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Abstract. The dual execution paradigm of Mohassel and Franklin (PKC’06) and
Huang, Katz and Evans (IEEE ’12) shows how to achieve the notion of 1-bit leak-
age security at roughly twice the cost of semi-honest security for the special case
of two-party secure computation. To date, there are no multi-party computation
(MPC) protocols that offer such a strong trade-off between security and semi-
honest performance.

Our main result is to address this shortcoming by designing 1-bit leakage proto-
cols for the multi-party setting, albeit for a special class of functions. We say that
function f (x, y) is efficiently verifiable by g if the running time of g is always
smaller than f and g(x, y, z) = 1 if and only if f (x, y) = z.

In the two-party setting, we first improve dual execution by observing that the
“second execution” can be an evaluation of g instead of f , and that by definition,
the evaluation of g is asymptotically more efficient.

Our main MPC result is to construct a 1-bit leakage protocol for such functions
from any passive protocol for f that is secure up to additive errors and any active
protocol for g. An important result by Genkin et al. (STOC ’14) shows how the
classic protocols by Goldreich et al. (STOC ’87) and Ben-Or et al. (STOC ’88)
naturally support this property, which allows to instantiate our compiler with two-
party and multi-party protocols.

A key technical result we prove is that the passive protocol for distributed gar-
bling due to Beaver et al. (STOC ’90) is in fact secure up to additive errors
against malicious adversaries, thereby, yielding another powerful instantiation of
our paradigm in the constant-round multi-party setting.

As another concrete example of instantiating our approach, we present a novel
protocol for computing perfect matching that is secure in the 1-bit leakage model
and whose communication complexity is less than the honest-but-curious imple-
mentations of textbook algorithms for perfect matching.

Keywords: Secure Computation, Semi-honest Security, Dual Execution, Greedy
Algorithms.
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1 Introduction

Current approaches for designing secure two-party (2PC) and multi-party (MPC) pro-
tocols follow a generic compiler pattern that transforms the function f into either a
Boolean circuit or a RAM program and then applies a method to securely evaluate each
gate or RAM operation in the program. This approach has been successful at evaluat-
ing many interesting functions such as the AES function [MOR03, MNPS04, BNP08,
LP12, NO09, NNOB12, KSS12, RHH14], edit distance [HEKM11], textbook RSA op-
erations [KSMB13] and graph algorithms [LHS+14, KS14].

The main result in this paper is to introduce a new method for constructing secure
computation protocols that exploits the properties of the function of interest f . Our
resulting protocols are secure in the one-bit leakage security model4 and are asymp-
totically more efficient than using generic compiler-based techniques. In particular, we
study secure computation protocols for a natural class of functions f which have ef-
ficient verifiers, i.e., given x, y, z, it is more efficient to verify f (x, y) = z than to
compute f (x, y).

Notable examples in this class include: (a) Frievald [Fre77]’s celebrated technique
verifies a matrix multiplication in time O(ℓ2) whereas the schoolbook algorithms for
matrix multiplication require O(ℓ3) operations, (b) although it takes O(E2V) or O(V3)
to compute a maxflow for a graph G = (V, E), given the flow f , one can verify
its min-cut in time O(E + V), (c) a minimum spanning tree can be verified in linear
time [Kin95], (d) after solving any linear program, slack variables can be used to verify
the optimal against the input constraints. Another interesting class includes sampling
from complex distributions via rejection sampling. Here the procedure is to sample uni-
formly and apply a predicate to the result until the sample passes. Verification of the
sample, on the other hand, requires only 1 application of the predicate, and can thus be
asymptotically faster. Moreover, in a secure computation context, the parties’ inputs are
simply their random coins. Thus, 1-bit leakage can have essentially no security impli-
cation since the adversary can easily guess. One such example is sampling from the set
of RSA moduli (product of two primes, as required for threshold RSA crypto systems).
The best methods to (securely) sample [FLOP18] require roughly O(log2(n)) attempts
to chose an O(n)-bit prime and then perform a multiplication and apply a bi-primality
test, whereas verifying takes 1 multiplication and 1 bi-primality test.

On the other hand, we remark that there are some situations where leaking even 1
but could be harmful. For instance, in case of functions with one input bit, the adver-
sary can leak the entire input of the honest party. Another example is when the secure
computation is involved with medical or financial data where the attacker can extract
a high order bit of information, such as whether an employee earns more than a cer-
tain amount of money or whether the DNA string includes a certain gene that causes a
particular disease.

In the 1-bit leakage model, where the adversary is allowed to learn at most 1-bit of
the honest party’s input, the dual execution paradigm of Mohassel and Franklin [MF06]

4 Where the security definition allows the adversary to submit an arbitrary leakage predicate
such that the honest party learns its output condition on whether the predicate is true when
applied on the parties’ inputs.
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is the most efficient black-box protocol to date, incurring twice the cost of the passive
Yao protocol. Even though protocols for full security [WRK17a, WRK17b, KRRW18]
have improved significantly over the recent past, dual execution offers much better con-
crete efficiency at low overhead without significantly compromising security [HKE12].
Security with 1-bit leakage is arguably sufficient in many cases, as the leakage legiti-
mately allowed by the ideal functionality is often more significant than the very limited
type of leakage in this model. For instance, secure computation with one bit of leakage
has been adopted by Calctopia [cal] to perform secure computation on data stored in
local private spreadsheets of the parties. In this paper, for the special class of functions
with efficient verifiers, we are able to show an overhead that is less than twice the cost
of passive protocol.

1-bit leakage for 2-party. To introduce the power of efficiently verifiable f , our first
result is a black-box two-party protocol that securely computes a function f in the
1-bit leakage model with communication complexity roughly p(| f |, κ) + p(|g|, κ) +
poly(κ) where p represents the cost of Yao’s garbled encoding of a function [Yao86],
κ is a security parameter and | f | and |g| represent the size of the circuits that compute
those functions respectively. Prior work requires 2p(| f |, κ) + poly(κ), and thus, our
methods offer improvement (up to a factor of 2) for functions with asymptotically faster
verification (e.g., matrix multiplication). Our main insight is to modify the dual execu-
tion technique introduced by Mohassel and Franklin [MF06] and refined by Huang,
Katz and Evans [HKE12] to exploit the efficient verifier. Our analysis also shows that
the secure equality test that is used at the end of both prior protocols is not necessary.
While this result is purely a concrete improvement for a special class of functions, it
introduces the insight needed for our main results in this paper. Importantly, we stress
that the verification circuit g is never more complex than f , as in the worst case it can be
instantiated with f . Our protocol takes advantage of the case when the (multiplicative)
complexity of g is smaller than f where checking is often easier than computing.

1-bit leakage beyond 2-party boolean computations via dual execution. Our main
result is to show how to extend the dual execution technique to multi-party protocols
such as [GMW87] and [BMR90]. These are the first general class of black-box proto-
cols in the multi-party setting to achieve security against 1-bit leakage where the cost
of the protocol is (1 + ϵ) times the passive counterparts. Our insight here is that while
prior work on dual execution required “one-sided security” in the analysis (where one-
sided security implies active security for one party and passive security for the other),
we can instead rely on the weaker property of additive independent errors—a useful
notion introduced by Genkin et al. in [GIP+14]. We remark that prior work on the
paradigm of dual execution explicitly applies to boolean computation via garbled cir-
cuits and only for the two-party setting.

In the multi-party setting, the recent maliciously secure protocol of Wang et al.
[WRK17b] relies on cut-and-choose mechanism and incurs Ω(s/ log |C|) overhead
for a statistical parameter s and circuit C. A crucial idea in this family of works to-
ward achieving active security is to generate authenticated triples. Our paradigm can be
used to improve their overheads (at the price of 1-bit leakage and verifiable functions)
by requiring fewer triples that are authenticated. Our computation requires (unauthen-
ticated) triples (secure up to additive attacks) for computing the function and authen-
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ticated triples for verifying the result. If we relax the black-box requirement, the work
of [KPR18] achieves malicious security using tailor-made zero-knowledge proofs, but,
still incurs a significant overhead over the passive protocol.

While the maliciously secure MPC protocols of [IPS08, IPS09, CGH+18] have con-
stant communication overhead, their computational overhead is super-constant in the
circuit size. Meanwhile, the work of [HSS17] introduces an asymptotically good pro-
tocol that achieves constant communication overhead over a passive protocol, but only
for a constant number of parties due to the restrictions imposed by the IPS compiler.
Our work (similar to the dual-execution paradigm) achieves both constant computation
and communication overheads theoretically and concretely in the most general setting,
albeit for a restricted class of functionalities, but in both honest and dishonest majority
settings.

Finally, Hazay et al. [HIV17] demonstrate a non-interactive two-party protocol with
leakage for arbitrary functions with communication overhead that is strictly greater than
1+ s/k where s and k are the statistical and computational security parameters. In con-
trast, our work can achieve overheads 1 + 1/n if verification is O(1/n) simpler than
computing (which is the case for many of our examples). Secondly, the computational
overhead of our approach is also close to 1 while the work of [HIV17] is O(logn) due
to Shamir Sharing.

The additive security of [BMR90]-style garbling. The work of [GIP+14] allows us
to instantiate our protocol with the [GMW87] protocol in the OT and OLE hybrids for
Boolean and arithmetic functionalities. However, these protocols require more than a
constant number of rounds. As a third contribution, we show that we can instantiate
our framework with the distributed garbling (BMR) protocol due to Beaver, Micali and
Rogaway [BMR90]. Specifically, a key technical lemma we prove is that the BMR pro-
tocol is secure up to additive independent errors on the internal wires of the circuit. We
remark that this is the first constant-round protocol for which such a result has been
established. Furthermore, this result is of independent interest as it can enable com-
munication efficient multi-party protocols in the full security (i.e., no leakage) setting
assuming the exitance of efficient Binary AMD circuit transformations.

Additive security of perfect matching. As a case study for practitioners of our tech-
nique, we present a protocol for the problem of computing a perfect matching in a
graph. This considers a scenario where the edges of a graph are distributed between
the participants. Secure perfect matching and its generalization maximum matching are
useful for assigned drivers to passengers in ridesharing services and more generally re-
source allocation. We show how this protocol satisfies the property that an adversary is
limited to forcing additive, input-independent errors, and thus, we can apply our tech-
nique. Our protocol is iterative and requires secure computation of smaller independent
tasks, most notably, matrix multiplication and matrix inversion for which we use Beaver
triples techniques similar to Mohossel and Zhang [MZ17]. The communication com-
plexity of our protocol is O(V2 log V) which is asymptotically more efficient than even
using passive generic MPC on the best algorithm to compute perfect matching [Har06],
which would result in communication O(Vω) where ω is the matrix-multiplication ex-
ponent (3 in the case of schoolbook algorithm). Passive generic MPC techniques ap-
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plied to other algorithms for computing matchings (e.g., flow-based algorithms) would
require ORAM datastructures and would be even less efficient than O(Vω).
Constant-overhead cryptography A fundamental goal in cryptography is to obtain
constant-overhead in computation (and consequently communication as well) over their
“insecure” analogues. The recent work of Appelbaum et al. [ADI+17] provided the first
construction of a passively secure protocol for evaluating an arithmetic circuit over a
finite field F in the setting of secure two-party computation where the computational
overhead is constant over naively computing via an insecure protocol. We are inter-
ested in a related fundamental problem of achieving constant-overhead in computation
for constructing an actively secure protocol over the best passive analogue. To frame
the question more precisely (and eliminate inefficient constructions based on stronger
primitives), we can restrict to constructions in the OT -hybrid for boolean computa-
tions(resp., OLE-hybrid for arithemtic computations). Recent works [GIP+14, HIV17]
have shown constant communication (as opposed to computation) overhead passive-
to-active compilation. However, achieving constant computation overhead has largely
remained an open problem. The dual execution framework provides the first construc-
tion of a constant computational overhead compilation boolean circuits in the two-party
setting at the price of 1-bit leakage, where the constant, in fact, is 2. Our work can be
seen as making significant progress in answering this fundamental questions, where,
at the same price of 1-bit leakage, we demonstrate a 1 + o(1) computational overhead
passive-to-active compilation for securely computing boolean and arithmetic computa-
tions in two party and multi-party settings where the computations are “easily” verifi-
able.

We now discuss our key insights for each of the above contributions.

1.1 Results in the 1-Bit Leakage Model

Brief summary of dual execution. In the dual execution technique introduced by Mo-
hassel and Franklin in [MF06], the parties run Yao’s 2-party protocol first with Alice
as the generator and Bob as the evaluator, and a second time with the roles reversed.
Thus, Alice and Bob have putative outputs from the protocol instance in which they act
as evaluator. However, if one party constructs an incorrect circuit, then the other holds
an incorrect result. To ensure correctness, Alice and Bob perform a maliciously secure
protocol to check equality of their outputs. If this check passes, they both output their
respective strings. Mohassel and Franklin further provided a definition of a k-leakage
model. Intuitively, when k = 1, the adversary can learn “1-bit” of the counter party’s
input from the equality test. (See §2.2 for a formal definition.) In a followup, Huang,
Katz and Evans [HKE12] used the same approach, providing a security proof for this
notion. They also specified a custom-designed equality test in the random oracle model
that relies on an additively homomorphic encryption scheme. Note that even if the fi-
nal equality test passes, the adversary may still learn a bit about the honest party’s input
due selective failure attacks. For example, an adversary corrupting Alice may produce a
garbled circuit that produces the correct answer if the first bit of Bob’s input is 1. Then,
in the case that Bob’s input begins with 1, the protocol execution is indistinguishable
from an honest execution, and yet, Alice concludes that Bob’s input begins with 1. This
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1 bit of leakage seems unavoidable when the adversary fully controls one of the garbled
circuits.

Our contribution. As noted above, prior work requires two copies of the garbled cir-
cuit for the function f and then run a maliciously secure equality test between outputs.5

Our first observation is that after the first execution, one of the parties has a putative an-
swer, z = f (x, y), which can be used in the next protocol execution. In particular, for
functions whose outputs can be efficiently verified in less time than it takes to compute
the output, we show that it is unnecessary to compute f again. Rather, it suffices for the
second party to run the verification algorithm g(x, y, z) instead. Despite the simplicity
of the concept, we encountered a number of subtle issues before settling on the follow-
ing high-level approach for the 2-party setting. We present a novel protocol that make
black-box usage of its underlying primitives.

In the first execution, Bob, as the evaluator, learns wire labels wz for the output z
but it is important that Bob does not have the decoding information for wz. Instead,
Alice provides a commitment to the decoding information for these wire labels. In the
second execution, Bob acts as the generator of the checking circuit and commits to
the 2 output labels for the single-bit of its output. In this circuit, Alice inputs x and
the decoding information whereas Bob inputs the wire labels wz. The checking circuit
verifies the correctness of the former, performs the decoding of wz and runs the efficient
verification g(x, y, z). The output of this circuit is a single bit denoting whether the
verification succeeded. Alice evaluates the garbled circuit and commits to the single
output wire label ṽ. Bob sends the decoding information, and if the verification passes
(i.e., the output decodes to 1), then Alice decommits to ṽ and Bob decommits to wz.

Notice that the above requires Alice to commit to decoding for wire labels wz, and
for the check circuit to decode the labels. One approach to implement our commitment
scheme is using verifiable secret-sharing (VSS), which allows the verification circuit to
be “non-cryptographic” (and in fact information theoretic) so that our overall protocol
is black-box in the underlying cryptographic primitives.6. In particular, Alice uses a
k-out-of-n VSS scheme to commit to the decoding information for these wire labels,
and Alice and Bob use OT so that Bob can recover k such shares (and thus needs 1
more share to decode). In the second execution, Alice inputs x and the n VSS decoding
shares whereas Bob inputs the wire labels wz and his k decoding shares. Finally, the
checking circuit verifies that Bob’s k shares appear in the set of Alice’s n shares.

Let us now argue correctness (omitting subtle issues that are handled in the simu-
lation argument in the proof of Theorem 3). In essence, our protocol guarantees two
properties. First, if an answer is revealed to Bob, then there must be a valid input x′ for
Alice such that the result is the computation of f (x′, y). Second, the leakage to Alice
is whether an arbitrary pre-determined predicate chosen by Alice over Bob’s input is
equal to the value of the function under specific inputs for Alice and Bob. This leakage

5 [HKE12] observed that their protocol need not achieve fully malicious security, but does sat-
isfy a notion that is stronger than honest-but-curious security.

6 One could instead use commitments for the translation table, but this would require the check
circuit to implement the cryptographic verification procedure of the decommitments. In some
circumstances AES-based commitments (or other methods) might be concretely better than
decoding the VSS.
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is morally similar to the leakage introduced in the Mohassel-Franklin dual execution
approach. As we mentioned above, selective failure attacks still apply and thus, the best
security we can guarantee against a malicious Alice is 1-bit leakage. We claim, how-
ever, a slightly stronger version of security than [HKE12], where the adversary learns
the output of the function only if the 1-bit leakage predicate evaluates to 1.7

When Bob is malicious, then Bob holds one set of wire labels that is correct as the
garbled circuit is correct. However, Bob could produce a malicious program checker.
The basic guarantee of the protocol w.r.t Alice is that the only output that can be revealed
to Alice is through the wire labels obtained by Bob in the first phase; since Alice is
honest, this is a valid output of the function under some specific inputs of Alice and Bob.
Bob can force Alice to reveal the decoding information, but with very high probability,
Alice either outputs abort (because Bob denies Alice the output), or Alice outputs the
correct output. In both cases, we can construct a simulator for Bob.

Our protocol does not need a maliciously secure equality test as per [MF06, HKE12].
While our protocol achieves less overall communication and computation, for some
very small circuits our protocol may not achieve a faster wall-clock. However, for large
functions, the factor of 2 savings in communication and computational can overcome
this penalty.

1.2 Extending Dual Execution to Other Protocols

The dual execution technique has so far only applied to Yao’s garbled circuit protocols
because Yao’s protocol offers a one-sided correctness property. Namely, the honest gar-
bler can ensure that the counter-party computes a correct output. The main result in this
paper is to answer the natural question of whether other secure computation protocols
that do not offer one-sided correctness can be efficiently transformed into ones that offer
1-bit leakage security at a cost that is much less than fully malicious security. A second
question is whether we can go beyond the two-party setting. It is not clear apriori how
1-bit leakage in the dual execution paradigm is possible in the multi-party setting where
there is not a natural notion of “running the protocol in the other direction”.

We answer these questions affirmatively for efficiently verifiable functions by show-
ing how to construct novel 1-bit leakage protocols from classic secure computation
protocols such as [GMW87] and [BGW88], extending the dual execution paradigm in
the two domains. Our technique leverages the work of Genkin et al. [GIP+14] who
shows that slight modifications of these protocols already offer security up to additive
errors. Specifically, they show that for slight variants of the passive protocols, the at-
tack space of a malicious adversary is limited to adding an input-independent value to
any wire of the circuit. Whereas Genkin et al. then refine such protocols to be fully
malicious, we present a lightweight alternative that achieves 1-bit leakage. Namely, af-
ter evaluating f modulo such additive errors, the parties perform a maliciously secure
evaluation of g(x, y, z), and determine the output based on the result of that compu-
tation. In contrast, the work of Genkin et al. [GIP+14] shows how to transform the
function to another function that is immune to additive attacks. While this work and

7 While this notion is suggested heuristically in [HKE12], we achieve it formally. This notion is
similar to the 2−s-CovIDA notion presented by Mohassel and Riva [MR13].
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follow up works [GIP+14, GIP15, GIW16] demonstrate compilers with constant over-
head for arithmetic circuits over a large field, for the case of Boolean circuits, the best
compilation due to [GIW16] incurs a polylogarithmic overhead. Moreover, the previ-
ous works have worked only for non-constant round protocols, specifically those whose
complexity is proportional to the depth of the circuit.

In this work, we make two important contributions. Our simple compiler offers
lightweight malicious protocols for efficiently verifiable f for a wide variety of proto-
cols both in the two-party and multi-party settings. The computation and communica-
tion complexities of our protocols are less than twice the cost of the passive counter-
parts (in the OT or OLE-hybrid models). Second, we provide a key technical lemma
that shows the first constant-round protocol that fits the [GIP+14] paradigm. More pre-
cisely, we show that a variant of the distributed garbling protocol (BMR) due to Beaver
et al. [BMR90] offers security up to additive errors. This result allows us to instantiate
our paradigm with the multi-party BMR protocol as well.

Unlike in our Yao-based protocol, we here require a malicious evaluation of g. It
would be preferable to use a simpler, additive error secure protocol for g, but we cur-
rently do not know how to securely combine the outputs of f and g if both have additive
errors. Nonetheless, even the malicious evaluation of g can be substantially more effi-
cient than the honest-but-curious evaluation of f . For example, when f grows as ℓ3 and
g grows as ℓ2, as soon as ℓ exceeds the security parameter κ (i.e., for moderate input
sizes), the overall communication for a malicious evaluation of g can be less than that
of f . Second, our approach extends to the multi-party setting. Examples of such func-
tions include max-flow, perfect-matching, linear program. Thus our technique offers an
advantage for an interesting class of functions. We remark that the input-independent
additive security property was crucially used when (sequentially) composing a proto-
col for f with a protocol g. Specifically, an attempt to weaken this security property
requires the simulator to precisely obtain the “attack” from the adversary.

Finally, we highlight an interesting theoretical consequence of our result regard-
ing the additive resilience of the BMR protocol. As mentioned before, for the case of
Boolean circuits, the best AMD compilation is due to [GIW16] and incurs a polylog-
arithmic overhead. If this result [GIW16] can be improved from polylogarithmic over-
head to a constant, then combined with our protocol will yield the first constant-round
multi-party protocol for Boolean computations whose communication and computation
complexity is a constant overhead over the passive counterpart, where previous proto-
cols have incurred Ω(s) overhead for a statistical parameter s.

Beyond additively secure protocols. In all our instantiations (of the second result), we
rely on an “additive security” property of the protocol implementing f . It is tempting to
ask if our framework can work for other weaker variants. It is conceivable that the only
demand one would need from the protocol for f is privacy against active adversaries,
however, to formally prove 1-bit leakage, one needs to precisely capture the attack
caused by an active adversary on the protocol in order to extract the leakage function.
In this respect, additive security is one formulation that facilitates this. We leave it as
future work to generalize this approach for other types of attacks.

On randomized functionalities. In this work, we prove our theorems for deterministic
f and g. However, the techniques extend to some cases when f and g are randomized.
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For example, Harvey’s perfect matching algorithm is a randomized algorithm and it
works in our framework because it has a unique output. We believe our framework
will generalize to randomized f and g if the algorithm admits “unique” outputs. While
we do not formalize “uniqueness” for algorithms, the reason our compilers require the
output to be unique is because the “weaker” protocol we rely on for f could allow
an active adversary to adaptively choose one of the solutions if more than one exist.
Such an adversary will not be caught in our framework as g might return accept for
all solutions and it is unclear how to simulate or how to formalize this attack via an
ideal functionality. That being said, we believe that in some cases we can extend our
framework beyond deterministic functionalities and leave it for future work.

2 Preliminaries

2.1 Verifiable Secret Sharing (VSS)

A verifiable secret sharing (VSS) [CGMA85] scheme is a two-stage secret sharing
protocol for implementing the following functionality. In the first stage, denoted by
Share(s), a special player referred to as dealer, shares a secret s among n players, in
the presence of at most t corrupted players. In the second stage, denoted by Recon,
players exchange their views of the share stage, and reconstruct the value s. We use
notation Recon(S1, . . . ,Sn) to refer to this procedure. The functionality ensures that
when the dealer is honest, before the second stage begins, the t corrupted players have
no information about the secret. Moreover, when the dealer is dishonest, at the end of
the share phase the honest players would have realized it through an accusation mecha-
nism that disqualifies the dealer. A VSS scheme can tolerate errors on malicious dealer
and players on distributing inconsistent or incorrect shares, indeed the critical prop-
erty is that even in case the dealer is dishonest but has not been disqualified, still the
second stage always reconstructs the same string among the honest players. In this pa-
per, we use a (n, t)-perfectly secure VSS scheme with a deterministic reconstruction
procedure [GIKR01].

Definition 1 (VSS Scheme) An (n + 1, t)-perfectly secure VSS scheme consists of a
pair of protocols VSS = ⟨Share, Recon⟩ that implement respectively the sharing and
reconstruction phases as follows.

Share(s). Player Pn+1 referred to as dealer runs on input a secret s and random-
ness rn+1, while any other player Pi, 1 ≤ i ≤ n, runs on input a randomness ri. During
this phase players can send (both private and broadcast) messages in multiple rounds.

Recon(S1, . . . ,Sn). Each shareholder sends its view vi of the sharing phase to each
other player, and on input the views of all players (that can include bad or empty views)
each player outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally
unbounded adversary can corrupt up to t players that can deviate from the above pro-
cedures. The following security properties hold.

– Commitment: if the dealer is dishonest then one of the following two cases hap-
pen: 1) during the sharing phase honest players disqualify the dealer, therefore they
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output a special value ⊥ and will refuse to play the reconstruction phase; 2) dur-
ing the sharing phase honest players do not disqualify the dealer, therefore such a
phase determines a unique value s∗ that belongs to the set of possible legal values
that does not include ⊥, which will be reconstructed by the honest players during
the reconstruction phase.

– Secrecy: if the dealer is honest then the adversary obtains no information about
the shared secret before running the protocol Recon.

– Correctness: if the dealer is honest throughout the protocols then each honest
player will output the shared secret s at the end of protocol Recon.

We are interested in a deterministic reconstruction procedure, therefore we adopt the
scheme of [GIKR01] that implements an (n+ 1, ⌊n/4⌋)-perfectly secure VSS scheme.

2.2 Secure Computation with 1-bit Leakage

In this section, we present a security definition that incorporates the notion of 1-bit leak-
age. For simplicity, we provide it for the two-party setting. It can easily be extended to
multiparty setting. We consider static corruptions by malicious adversaries who may
deviate from the protocol in an arbitrary manner. Our notion will follow the standard
Goldreich’s formalization of an Ideal and Real executions [Gol04] with the appropriate
weakening from [HKE12] in which the adversary is allowed to submit a leakage pred-
icate. However, our notion will be stronger than the definition in [HKE12] because the
adversary learns the output in the optimistic case. These experiments will capture the
idea of correctness and input independence: the honest party’s output still corresponds
to f (x, y) and the adversary’s input is independent of the honest party’s input.

Real Execution. A two-party protocol Π is executed by Alice and Bob. The adversary
A receives the inputs of the corrupted party and arbitrary auxiliary input z and sends
all messages on behalf of the corrupted party. The honest party follows the instructions
in Π. We define the random variable ViewΠ,A(z)(x, y, κ) to denote the entire view of
adversary A in the execution of Π where Alice holds input x, Bob holds input y and the
security parameter is 1κ . We define the random variable outΠ,A(z)(x, y, κ) to denote the
output of the honest party after the execution of the protocol. Finally, define the tuple

REALΠ,A(z)(x, y, z) ≡ (ViewΠ,A(z)(x, y, κ), outΠ,A(z)(x, y, κ))

Ideal Execution. In the ideal execution, parties Alice and Bob interact with an ideal
functionality; as before, the adversary has corrupted one of the parties, Alice holds
input x, Bob holds input y and both hold the security parameter 1κ . The adversary
receives the input of the corrupted party and has an arbitrary auxiliary input string z.
The honest party sends its input to the trusted party. The corrupted party controlled by
A may send an arbitrary input ỹ to the trusted party. Denote the pair of inputs sent to
the trusted party as (x̃, ỹ). The adversary also sends an arbitrary Boolean function g
to the trusted party. The trusted party computes the predicate g(x̃, ỹ). If the predicate
evaluates to 0, the trusted party sends “abort” to both parties. If the predicate evaluates
to 1, the trusted party evaluates f (x̃, ỹ) and and gives both values to the adversary. If
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the adversary sends the message “stop” to the trusted third party, then the honest party
is given ⊥. Otherwise, the honest party is given f (x̃, ỹ). (This models the inherent lack
of complete fairness.) The honest party outputs the message given by the trusted third
party. The adversary can output an arbitrary string of its view. We define the random
variable outA

f ,A(z)(x, y, κ) to denote the output of the adversary A and outhf ,A(z)(x, y, κ)

to denote the output of the honest party. Finally, define the tuple IDEAL f ,A(z)(x, y, κ) ≡
(outA

f ,A(z)(x, y, κ), outhf ,A(z)(x, y, κ)).

Definition 1. A protocol Π for the function f is said to securely compute f with 1-bit
leakage if for every p.p.t. adversary A, there exists a p.p.t. simulator S in the ideal
model such that{

REALΠ,A(z)(x, y, κ)
}

x,y,z∈{0,1}∗ ,κ∈N
≈c

{
IDEAL f ,S(z)(x, y, κ)

}
x,y,z∈{0,1}∗ ,κ∈N

Remark. We mention the security notion of ϵ-CovIDA introduced by Mohassel and
Riva [MR13] which implies our notion for the correct parameters. Essentially, this no-
tion requires that if a player is trying to cheat, the other players can catch it with prob-
ability 1− ϵ, but even if it is not caught (i.e., with probability ϵ) the cheater can only
learn a single bit of extra information about the other players’ inputs, and the correct-
ness of the output is still guaranteed.

Extending to multiparty protocols. Similarly to the two-party case, we define the ran-
dom variable ViewΠ,A(z),I (x1, . . . , xm, n) to denote the entire view of adversary A in
the execution of Π where party Pi holds input xi, the adversary corrupts the parties in I ,
and the security parameter is 1n. We define the random variable outΠ,A(z),I (x1, . . . , xm, n)
to denote the output of the honest party j ∈ [m]/I after the execution of the protocol.
Finally, define the tuple

REALΠ,A(z),I (x1, . . . , xm, n)

≡ (ViewΠ,A(z),I (x1, . . . , xm, n), outΠ,A(z),I (x1, . . . , xm, n))

Analogously, in the ideal world, we allow the adversary to submit a leakage function g
to the ideal functionality. We define outA

f ,A(z),I (x1, . . . , xm, n) to denote the output of

the adversary A and outhf ,A(z),I (x1, . . . , xm, n) to denote the output of the honest party.
Finally, define the tuple

IDEAL f ,A(z)(x1, . . . , xm, n)

≡ (outA
f ,A(z),I (x1, . . . , xm, n), outhf ,A(z),I (x1, . . . , xm, n))

Finally, security is defined by requiring indistinguishability of REAL and IDEAL.

Remark 1. To achieve stand-alone (full) security our proofs only rely on sequential
composition, which in turn requires the sub-protocols to only satisfy stand-alone se-
curity. Nevertheless, we note that our proofs can further achieve UC security if the
underlying sub-protocols achieve UC security.
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2.3 Garbled Circuits

Definition 2 (Garbling scheme) A garbling scheme Garb = (Grb,Enc,Eval,Dec) con-
sists of four polynomial-time algorithms that work as follows:

- (C̃, dk, sk)← Grb(1κ , C): is a probabilistic algorithm that takes as input a circuit
C with 2n input wires and n output wires and returns a garbled circuit C̃, a set of
decoding keys dk = (dk1, . . . , dkn) and a secret key sk.

- x̃ := Enc(sk, x) is a deterministic algorithm that takes an input a secret key sk,
an input x and returns an encoded input x̃. We denote this algorithm by x̃ :=
Enc(sk, x̃). In this work we consider decomposable garbled schemes. Namely, the
algorithm takes multiple input bits x = (x1, . . . , xn), runs Enc(sk, ·) on each xi
and returns the garbled inputs x̃1 through x̃n, denoted by input labels.

- ỹ := Eval(C̃, x̃): is a deterministic algorithm that takes as input a garbled circuit
C̃ and encoded inputs x̃ and returns encoded outputs ỹ.

- {⊥, yi} := Dec(dki, ỹi): is a deterministic algorithm that takes as input a decod-
ing key dki and an encoded output ỹi and returns either the failure symbol ⊥ or
an output yi. We write {⊥, y} := Dec(dk, ỹ) to denote the algorithm that takes
multiple garbled outputs ỹ = (ỹ1 . . . ỹn), runs Dec(dki, ·) on each ỹi and returns
the outputs y1 through yn.

We remark that we only require that our garbling scheme maintains the privacy property,
rather than stronger properties such as authenticity or obliviousness.

Correctness. We say that Garb is correct if for all n ∈ N, for any polynomial-size
circuit C, for all inputs x in the domain of C, for all (C̃, dk, sk) output by Grb(1κ , C),
for x̃ := Enc(sk, x) and ỹ := Eval(C̃, x̃) and for all i ∈ [n], yi := Dec(dki, ỹi), where
(y1, . . . , yn) = C(x).

Privacy. We say that a garbling scheme Garb is secure if there exists a PPT algorithm
SimGC such that for any family of polynomial-size circuits Cκ and sequence of inputs
{xκ}κ ,

{(C̃, dk, sk)← Grb(1κ , Cκ); x̃ := Enc(sk, xκ) : (C̃, x̃, dk)}κ
c≈

{y = C(xκ) : SimGC (1κ , Cκ , y)}κ .

2.4 The [BMR90] Garbling

An extension of Yao garbled circuits approach [Yao86] for any number of parties n
introduced by Beaver, Micali and Rogaway in [BMR90] leading to the first constant-
round protocol. This protocol has an offline phase in which the garbled circuit is created,
and an online phase in which the garbled circuit is evaluated. The [BMR90] garbling
technique involves garbling each gate separately using pseudorandom generators (or
pseudorandom functions) while ensuring consistency between the wires. This method
was recently improved by Lindell et al. in [LPSY15] which introduced an NC0 func-
tionality for this task, while demonstrating that the PRF values submitted by each party
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need not be checked for consistency (or computed by the functionality), as inconsis-
tency would imply an abort by at least one honest party. Moreover, an abort event is
independent of the honest parties’ inputs due to the way each gate is garbled. In more
details, the garbling functionality used in [LPSY15] is a modification of the garbling
functionality introduced in [BMR90] and is applicable for any number of parties n.
Namely, let C denote the circuit computed by the parties. Then for every wire w, party
Pi inputs to the functionality two keys ki

w,0, ki
w,1 and the PRF computations based on

these keys, as well as a masking bit share λi
w. The functionality creates the garbling for

each gate which includes four rows such that each row is combined of n ciphertexts.
We will now describe the technical details of the BMR garbling. Without loss of

generality, we assume that C is a Boolean circuit comprising of fan-in two AND and
XOR gates, a total number of W wires and G gates. Then for every AND gate g ∈ G
with input wires 1 ≤ a, b ≤ W and output wire c, the garbled row r1, r2 ∈ {0, 1} in
gate g is expressed as the concatenation of Rg,r1,r2 = {Rj

g,r1r2}n
j=1, where

Rg,j
r1r2 =

n⊕
i=1

(
PRFki

a,r1
(g, j, r1, r2)⊕ PRFki

b,r2
(g, j, r1, r2)

)
︸ ︷︷ ︸

Ciphertext Padding

⊕ kj
c,0 ⊕

(
χr1,r2︸ ︷︷ ︸

Perm. Bit

· (kj
c,1 ⊕ kj

c,0)︸ ︷︷ ︸
Wire’s ∆

)
︸ ︷︷ ︸

Plaintext

and PRF is a PRF, ki
a,0, ki

a,1 and ki
b,0, ki

b,1 are the respective input keys of party Pi,
whereas ki

c,0, ki
c,1 are its output keys. Furthermore, for every a, b and r1, r2 as above the

permutation bit χr1,r2 , that “chooses” the output key to be encrypted, is defined by

χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2))⊕ λc

As specified above, the inputs to the [LPSY15]-style functionality may be inconsis-
tent, implying an incorrect computation. We next describe their functionality for a gen-
eral circuit C with n inputs x1, . . . , xn where xi represents the value input by party Pi.
Let F = {PRFk : {0, 1}κ → {0, 1}κ}k∈{0,1}∗ ,κ∈N be a family of PRFs. Then the en-
coding procedure takes the inputs x1, . . . , xn and additional random inputs R1, . . . , Rn

where each Rj is comprised of PRF keys {kj
w,0, kj

w,1}w, masking bits shares {λj
w}w

and PRF evaluations {
F

g,j
w,0,0,Fg,j

w,0,1,Fg,j
w,1,0,Fg,j

w,1,1
}

w∈W,g∈G

that allegedly correspond to{
PRF

kj
w,0
(g, j, 0, 0),PRF

kj
w,0
(g, j, 0, 1),PRF

kj
w,1
(g, j, 1, 0),PRF

kj
w,1
(g, j, 1, 1)

}
w∈W,g∈G

The encoding procedure BMR.Encode on input ((x1, R1), ..., (xn, Rn)) outputs

(Rg,j
00 , Rg,j

01 , Rg,j
10 , Rg,j

11 )g∈G,j∈[n]

Garbled Tables

(Λw, k1
w,Λw

, . . . , kn
w,Λw

)w∈Inp

keys and masks for input wires

(λw)w∈Out

Output translation table
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where

Rg,j
r1,r2 =

( n⊕
i=1

F
g,i
a,r1,r2

)
⊕

( n⊕
i=1

F
g,i
b,r1,r2

)
⊕ Sg,j

r1,r2

Sg,j
r1,r2 = kj

c,0 ⊕ χr1,r2 · (k
j
c,1 ⊕ kj

c,0)

χr1,r2 = AND
(
λa ⊕ r1, λb ⊕ r2

)
⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2)]⊕ λc

λw =

{
λ

jw
w if w ∈ Inp // input wire

λ1
w ⊕ · · · ⊕ λn

w if w ∈W/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈W denote the input and output wires respectively for gate g ∈ G.
Inp ⊆W denotes the set of input wires to the circuit, jw ∈ [n] denotes the party whose
input flows the wire w and xw the corresponding input. Out ⊆ W denotes the set of
output wires.

The decoding procedure basically corresponds to the evaluation of the garbled cir-
cuit. More formally, the decoding procedure BMR.Decode is defined iteratively gate by
gate according to some standard (arbitrary) topological ordering of the gates. In partic-
ular, given an encoding information kj

w,Λw
for every input wire w and j ∈ [n], of some

input x, then for each gate g with input wires a and b and output wire c compute

kj
c = Rg,j

r1,r2 ⊕
n⊕

i=1

(
PRFki

a,Λa
(g, j, Λa, Λb)⊕ PRFki

b,Λb
(g, j, Λa, Λb)

)
Finally given Λw for every output wire w, compute the output carried in wire w as
Λw ⊕

(⊕n
j=1 λ

j
w

)
.

Our proof makes use of the active key terminology originated from [LP09] which
refers to a PRF key that is revealed to the adversary during the garbled circuit evaluation.
Similarly, an inactive key refers to a wire key that is not revealed to the adversary
during the evaluation. Each wire in the circuit is always associated with one active key
and one inactive key (otherwise privacy would be violated). Developing this notion, an
active path refers to the entire path visited throughout the evaluation. In the BMR-style
garbling, the active path is chosen at random based on the masking bits that hide the
actual wire value.

3 Dual Execution with Efficient Verification

In this section, we present a secure computation protocol for functions that have efficient
verification that achieves security against active adversaries with 1-bit leakage. The
protocol follows the spirit of the dual-execution [MF06]. However, we achieve greater
efficiency as we do not require to garble the same circuit twice and our protocols do not
require an extra secure equality test. Note, our technique can also be applied to functions
that do not have efficient verification: namely, the predicate g can simply recompute f
in addition to performing its other checks. In this sense, our framework subsumes prior
dual-execution techniques for achieving 1-bit leakage.
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Definition 2. We say that function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ can be verified
with predicate g, if f (xA, xB) = z⇔ g(xA, xB, z) = 1

Our protocol is described in the (FCOM,FOT)-hybrid where FCOM is the ideal com-
mitment functionality and FOT is the ideal 1-out-of-2 oblivious transfer functionality.
We require a garbling scheme Garb = (Grb,Enc,Eval,Dec) as per Definition 2 in our
protocol. Let f be an arbitrary two-party functionality that can be verified with predi-
cate g. Let Px describe the circuit that on input y computes f (x, y). Let Py,w̃,t,S describe
the circuit that on input (x, s) outputs 1 if and only if

1. t and s are consistent on the set S ⊂ [n], and
2. g(x, y, w) = 1 where w = Dec(dk, w̃) and dk is the reconstruction of s, and
3. w ̸= ⊥.

and otherwise outputs ⊥.

Theorem 3 Assuming the existence of a garbling scheme, protocol Π f
1−LEAK described

in Fig. 1 securely realizes F f
1−LEAK in the (FCOM,FOT)-hybrid with communication

complexity p(| f |) + p(|g|+ O(κ)) + poly(κ).

Remark 2. Note that when |g| = o(| f |), then our protocol achieves complexity that is
(1+ o(1))| f |, whereas prior work requires 2| f | communication. In practice, this factor
of 2 in complexity can be substantial.

Proof: We first describe simulators for Alice and Bob and then prove correctness of
simulation.

Simulating Alice. In the ideal world, the simulator SA internally simulates FCOM and
FOT for Alice.

In Phase 1, Bob does not send any message directly to Alice. Bob only provides
inputs to the FOT. The calls made to the FOT functionality are internally simulated by
SA where it collects all the sender’s message to the functionality. At the end of Phase
1, SA obtains sk, s from adversary Alice via the OT calls. Using s it reconstructs dk. It
chooses a random t subset S of [n] and sets t = {si}i∈S.

In Phase 2, recall that Bob garbles the circuit Py,w̃,t,S where y is Bob’s input, t is
the set of shares of dk obtained by Bob on set S, and w̃ is the output of the garbled
circuit evaluation in Phase 1. It first obtains Alice’s input x, s′ from its message to the
FOT functionality in the second step of Phase 2. In the third message, the simulator has
to send a garbling to Alice. If s′ fails to agree with s on the set of indices S or does
not reconstruct to dk, then SA generates a Garbled Circuit that outputs 0 on all inputs.
Otherwise, SA computes the leakage function gA as follows:
Function gA: Input y, Parameters : C̃, dk, sk, x.

– Compute ỹ := Enc(sk, y), evaluate w̃ := Eval(C̃, ỹ) and obtain w = Dec(dk, w̃).
– Then compute g(x, y, w) and output the result.
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Protocol Π f
1−LEAK.

Phase 1:
1. Alice with input x, computes (C̃, dk, sk)← Grb(1κ , Cx).
2. Alice and Bob engage in n parallel executions of the FOT-functionality where Alice

sends (k0
i , k1

i ) to FOT in the ith parallel instance and Bob sends yi where
sk = (k0

1, k1
1, . . . , k0

n, k1
n) and Bob’s inputs is y = y1 · · · yn. Let ỹ be the concatenation

of the outputs received from the n oblivious-transfer executions.
3. Next, Alice sends C̃ to Bob. Bob evaluates the garbled circuit by computing

w̃ := Eval(C̃, ỹ).
4. Alice encodes dk into s = (s1, . . . , sn) using a t-out-of-n VSS scheme. Then Alice

and Bob engage in a k-out-of-n oblivious transfer, where Bob as the receiver picks k
indices of n, say set, S ⊂ [n] and the sender uses the VSS shares as its input. Let
t = {si}i∈S the set of shares received by Bob.

5. Bob then commits to w̃ using FCOM.
Phase 2:

1. Bob then computes garbling (P̃, dkP, skP)← Grb(1κ , Py,w̃,t).

2. Alice and Bob engage in n parallel executions of FOT where Bob sends (k̃0
i , k̃1

i ) to FOT

in the ith parallel instance and Alice sends the ith bit of (x, s) where
skP = (k̃0

1, k̃1
1, . . . , k̃0

m, k̃1
m). Let x̃ be the concatenation of the outputs received from

the m oblivious-transfer executions.
3. Next, Bob sends P̃ to Alice. Alice evaluates the garbled circuit by computing

ṽ := Eval(P̃, ỹ).
4. Alice commits to ṽ using FCOM.
5. Bob sends dkP to Alice. Using dkP, Alice computes the answer v← Dec(dkP, ṽ).
6. If v ̸= 1, Alice aborts. Otherwise it decommits ṽ and sends (s1, . . . , sn) to Bob.
7. If t is not consistent with s, then Bob aborts. Otherwise it reconstructs dk from s and

computes w← Dec(dk, w̃). Then it decommits its commitment to w̃ from Step 5,
Phase 1 to Alice.

8. Alice computes w from w̃ and both parties output w.

Fig. 1. Π f
1−LEAK: A 1-LEAK protocol for f

The simulator submits this leakage function gA along with Alice’s input x. Recall
that the ideal functionality w.r.t Alice will return f (x, y) if and only if g(y) = 1. If
g(y) = 1 and the simulator obtains w = f (x, y) then it will simulate a garbled circuit
that outputs 1.

If Alice fails to send the result of the evaluation or sends inconsistent shares of
dk, the simulator does not allow the output to be delivered to Bob. Otherwise, it com-
pletes the execution with Alice and outputs its view by first computing w̃ such that
w = Dec(dk, w̃) where w was received from the ideal functionality and faking the
decommitment to w̃ in the end of Phase 2. If the protocol completes, then the Simulator
lets the output to be delivered to Bob.
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Correctness of simulation: It follows from the description of the simulator SA that
the only messages that the simulator fakes in the ideal world include the garbled circuit
Bob generates in Phase 2 and the decommitment to w̃ in step 7. Indistinguishability
will essentially follow from the fact that the simulator uses the correct output for the
simulated garbled circuit in Phase 2 and the security of the garbling scheme.

More precisely, we consider an intermediate hybrid H and a simulator S1 that re-
ceives Bob’s input y. The simulation proceeds identically to the real world in Phase 1
with the exception that all the FOT and FCOM calls are simulated by S1 where it ob-
tains all the messages between Alice and these functionalities. In the second phase, the
garbled circuit is constructed according to the real simulator S where g is computed
locally by S1 as it has Bob’s input. If in the computation by g, the value obtained for w̃
is inconsistent with what was decoded by Bob in Phase 1, then the simulator aborts.

Hybrid H1. Indistinguishability of H1 from the real world can be reduced to the security
of the garbling scheme if we show that (1) the probability that the simulator aborts is
negligible, and (2) the output used by the simulator S1 to simulate the garbled circuit in
the Phase 2 is indistinguishable distributed to the output obtained by Alice in the real
world while evaluating the garbled circuit. There are two cases:

Case 1: Output is 0 because s′ is inconsistent with t: The probability that this event
occurs is identical in the real and simulation (an in particular in this hybrid experi-
ment).

Case 2: s′ is consistent with t: By a standard analysis, we can claim that except with
negligible probability s′ is reconstructed correctly to dk in evaluation of program
garbled program P in the real world, where dk is the reconstruction of s. Next,
we observe that the first step in the computation of gA proceeds identically to the
actions of Bob in Phase 1. Therefore, the w̃ obtained in the computation by gA will
be indistinguishable distributed to w̃ seen in the protocol in Phase 1 in this hybrid.
Conditioned on this, the second step of the computation of gA follows identical to
the evaluation of P because the w obtained by computing Dec(dk, w̃) will result
in the same value and the other values x and y are the same by construction.

This means that, except with negligible probability, the output of g conditioned on s′
being consistent with t is identical to the evaluation of the program P in the real world.
Therefore, we can conclude the view of the adversary in the real world and H1 are
computationally indistinguishable.

Next, we compare H1 and the ideal world. The only difference between these two
experiments is in Step 7 of Phase 2 where the message w̃ is decommitted to by Bob to
Alice. In H1 this is done according to the real world and in the ideal world, S computes
w̃ from dk and w. To argue indistinguishability, we first remark that conditioned on
s′ being consistent with t, then except with negligible probability, if gA returns a 1,
it holds that the value obtained by Bob in the first Phase must have been w̃ and that
f (x, y) = w by the correctness of the function g. This means when s′ is consistent
with t the simulation is identically distributed and the output received by Bob in the
ideal world is correct. On the other hand, when s′ is inconsistent with t, the view of
Alice in H1 and the ideal world are identically distributed. This concludes the proof of
indistinguishability and the correctness of the simulation.
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Simulating Bob. To simulate a malicious Bob in Phase 1, SB obtains Bob’s input y from
the FOT calls. Next, it samples wire labels w̃ and creates a simulated garbled circuit that
evaluates to set of wire labels w̃. Next Bob tries to retrieve a subset of the VSS shares
of dk. Let S be the set of indices. SB creates t shares t and provides that as the output
to Bob in Step 4. Finally, it collects the message committed to by Bob in the last step of
Phase 1.

In Phase 2, the simulator obtains skP, dkP from Bob and the garbling P̃. It con-
structs the following leakage function gB.
Function gB: Input x, Parameters : P̃, dkP, skP, y, dk.

– Compute w = f (x, y) and extends the shares t to set of shares s = (s1, . . . , sn)
such that s agrees with t on set S and s reconstructs to dk such that Dec(dk, w̃) =
w.

– Compute x̃ := Enc(skP, (x, s)), evaluate ṽ := Eval(P̃, x̃) and obtain v = Dec(dkP, ṽ)
and return v as the result.

SB submits the leakage function to the ideal functionality. If the result is 0, then SB

makes Alice abort. If the result of the leakage function is 1, it obtains w = f (x, y) from
the ideal functionality. Alice sends ṽ to Bob such that 1 = Dec(dkP, ṽ) (computed
using dkP) and set of shares (s1, . . . , sn) such that w = Dec(dk, w̃) and (s1, . . . , sn)
reconstructs to dk and agrees with t on the set S.
Correctness of simulation: Briefly, we follow a similar approach as with the simulation
of Alice. In other words, we argue that the leakage function gB mimics the evaluation
by Alice in Phase 2 on the right inputs. We consider intermediate hybrid experiments
to argue indistinguishability.

Hybrid H1: In this hybrid, we consider a simulator that receives Alice’s input. The
hybrid experiment proceeds identically to the real world with the exception that the
simulator picks a translation table dk computes w̃ such that w = Dec(dk, w̃) where
w = f (x, y). Recall that the simulator can extract y from Bob in Step 2 from the OT
call. Next, it simulates a garbled circuit on behalf of Alice such that the evaluation
by Bob results in w̃. The rest of the protocol follows identically to the real world.
Indistinguishability of H1 and the real world follows from the simulation of the garbling
scheme.

Hybrid H2: In this hybrid, we consider a simulator that only chooses w̃ to create a
simulated garbled circuit. Then it samples only VSS shares received by Bob. Namely,
it simulates t shares for the indexes received by Bob. Then it follows the algorithm gB

and extends the shares t to set of shares s = (s1, . . . , sn) such that s agrees with t on
set S and s reconstructs to dk such that Dec(dk, w̃) = w. The rest of the execution
proceeds identically to H1. Indistinguishability of H2 and H1 follows from the perfect
security of the VSS scheme and the fact the distribution of dk is identically distributed
in H1 and H2 conditioned on the event Dec(dk, w̃) = w.

Finally, we argue that Hybrid H2 and the real simulation are identically distributed
as the computation performed by gB follows exactly the simulation in H2. This com-
pletes the security proof.
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4 Additively Secure Protocols with Program Checkers

In this section, we show how to obtain security with one-bit leakage against malicious
adversaries for a wide class of functionalities both in the two-party and the multi-party
settings. On a high-level, we combine (1) an additively secure protocol for f , that is, a
protocol that is secure against active adversaries up to additive attacks (cf. Definition
7) and, (2) a protocol for the verification algorithm g that is secure against malicious
adversaries. We can rely on any malicious protocol for g.

To instantiate the additively secure protocol, we rely on a core lemma proving by
Genkin et al. in [GIP+14], a work which introduced the notion of additively secure
circuits. This lemma considers the malicious security of classic passively secure proto-
cols, such as [GMW87, Bea91, BGW88], when executed in the presence of malicious
adversaries. Informally speaking, Genkin et al. showed that for most classic honest-but-
curious secure computation protocols for circuit evaluation, the effect of any active ad-
versary corresponds precisely to an additive attack on the original circuit’s wires where
the additive attack is independent of the honest party’s inputs. In particular, such pro-
tocols provide a mechanism to simulate adversaries where in addition to extracting an
input from the adversary also extracts an additive attack to be supplied to the ideal func-
tionality. Genkin et al. showed that slight variations of the passively secure protocols
by Goldreich, Micali and Wigderson [GMW87] (Construction 5.8 [GIP+14]), Ben-Or,
Goldwasser and Wigderson [BGW88] (Construction 5.5 [GIP+14]) and several others,
are secure up to additive attacks.

Our contributions in this section are two fold:

1. In Section 4.2, we show that the distributed garbling protocol of Beaver et al.
[BMR90] is in fact additively secure when the “offline” part of the protocol is
executed using any additively secure protocol. This is the first constant-round pro-
tocol that has shown to be additively secure in the OT-hybrid. All previous works
[GIP+14, GIP15, GIW16] considered protocols whose round complexity is pro-
portional to the depth of the circuit or worked in the OLE-hybrid for large fields.

2. In Section 4.3, we provide a compiler that takes any additively secure protocol for
f and combines it with a maliciously secure protocol for the “leaner” g to obtain
a maliciously protocol for f that is secure against malicious adversaries up to 1-
bit leakage. Roughly speaking the idea is that in an additively secure protocol,
the adversary can only affect the computation in an input-independent and private
manner. Therefore, a checking step can prevent an incorrect answer from being
revealed.

4.1 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from [GIP+14,
GIW16]. We note that in this work we work with binary fields F2.

Definition 4 (AMD code [CDF+08]) An (n, k, ε)-AMD code is a pair of circuits (Encode,
Decode) where Encode : Fn → Fk is randomized and Decode : Fk → Fn+1 is deter-
ministic such that the following properties hold:
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– Perfect completeness. For all x ∈ Fn,

Pr[Decode(Encode(x)) = (0, x)] = 1.

– Additive robustness. For any a ∈ Fk, a ̸= 0, and for any x ∈ Fn it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.

Definition 5 (Additive attack) An additive attack A on a circuit C is a fixed vector of
field elements which is independent from the inputs and internal values of C. A contains
an entry for every wire of C, and has the following effect on the evaluation of the circuit.
For every wire ω connecting gates a and b in C, the entry of A that corresponds to ω
is added to the output of a, and the computation of the gate b uses the derived value.
Similarly, for every output gate o, the entry of A that corresponds to the wire in the
output of o is added to the value of this output.

Definition 6 (Additively corruptible version of a circuit) Let C : FI1 × . . .×FIn →
FO1 × . . . × FOn be an n-party circuit containing W wires. We define the additively
corruptible version of C to be the n-party functionality f̃ : FI1 × . . .× FIn × FW →
FO1 × . . . × FOn that takes an additional input from the adversary which indicates
an additive error for every wire of C. For all (x, A), f̃ (x, A) outputs the result of the
additively corrupted C, denoted by CA, as specified by the additive attack A (A is the
simulator’s attack on C) when invoked on the inputs x.

Definition 7 (Additively secure implementation) Let ε > 0. We say that a random-
ized circuit Ĉ : Fn → Ft × Fk is an ε-additively-secure implementation of a function
f : Fn → Fk if the following holds.

– Completeness. For every x ∈ Fn, Pr[Ĉ(x) = f (x)] = 1.
– Additive attack security. For any additive attack A there exist ain ∈ Fn, and a

distribution Aout over Fk, such that for every x ∈ Fn,

SD(CA(x), f (x + ain) + Aout) ≤ ε

where SD denotes statistical distance between two distributions.

Towards introducing our transformations, we conclude with definition of a protocol
compiler to be a function Γ that takes as input the description of a functionality F and
parameter param and gives a protocol specification ΠF = Γ(param,F ). Furthermore,

Definition 8 Let κ be the security parameter. A protocol compiler Γ is said to be se-
cure up to additive attacks if for any functionality F , Γ(F , κ) realizes F̃ with security
against active adversaries, where F̃ is defined to be the functionality that is identi-
cal to F with the exception that it additionally receives an additive attack A from the
adversary, to be applied to each wire of the circuit.
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4.2 Additive Security of BMR Distributed Garbling

In this section we will prove that the BMR encoding is resilient to additive attacks. Re-
call that in the standard passive BMR protocol for the function f , the parties first jointly
compute garbled tables in an offline phase for the circuit C that computes f . Then in
an online phase, each party Pi reveals their masked input bits followed by the parties
revealing their input key labels corresponding to the input bits. Upon receiving the
values, the parties evaluate the garbled circuit and output the result of the evaluation.
Now, we prove that if we replace the passive protocol to compute the garbled tables
with an additively secure protocol then we obtain an additively secure protocol for the
underlying function f . More formally, let π1 = Γ(CBMR, κ) be the additively secure
protocol that computes the shares of the garbled tables in the distributed BMR garbling
functionality CBMR specified in Section 2.4 and let π2 be the protocol obtained by re-
placing the offline phase of the passive BMR protocol with π1. For example, one can
instantiate this protocol with the GMW protocol. We prove the following theorem,

Theorem 9 For an arbitrary n-party function f , let π2 be as defined above. Then for
any malicious adversary A, there exists a simulator S that can simulate A’s view in
the f̃C(x1, . . . , xn, A)-hybrid where f̃C outputs the result of the additively corrupted C
as specified by the additive attack A.

Before we proceed to the proof of Theorem 9, we illustrate an interesting application
of our theorem. One of the main applications to additive resilient circuits was compiling
secure computation protocols from passive to active security with low overhead. While
the works [GIP+14, GIP15] resolve the question for arithmetic computations over large
fields, the question remains open for Boolean computations. The work of Genkin et al.
[GIW16] provides a passive to active compilation for Boolean circuits with polylog-
arithmic overhead. However, all the protocols that have been considered in previous
work belong to the class of non-constant round protocols (protocols whose complex-
ity depends on the depth of the circuit). We are the first to demonstrate this property
for a constant-round protocol. Moreover, if optimal compilation of binary AMD cir-
cuits is achievable, then our result will imply communication optimal multi-party pro-
tocols for Boolean computations in constant-round. All previous works, incur at least
an Ω(s/log|C|) overhead of compiling passive to active in the OT-hybrid in the multi-
party setting.8

We next provide a high-level overview of the additive security against malicious
adversaries of the BMR protocol in the (non-leaky) full security setting. Consider the
BMR distributed garbling functionality CBMR that outputs shares of the garbled tables.
We need to translate an additive attack to the offline functionality to a corresponding
attack on the wires of the original circuit C. Towards this, we first recall how a garbled
row in the distributed garbling of BMR looks like. Recall that each party Pi contributes
a pair of keys (ki

w,0, ki
w,1) for every wire w and mask λi

w. The combined mask (or color
bit) of a gate is defined as λw = ⊕iλ

i
w. Then the (r1, r2)

th row for r1, r2 ∈ {0, 1} of
the garbled gate g can be expressed as follows:

8 In the two-party setting, the work of [HIV17] provides a constant overhead passive to active
compiler for garbled circuits.
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Rg,j
r1r2 =

n⊕
i=1

(
PRFki

a,r1
(g, j, r1, r2)⊕ PRFki

b,r2
(g, j, r1, r2)

)
︸ ︷︷ ︸

Ciphertext Padding

⊕ kj
c,0 ⊕

(
χr1,r2︸ ︷︷ ︸

Perm. Bit

· (kj
c,1 ⊕ kj

c,0)︸ ︷︷ ︸
Wire’s ∆

)
︸ ︷︷ ︸

Plaintext

where χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2))⊕ λc.
Next, we analyze an additive attack on the protocol computing the distributed gar-

bling. We break this into two main parts: additive errors on the PRF values and additive
errors on the plaintext part (containing the target keys). It was already shown in prior
work [HSS17] that additive errors on the PRF values cannot affect the correctness of
the computation if the plaintext is computed correctly. On a high-level, this is because
for the computation at a gate to change, the adversary will have to guess the difference
of the two keys of the honest party for the output wire. We next analyze an additive
attack on the plaintext. The formula for computing the plaintext is:(

χr1,r2 · (k
j
c,1 ⊕ kj

c,0)
)

=
[ ( ⊕

j∈[n]
λ

j
a ⊕ r1

)
︸ ︷︷ ︸

⊕ e1

·
( ⊕

j∈[n]
λ

j
b ⊕ r2

)
︸ ︷︷ ︸

⊕ e2

⊕
( ⊕

j∈[n]
λ

j
c

)
︸ ︷︷ ︸
⊕ e3

]
·
(

kj
c,1 ⊕ kj

c,0

)
︸ ︷︷ ︸

⊕ e4

.

The high-level goal here is that given an additive attack Ag
BMR on the garbling of

gate g, we need to extract a corresponding additive attack on the wires of the original
computed circuit C. We can define additive errors e1, e2, e3 and e4 and express any
generic additive attack on this part as follows:[( ⊕

j∈[n]
λ

j
a ⊕ r1 ⊕ e1

)
·
( ⊕

j∈[n]
λ

j
b ⊕ r2 ⊕ e2

)
⊕

( ⊕
j∈[n]

λ
j
c ⊕ e3

)]
·
(

kj
c,1 ⊕ kj

c,0 ⊕ e4

)
To argue that the additive error e4 cannot render an incorrect computation, we ob-

serve that, this error can, at best, mess with the key being encrypted, but cannot change
the value unless the adversary can guess the key chosen by the honest party. Therefore,
this will not cause any additive error in the computation of the circuit wires. The re-
maining errors seem to correspond directly to corresponding wires of the circuit. While
this is the basic intuition, formally arguing that given any additive attack on the compu-
tation of the distributed garbling, extracting a corresponding attack on the actual circuit
(being garbled) turns out to be subtle and technical. We now proceed to the formal proof
of security.
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Proof: We will start with a protocol that is secure up to additive attacks for real-
izing the distributed garbling functionality. For example, we can rely on the passive
[GMW87] protocol instantiated with a malicious OT protocol. Therefore, given any ac-
tive adversary that attacks this protocol, we can consider an equivalent adversary in the
CA

BMR-hybrid that provides its inputs and an attack vector for the distributed garbling
functionality.

Description of the simulator. The simulator S begins a real execution with adversary
A. First, it extracts the adversary’s inputs and an additive attack vector ABMR for func-
tionality CBMR. Next, the simulator determines the active path. The inactive rows for the
garbled tables will then be replaced with random values. To determine the active path, it
defines Λw values for all wires. For the input wires carrying honest party inputs, it will
choose them at random. For the internal wires, it will proceed in a topological ordering
of the gates, determining the Λw values for the output of the gates along this ordering.
Towards this, it picks an honest party Pj. Let g be a gate in this ordering. Inductively, on
the topological ordering, we will ensure that a Λw value has already been chosen for the
output wires of gates 1, . . . , (g− 1). Let a and b denote the input wires of gate g. Then
the simulator proceeds as follows. From the attack vector ABMR, the simulator identifies
the additive errors e1, e2, ej

3, ej
4, ej

5 such that row number (Λa, Λb) in the garbled table
for g can be written as:

n⊕
i=1

(
PRFki

a,r1
(g, j, r1, r2)⊕ PRFki

b,r2
(g, j, Λa, Λb)

)
⊕

[( ⊕
j∈[n]

λ
j
a ⊕Λa ⊕ e1

)
·
( ⊕

j∈[n]
λ

j
b ⊕Λb ⊕ e2

)
⊕

( ⊕
j∈[n]

λ
j
c ⊕ ej

3

)]
·
(

kj
c,1 ⊕ kj

c,0 ⊕ ej
4

)
⊕ kj

c,0 ⊕ ej
5

Next, it defines

Λc =
( ⊕

j∈[n]
λ

j
a ⊕Λa ⊕ e1

)
·
( ⊕

j∈[n]
λ

j
b ⊕Λb ⊕ e2

)
⊕

( ⊕
j∈[n]

λ
j
c ⊕ ej

3

)
Recall that the simulator needs to extract an additive attack vector AC on the un-

derlying circuit. The simulator includes the additive errors e1, e2, ej
3 respectively to the

wires a, b and c in this vector.
Note that the set of Λw values for all wires specifies the active rows for all gates.

Namely, the row (Λa, Λb) is the active row for gate g with input wires a, b. In simulating
the inactive rows, the simulator sets the honest party’s shares to be uniformly random.
For the active rows, the simulator first picks one key kj

c for the honest party Pj and sets
the active row as follows:

–
⊕n

i=1

(
PRFki

a
(g, j, Λa, Λb)⊕ PRFki

b
(g, j, Λa, Λb)

)
⊕ kj

c ⊕ ej
5 if Λc = 0.

–
⊕n

i=1

(
PRFki

a
(g, j, Λa, Λb)⊕ PRFki

b
(g, j, Λa, Λb)

)
⊕ kj

c ⊕e4 ⊕ ej
5 else.
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Based on this garbled table, the shares are revealed for the honest party. Finally,
for the output translation table the simulator submits the attack vector AC to the ideal
functionality and receives the output. The simulator fixes λ

j
w so that Λw ⊕ (⊕n

j=1λ
j
w)

is equal to the output received from the functionality.
The complete proof is provided in the full version.

4.3 Compiling Additively Secure Protocols

We now present a compiler that takes an additively secure protocol for F and a mali-
cious protocol for the leaner verifier functionality and produces a protocol that is secure
against active adversaries with 1-bit leakage for functionalities that have efficient veri-
fiability.

Theorem 10 Let Γ1 be a protocol compiler that is secure up to additive attacks against
static, active adversaries, Γ2 a protocol compiler that is fully secure against corrup-
tion by static, active adversaries. Then, there exists a protocol compiler Γ to securely
compute with abort a deterministic functionality F : {0, 1}n × {0, 1}n → {0, 1}m

verifiable with predicate G against static, active adversaries up to 1-bit leakage for
the same corruption model. Furthermore, the computational and communication com-
plexity of Γ(F , κ) is proportional to sum of the respective measures of Γ1(F ∗, κ) and
Γ2(G∗, κ) where |F ∗| = O(|F |) + poly(n, m, κ) and |G∗| = O(|G|) + poly(m, n, κ).

Proof: Unlike our protocol for garbled circuits from Section 3, where a protocol with
one-sided security suffices, here we require a fully-secure protocol for G. Nonetheless,
as we show in Section 5 that such a protocol can still lead to efficiency improvements
over other techniques. The functionality F ∗ is a slight variant of F , which outputs
additive shares of the output to the parties instead of the output itself. Similarly, the
functionality G∗ is a slight variant of G, that takes as input the additive shares of the
output and applies the function on the reconstructed value. Our protocol compiler pro-
ceeds in the following steps given a security parameter κ and n-party functionality F
that takes n inputs x1, . . . , xn and gives shares of the m-bit to all parties. Consider an
arbitrary functionality F verifiable with predicate G.

– Construct functionalityF ∗ that takes input xi from Pi (i ∈ [n]) and outputs (s1, . . . , sn)
where party Pi receives output si such that ∑i si = f (x1, . . . , xn).

– Let G∗ be the function that takes as input (xi, si) from party Pi (i ∈ [n]) and
computes s = ∑i si and b=G(x1, . . . , xn, s). Finally, It outputs s if and only if
b = 1.

The protocol now proceeds as follows:

1. In the first step, the parties execute protocol Π1 = Γ1(F ∗, κ) where Pi uses input
xi and receives si as the output.

2. The parties next engage in the protocol Π2 = Γ2(G∗, κ) where Alice uses (xi, si)
as its input. Their final output is their output from protocol Π2.
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We show that this protocol achieves security against active adversaries with 1-bit
leakage. For simplicity, we consider a hybrid protocol Π∗ in the (F̃ ∗,G∗)-hybrid where
F̃ ∗ is the functionality that besides the inputs for F ∗ also gets an additive attack A
from the adversary. Note that we only need to rely on a sequential composition, which
holds even in the simple stand-alone setting. The protocol proceeds in two steps. Honest
parties provide inputs to F̃ ∗ as specified in Step 1 of the above protocol, receive their
answer, and following that send their inputs to G∗ as specified in Step 2 and receive
their answers. We construct a simulator S for an arbitrary adversary A in this modified
protocol Π∗. We remark that to consider the protocol in this hybrid, we crucially rely on
the fact that both protocols admit standard security in the presence of active adversaries.
In particular, both protocols provide a mechanism to extract the corrupted parties’ inputs
(and possibly other auxiliary information).

Let A be an adversary that corrupts the set of parties I . The simulator begins an
execution and receives from the adversary the inputs set {xi}i∈I as well as an additive
attack vector A. It provides as output random values {si}i∈I . Next it receives as input
{(x∗i , s∗i )}i∈I and computes the following leakage predicate described in Figure 2.

FUNCTION gB(x)
Parameters: A, {xi, si, x∗i , s∗i }i∈I
Input: {xi}i∈[n]/I .
Output: The functionality proceeds as follows:

– Let ŷ = F̃ ∗(x1, . . . , xn, A).
– Output G(x̂1, . . . , x̂n, ŷ + ∑i∈I (s∗i − si)) where x̂i = x∗i for i ∈ I and x̂i = xi

for i ∈ [n]/I .

Fig. 2. Leakage function for A.

The simulator submits {x∗i }i∈I and gB to the ideal functionality and receives y
which it feeds internally to A. Recall that the functionality returns an answer if and
only if the leakage predicate returns 1. We remark that even if G can be realized with
a protocol that has guaranteed output delivery, the resulting protocol will only achieve
security with abort as the adversary can make the computation fail by making the first
part of the protocol output an incorrect answer.

Proof of correctness. As the leakage function simulates what happens in the real pro-
tocol and the additive sharing of the output information theoretically hides the output,
our simulation is perfect. We only need to argue that if an output is received by an hon-
est party then it corresponds to the right output. In other words, we need to argue that
ŷ = y. This follows directly from the definition of efficiently verifiable functions and
the fact that F is deterministic.
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5 Perfect Matching Protocol Secure up to Additive Attacks

A perfect matching of a graph is a matching in which every vertex of the graph is
incident to exactly one edge of the matching. Algorithms for perfect matchings are well-
studied. For instance, the classic Ford-Fulkerson algorithm for maxflow can be used to
find a matching in O(VE) for the specific case of bipartite graphs. However, when this
algorithm is transformed into a secure protocol, each execution of breadth-first requires
the use of special ORAM data structures.

In the general case, finding a perfect matching in G reduces to solving a system of
V linear equations in E variables. Applying such general methods from prior work to
construct a secure computation protocol results in a communication complexity of at
least O(VE) which for dense graphs could be O(V3). An alternative approach would
be to construct a protocol from one of the many standard algorithms for solving per-
fect matching. The textbook algorithm for perfect matching due to Edmond runs in
time O(V2E) and the Micali-Vazirani algorithm requires O(E

√
V). However, both

these algorithms require complicated input-dependent memory accesses which when
translated to a secure protocol incurs heavy communication and computational over-
head. Rabin and Vazirani [RV89] gave a randomized algorithm with runtime O(Vω+1)
where ω is the matrix multiplication exponent. Mucha and Sankowski [MS04] improve
this approach to O(Vω). In contrast, the algorithm that we present below in the matrix
multiplication hybrid model runs in local time O(Vω) where ω is the (best) matrix
multiplication exponent and requires communication O(V2 log V).

Our starting point is the work of Harvey [Har06] who showed an O(Vω) algorithm
to compute the perfect matching. Our first insight is that an oblivious algorithm can
be extracted from this work and adapted to a secure computation protocol in a hybrid
model where the parties have access to a matrix-multiplication and matrix-inverse func-
tionalities that work on shared inputs. While Harvey’s algorithm runs in time O(Vω),
our communication complexity is better because a secure computation protocol for ma-
trix multiplication requires O(n2) communication using (additively) homomorphic en-
cryption while locally computing it requires O(nω) time. Next, we show that by instan-
tiating the above functionalities using a maliciously secure protocol, the passive version
of the protocol is secure against active adversaries up to additive attacks, analogous to
[GMW87] additive security in the OT-hybrid from [GIP+14].

Finally, to obtain a protocol with 1-bit leakage, we note that it is easy to verify
a perfect matching. It suffices to ensure that each vertex appears at most once in the
matching, the size of the matching is V/2 and the edges were present in E. In fact, it
can be done in time O(V + E) but it suffices for our application that the verification be
done in O(V2). We can achieve this obliviously by scanning element by element in the
adjacency matrix of the graph and verifying the above conditions. We conclude with
the following theorem proven in the full version.

Theorem 11 For a graph G = (V, E), there exists a data-oblivious algorithm that
verifies that a putative matching M for G is perfect in time O(V2).
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