to sign. Then the resulting digital signature σ is a t-tuple
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composed by t commitments and the corresponding responses, where t is set in
such a way that |ChSet|t is exponentially large. Recently, the Fiat-Shamir trans-
formation has been extended to the quantum random oracle model (QROM) as
well [16, 27,30].

In this work, we will be interested in Fiat-Shamir transformations for a spe-
cific type of identification protocol (namely, lossy identification protocol) which
admits tight security proofs. For a general identification protocol, it is well-known
that the Fiat-Shamir signature incurs a prohibitively large reduction loss: the
advantage of breaking the underlying hard problem degrades as O(Q−1 · ε2) in
the classical ROM and as O(Q−6 · ε3) in the quantum ROM, where Q is the
number or random oracle queries made by the adversary and ε is the advantage
against the Fiat-Shamir signature scheme.

The following result is taken from the recent work of Kiltz, Lyubashevsky,
and Schaffner [27].

Theorem 2.1. Assume the identification protocol ID is lossy, perfect HVZK,
has α bits of min-entropy, has perfect unique response, and is εls-lossy sound.
The Fiat-Shamir transformation provides a signature scheme such that, for any
quantum adversary A against su-cma security that issues at most QH queries to
the quantum random oracle, there exists quantum adversaries B and D such that

Advsu-cma
A (λ) ≤ AdvlossyB (λ) + 8(QH + 1)2 · εls + 2−α+1 + AdvPRFD (λ),

and Time(B) = Time(D) = Time(A) +QH ≈ Time(A).
In the classical setting, the only difference is that the bound depends linearly

on QH instead of quadratically.

The above theorem is obtained by derandomizing the Fiat-Shamir signature
by a pseudorandom function PRF and plugging it in Theorem 3.1 of [27]. We
note that some simplification to Theorem 3.1 of [27] is made since our proposed
lossy identification protocol achieves perfect HVZK and perfect unique response.

2.5 Class Group Actions and Hardness Assumption

The action of ideal class groups on elliptic curves was firstly proposed for crypto-
graphic purposes by Couveignes [9], and Rostovtsev and Stolbunov [35,38]. Their
approach was then revised by De Feo, Kieffer and Smith [14], who were unable to
turn it intro practicality despite the introduction of remarkable mathematically-
driven speed-ups. The efficiency issues were overcome by Castryck et al. [8], that
introduced the CSIDH key-exchange protocol restricting to supersingular elliptic
curves. In the following, we will give a brief background on ideal class groups and
their action on supersingular curves. For a more detailed overview we suggest
the consultation of [8] and Cox’s book [10].

Let Fp denote a prime field, with p being an odd prime. Given two elliptic
curves E,E′ defined over Fp, an isogeny ϕ : E → E′ is a non-constant mor-
phism mapping 0E to 0′E . Hence each coordinate of ϕ(x, y) can be expressed
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as a fraction of two polynomials belonging to Fp[x, y]. If their coefficients are
contained in Fp, then we say that ϕ is defined over Fp. A separable isogeny
(it induces a separable extension of function fields) having {0E} as kernel is an
isomorphism; an isogeny having the same domain and range is an endomorphism.

The set of all endomorphisms of an elliptic curve E, together with the zero map,
form a ring under pointwise addition and composition. Such a ring is called the
endomorphism ring of E and it is denoted by End(E). If End(E) is abelian, the
curve is said to be ordinary, otherwise it is said to be supersingular. The re-
striction Endp(E) to the endomorphisms defined over Fp constitutes a subring,
which is isomorphic to an order in the quadratic field K = Q(

√
−p). An order

is a subring of Q(
√
−p) which is also a finitely-generated Z-module containing

a basis of K as a Q-vector space. The set Z[
√
−p] = {m + n

√
−p | m,n ∈ Z}

satisfies the above three conditions and we will denote it by O. We then con-
sider the set E``p(O, π) containing all supersingular curves E defined over Fp -
modulo isomorphisms defined over Fp - such that there exists an isomorphism
between O and Endp(E) mapping

√
−p ∈ O into the Frobenius endomorphism

(x, y) 7→ (xp, yp). As shown in [8], each isomorphism class in E``p(O, π) can be
uniquely represented by a single element of Fp if p ≥ 5 is a prime such that p ≡ 3
(mod 8).

A fractional ideal a of O is a finitely generated O-submodule of K. When a is
contained in O, it is said to be integral; when a = αO for some α ∈ K, it is said
to be principal; when there exists another fractional ideal b such that ab = O, it
is called invertible. The invertible fractional ideals of O form an abelian group.
Its quotient by the subgroup composed by principal fractional ideals is a finite
group called ideal class group of O, usually denoted by C`(O). Its cardinality is
the class number of O.

The ideal class group C`(O) acts freely and transitively on the set E``p(O, π)
via the group action ?:

? : C`(O)× E``p(O, π)→ E``p(O, π)

(a, E) 7→ a ? E.

For simplicity, we will use representatives instead of equivalence classes to
denote elements of C`(O) and E``p(O, π). When p is of the form 4`1`2 · · · `s− 1,
whith `1, . . . , `s small odd primes, a special integral ideal I`i ⊂ O corresponds
to each prime `i. These ideals allow an easy computation of the group action.
In particular, the action of I`i on a curve E ∈ E``p(O, π) is determined by an
isogeny having as kernel the unique rational `i-torsion subgroup of E.

The general variant of the CSIDH key-exchange scheme relies on the heuris-
tic that the equivalence classes of the ideals I`1 , . . . ,I`s , together with their
inverses, generate the entire ideal class group C`(O). In [8], Castryck et al. pro-
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pose different sets of parameters for CSIDH, each of them supposedly achieving
a specific quantum security level. For the smallest5 set of parameters, named
CSIDH-512 since p ' 2512, the class group structure of C`(O) has been recently
computed by Beullens et al. [6]. They showed that C`(O) is a cyclic group of
odd order N , where N ' 2257.1 and C`(O) = 〈I3〉. As a consequence, this group
admits a canonical representation (as ZN ) and an efficient uniform sampling of
its elements. For simplicity, in the following we will denote by g the generator
I3.

Hardness Assumption. The group action inverse problem (GAIP) is the hard-
ness assumption originally introduced by [8], which underlies the security of both
SeaSign [12] and CSI-FiSh [6]. Although we will not directly use GAIP in our
construction, we provide it as a base point to compare the assumption we intro-
duce.

Definition 2.5 (Group Action Inverse Problem (GAIP)). Given two su-
persingular elliptic curves, E,E1 ∈ E``p(O, π), find an element a ∈ C`(O) such
that a ? E = E1.

3 Base Lossy Identification Protocol from CSIDH-512

The CSI-FiSh signature is obtained by applying the Fiat-Shamir transformation
to an identification protocol originally sketched by Couveignes [9] and Stolbunov
[39]. In this section, we introduce our base lossy identification protocol for any
set of CSIDH parameters for which the ideal class group C`(O) is cyclic, with a
known order N and generator g. We further discuss the corresponding hardness
assumption on which its security relies. Such a scheme considers an exponent
a ∈ ZN , the private key, and two pairs of curves, where the second pair, the
public key, is determined by the action of ga on the first pair. For the concrete
instantiation in Section 5, we use the CSIDH-512 parameters.

3.1 Hardness Assumption: Decisional CSIDH

We construct a lossy identification protocol based on the decisional CSIDH (D-
CSIDH) problem, originally defined by Stolbunov in his PhD thesis [39, Problem
2.2].

Definition 3.1 (Decisional CSIDH Problem). Given the set E``p(O, π) and
the ideal class group C`(O), the decisional CSIDH (D-CSIDH) problem asks to
distinguish between the following two distributions:

– (E,H, a?E, a?H), where the supersingular elliptic curves E and H are sam-
pled uniformly from E``p(O, π), while a is sampled uniformly from C`(O);

– (E,H,E′, H ′) where E,H,E′, H ′ are supersingular elliptic curves sampled
uniformly from E``p(O, π).

5 The parameter set having the smallest value for the prime p.
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We denote by AdvD-CSIDH
A (λ) the advantage of an adversary A distinguishing the

two distributions. We say that the D-CSIDH assumption holds if for every PPT
(or possibly quantum) adversary A, AdvD-CSIDH

A (λ) is negligible.

The D-CSIDH assumption forms the foundation of the security of the key
exchange protocol proposed by [8], called CSIDH. However, to be completely
accurate, the security of CSIDH not always is equivalent to the D-CSIDH prob-
lem we defined above. The reason for this is that when the structure of the ideal
class group is not known, we cannot properly sample a uniform ideal from C`(O)
(and hence a uniform elliptic curve from the set E``p(O, π)). Namely, in that
case, a party will sample an ideal that is heuristically shown to be close to uni-
formly random over C`(O). Then, to show security of CSIDH, we must assume
the hardness of D-CSIDH for that particular heuristically uniform distribution.
Notably, we do not get a reduction from the above D-CSIDH assumption defined
for truly uniform samples over C`(O). Hence, for the D-CSIDH assumption to be
useful both in a theoretical and practical sense, it is desirable to have an efficient
uniform sampler from the ideal class group C`(O). In this case, the security of
CSIDH will indeed be equivalent to the D-CSIDH assumption.

As for the definition of D-CSIDH, we would like to simply keep it agnostic to
the existence of an efficient sampler from the ideal class group C`(O). However,
throughout the paper, we will always consider a cyclic class group C`(O) with
known order and generator (i.e., the one derived from the CSIDH-512 parame-
ters) so as to be able to efficiently sample uniformly over C`(O).

3.2 Construction of Base Lossy Identification Protocol

The base lossy identification protocol we are going to describe requires C`(O)
to be efficiently sampleable. As anticipated, we will restrict to the case where
C`(O) is cyclic, with a known order N and generator g. This reduces sampling
from C`(O) to uniformly sampling from ZN , and considering the corresponding
power of g.

Let the set X be composed by pairs ((E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )), where E

(0)
1 ,

E
(0)
2 , E

(1)
1 , E

(1)
2 belong to E``p(O, π). By Y we denote the set of witnesses

{a ∈ ZN}, with N being the cardinality of C`(O). We consider the following
binary relation R on X × Y :

R = {(((E(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )), a) | E(1)

1 = ga ? E
(0)
1 , E

(1)
2 = ga ? E

(0)
2 } (1)

We note that the language LR is strictly contained in X, i.e. X contains
lossy statements. On the other hand, each statement in X is a valid instance of
the D-CSIDH problem.

The lossy identification protocol IDbase
ls deduced from relation R consists of a

challenge set ChSet = {0, 1} and five algorithms (IGen, LossyIGen,P1,P2,V), de-
tailed in the following. We note that E0 ∈ E``p(O, π) is the base curve, specified
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by the system parameters, and defined by the equation y2 = x3 + x over Fp.

– Algorithm IGen uniformly samples a, b, c ∈ ZN and outputs a statement-

witness pair (X,W) ∈ R, where X = ((E
(0)
1 = gb?E0, E

(0)
2 = gc?E0), (E

(1)
1 =

ga ? E
(0)
1 , E

(1)
2 = ga ? E

(0)
2 )), and W = a.

– Algorithm LossyIGen uniformly samples a, a′, b, c ∈ ZN and outputs a lossy

statement Xls = ((E
(0)
1 = gb ? E0, E

(0)
2 = gc ? E0), (E

(1)
1 = ga ? E

(0)
1 , E

(1)
2 =

ga
′
? E

(0)
2 )).

– On input (X,W), P1 generates a random integer r ∈ ZN and returns the

commitment com = (F1 = gr ? E
(0)
1 , F2 = gr ? E

(0)
2 ).

F1 F2

E
(1)
1 E

(0)
1 E

(0)
2 E

(1)
2

gr−a

ga

gr

ga

gr
gr−a

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − a if ch = 1.

– On input (X, com, ch, resp), the verification algorithm V checks that{
(gresp ? E

(0)
1 = F1, g

resp ? E
(0)
2 = F2) if ch = 0

(gresp ? E
(1)
1 = F1, g

resp ? E
(1)
2 = F2) if ch = 1

(2)

The interaction between a prover and a verifier within the identification pro-
tocol is summarised in Figure 1.

Prover: (X,W) ∈ R Verifier: X ∈ LR
r ← ZN , com := (gr ? E

(0)
1 , gr ? E

(0)
2 ) com
−−−−−−−−−−−→

ch
←−−−−−−−−−−−

ch← {0, 1}

resp := r − ch ·W ∈ ZN resp
−−−−−−−−−−−→

1 or 0← V(X, com, ch, resp)

Fig. 1: The base lossy identification protocol and its transcript (com, ch, resp).

3.3 Security of Base Lossy Identification Protocol IDbase
ls

We show that the proposed lossy identification protocol IDbase
ls satisfies all the

desired properties presented in Section 2.1. Properties for standard identifica-
tion protocols - namely, correctness, perfect unique response, and commitment
revocability - are straightforward to prove, with the last two verified by noticing
that the group action ? is transitive and free. Moreover, for the Honest-Verifier
Zero-Knowledge property, consider a simulator Sim defined as follows:
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Sim(X, ch): on input a statement X = ((E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )) ∈ LR and

a challenge bit ch ∈ {0, 1}, the simulator samples a random u ∈ ZN and
outputs either of the following tuples, depending on whether ch = 0 or
ch = 1:(

(gu ? E
(0)
1 , gu ? E

(0)
2 ), ch = 0, u

)
,
(
(gu ? E

(1)
1 , gu ? E

(1)
2 ), ch = 1, u

)
.

It can be checked that the transcripts output by the simulator Sim are indistin-
guishable from honest transcripts, since both have uniformly random distributed
values as responses. Finally, by construction, we have logN bits of min-entropy.

The remaining issue is showing that IDbase
ls satisfies the lossy properties (see

Definition 2.2). Specifically, it has indistinguishability of lossy statements and
statistical lossy soundness.

Lemma 3.1. Our lossy identification protocol IDbase
ls satisfies indistinguishabil-

ity of lossy statements assuming the hardness of the D-CSIDH problem. Specifi-
cally, an adversary A with advantage AdvlossyA (λ) can be turned into an adversary

B against the D-CSIDH problem with advantage AdvD-CSIDH
B (λ) = AdvlossyA (λ) and

the same running time.

Proof. The statement is an immediate consequence of the D-CSIDH problem.
In particular, the distribution induced by IGen corresponds to valid D-CSIDH
instances and that of LossyIGen corresponds to random D-CSIDH instances.

Lemma 3.2. Our lossy identification protocol IDbase
ls satisfies statistical εls-lossy

soundness for εls = 1/2 + 1/2N , where N = |C`(O)|.
Proof. First of all, a simple calculation shows that the set of valid statements LR
has size N3. Therefore, since LossyIGen outputs a uniformly random image in the
set X, which has size N4, we have Pr[Xls ← LossyIGen(1λ) : Xls ∈ LR] = 1/N .
Furthermore, for an adversary A against the lossy impersonation game, the
following holds:

Pr[A wins] = Pr[A wins | Xls 6∈ LR] Pr[Xls 6∈ LR]+

Pr[A wins | Xls ∈ LR] Pr[Xls ∈ LR]

≤Pr[A wins | Xls 6∈ LR] ·
(

1− 1

N

)
+

1

N
.

We show that for any statement Xls 6∈ LR and commitment com ∈ ComSet,
there exists at most one challenge ch ∈ ChSet that admits a valid response
resp ∈ ResSet. Since this implies Pr[A wins | Xls 6∈ LR] ≤ 1/|ChSet| = 1/2, we
obtain (1/2 + 1/2N)-lossy soundness as desired.

Given a statement Xls = ((E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )) 6∈ LR, let us assume

there exist two valid transcripts for Xls. Namely, consider (com, ch, resp) and
(com, ch′, resp′), with ch 6= ch′ and com = (F1, F2). Then, it is possible to extract
a witness W such that (Xls,W) ∈ LR. Indeed, assuming ch = 0, the responses
resp, resp′ must satisfy{

gresp ? E
(0)
1 = F1, gresp ? E

(0)
2 = F2,

gresp
′
? E

(1)
1 = F1, gresp

′
? E

(1)
2 = F2.

(3)
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Therefore, resp − resp′ is the desired witness, that is, E
(1)
1 = gresp−resp

′
? E

(0)
1

and E
(1)
2 = gresp−resp

′
? E

(0)
2 . However, this is a contradiction to Xls 6∈ LR.

Therefore, there can exist at most one challenge that possesses a valid response.
This concludes the proof.

3.4 Lossy Soundness Amplification of IDbase
ls

As typically done, we use standard parallel repetition of the base lossy identifica-
tion protocol IDbase

ls to make the lossy soundness εls negligibly small, as required
when setting the concrete parameters for the relative FS signature according to
Theorem 2.1. Specifically, on input (X,W), the prover runs parallel execution of
the protocol with the verifier, where the verifier uses independent challenges in
each execution.

We make this standard procedure explicit since, unlike sigma-protocols with
2-special soundness, lossy soundness is not closed under parallel repetition. That
is, even if we run t parallel instances of our base protocol IDbase

ls , this will not
result in a protocol with (εls)

t-lossy soundness. Namely, we have the following
result.

Lemma 3.3. Consider running t parallel rounds of the base lossy identification
protocol IDbase

ls (with the same statement-witness pair). Then it satisfies statistical
εls-lossy soundness for εls = 1/2t · (1 − 1/N) + 1/N , where N = |C`(O)|. In
particular, we have εls ≤ 1/2t + 1/N .

Proof. The proof is straightforward. In case Xls /∈ LR, we can argue that the
adversary has at most 1/2t probability in winning the lossy impersonation game.
Recalling that Xls ∈ LR happens with probability 1/N over the random choice of
LossyIGen, we can upper bound the advantage of A by εls = 1/2t(1−1/N)+1/N .
This concludes the proof.

All other properties are closed under parallel repetition and inherited directly
from IDbase

ls .

4 Optimized Lossy Identification Protocol from
CSIDH-512

We show several methods to optimize our base lossy identification protocol,
following closely the work of [6, 12]. We first prepare a slight variant of the
D-CSIDH assumption, which will form the basis of our optimized schemes.

4.1 Hardness Assumption: Fixed-Curve Multi-Decisional CSIDH

We consider a slight variant of D-CSIDH, where we are given many D-CSIDH
tuples, with the first two elliptic curves of each tuple being fixed. Formally, we
consider the following problem, which is equivalent to D-CSIDH when S = 1.



16 A. El Kaafarani et al.

Definition 4.1 (Fixed-Curve Multi-Decisional CSIDH Problem). Let S
be a positive integer. Given the ideal class group C`(O) and the set E``p(O, π), the
fixed-curve multi-decisional CSIDH (FCMD-CSIDH) problem with parameter S
asks to distinguish between the following two distributions6:

– (E,H, (ai ? E, ai ? H)i∈[S]), where the supersingular elliptic curves E and
H are sampled uniformly from E``p(O, π), and ai for i ∈ [S] are sampled
uniformly from C`(O);

– (E,H, (E′i, H
′
i)i∈[S]) where E,H,E′i, H

′
i for i ∈ [S] are supersingular elliptic

curves sampled uniformly from E``p(O, π).

We denote by AdvFCMD-CSIDH
A,S (λ) the advantage of an adversary A distinguishing

the two distributions. We say that the FCMD-CSIDH assumption with parameter
S holds if for any PPT (or possibly quantum) adversary A, AdvFCMD-CSIDH

A,S (λ) is
negligible.

A tight reduction from the (one-instance) decisional CSIDH problem to the
fixed-curve multi-decisional CSIDH problem with parameter S would have been
desirable, however, this seems to be highly challenging (as long as we view the
group action ? as a black box). This is in sharp contrast with the classical
decisional DH problem, which admits a nice random self-reducibility property.
The main reason why D-CSIDH does not possess this property seems to stem
from the fact that the group action only allows to add a known constant to the
exponent of g when considering a curve ga ∗ E. In other words, we do not have
an analogous of the mapping ga 7→ (ga)r exploited in the classical DH setting.

Therefore, we only have a trivial non-tight reduction from the D-CSIDH
problem to the FCMD-CSIDH problem with parameter S. This is formally stated
in the following lemma.

Lemma 4.1 (D-CSIDH to FCMD-CSIDH). Let S be a positive integer. Let
C`(O) be the ideal class group of an order O in Q(

√
−p), with p a prime, and

E``p(O, π) be the corresponding set of supersingular elliptic curves. Then, for
any adversary A for the FCMD-CSIDH problem with parameter S, there exists
an adversary B for the D-CSIDH problem such that

AdvFCMD-CSIDH
A,S ≤ S · AdvD-CSIDH

B ,

and Time(B) ≈ Time(A).

Proof. The proof is elementary. We consider S+1 hybrid games where, in the j-th
game7, an adversary is given (E,H, (E′i, H

′
i)i∈[S]), where (E′i, H

′
i)i∈[j] is random

over E``p(O, π)2 and (E′i, H
′
i)i∈[S]\[j] is of the form (ai ? E, ai ?H) for a random

ai ∈ C`(O). We then simply show that each game is indistinguishable using the
D-CSIDH problem to conclude the proof. However, one thing we remark is that
in order for the D-CSIDH adversary B to simulate the view to the FCMD-CSIDH

6 With [S] we denote the set {1, . . . , S}.
7 j varies from 0 to S, and with [0] we denote the set {0}.
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adversary A, B must be able to sample uniformly from C`(O). This justifies once
more our restriction to cyclic ideal class groups C`(O) having known order and
generator.

We leave it as an interesting open problem to achieve a tight reduction. We
believe a technique which allows such a reduction will most likely have applica-
tions elsewhere.

Impact on Signature Scheme (and Identification Protocol). Although this loose
reduction is not desirable, fortunately, the integer S will not have a tremendous
impact on the concrete choice of parameters for our signature scheme (and iden-
tification protocol). This is because S is only a parameter chosen at the setup of
the scheme, which is in particular independent of the adversary. This should be
compared to standard non-tight Fiat-Shamir signatures which incurs a reduction
loss of Q−1 · ε2 in the classical ROM and Q−6 · ε3 in the quantum ROM, where Q
is an adversarially dependent parameter denoting the number of RO queries. In
particular, in the original paper of CSI-FiSh [6], S is a constant set between 1 to
218−1. Depending on the value of S, we have a tradeoff between the runtimes of
several algorithms and size of public keys and signatures. We refer to Section 5
for more details.

4.2 Enlarging Challenge Space of Base Lossy Identification Protocol

We show a variant of our base lossy identification protocol which is obtained
adapting the idea from [6, 12] to enlarge the challenge space. In particular, we
will use the FCMD-CSIDH problem with parameter S instead of the D-CSIDH
problem to define the language used in the identification protocol. Formally, the
set of (possibly non-valid) statements is:

X =
{(

(E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 ), . . . , (E

(S)
1 , E

(S)
2 )) | E(i)

1 , E
(i)
2 ∈ E``p(O

)}
,

while the set of witnesses is Y = {(a1, . . . , aS) | a1, . . . , aS ∈ ZN}. We then
consider the following binary relation on X × Y :

R = {(((E(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 ), . . . , (E

(S)
1 , E

(S)
2 )), (a1, . . . , aS)) ∈ X × Y |

gai ? E
(0)
1 = E

(i)
1 , gai ? E

(0)
2 = E

(i)
2 for i ∈ [S]}.

The lossy identification protocol with enlarged challenge space IDenCh
ls deduced

from the above relation R is a simple adaptation of the base scheme IDbase
ls . We

provide the details below for completeness, where the challenge space is enlarged
to ChSet = {0, 1, · · · , S}. Note that S is a parameter chosen by the scheme. Our
base scheme is obtained by setting S = 1.

– Algorithm IGen uniformly samples (ai)i∈[S], b, c ∈ ZN and outputs a statement-
witness pair (X,W) ∈ R, where

X =
(

(E
(0)
1 = gb?E0, E

(0)
2 = gc?E0),

(
E

(i)
1 = gai?E

(0)
1 , E

(i)
2 = gai?E

(0)
2

)
i∈[S]

)
,

and W = (ai)i∈[N ].
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– Algorithm LossyIGen uniformly samples (ai, a
′
i)i∈[S], b, c ∈ ZN and outputs a

lossy statement

X =
(

(E
(0)
1 = gb?E0, E

(0)
2 = gc?E0),

(
E

(i)
1 = gai?E

(0)
1 , E

(i)
2 = ga

′
i?E

(0)
2

)
i∈[S]

)
,

– On input (X,W), P1 generates a random integer r ∈ ZN and returns the

commitment com = (F1 = gr ? E
(0)
1 , F2 = gr ? E

(0)
2 ).

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − ach if ch > 0.

– On input (X, com, ch, resp), the verification algorithm V checks that

gresp ? E
(ch)
1 = F1, gresp ? E

(ch)
2 = F2

Security of Lossy Identification Protocol IDenCh
ls . The proposed lossy identi-

fication protocol IDenCh
ls inherits most of the desired standard properties presented

in Section 2.1 from the base lossy identification protocol IDbase
ls . Namely, correct-

ness, min-entropy, perfect unique response, and commitment revocability triv-
ially follow from those of IDbase

ls . Moreover, the Honest-Verifier Zero-Knowledge
property holds similarly as well. Simply consider a simulator Sim which, on input

X ∈ LR and ch ∈ {0, 1, · · · , S}, outputs ((gu ? E
(ch)
1 , gu ? E

(ch)
2 ), ch, u), where u

is randomly sampled from ZN .
We next show that IDenCh

ls satisfies the lossy properties (see Definition 2.2).
Specifically, it has indistinguishability of lossy statements and statistical lossy
soundness.

Lemma 4.2. Our lossy identification protocol IDenCh
ls satisfies indistinguishabil-

ity of lossy statements assuming the hardness of the FCMD-CSIDH problem
with parameter S. Specifically, an adversary A with advantage AdvlossyA (λ) can be
turned into an adversary B against the FCMD-CSIDH problem with advantage
AdvFCMD-CSIDH

B,S (λ) = AdvlossyA (λ) and same running time.

Proof. The proof is analogous to that of Lemma 3.1.

Lemma 4.3. The lossy identification protocol IDenCh
ls satisfies statistical εls-lossy

soundness for εls = (1/(S+1))
∏S
i=1((N− i)/N)+(1−

∏S
i=1((N− i)/N)), where

N = |C`(O)|.

Proof. The general strategy is similar to that used for proving Lemma 3.3. We
separate the set X in such a way that in one of the subsets the adversary A
has exactly 1/(S + 1) probability in winning the lossy impersonation game. We
then argue that LossyIGen outputs a statement belonging to this subset with
overwhelming probability. However, unlike the proof in Lemma 3.3, we will not
be able to simply use X\LR as such a subset. This is because a computationally
unbounded adversary may be able, for some of the instances in X\LR, to forge
a response for any ch ∈ ChSet.
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Recall the set X we consider is of the following form:(
(E

(0)
1 , E

(0)
2 ),

(
E

(i)
1 = gai ? E

(0)
1 , E

(i)
2 = ga

′
i ? E

(0)
2

)
i∈[S]

)
,

where (E
(0)
1 , E

(0)
2 ) are arbitrary elements in E``p(O, π), and ai, a

′
i are arbitrary

elements in ZN . We define the set XBAD as the subset of X which satisfies the
following conditions for all distinct i, j ∈ [S]:{

ai 6= a′i,

aj − ai 6= a′j − a′i.
(4)

Below, we first compute |XBAD| and then show that Pr[A wins | Xls ∈ XBAD] is
at most 1/(S + 1).

First, fix arbitrary (E
(0)
1 , E

(0)
2 ). Then, let us consider fixing arbitrary (a1, a

′
1) ∈

(ZN )2, conditioned on conditions (4). Then, there exist at most N(N−1) choices
of such pairs. Let us further consider fixing arbitrary (a2, a

′
2) ∈ (ZN )2, condi-

tioned on conditions (4). Then, since we have to also satisfy a2 − a1 6= a′2 − a′1,
there exist at most N(N − 2) choices of such pairs. Continuing this procedure,
each pair (ai, a

′
i) ∈ (ZN )2, with i ∈ [S], has exactly N(N−i) freedom. Therefore,

we have |XBAD| = N2+S(N−1) · · · (N−S) and Pr[Xls ← LossyIGen : Xls ∈ XBAD]
equal to (N − 1) · · · (N − S)/NS .

Let us now compute Pr[A wins | Xls ∈ XBAD]. Assume there exist two valid
transcripts for Xls. Namely, consider (com, ch, resp) and (com, ch′, resp′), with
ch 6= ch′ and com = (F1, F2). Then, we have{

gresp ? E
(ch)
1 = F1, gresp ? E

(ch)
2 = F2,

gresp
′
? E

(ch′)
1 = F1, gresp

′
? E

(ch′)
2 = F2.

Therefore, we can deduce

gresp−resp
′
? E

(ch)
1 = E

(ch′)
1 and gresp−resp

′
? E

(ch)
2 = E

(ch′)
2 .

However, this clearly contradicts conditions (4). Therefore, there can exist at
most one challenge that admits a valid response in caseXls ∈ XBAD. In particular,
this proves Pr[A wins | Xls ∈ XBAD] ≤ 1/(S + 1).
Combining everything together, we conclude.

Pr[A wins]

= Pr[A wins | Xls ∈ XBAD] Pr[Xls ∈ XBAD] + Pr[A wins | Xls 6∈ XBAD] Pr[Xls 6∈ XBAD]

≤ 1

S + 1
· (N − 1) · · · (N − S)

NS
+
(

1− (N − 1) · · · (N − S)

NS

)
.

4.3 (Almost) Doubling Challenge Space of Lossy Identification
Scheme IDenCh

ls

Following the work of [6] and their exploitation of quadratic twists, we show a
simple method to almost double the challenge space of the previous scheme



20 A. El Kaafarani et al.

IDenCh
ls . The new scheme IDdenCh

ls (with a doubly-enlarged challenge set) has
statement-witness pairs almost identical to those of IDenCh

ls . The statement re-
mains the same, while the witness contains two extra-coordinates, namely b, c ∈
ZN such that gb ?E0 = E

(0)
1 , gc ?E0 = E

(0)
2 . The algorithm IGen is adjusted ac-

cording to this modification, while the lossy key generation algorithm LossyIGen
and prover’s first move P1 are defined exactly the same.

The challenge set ChSet now admits also negative values, in particular it is
the set {0,±1, . . . ,±S}. The third move P2 and the Verification algorithm V are
hence converted to deal with these new challenge values:

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − ach if ch > 0 and r + b+ c+ a|ch| if ch < 0.

– On input (X, com, ch, resp), the verification algorithm V checks that gresp ?

E
(ch)
1 = F1, gresp ? E

(ch)
2 = F2 if ch ≥ 0, and

gresp ? E
(|ch|),tw
1 = F2, gresp ? E

(|ch|),tw
2 = F1

if ch < 0.

We note that the symbols E
(|ch|),tw
1 , E

(|ch|),tw
2 denote the quadratic twists of the

curve E
(|ch|)
1 and E

(|ch|)
2 , respectively. In particular E

(|ch|),tw
1 = g−a|ch|−b ?E0, and

E
(|ch|),tw
2 = g−a|ch|−c ? E0.

Remark 4.1. We exploit the quadratic twist in a slightly different way compared
to [6]. This has the effect of allowing us to base security on the FCMD-CSIDH
assumption rather than the more restricted FCMD-CSIDH assumption where

E
(0)
1 is fixed to be the special elliptic curve E0. The variant proposed in [6,

Section 2.5] in order to extend the challenge set to negative values relies on
the fact that the public key and the commitment are computed starting from
the specific elliptic curve E0. Consequently, the security of their derived sigma
protocol requires the GAIP problem to be hard for this specific E0 as the base
point. This is in contrast to all other schemes provided in [6] which only need
the standard GAIP problem.

Security of Lossy Identification Scheme IDdenCh
ls . The proposed lossy iden-

tification protocol IDdenCh
ls inherits all the standard properties of a lossy identifi-

cation protocol (see Definition 2.1) from the previous scheme IDenCh
ls . Moreover,

since the statement output by IGen and LossyIGen is identical to IDenCh
ls , the

protocol IDdenCh
ls satisfies indistinguishability of lossy statements assuming the

hardness of the FCMD-CSIDH problem.
Finally, the statistical lossy soundness is addressed in the following lemma.

As it can be seen, the shape of εls remains unchanged with respect to Lemma 4.3.

Lemma 4.4. Our lossy identification protocol IDdenCh
ls satisfies statistical εls-

lossy soundness for εls = (1/(2S+1))·
∏S
i=1((N−i)/N)+(1−

∏S
i=1((N−i)/N)),

where N = |C`(O)|.
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Proof. The proof is almost identical to that of Lemma 4.3. We consider exactly
the same partition XBAD, X\XBAD for the set of statements X which was in-
troduced in Lemma 4.3. The only difference is that three extra-cases arise from
the extension of the challenge space when computing Pr[A wins | Xls ∈ XBAD].
Namely, consider (com, ch, resp) and (com, ch′, resp′), with ch 6= ch′ and com =
(F1, F2), as valid transcripts for Xls. If ch and ch′ are both negative, we have
that resp− resp′ satisfies{

gresp−resp
′
? E

(|ch|),tw
1 = E

(|ch′|),tw
1

gresp−resp
′
? E

(|ch|),tw
2 = E

(|ch′|),tw
2

i.e. a|ch|−a|ch′| = a′|ch|−a
′
|ch′|. When ch > 0 and ch′ < 0, for the value resp−resp′

it holds {
gresp−resp

′
? E

(ch)
1 = E

(|ch′|),tw
2

gresp−resp
′
? E

(ch)
2 = E

(|ch′|),tw
1

which implies the analogous relation ach − a|ch′| = a′ch − a′|ch′|. The last case to

be taken into account has ch = 0 and ch′ < 0, for which we deduce{
gresp−resp

′
? E

(0)
1 = E

(|ch′|),tw
2

gresp−resp
′
? E

(0)
2 = E

(|ch′|),tw
1

and then the relation a|ch′| = a′|ch′|.

Therefore, combining this with conditions (4) in Lemma 4.3, we conclude
that in case Xls ∈ XBAD, there can exist at most one ch ∈ {0,±1, . . . ,±S} which
leads to a valid response resp. This concludes the proof.

4.4 Lossy Soundness Amplification of IDdenCh
ls

For completeness, we provide the following lemma.

Lemma 4.5. Consider running t parallel rounds of the lossy identification pro-
tocol IDdenCh

ls (with the same statement-witness pair). Then it satisfies statistical

εls-lossy soundness for εls = (1/(2S + 1)t) ·
∏S
i=1((N − i)/N) + (1−

∏S
i=1((N −

i)/N)), where N = |C`(O)|.

Proof. The proof is analogous to Lemma 3.3.

5 Lossy CSI-FiSh: Tightly Secure Signature from
CSIDH-512

5.1 Construction of Lossy CSI-FiSh

We depict our Lossy CSI-FiSh signature scheme, whose security is based on the
FCMD-CSIDH assumption with parameter S, in Algorithms 1 to 3 . It is ob-
tained by applying the Fiat-Shamir transformation on the (soundness-amplified)
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lossy identification protocol IDdenCh
ls introduced in Section 4.3. We note that we

use a (quantumly secure) PRF to derandomize the signature generation, to com-
ply with the hypothesis of Theorem 2.1. In practice, one can simply use any
standard hash function (e.g., SHA-3).8 Moreover, we use the extra property of
commitment revocability (see Definition 2.1) of our lossy identification protocol
IDdenCh

ls and let the verifier recover com from resp and ch. This allows us to send
t-hash values rather than 2t-elliptic curves over E``p(O, π), and greatly reduces
the signature size.

The values S and t are parameters of the signature scheme and can be chosen
by the user allowing for different tradeoffs between security, efficiency and signa-
ture size. Roughly, the only condition which S and t must satisfy is t · log2 S ≈ λ
in the classical setting, where λ is the desired security level. In the quantum
setting, we will require t · log2 S ≈ λ+ log2QH , where QH is the number of hash
evaluations an adversary can make. For fixed S and t, the resulting signature
size is t · (dlog2Ne+ dlog2 Se). A selection of candidate parameters is provided
in Section 5.2.

The following asserts the tight security of Lossy CSI-FiSh based on the
FCMD-CSIDH assumption. Observe that the computational advantages appear
with a constant factor (one). Moreover, viewing S as a constant parameter, Lossy
CSI-FiSh admits tight security based on the D-CSIDH assumption as well.

Theorem 5.1. Let Lossy CSI-FiSh be the signature scheme depicted in Algo-
rithms 1, 2, and 3. Then, for any quantum adversary A against su-cma security
of Lossy CSI-FiSh that issues at most QH queries to the quantum random ora-
cle, there exists a quantum adversary B against the FCMD-CSIDH problem with
parameter S and an quantum adversary D against the PRF such that

Advsu-cma
A (λ) ≤ AdvFCMD-CSIDH

B,S (λ) + AdvPRFD (λ) +
2

N
+

+ 8(QH + 1)2 ·
( 1

(2S + 1)t
·
∏
i∈[S]

N − i
N

+
(

1−
∏
i∈[S]

N − i
N

))

and Time(B) = Time(D) = Time(A)+QH ≈ Time(A). Moreover, we can replace
B by a quantum adversary B′ against the D-CSIDH problem such that

AdvFCMD-CSIDH
B,S (λ) ≤ S · AdvD-CSIDH

B′ (λ)

and Time(B) ≈ Time(B′).

In the classical setting, the only difference is that the above bound depends
linearly on QH instead of quadratically. That is, we can replace 8(QH + 1)2 with
QH + 1.9

8 We note that assuming that a standard cryptographic hash function acts as a PRF
does not add to our set of assumptions, since we are already working in the ROM.

9 We can get rid of the constant 8 in the classical setting since it is due to the reduction
from the generic quantum search problem. See [24,43] for example.
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Proof. The theorem is a consequence of Theorem 2.1, Lemma 4.1, and Lemma 4.5,
along with the additional security claims made in Section 4. Note that the lossy
identification protocol IDdenCh

ls has N bits of min entropy, where N is the cardi-
nality of C`(O).

Remark 5.1 (Shorter Secret Key). Since the secret key sk is composed of random
values, we can use standard tricks to derive them from the PRF key. In particular,
we only require one PRF key, e.g., a 16-byte seed for SHA-3, as the secret key.
This modification has (almost) no effect on the overall concrete security. In order
to simplify the readability, in Algorithm 1 we do not make the use of the PRF
explicit while uniformly sampling in ZN .

Algorithm 1 KeyGen

Input: E0, class number N = |C`(O)|
Output: (pk, sk)
1: b← ZN , c← ZN

2: E
(0)
1 = gb ? E0, E

(0)
2 = gc ? E0

3: for i ∈ {1, . . . , S} do
4: ai ← ZN

5: E
(i)
1 = gai ? E

(0)
1 , E

(i)
2 = gai ? E

(0)
2

6: pk = [(E
(j)
1 , E

(j)
2 ) : j ∈ {0, . . . , S}]

7: K← K . Sample key for PRF.
8: sk = [b, c, ai : i ∈ {1, . . . , S},K]
return: (pk, sk)

Algorithm 2 Sign

Input: (pk, sk, message M)
Output: σ
1: for k ∈ {1, . . . , t} do
2: rk ← ZN . Derive randomness using PRF(K,M||k).

3: F
(k)
1 = grk ? E

(0)
1 , F

(k)
2 = grk ? E

(0)
2

4: (ch1, . . . , cht) = H(F
(1)
1 || F (1)

2 || · · · || F (t)
1 || F (t)

2 || M)
5: for k ∈ {1, . . . , t} do . Define sign(0) := 0.

6: respk = rk − sign(chk)a|chk| −
sign(chk)−|sign(chk)|

2
(b+ c) (mod N)

7: σ = (resp1, . . . , respt, ch1, . . . , cht)
return: σ

5.2 Instantiations and Comparison to CSI-FiSh

In this section, we specialise the Lossy CSI-FiSh to the CSIDH-512 parameters,
and we consider distinct possible values for t and S both in the classical and
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Algorithm 3 Verify

Input: (pk, signature σ, message M)
Output: Valid / Invalid
1: Parse σ as (resp1, . . . , respt, ch1, . . . , cht)
2: for i ∈ {1, . . . , S} do
3: E

(−i)
1 = E

(i),tw
1 , E

(−i)
2 = E

(i),tw
2 . Compute quadratic twists.

4: for k ∈ {1, . . . , t} do
5: if chk ≥ 0 then
6: F

(k)
1 = grespk ? E

(chk)
1 , F

(k)
2 = grespk ? E

(chk)
2

7: else
8: F

(k)
1 = grespk ? E

(chk)
2 , F

(k)
2 = grespk ? E

(chk)
1

9: (ch′1, . . . , ch
′
t) = H(F

(1)
1 || F (1)

2 || · · · || F (t)
1 || F (t)

2 || M)
10: if (ch1, . . . , cht) == (ch′1, . . . , ch

′
t) then

11: return: Valid
12: else
13: return: Invalid

quantum setting. For each choice of (S, t), Theorem 5.1 dictates how many bits
of classical/quantum security the scheme guarantees. Clearly, different choices
for (S, t) will lead to different bandwidth and computational efficiency.

Here, the term γ-bit of security for a cryptographic scheme is defined as the
non-existence of an adversary that breaks the scheme with a success ratio bigger
than 2−γ , where the success ratio is the quotient between the adversary’s success
probability and its running time [3]. In the light of Theorem 5.1, the number
of bits of security guaranteed by the signature scheme Lossy CSI-FiSh is upper
bounded by the security of the FCMD-CSIDH problem. In line with [8], in the
following we assume that the best methodology to solve the D-CSIDH problem
(and hence FCMD-CSIDH) is solving one of the corresponding GAIP instances.

Aligning with [6], we consider a hash function that is a factor 2u slower than
a standard hash function (as, for example, SHA3) and vary u to obtain trade-
offs between security and efficiency. Moreover, for the sake of easy comparison,
we consider the same values for S and u that are used in [6]. Below, we first
provide discussions on the size of the public key and signature size of Lossy CSI-
FiSh, both in the classical and quantum setting. We then discuss the efficiency
of our scheme with respect to the running times of signature generation and
verification. The analysis on runtime will be the same for both the classical and
quantum setting.

Classical Setting. The best known classical algorithm to solve the GAIP prob-
lem applies the meet-in-the-middle strategy, and hence has a time complexity
O(
√
N), where N is the cardinality of C`(O). The class group computation exe-

cuted in [6] has shown that N ' 2257.1 for CSIDH-512 parameters. This means
that the D-CSIDH problem guarantees at most 128 bits of classical security and
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then, in turn, the FCMD-CSIDH problem guarantees at most 128-bits when
S = 1, and at most 128/ log2 S bits when S > 1 (see Lemma 4.1).

By Theorem 5.1, for all classical adversaries running in time at most 2128

and making at most 2128 (random) queries QH , it holds:

Advsu-cma
A (λ)

Time(A)
≤ S · Adv

D-CSIDH
B′ (λ)

Time(B′)
+

AdvPRFD (λ)

Time(D)
+

+ 2−u ·
( 1

(2S + 1)t
·
∏
i∈[S]

N − i
N

+
(

1−
∏
i∈[S]

N − i
N

))
' S · 2−128 + 2−256 + 2−u · (2S + 1)−t,

where we ignore the min-entropy since it does not give any significant contri-
bution, being smaller than 2256. Furthermore, 1−

∏
i∈[S](N − i)/N is less than

2−242 even for the biggest value of S considered in the following, i.e. 215 − 1.
Hence, the last term can be safely approximated as 2−u · (2S + 1)−t. Now, since
each of the values of S is of the form 2w − 1, we deduce that 2−u · (2S + 1)−t

must be bounded by 2−129 to reach −128 + w bits of security. For a fixed value
of u, the smallest value of t for which the above inequality is satisfied is uniquely
defined.

In the following Table 1 we report: for each choice of S and u, the minimum
value of t for which we obtain the maximal security guaranteed by Lossy CSI-
FiSh, the number of bits of such security level, the sizes of signatures and the sizes
of public keys for Lossy CSI-FiSh and CSI-FiSh. The column “bits of security”
is dismissed for CSI-FiSh as it does not provide provable concrete security. We
highlight that for a fixed triple (S, t, u), the signatures produced with our scheme
Lossy CSI-FiSh have exactly the same size as those produced with CSI-FiSh.
Finally, we note that the values for CSI-FiSh reported in Table 1 slightly differ
from those of [6, Table 3], where some approximations were made (e.g., 2S −
1 was approximated with 2S), while our parameters are chosen without any
approximation.

Table 1: Comparison between Lossy CSI-FiSh and CSI-FiSh.
Lossy CSI-FiSh CSI-FiSh

S t u |σ| |pk| Bits of security |pk|
1 74 16 2405B 256B 127 64B

3 43 14 1403B 512B 126 192B

7 30 16 983B 1024B 125 448B

15 25 13 822B 2048B 124 960B

26 − 1 17 16 564B 8.2KB 122 4KB

28 − 1 14 11 468B 32.8KB 120 16.3KB

210 − 1 12 7 404B 131KB 118 65.5KB

212 − 1 10 11 339B 524KB 116 262KB

215 − 1 8 16 274B 4MB 113 2MB
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The differences on the public key sizes between Lossy CSI-FiSh and CSI-FiSh
have a double cause:

– in Lossy CSI-FiSh the starting curves E
(0)
1 , E

(0)
2 are computed by each user

and are part of the public key, while in CSI-FiSh the starting curve E0 is
part of the public parameters of the scheme;

– for each coordinate ai of the private key, with i ∈ [S], Algorithm 1 computes
two curves that will become part of the public key, while in CSI-FiSh only
gai ? E0 is appended to the public key.

Recalling that each curve in E``p(O, π) can be uniquely represented by an ele-
ment of Fp, with p ' 2512, for a given S the size of a CSI-FiSh’s public key is
S · 512 while the size of a public key produced with Lossy CSI-FiSh has length
equal to (S + 2) · 512, with the increment given by the extra term more visible
for small values of S.

Quantum setting. The best known quantum algorithm for the GAIP prob-
lem is Kuperberg’s algorithm for the hidden shift problem [28, 29], which has a
subexponential complexity. The concrete security estimates, however, are still an
active area of research [5,7,34]. In the following we will consider 56 bits of quan-
tum security as a conservative choice, and 64 bits as a more optimistic choice for
the D-CSIDH problem. Consequently, we consider quantum adversaries running
in time at most 256 in the conservative variant, and 264 in the more optimist
one. Analogously, we upper bound the number of possible queries QH by 256 in
the former case, and by 264 in the latter. In both cases, the upper bound on the
security of Lossy CSI-FiSh depends quadratically in QH .

Considering the optimistic variant, the following inequality holds due to The-
orem 5.1:

Advsu-cma
A (λ)

Time(A)
≤ S · Adv

D-CSIDH
B′ (λ)

Time(B′)
+

AdvPRFD (λ)

Time(D)
+

+ 8 · (QH + 1) · 2−u ·
( 1

(2S + 1)t
·
∏
i∈[S]

N − i
N

+
(

1−
∏
i∈[S]

N − i
N

))
' S · 2−64 + 2−256 + 267−u · (2S + 1)−t,

where the approximation is validated by the same argument as in the classical
setting. We require 267−u · (2S + 1)−t to be bounded by 2−65 in order to reach
−64 +w bits of quantum security, with S = 2w − 1. Analogously, in the conser-
vative variant, we require 259−u · (2S + 1)−t to be bounded by 2−57 in order to
reach −56 + w bits of quantum security, with S = 2w − 1.

In the following Table 2 we differentiate the Conservative and Optimistic
variants, reporting the values of t for each choice of S and u, the security levels
guaranteed in the two cases, and signatures and public keys sizes. We note that
the size of the public key only depends on S, hence it achieves the same size as
in the classical setting (see Table 1).
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Table 2: Parameters and achieved quantum security level for Lossy CSI-FiSh.
Conservative variant Optimistic variant

S u |pk| t |σ| Bits of security t |σ| Bits of security

1 16 256B 64 2080B 55 74 2405B 63

3 14 512B 37 1208B 54 43 1403B 62

7 16 1024B 26 852B 53 30 983B 61

15 13 2048B 21 691B 52 25 822B 60

26 − 1 16 8.2KB 15 497B 50 17 564B 58

28 − 1 11 32.8KB 12 401B 48 14 468B 56

210 − 1 7 131KB 10 337B 46 12 404B 54

212 − 1 11 524KB 9 305B 44 10 339B 52

215 − 1 16 4MB 7 240B 41 8 274B 49

Estimated performance. The costs of key generation, signing and verifying
are dominated by the class group actions to be executed in each algorithm. For
fixed S and t, the number of actions for each of them is as follows:

– key generation (Algorithm 1) requires 2S + 2 actions, while S of them are
those also computed by the key generation algorithm of CSI-FiSh;

– both signing (Algorithm 2) and verifying (Algorithm 3) need 2t actions,
exactly twice as many as required by the corresponding algorithms of CSI-
FiSh.

As it can be seen, the key generation would be slighter slower than twice
the key generation of CSI-FiSh, while the signature generation and verification
would be twice that of CSI-FiSh. To provide a concrete benchmark, we esti-
mate the running times using the two triples (215 − 1, 7, 16) and (23 − 1, 28, 16)
reporting the values of S, t and u for two instances from [6, Table 3]. These
two parameter settings are chosen in order to achieve a small signature size and
a small sum of signature and public key size, respectively. For the first (resp.
second) triple, CSI-FiSh takes the following: 28m (resp. 400ms) for key genera-
tion, 395ms (resp. 1.48s) for signature generation, and 393 ms (resp. 1.48s) for
signature verification10. Therefore, we can estimate that for Lossy CSI-FiSh it
will take the following for the respective tuples: ∼ 56m (resp. ∼ 920 ms) for key
generation, ∼ 800ms (resp. 3s) for signature generation and verification. Here
for estimating the runtime of key generation, we simply scaled the runtime of
CSI-FiSh by a factor (2S + 2) · S−1.

Finally, we provide one potential optimization for lowering the computation
time required by the signing and verifying algorithms of Lossy CSI-FiSh. We
recall that, in order to efficiently compute the action of ga on a given curve, with
a ∈ ZN , it is necessary to find an equivalent representation of ga as a product
of small powers of the special ideals I`i (see Section 2.5). In [6], an algorithm
solving an approximate Closest Vector Problem (CVP) has been proposed to this
task. Therefore, the computation of a class group action consists of two steps:

10 Their benchmarking experiments were performed on a Dell OptiPlex 3050 machine
with Intel Core i5-7500T CPU @ 2.70 GHz.
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finding the equivalent representation and computing the isogenies corresponding
to the ideals’ powers. Here, we observe that in Lossy CSI-FiSh most of the
group actions are pairwise coupled, i.e. they use the same exponent. The result
is that the signing and verifying algorithms do not need to execute the finding-
equivalent-representation step for each of the class actions. Therefore, this may
potentially lead to more efficient algorithms depending on the exact runtime of
finding the equivalent representation. We leave it as future work to implement
and verify the validity of this observation.

6 Conclusions and Open Problems

In this work, we construct a new signature scheme based on the CSIDH-512 pa-
rameters, called Lossy CSI-FiSh. It is provably secure and tightly reduces to the
D-CSIDH (or FCMD-CSIDH) assumption. Lossy CSI-FiSh inherits most of the
efficiency of CSI-FiSh and shows that a slight modification to CSI-FiSh allows
to set the concrete parameters in a provably secure manner with minimal cost.
In particular, the signature size is as small as CSI-FiSh while the signature gen-
eration and verification are around a factor of two slower. We hope that further
research will allow to improve the efficiency. Optimisations may be specialized
for the scheme (like, for example, halving the number of approximate CVP-
problems to be solved in the key generation) or, more generally, be designed for
CSI-FiSh. Indeed, the latter would likely have an impact also on our scheme.

One of the biggest open problems is to devise a (lossy or non-lossy) identifi-
cation protocol that allows for the challenge set to be ZN rather than the small
set {−S, · · · , S}, as also mentioned in [6]. This will allow for an analogue of the
highly efficient Schnorr signature [36] based on the discrete logarithm problem.
Another challenging yet interesting open problem is to show any type of random
self-reducibility property for the D-CSIDH problem. We believe such a tech-
nique will lend hands to other tightly-secure primitives (e.g., tightly-secure key
exchange protocols) and perhaps shed light to Cramer-Shoup-like techniques [11]
in the isogeny setting.
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