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Abstract. Anonymity is a primary ingredient for our digital life. Several
tools have been designed to address it such as, for authentication, blind
signatures, group signatures or anonymous credentials and, for confiden-
tiality, randomizable encryption or mix-nets. When it comes to complex
electronic voting schemes, random shuffling of authenticated ciphertexts
with mix-nets is the only known tool. However, it requires huge and com-
plex zero-knowledge proofs to guarantee the actual permutation of the
initial ciphertexts in a privacy-preserving way.
In this paper, we propose a new approach for proving correct shuffling
of signed ElGamal ciphertexts: the mix-servers can simply randomize
individual ballots, which means the ciphertexts, the signatures, and the
verification keys, with an additional global proof of constant size, and
the output will be publicly verifiable. The security proof is in the generic
bilinear group model. The computational complexity for the each mix-
server is linear in the number of ballots. Verification is also linear in the
number of ballots, but independent of the number of rounds of mixing.
This leads to a new highly scalable technique. Our construction makes
use of linearly-homomorphic signatures, with new features, that are of
independent interest.
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1 Introduction

A shuffle of ciphertexts is a set of ciphertexts of the same plaintexts but in
a permuted order such that it is not possible to trace back the senders after
decryption. It can be used as a building block to anonymously send messages:
if several servers perform a shuffle successively, nobody can trace the messages.
More precisely, one honest mix-server suffices to mask the order of the ciphertexts
even if all the other ones are dishonest. Moreover increasing the number of mix-
servers leads to a safer protocol but also increases its cost. The succession of
shuffles constitutes the notion of a mix-net protocol introduced by Chaum [14],
with applications to anonymous emails, anonymous routing, but also e-voting.
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1.1 State of the Art

Usually, a shuffle of ciphertexts is a permutation applied to randomized cipher-
texts. Randomization of the ciphertexts provides the privacy guarantee, but one
additionally needs to prove the permutation property. This last step requires
huge and complex zero-knowledge proofs. In the main two techniques, Furukawa
and Sako [21] make proofs of permutation matrices and Neff [31] considers poly-
nomials which remain identical with a permutation of the roots. While the lat-
ter approach produces the most efficient schemes, they need to be interactive.
Groth and Ishai [23] exploited this interactive approach and proposed the first
zero-knowledge argument for the correctness of a shuffle with sub-linear com-
munication complexity, but computational complexity is super-linear which was
then improved by Bayer and Groth [3]. As this is a public random coin inter-
active Zero-Knowledge protocol, the Fiat-Shamir heuristic [18] can be applied
to make it non-interactive in the random oracle model. However, with multiple
mixing steps, which are required if one wants to guarantee anonymity even if
some mix-servers are malicious, the final proof is linear in this number of steps,
and the verification cost becomes prohibitive.

The former approach with proof of permutation matrix is more classical,
with many candidates. Groth and Lu [24] proposed the first non-interactive zero-
knowledge (NIZK) proof of shuffle without random oracles, using Groth-Sahai
proofs with pairings [25], but under non-standard computational assumptions
that hold in the generic bilinear group model. Even with that, computations are
still very expansive because the overhead proof is linear in Nn, where n is the
number of ciphertexts and N the number of mixing rounds. In addition, they
needed a Common Reference String (CRS) linear in n. More recently, Fauzi et
al. [17] proposed a new pairing-based NIZK shuffle argument to improve the
computation for both the prover and the verifier, and improved the soundness
of the protocol. But they still had a CRS linear in the number of ciphertexts,
and the soundness holds in the generic bilinear group model.

We propose a totally new approach that handles each ciphertext in an in-
dependent way, with just a constant-size overhead in the final proof. The over-
head after each shuffle can indeed be updated to keep it constant-size. From
our knowledge, this is the most scalable solution. It relies on Groth-Sahai proofs
with pairings [25] and a new computational assumption that holds in the generic
bilinear group model. As a consequence, assumptions are quite similar to [24],
but we have a constant-size CRS and a constant-size overhead proof.

Compared to the most efficient schemes to date, namely the Fauzi et al.’s
scheme [17], our scheme is also proven in the generic bilinear group model, but
the CRS is shorter: just 8 group elements in contrast to a CRS with a number
of group elements linear in the number of ballots. Moreover, in our scheme, the
proof is constant-size, independently of the number of mixing rounds, while the
proof of Fauzi et al.’s scheme grows linearly in the number of rounds. Hence,
from 2 rounds, our scheme has a better verifier’s computation cost and for 3
rounds the proof sizes are almost the same with the two schemes. With more
rounds, our construction gets much better compared to the Fauzi et al.’s scheme,
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and the input ballots already contain signatures by their senders, which makes
it quite attractive for electronic voting.

1.2 Our Approach

In our shuffle, each ciphertext Ci (encrypted vote in the ballot, in the context
of electronic voting) is signed by its sender and the mix-server randomizes the
ciphertexts {Ci} and permutes them into the set {C ′i} in a provable way. The
goal of the proof is to show the existence of a permutation Π from {Ci} to
{C ′i} such that for every i, C ′Π(i) is a randomization of Ci. Then, the output
ciphertexts can be mixed again by another mix-server.

Our approach avoids the proof of an explicit permutation Π on all the ci-
phertexts (per mixing step) but still guarantees the appropriate properties deeply
using the linearly-homomorphic signature schemes:

– each user is associated to a signing/verification key-pair for a linearly-homo-
morphic signature scheme [8], and uses it to sign his ciphertext and a way
to randomize it. This guarantees that the mix-server will only be able to
generate new signatures on randomized ciphertexts, which are unlinkable to
the original ciphertexts, due to the new random coins. However, unchanged
verification keys would still allow linkability;

– each verification key of the users is thus also certified with a linearly-homo-
morphic signature scheme, that allows randomization too as well as adapta-
tion of the above signature on the ciphertext, and provides unlinkability.

When talking about linearly-homomorphic signature schemes, we consider sig-
natures that are malleable and that allow to sign any linear combination of the
already signed vectors [8]. In order to be able to use this property on the latter
scheme that signs the verification keys of the former scheme, it will additionally
require some homomorphic property on the keys.

However, whereas ciphertexts are signed under different keys, which excludes
combinations, the verification keys are all signed under the authority’s key. Fur-
thermore, a linearly-homomorphic signature scheme not only allows multiplica-
tion by a constant, but also linear combinations, which would allow combinations
of keys and thus, possibly, of ballots. In order to avoid such combinations, we
require a tag-based signature, that allows only linear combinations between sig-
natures using the same tag. As such signatures allow to derive a signature of any
message in the sub-vector space spanned by the initially signed messages, when
there is no tag, only one sub-vector space can be considered, whereas tags allow
to deal with multiple sub-vector space. In the latter case, one thus talks about
Linearly-Homomorphic Signature (LH-Sign), whereas the former case is named
One-Time Linearly-Homomorphic Signature (OT-LH-Sign).

In the full version [27], we provide a generic conversion from OT-LH-Sign to
LH-Sign, using Square Diffie-Hellman tuples (g, gwi , gw2

i ) for the tags. So, starting
from an efficient OT-LH-Sign, one can derive all the tools needed for our mix-net
application. However, in the body of the paper, we also provide a more efficient
LH-Sign version, and we thus focus on it in the following.
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Unforgeability of the signature schemes will essentially provide the soundness
of the proof of correct mixing: only permutations of ballots are possible. Eventu-
ally, unlinkability (a.k.a. zero-knowledge property) will be satisfied thanks to the
randomizations that are indistinguishable for various users, under some DDH-
like assumptions, and the final random permutation of all the ciphertexts. With
the above linear homomorphisms of the signatures, we can indeed guarantee that
the output C ′j is a randomization of an input Ci, and the verification keys are
unlinkable.

More precisely, the signature unforgeability will guarantee that all the ballots
in the output ballot-box come from legitimate signers: we will also have to make
sure that there is no duplicates, nor new ballots, and the same numbers of
ballots in the input ballot-box and output ballot-box for the formal proof of
permutation.

This technique of randomizing ciphertexts and verification keys, and adapt-
ing signatures, can be seen as an extension of signatures on randomizable ci-
phertexts [5] which however did not allow updates of the verification keys. This
previous approach excluded anonymity because of the invariant verification keys.
Our new approach can find more applications where anonymity and privacy are
crucial properties.

1.3 Organization

In the next section, we recall some usual assumptions in pairing-based groups,
and we introduce a new unlinkability assumption that will be one of the core
assumptions of our applications. Note that it holds in the generic bilinear group
model. In Section 3, we recall the notion of linearly-homomorphic signatures,
with a construction of a one-time linearly-homomorphic signature scheme and
its security analysis in the generic bilinear group model. Then we extend it to
handle multiple sub-vector spaces. We then apply these constructions to mix-
networks in Section 4, followed by a detailed security analysis in Section 5.
Eventually, we conclude with some applications in Section 6.

2 Computational Assumptions

In this section, we will first recall some classical computational assumptions and
introduce a new one, of independent interest, as it can find many use cases for
privacy-preserving protocols.

2.1 Classical Assumptions

All our assumptions will be in the Diffie-Hellman vein, in the pairing setting.
We will thus consider an algorithm that, on a security parameter κ, generates
param = (G1,G2,GT , p, g, g, e) ← G(κ), an asymmetric pairing setting, with
three groups G1,G2,GT of prime order p (with 2κ bit-length), g is a generator
of G1 and g is a generator of G2. In addition, the application e : G1×G2 → GT
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is a non-degenerated bilinear map, hence e(g, g) is also a generator of GT . For
the sake of clarity, in all the paper, elements of G2 will be in Fraktur font.

Definition 1 (Discrete Logarithm (DL) Assumption). In a group G of
prime order p, it states that for any generator g, given y = gx, it is computa-
tionally hard to recover x.

Definition 2 (Symmetric External Discrete Logarithm(SEDL)Assump-
tion). In groups G1 and G2 of prime order p, it states that for any generators g
and g of G1 and G2 respectively, given f = gx and f = gx, it is computationally
hard to recover x.

Definition 3 (Decisional Diffie-Hellman (DDH) Assumption). In a group
G of prime order p, it states that for any generator g, the two following distri-
butions are computationally indistinguishable:

Ddh(g) = {(g, gx, h, hx);h $← G, x, $← Zp}

D4
$(g) = {(g, gx, h, hy);h $← G, x, y, $← Zp}.

This is well-know, using an hybrid argument, or the random-self-reducibility,
that this assumption implies the Decisional Multi Diffie-Hellman (DMDH) As-
sumption, which claims the indistinguishability, for any constant n ∈ N, of the
distributions:

Dnmdh(g) = {(g, (gxi)i, h, (hxi)i);h $← G, (xi)i $← Znp}

D2n+2
$ (g) = {(g, (gxi)i, h, (hyi)i);h $← G, (xi)i, (yi)i $← Znp}.

2.2 Unlinkability Assumption

For anonymity properties, we will use some kind of credential, that can be defined
as follows for a scalar u and a basis g ∈ G1, with g ∈ G2, r, t ∈ Zp:

Cred(u, g; g, r, t) =
(
g, gt, gr, gtr+u, g, gt, gu

)
Definition 4 (Unlinkability Assumption). In groups G1 and G2 of prime
order p, for any g ∈ G1 and g ∈ G2, with the definition below, it states that the
distributions Dg,g(u, u) and Dg,g(u, v) are computationally indistinguishable, for
any u, v ∈ Zp:

Dg,g(u, v) =
{

(Cred(u, g; g, r, t),Cred(v, g; g′, r′, t′)); g
′ $← G2,

r, t, r′, t′
$← Zp

}
Intuitively, as we can write the credential as, where × stands for the element-wise
product,

Cred(u, g; g, r, t) =
((

g
g

)
,

(
g
g

)t
,

(
g
gt

)r
×
(

1
gu

)
, gu

)
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the third component is an ElGamal ciphertext of the gu, which hides it, and
makes indistinguishable another encryption gu from an encryption of gv while,
given (g, gu) and (g′, g′v), one cannot guess whether u = v, under the DDH
assumption in G2. However the pairing relation allows to check consistency:

e(grt+u, g) = e(gr, gt) · e(g, gu) = e(gr, gt) · e(g, g)u

e(gr
′t′+v, g′) = e(gr

′
, g′

t′) · e(g, g′v) = e(gr
′
, g′

t′) · e(g, g′)v

Because of the independent group elements g and g′ = gs in the two credentials,
this assumption clearly holds in the generic bilinear group model, as one would
either need to compare u = v or equivalently rt = r′t′, whereas combinations
only lead to e(g, g) to the relevant powers rt, sr′t′, as well as u and sv, for an
unknown s.

Thanks to this unlinkability assumption, and the randomizability of the
above credential, proving knowledge of u can lead to anonymous credentials.
However, our main application will be for our anonymous shuffles presented in
Section 4.

3 Linearly-Homomorphic Signatures

The notion of homomorphic signatures dates back to [29], with notions in [2],
but the linearly-homomorphic signatures, that allow to sign vector sub-spaces,
were introduced in [8], with several follow-up by Boneh and Freeman [10, 9]
and formal security definitions in [19]. In another direction, Abe et al. [1] pro-
posed the notion of structure-preserving signature, where keys, messages and
signatures all belong in the same group. Later Libert et al. [30] combined both
notions and proposed a linearly-homomorphic signature scheme, that is further-
more structure-preserving. Our work is inspired from this construction, but in
the asymmetric-pairing setting, and keys do not belong to the same group as
the message and signatures. The structure-preserving property is then relaxed
but fits our needs, as we will use two layers of linearly-homomorphic signature
schemes, with swapped groups for the keys and the messages.

3.1 Definition and Security

In this first part, we begin with the formal definition of linearly-homomorphic sig-
nature scheme, and the security requirement, the so-called unforgeability in case
of signatures. Then, we will introduce a new property for linearly-homomorphic
signature scheme: the randomizable tag. It will be the key element to obtain the
privacy in our mix-net. Our definition is inspired from [30], but with a possible
private key associated to a tag.

Definition 5 (Linearly-Homomorphic Signature Scheme (LH-Sign)). A
linearly-homomorphic signature scheme with messages in M ∈ Gn, for a cyclic
group (G,×) of prime order p, some n ∈ poly(κ), and some tag set T , consists
of the seven algorithms (Setup,Keygen,NewTag,VerifTag,Sign,DerivSign,Verif):
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Setup(1κ): Given a security parameter κ, it outputs the global parameter param,
which includes the tag space T ;

Keygen(param, n): Given a public parameter param and an integer n, it outputs
a key pair (sk, vk). We will assume that vk implicitly contains param and sk
implicitly contains vk;

NewTag(sk): Given a signing key sk, it outputs a tag τ and its associated secret
key τ̃ ;

VerifTag(vk, τ): Given a verification key vk and a tag τ , it outputs 1 if the tag
is valid and 0 otherwise;

Sign(sk, τ̃ ,M): Given a signing key, a secret key tag τ̃ and a vector-message
M = (Mi)i ∈ Gn, it outputs the signature σ under the tag τ ;

DerivSign(vk, τ, (ωi,M i, σi)`i=1): Given a public key vk, a tag τ and ` tuples of
weights ωi ∈ Zp and signed messages M i in σi, it outputs a signature σ on
the vector M =

∏`
i=1 Mωi

i under the tag τ ;
Verif(vk, τ,M , σ): Given a verification key vk, a tag τ , a vector-message M and

a signature σ, it outputs 1 if VerifTag(vk, τ) = 1 and σ is also valid relative
to vk and τ , and 0 otherwise.

The tag in DerivSign allows linear combinations of signatures under the same
tag but excludes any operation between signatures under different tags. The
latter exclusion will be formalized by the unforgeability. However, the former
property is the correctness: for any keys (sk, vk)← Keygen(param, n), for any tags
(τ, τ̃)← NewTag(sk), if σi = Sign(sk, τ̃ ,M i) are valid signatures for i = 1, . . . , `
and σ = DerivSign(vk, τ, {ωi,M i, σi}`i=1) from some scalars ωi, then both

VerifTag(vk, τ) = 1 Verif(vk, τ,M , σ) = 1.

Our definition includes, but is more relaxed than, [30] as we allow a secret key
associated to the tag, hence the NewTag algorithm: in such a case, the signer
can only sign a message on a tag he generated himself. When there is no secret
associated to the tag, actually one can consider that τ̃ = τ is enough to generate
the signature (in addition to sk). Whereas the DerivSign algorithm generates a
signature under the same tag, we do not enforce to keep the same tag in the
unforgeability notion below, this will allow our tag randomizability. However, we
expect only signatures on linear combinations of messages already signed under
a same tag, as we formalize in the following security notion.

Unforgeability. Whereas linear combinations are possible under the same tag,
other combinations (non-linear or under different tags) should not be possible.
This is the unforgeability notion (note that we talk about linear combinations
component-wise in the exponents, as we consider a multiplicative group G).
Definition 6 (Unforgeability for LH-Sign). For a LH-Sign scheme with mes-
sages in Gn, for any adversary A that, given tags and signatures on messages
(M i)i under tags (τi)i both of its choice (for Chosen-Message Attacks), out-
puts a valid tuple (vk, τ,M , σ) with τ ∈ T , there must exist (ωi)i∈Iτ′ , where
Iτ ′ is the set of messages already signed under some tag τ ′ ∈ {τi}i, such that
M =

∏
i∈Iτ′

Mωi
i with overwhelming probability.
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Again, because of our relaxed version compared to [30], we do not exclude the
adversary to be able to generate valid signatures under new tags. The linear-
homomorphism for signatures, also known as signatures on vector-spaces, re-
quires that the adversary cannot generate a valid signature on a message outside
the vector spaces spanned by the already signed messages. Tags are just a way
to keep together vectors that define vector spaces. The adversary can rename
a vector space with another tag, this is not a security issue. On the opposite,
we will exploit this feature for unlinkability with the additional randomizability
property on tags (see below).

However, as in [30], we will also consider a weaker notion of linearly-homo-
morphic signature: a one-time linearly-homomorphic signature (OT-LH-Sign),
where the set of tags is a singleton T = {ε}. Then we can drop the algorithms
NewTag and VerifTag, as well as the τ and τ̃ .

3.2 Our One-Time Linearly-Homomorphic Signature

Libert et al. [30] proposed a construction whose security relies on the Simulta-
neous Double Pairing assumption, which is implied by the linear assumption in
the symmetric case. In our use case we will need two LH-Sign schemes. While
the first one can simply be one-time and thus possibly in the standard model,
the second one needs randomizable tags and we do not know how to build it in
the standard model. Thus, we will consider a variant of Libert et al. [30] that
can only be proven in the generic bilinear group model [32, 6, 11].

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and G2
respectively. We set param = (G1,G2,GT , p, g, g, e);

Keygen(param, n): Given the public parameters param, one randomly chooses
ski = si

$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)ni=1,
and the verification key vk = (gi)ni=0 for gi = gsi and g0 = g;

Sign(sk,M = (Mi)i): Given a signing key sk = (si)i and a vector-message M =
(Mi)i ∈ Gn1 , one sets σ =

∏n
i=1 M

si
i ∈ G1;

DerivSign(vk, (ωi,M i, σi)`i=1): Given a verification key and ` tuples of weights
ωi ∈ Zp and signed messages M i in σi, it outputs σ =

∏
σωii ;

Verif(vk,M = (Mi)i, σ): Given a verification key vk, a vector-message M , and a
signature σ, one checks whether the equality e(σ, g0) =

∏n
i=1 e(Mi, gi) holds

or not.

From this description, the derivation of signatures is trivial as the signature
of the product of messages is the product of the signatures. But we also have
additional properties with the keys:

Property 7 (Message Homomorphism). Given several vector-messages with their
signatures, it is possible to generate the signature of any linear combination of
the vector-messages, applying the operation on the signatures.

When the messages are the same, one can ask for similar property on the key:
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Property 8 (Key Homomorphism). Given a vector-message with signatures un-
der several keys, it is possible to generate the signature of this vector-message
under any linear combination of the keys.

DerivSignKey(M , (ωi, vki, σi)`i=1): Given a message M and ` tuples of weights
ωi ∈ Zp and signatures σi of M under vki, it outputs a signature σ of M

under the verification key vk =
∏`
i=1 vkωii .

In our case, if a message-signature is valid for a verification key vk, then it is also
valid for the verification key vk′ = vkα, for any α, as e(σ, g0) =

∏n
i=1 e(Mi, gi)

implies e(σ, gα0 ) =
∏n
i=1 e(Mi, g

α
i ). However, for two different verification keys vk

and vk′, and signatures σ and σ′ of M :
∏n
i=1 e(Mi, g

α
i · g′i

β) =
∏n
i=1 e(Mi, gi)α ·

e(Mi, g
′
i)β = e(σ, gα0 ) · e(σ′, g′0

β), so σ′′ = σασ′
β is a valid signature of M under

vk′′ = vkαvk′β if g′0 = g0.

Property 9 (Weak Key Homomorphism). Given a vector-message with signatures
under several keys (with a specific restriction, as a common g0 in our case), it
is possible to generate the signature of this vector-message under any linear
combination of the keys.

Eventually, one needs to prove the unforgeability:

Theorem 10 (Unforgeability). Let us consider an adversary A in the generic
bilinear group model. Given valid pairs (M j , σj)j under a verification key vk
(M i’s possibly of adversary’s choice, for Chosen-Message Attacks), when A pro-
duces a new valid pair (M , σ) under the same verification key vk, there exist
(αj)j such that M =

∏
j M

αj
j .

Proof. The adversary A is given (M j = (Mj,i)i, σj)j which contains group ele-
ments in G1, as well as the verification key vk = (gk)k in G2. Note that in the
generic bilinear group model, programmability of the encoding allows to sim-
ulate the signatures for chosen messages, which provides the security against
Chosen-Message Attacks.

For any combination query, the simulator will consider the input elements as
independent variables Xj,i, Vj , and Sk to formally represent the discrete loga-
rithms ofMj,i and σi in basis g, and gk in basis g0 = g. As usual, any new element
can be seen as a multivariate polynomial in these variables, of degree maximal 2
(when there is a mix between G1 and G2 group elements). If two elements corre-
spond to the same polynomial, they are definitely equal, and the simulator will
provide the same representation. If two elements correspond to different polyno-
mials, the simulator will provide random independent representations. The view
of the adversary remains unchanged unless the actual instantiations would make
the representations equal: they would be equal with probability at most 2/p,
when the variables are set to random values. After N combination queries, we
have at most N2/2 pairs of different polynomials that might lead to a collision
for a random setting with probability less than N2/p. Excluding such collisions,
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we can thus consider the polynomial representations only, denoted ∼. Then, for
the output (M = (Mk)k, σ), one knows αk,j,i, βk,j , γi,j , δj , such that:

Mk ∼
∑
j,i

αk,j,iXj,i +
∑
j

βk,jVj σ ∼
∑
j,i

γj,iXj,i +
∑
j

δjVj .

As ((Mj,i)i, σj)j and ((Mk)k, σ), are valid input and output pairs, we have the
following relations between polynomials:

Vj =
∑
i

Xj,iSi

∑
j,i

γj,iXj,i +
∑
j

δjVj =
∑
k

∑
j,i

αk,j,iXj,i +
∑
j

βk,jVj

Sk

=
∑
k,j,i

αk,j,iXj,iSk +
∑
k,j

βk,jVjSk

Hence, the two polynomials are equal:∑
j,i

γj,iXj,i +
∑
j,i

(δj − αi,j,i)Xj,iSi =
∑
k 6=i,j,i

αk,j,iXj,iSk +
∑
k,j

βk,jVjSk

which leads, for all i, j, to γj,i = 0 and δj = αi,j,i, and for k 6= i, αk,j,i = 0 and
βk,j = 0. Hence, Mk ∼

∑
j δjXj,k and σ ∼

∑
j δjVj , which means that we have

(δj)j such that Mk =
∏
jM

δj
j,k and σ =

∏
j σ

δj
j . ut

3.3 Notations and Constraints

We recall that linear combinations are seen in the exponents. Since we will mainly
work on sub-vector spaces of dimension 2 (in a larger vector space), we will denote
σ = Sign(sk, (M ,M ′)), with the verification check Verif(vk, σ, (M ,M ′)) = 1, a
signature that allows to derive a valid σ′ for any linear combinations of M and
M ′. In general, σ can be the concatenation of σ1 = Sign(sk,M) and σ2 =
Sign(sk,M ′), but some joint random coins may be needed, and some common
elements can be merged (the tag), as it will be shown in the full instantiation.

We will also be interested in signing affine spaces: given a signature on M
and N , one wants to limit signatures on M ×Nα and 1×Nβ . This is possible
by expanding the messages with one more component: for M = (g,M) and
N = (1,N), linear combinations are of the form (gα,MαNβ). By imposing the
first component to be g, one limits to α = 1, and thus to (g,MNβ) = M ×N

β ,
while by imposing the first component to be 1, one limits to α = 0, and thus to
(1,Nβ) = N

β .

3.4 FSH Linearly-Homomorphic Signature Scheme

In [30], they proposed a full-fledged LH-Sign by adding a public tag during the
signature. In our mix-net construction, tags will be related to the identities of
the users, and so some kind of randomizability will be required for anonymity,
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which is not possible with their scheme. Instead, we will consider the scheme
proposed in [20], which is a full-fledged LH-Sign version of our previous scheme.
We can describe it as follows, using our notations:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and
G2 respectively. The set of tags is T = G1 × G2. We then define param =
(G1,G2,GT , p, g, g, e; T );

Keygen(param, n): Given the public parameters param, one randomly chooses
ski = si

$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)i,
and the verification key vk = (gi)ni=0 for gi = gsi and g0 = g;

NewTag(sk): It chooses a random scalar R $← Zp and sets τ = (τ1 = g1/R, τ2 =
g

1/R
0 ) and τ̃ = R;

VerifTag(vk, τ): Given a verification key vk = (gi)ni=0 and a tag τ = (τ1, τ2), it
checks whether e(τ1, g0) = e(g, τ2) holds or not;

Sign(sk, τ̃ ,M = (Mi)i): Given a signing key sk = (si)i and a vector-message
M = (Mi)i ∈ Gn1 , together with some secret tag τ̃ , one sets σ = (

∏
iM

si
i )τ̃ ;

DerivSign(vk, τ, (ωi,M i, σi)`i=1): Given a verification key vk, a tag τ and ` tuples
of weights ωi ∈ Zp and signed messages M i in σi, it outputs σ =

∏
σωii ;

Verif(vk, τ,M = (Mi)i, σ): Given a verification key vk = (gi)i, a vector-message
M = (Mi)i, and a signature σ under the tag τ = (τ1, τ2), one checks if the
equalities e(σ, τ2) =

∏n
i=1 e(Mi, gi) and e(τ1, g0) = e(g, τ2) hold or not.

When the secret keys for tags are all privately and randomly chosen, indepen-
dently for each signature, unforgeability has been proven in [20], under Chosen-
Message Attacks, in the generic bilinear group model. The intuition is the follow-
ing: first, under the Knowledge of Exponent Assumption [16, 26, 22], from a new
pair (τ1, τ2), on the input of either (g, g) or any other honestly generated pair
(g, g0), one can extract the common exponent 1/R in the two components. Then,
one can see σ as the signature with the secret key (Rsi)i, with the generator
g

1/R
0 , instead of g0 in the previous construction.
However, if one knows two signatures σ and σ′ on M and M ′ respectively,

under the same tag τ = (τ1, τ2) with private key τ̃ , and the same key vk, then
σασ′

β is a valid signature of MαM ′β , still under the same tag τ and the same
key vk: this is thus a LH-Sign, where one can control the families of messages
that can be combined. In addition, one can define a tag randomizable property:

Property 11 (Tag Randomizability). Given a valid tuple (vk, τ,M , σ), one can
derive a new valid tuple (vk, τ ′,M , σ′), for a tag τ ′ unlinkable to τ .

Our LH-Sign has the tag randomizability property, with the algorithm RandTag
defined by:

RandTag(vk, τ,M , σ): Given a verification key vk, a tag τ = (τ1, τ2) and a signa-
ture σ on a vector-message M = (Mi)i ∈ Gn1 , it chooses µ ∈ Z∗p and outputs
τ ′ = (τ1/µ

1 , τ
1/µ
2 ) and adapts σ′ = σµ.
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Indeed, from a signature σ on M under the tag τ = (τ1, τ2) for the key vk, σ′ =
σµ is a new signature on M for the same key vk under the tag τ ′ = (τ1/µ

1 , τ
1/µ
2 ),

perfectly unlinkable to τ , as this is a new random Diffie-Hellman tuple in basis
(g, g0) with τ̃ ′ = µτ̃ , for g0 in vk.

As already explained above, we will essentially work on sub-vector spaces
of dimension 2: we will thus denote σ = (σ1, σ2) = Sign(sk, τ̃ , (M ,M ′)), under
the tag τ = (τ1, τ2), where σ1 = Sign(sk, τ̃ ,M) and σ2 = Sign(sk, τ̃ ,M ′), for a
common private key R = τ̃ which led to τ = (τ1, τ2).

Note that in the following, the use of this LH-Sign signature scheme will
swap G1 and G2, as the messages to be signed will be the verification keys of the
previous OT-LH-Sign signature scheme, and thus in G2. Then the verification
keys of this LH-Sign scheme will be in G1.

4 Mix-Networks

A mix-net is a network of mix-servers [14] that allows to shuffle ciphertexts so
that all the input ciphertexts are in the output set, but cannot be linked together.
Whereas it is easy for a server to apply a random permutation on ciphertexts
and randomize them, it is not that easy to provide a proof of correctness that is
publicly verifiable, and compact. In this section we present our mix-net where
the proof of correctness will be implicit thanks to the properties of the (linearly-
homomorphic) signatures and two proofs of Diffie-Hellman tuples.

In a first step, we provide a high-level description of our construction to give
the intuitions of our new method. However, this high-level presentation suffers
several issues, which are then presented in the second step, while the third step
details the solutions, with the full scheme. At this point, the global proof of
mixing, after several mix-servers, is linear (and verification thus has a linear
cost) in the number of mix-servers. In the fourth and last step, we explain how
to obtain a constant-time overhead for the proof to publish, and thus for the
verification.

4.1 General Description

We first provide a high-level description of our mix-net in Figure 1. As said
above, the goal of this presentation is just for the intuition: there are still many
problems, that will be highlighted and addressed in the next sections. We need
two signature schemes:

– any OT-LH-Sign scheme (Setup,Keygen,Sign,DerivSign,Verif), with additional
DerivSignKey, that will be used to sign ElGamal ciphertexts in G1: the ci-
phertexts Ci and the signatures σi belong to G1 and are verified with the
user’ verification keys vki = (gk)k in G2;

– and any LH-Sign with randomizable tag scheme (Setup∗, Keygen∗, NewTag∗,
RandTag∗, VerifTag∗, Sign∗, DerivSign∗, Verif∗) that will be used to sign users’
verification keys vki in G2: the signatures Σi also belong to G2 and are
verified with Certification Authority’s verification key VK = (gk)k in G1.
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Each user Ui generates a pair (ski, vki)← Keygen() to sign vectors in G1. Ui first
encrypts his message Mi under an ElGamal encryption scheme, with encryption
key EK and signs it to obtain the signed-encrypted ballot (Ci, σi,1) under vki.
Obviously, some guarantees are needed.

In order to be sure that a ballot is legitimate, all the verification keys must
be certified by the system (certification authority CA) that signs vki under SK,
where (SK,VK)← Keygen∗(), into Σi. Then, anyone can verify the certified keys
(vki, Σi)i are valid under the system verification key VK. Since we want to avoid
combinations between verification keys, we use LH-Sign with randomizable tags
to sign the verification keys with a tag τi per user Ui.

Because of encryption, Mi is protected, but this is not enough as it will be
decrypted in the end. One also needs to guarantee unlinkability between the
input and output ballots to guarantee anonymity of users. As the ballot boxes
contain the ciphertexts, as well as the verification keys, the ballots must be
transformed in an unlinkable way, then they can be output in a permuted way.

To have C ′i unlinkable to Ci, C ′i must be a randomization of Ci. With an
ElGamal encryption, it is possible to randomize a ciphertext by multiplying by
an encryption of 1. Thus, anyone can compute an encryption C0 of 1, and as
we use an OT-LH-Sign scheme, from a signature σi,0 of C0 under the user’s
key, one can adapt σi,1 by using the message homomorphism (Property 7) with

CA = Certificate Authority, Ui = Useri, Sj = Mix-Serverj
Keys

CA’s keys:
{

(SK,VK) ← Keygen∗() Authority LH-Sign signing key
(EK,DK) ← EKeygen() Authority homomorphic encryption key

Ui’s keys: (ski, vki) ← Keygen() User OT-LH-Sign signing key
CA signs vki: (τ̃i, τi) ← NewTag∗(SK) Σi ← Sign∗(SK, τ̃i, vki)
Ciphertext for randomization: C0 ← Encrypt(EK, 1)
Initial ballots (for i = 1, . . . , n)

Ui generates:

{
Ci ← Encrypt(EK,Mi) User’s ballot encryption
σi,0 ← Sign(ski, C0) User’s signature on randomization
σi,1 ← Sign(ski, Ci) User’s ballot signature

BBox(0) = (Ci, σi,0, σi,1, vki, Σi, τi)i
Mix (j-th mix-server, for i = 1, . . . , n)
From BBox(j−1) = (Ci, σi,0, σi,1, vki, Σi, τi)i, Sj makes, for all i:
Randomization of the ballot:

C′i = Ci · C0
γj,i σ∗i,1 = DerivSign(vki, {(1, C0, σi,0), (γj,i, Ci, σi,1)})

Randomization of the keys:{
vk′i = (vki)αj Σ∗i = DerivSign∗(VK, τi, (αj , vki, Σi))

(VK, τ ′i , vki, Σ′i) = RandTag∗(VK, τi, vki, Σ∗i )
Adaptation of the signatures:

σ′i,0 = DerivSignKey(C0, (αj , vki, σi,0))
σ′i,1 = DerivSignKey(C′1, (αj , vki, σ∗i,1))

BBox(j) = (C′Π(i), σ
′
Π(i),0, σ

′
Π(i),1, vk′Π(i), Σ

′
Π(i), τ

′
Π(i))i

Fig. 1. High-Level Description (Insecure Scheme)
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DerivSign to obtain σ∗i,1. In the same way, vk′i and τ ′i must be randomizations
of respectively vki and τi. If vk′i = vkαi , its signature must be derived from Σi
with DerivSign∗ and τ ′i is obtained with the randomizable tag (Property 11) with
RandTag∗. Eventually, as we change the verification key, σ′i,0 and σ′i,1 must be
adapted, which is possible thanks to the weak key homomorphism (Property 9)
with DerivSignKey.

Then one generates a random permutation Π to output a new ballot-box
with permuted randomized ballots (vk′Π(i), Σ

′
Π(i), C

′
Π(i), σ

′
Π(i),0, σ

′
Π(i),1)i.

4.2 Difficulties

The above high-level scheme gives intuitions of our main approach. However, to
get the required security, we still face a few issues that will be explained below
and which motivate the full scheme described in the next section.

Expanded Vectors. From the signatures σi,0 and σi,1 with an OT-LH-Sign scheme,
anyone can compute σ = DerivSign(vki, {(α,C0, σi,0), (β,Ci, σi,1)}) for any α, β.
As explained in Section 3.3, we can impose β = 1 and the right format of C ′i.

Non-Trivial Transformation. The weak key homomorphism allows to randomize
vki into vk′i = vkαi but, with our scheme, Verif(vkαi , Ci, σi,1) is valid for any α 6= 0
if and only if Verif(vki, Ci, σi,1) is valid. This provides a link between vk′i and
vki. To solve this issue, we introduce a randomizer vk0, as for the ciphertext.
This is a special vector also signed by CA to randomize vki in a non-trivial
way: vk′i = (vki · vkδi0 )α. We will thus also have the signature Σi,0 of vk0 and
the signature Σi,1 (instead of Σi) of vki, both under the same tag τi to allow
combinations.

Legitimate Ballots. Whereas all the ballots must be signed, nothing prevents a
mix-server to delete a ballot or to add a ballot signed by a legitimate user (that
owns a valid key vki). If one first checks that the number of ballots is kept un-
changed, it is still possible that a ballot was replaced by a new legitimate ballot.
Since we will consider honest and corrupted users (and so honest and corrupted
ballots), four cases are possible: one replaces an honest or corrupted ballot by
another honest or corrupted one. Our scheme will not provide guarantees against
the replacement of a corrupted ballot by another corrupted ballot. Nonetheless,
by adding a zero-knowledge proof of Diffie-Hellman tuple between the products
of the verification keys before and after the mix, we can avoid all the other cases
involving honest users.

Multiple Servers. After the last round, one gets a proof that the output ballot-
box contains a permutation of randomized ciphertexts from the input ballot-box.
However, the last mix-server could start from the initial ballot-box instead of
the previous one, and then know the permutation. This would break anonymity,
as soon as the last mix-server is dishonest. We will ask the mix-servers to sign
their contributions to prove the multiple and independent permutations: each
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CA = Certificate Authority, Ui = Useri, Sj = Mix-Serverj
MixSetup(1κ):
Let param = (G1,G2,GT , p, g, g, e)← Setup(1κ) and param′ = {param, T = G2×G1};
Let NIZKDH-param← NIZKDH-Setup(1κ) and Sparam← SSetup(1κ);
Let (DK = d,EK = h = gd)← EKeygen(1κ) and C0 = (1, `, g, h) for ` $← G1;
It outputs Mix-param = (param′,NIZKDH-param, Sparam,EK, `).
MixKeygen(Mix-param):

CA:
{

SK= (S1, S2, S3, S4, S5) $← Z5
p, VK = (g, gS1 , gS2 , gS3 , gS4 , gS5 )

and for each user Ui, τ̃i = Ri
$← Zp, τi = (τi,1 = g1/Ri , τi,2 = g1/Ri)

vk0 = (1, 1, g0 = g, 1, 1)
Sj : {(SKj ,VKj)← SKeygen()

Ui:
{ski= (ui, vi, xi, yi) $← Z4

p, vki = (g0 = g, fi = gui0 , li = gvi0 , gi = gxi0 , hi = gyi0 )
Σi=

(
Σi,0 = gS3τ̃i , Σi,1 = (gS1

0 fS2
i lS3

i gS4
i hS5

i )τ̃i
)

MixInit(ski,Mi, vki, Σi, τi):
Ui chooses ri $← Zp and `i $← G1 and computes

Ci = (ai = gri , bi = hriMi) Ci = (g, `i, ai, bi)
σi = (σi,0 = `vigxihyi , σi,1 = gui`vii a

xi
i b

yi
i )

It outputs Bi = (Ci, `i, σi, vki, Σi, τi).
BBox(0) = (Bi)Ni=1

Mix(SKj ,BBox(j−1), (proof(k), sig(k))j−1
k=1, Πj):

From BBox(j−1) = (Ci, `i, σi, vki, Σi, τi)i, (proof(k), sig(k))j−1
k=1,

Sj chooses α $← Zp and for each ballot i, γi, δi, µi $← Zp and computes
a′i = ai · gγi b′i = bi · hγi `′i = `i · `γi σ′i,1 = σi,1 · σγii,0 · `

′
i
δi σ′i,0 = σi,0 · `δi

g′0 = gα0 f′i = fαi l′i = (li · gδi0 )α g′i = gαi h′i = hαi

Σ′i,1 = (Σi,1 ·Σi,0δi)αµi Σ′i,0 = Σαµi
i,0 τ ′i,1 = τ

1/µi
i,1 τ ′i,2 = τ

1/µi
i,2{ proof(j) = NIZKDH-Proof((g0, g

′
0,
∏

fi,
∏

f′i) and (g, h,
∏
a′i/
∏
ai,
∏
b′i/
∏
bi))

sig(j) = SSign(SKj , proof(j))
Sj outputs BBox(j) =(C′Πj(i), `

′
Πj(i), σ

′
Πj(i), vk′Πj(i), Σ

′
Πj(i), τ

′
Πj(i))i,(proof(k), sig(k))jk=1

Fig. 2. Detailed Shuffling of ElGamal Ciphertexts

mix-server j generates the Diffie-Hellman proofs from BBox(j−1) to BBox(j),
and signs them. We will then detail this solution in the next section, which will
provide a proof linear in the number of ballots and in the number of mix-servers
(because of the multiple signature). Thereafter, with specific multi-signature,
one can become independent of the number of mix-servers.

4.3 Our Scheme

With all the previous remarks and explanations, we can now provide the full
description of our scheme which is given in Figure 2.

Keys. As we will sign expanded ciphertexts of dimension 4 (see below), each user
needs a secret-verification key pair (ski, vki)← Keygen(param, 4) in Z4

p×G5
2. With
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our OT-LH-Sign, the first element of vki is common for all the users and initialized
to g0 = g. Then, one also needs a signature Σi = (Σi,0, Σi,1) with our LH-Sign
from the certification authority of the pair (vk0, vki) where vk0 = (1, 1, g0, 1, 1)
is used to make the non-trivial transformation on vki during the mixes. This
signature is signed by the authority possessing (SK,VK) ← Keygen∗(param′, 5)
in Z5

p×G6
1 with a specific tag τi per user. Eventually, each mix-server has a pair

of (standard) signature scheme (SKj ,VKj)← SKeygen() just to sign with SSign
its mixing contribution. The keys VK and (VKj)j , as well as EK = h = gd ∈ G1

and the random `
$← G1, are assumed to be known to everybody.

As we are using ciphertexts with ElGamal, the ciphertext for randomization
is C0 = (g, h), the trivial encryption of 1 = g0, with random coin equal to 1.

Initial ballots. Each user encrypts his message Mi under EK to obtain Ci =
(ai, bi). With the remarks we already made, one needs to expand Ci into Ci =
(g, `i, ai, bi) and C0 into C0 = (1, `, g, h). The addition of the first element is
due to the affine space we want in the signature σi (see Section 3.3) and the
second element is because we randomize the third position of vki with vk0 =
(1, 1, g0, 1, 1) and because the first position of vki is used for the verification but
not to sign (the last four elements of vki are used to sign). Finally, σi = (σi,0, σi,1)
is simply the OT-LH-Sign of (C0, Ci) under the signing key ski.

Mix. To make a mix, the j-th mix-server computes the randomized verification
keys vk′i = (vki · vkδi0 )α, the randomized ciphertexts C ′i = Ci · C

γi
0 and the

randomized tags τ ′i = τ
1/µi
i , and updates the signatures σ′i and Σ′i, thanks to the

properties of the signatures. The random scalar α is common to all the ballots,
but γi, δi, µi are independent random scalars for each ballot. Then, the mix-
server chooses a permutation Π and sets the j-th ballot-box BBox(j) with all
the randomized and permuted ballots (C ′Π(i), `

′
Π(i), σ

′
Π(i), vk′Π(i), Σ

′
Π(i), τ

′
Π(i))i.

As already explained, the mix-server also needs to make a proof proof(j) from
BBox(j−1) to BBox(j), to guarantee the proper relations between the products
of the verification keys and the products of the messages, and signs it in sig(j).
Finally, the output of the mix contains BBox(j) and (proof(k), sig(k))jk=1 the set
of proofs and mix-server signatures of the previous mixes until the j-th mix.

Proofs. Let us denote F =
∏

fi = g

∑
ui

0 and F′ =
∏

f′i = g′0

∑
ui the product

of the second element of the user’s verification key on all the input ballots and
output ballots. If the input and output ballot-boxes contain the same ballots
(with the same secret ui), then F′ = Fα, with g′0 = gα0 . Hence one adds a proof
of Diffie-Hellman tuple for (g0, g

′
0,F,F

′). Together with the verification that there
is the same number of ballots in the input and output of the mix, we will show
that the same (honest) users are represented in the two ballot-boxes. Since we
cannot allow multiple ballots from the same user, we have the guarantee that the
same messages from all the honest users are represented in the two ballot-boxes.

The additional proof of Diffie-Hellman tuple for (g, h,
∏
a′i/
∏
ai,
∏
b′i/
∏
bi)

will limit the exchange of ballots for corrupted users, as the products of the
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MixVerif(BBox(0),BBox(N), (proof(k), sig(k))Nk=1) :
After N mixes, the input of the verifier is:

BBox(0) = (Ci, σi,1, vki, Σi,1, τi,1)ni=1

BBox(N) = (C′i, σ′i,1, vk′i, Σ′i,1, τ ′i,1)n
′
i=1, (proof(k), sig(k))Nk=1

It outputs 1 if: n = n′, the (vki)i are all distinct
∀k, NIZKDH-Verif(proof(k))) = 1

SVerif(VKk, proof(k)), sig(k)) = 1
and ∀i, Verif(vki, Ci, σi,1) = 1 = Verif∗(VK, τi, vki, Σi,1)

Verif(vk′i, C
′
i, σ
′
i,1) = 1 = Verif∗(VK, τ ′i , vk′i, Σ′i,1)

Fig. 3. Detailed Verification of Shuffling

plaintexts must remain the same:
∏
M ′i =

∏
Mi. Since we already know these

products will be the same for honest users, this products must be the same from
corrupted users. This will limit the impact of the attack of Cortier-Smyth [15].

With these two Diffie-Hellman proofs, the output ballots are a permutation
of the input ones. We could use any non-interactive zero-knowledge proofs of
Diffie-Hellman tuples (NIZKDH-Setup,NIZKDH-Proof,NIZKDH-Verif) and any sig-
nature (SSetup,SSign,SVerif) to sign the proofs but the next section will provide
interesting choices, from the length point of view.

Verification. The complete verification process, after N mix-servers, is presented
in Figure 3. After all the mixes are done, it just requires the input ballot-box
BBox(0), the output ballot-box BBox(N), and the signed proofs (proof(k), sig(k)),
for k = 1, . . . , N without the elements that were useful for randomization only.
The verifier checks the number of input ballots is the same as the number of
output ballots, the verification keys (the fi’s) in input ballots are all distinct,
the signatures σi,1, σ′i,1, Σi,1 and Σ′i,1 are valid on individual input and output
tuples (equations recalled in the full version [27]) and all the proofs proof(k)

with the signatures sig(k) are valid with NIZKDH-Verif and SVerif respectively.
For that, we suppose that the statement is included in each zero-knowledge
proof. Thus, even if the intermediate ballot-boxes are not given to the verifier,
it is still possible to perform the verification.

4.4 Constant-Size Proof

From Figure 3, one can note that our mix-net provides a quite compact proof,
as it just requires BBox(0) and BBox(N), and the signed proofs (proof(k), sig(k)),
for k = 1, . . . , N . The size is thus linear in n and N . This is the same for the
verification complexity.

Whereas the linear complexity in n cannot be avoided, as the ballot-box
must be transferred, the part linear in N could be avoided. Indeed, each proof
proof(j) ensures the relations from the j−1-th ballot-box to the j-th ballot-box.
The global chain of proofs ensures the relations from the initial ballot-box to
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the last ballot-box. From the soundness point on view, a compact global proof
would be enough. But for privacy, one wants to be sure that multiple mix-servers
contributed, to get unlinkability as soon as one server is honest.

To avoid the dependence in N , one can use Groth-Sahai proofs [25] (see the
full version [27] for details) to combine together the proofs into a unique one as
already used in Chase et al. [13]. However, to be sure that all the mix-servers
contributed: each mix-server does as above, but also receives a partial proof
proof′(j−1) from the initial ballot-box to the j − 1-th ballot-box and, thanks to
the homomorphic properties of the Groth-Sahai proof, updates it into proof′(j),
to prove the relation from the initial ballot-box and the j-th ballot-box, as shown
in the full version [27] for the Diffie-Hellman proof between the products of the
keys (the proof is similar for the product of the ciphertexts but with G1 and G2
swapped). At the end of the mixing steps, one has the same elements as above,
plus the global proof proof′(N). All the mix-servers can now verify the proofs and
the contributions of all the servers. Only this global proof can be kept, but signed
by all the servers: using the multi-signature of Boneh-Drijvers-Neven [7], that
is recalled in the full version [27], the size of the signature msig keeps constant,
whatever the number of mix-servers. Hence, after multiple mixing steps, the size
of the mixing proof (with the input and output ballot-boxes) remains constant.

4.5 Efficiency
We consider VK and (VKj)j are long-term keys known to everybody, as well as
EK and `. However, for fair comparison, we do not consider vki as long-term
keys, and consider them as part of the input of the verifier. But we insist that
the fi’s in the input ballot-box must be all distinct.

Size of Verifier’s Input: The verifier receives:

(Ci, σi,1, vki, Σi,1, τi)ni=1 (C ′i, σ′i,1, vk′i, Σ′i,1, τ ′i)ni=1 (proof′(N)
,msig′(N))

As the first element g0 of vki is common to all the users (as well as g′0 of vk′i),
the set of all the users’ verification keys is represented by 4 × n + 1 elements
of G2. Then, all input or output ballots contains 2 × 5n elements from G1 and
2× (6n+ 1) elements from G2.

The global proof proof′(N) is just 4 elements of G1 and 4 elements of G2 and
msig one element in G2. Hence, the full verifier’s input contains: 10n+4 elements
of G1, 12n+ 6 elements of G2, whatever the number of mix-servers.

Verifier’s Computation. Using batch verification [12, 4, 28], the verifier only
needs to make 8n + 7 pairing evaluations to verify together all the signatures
σi,1, σ′i,1, Σi,1, Σ′i,1, τi, τ ′i , 6 pairing evaluations to verify proof′(N) and 2 pairing
evaluations to verify msig.

With some specific choices of the bases for the batch verification, as presented
in the full version [27], one can improve to 8n + 14 pairing evaluations for the
global verification. This has to be compared to the 4n+1 pairing evaluations that
have anyway to be performed to verify the signatures in the initial ballot-box.
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5 Security Analysis

Let us now formally prove the two security properties: the soundness means
the output ballot-box contains a permutation of randomizations of the input
ballot-box and privacy means one cannot link an input ciphertext to an output
ciphertext, as soon as one mix-server is honest.

We stress that we are in a particular case where users have private signing
keys, and ballots are signed. Unfortunately these keys allow to trace the ballots:
with ski = (ui, vi, xi, yi) and g′0, one can recover vk′i, which contradicts privacy
for this ballot. They might also allow to exchange some ballots, which contradicts
soundness for these ballots. As a consequence, we do not provide any guarantee
to corrupted users, whose keys have been given to the adversary (or even possibly
generated by the adversary), but we expect honest users to be protected:

– soundness for honest users means that all the plaintexts of the honest users
in the input ballot-box are in the output ballot-box;

– privacy for honest users means that ballots of honest users are unlinkable
from the input ballot-box to the output ballot-box.

5.1 Proof of Soundness

As just explained, we first study the soundness of our protocol, but for honest
users only, in the certified key setting, where all the users must prove the knowl-
edge of their private keys before getting their verification keys vki certified by
the Certification Authority in Σi.
Definition 12 (Soundness for Honest Users). A mix-net M is said sound
for honest users in the certified key setting, if any PPT adversary A has a neg-
ligible success probability in the following security game:

1. The challenger generates the certification keys (SK,VK) and the encryption
keys (DK,EK);

2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗;
– proves its knowledge of the secrete keys to get the certifications Σi on

vki, for i ∈ I∗;
– decides on the set I of the (honest and corrupted) users that will generate

a ballot;
– generates the ballots (Bi)i∈I∗ for the corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest users;
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and

their ballots (Bi)i∈I\I∗ . The initial ballot-box is thus defined by BBox =
(Bi)i∈I ;

4. The adversary mixes BBox in a provable way into (BBox′, proof).

The adversary wins if MixVerif(BBox,BBox′, proof) = 1 but {Decrypt∗(BBox)} 6=
{Decrypt∗(BBox′)}, where Decrypt∗ extracts the plaintexts (using the decryption
key DK), but ignores ballots of non-honest users (using the private keys of honest
users) and sets of plaintexts can have repetitions.
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One can note that this security game does not depend on the mixing steps,
but just considers the global mixing, from the input ballot-box BBox to the
output ballot-box BBox′. The proof proof contains all the elements for proving
the honest behavior. In our case, this is just the two Diffie-Hellman proofs.

Theorem 13 (Soundness for Honest Users of Our Mix-Net). Our mix-
net protocol is sound for honest users, in the certified key setting, assuming the
unforgeability against Chosen-Message Attacks of the LH-Sign and OT-LH-Sign
signature schemes and the SEDL assumption.

Proof. For proving this theorem, we will assume the verification is successful
(MixVerif(BBox, BBox′, proof) = 1) and show that for all the honest ballots, in
the input and output ballot-boxes, there is a permutation from the input ones
to the outputs ones. And we do it in two steps: first, honest keys vk′i in the
output ballot-box are permuted randomizations of the honest keys vki in the
input ballot-box; then we prove it for the plaintexts.

Permutation of Honest Keys. We first modify the security game by using the
unforgeability against Chosen-Message Attacks of the LH-Sign signature scheme:
we are given VK, and ask the Tag-oracle and the Signing-oracle to obtain Σi on
all the verification keys vki and vk0. The rest remains unchanged. Note that
because of the proof of knowledge of the private keys ski before getting vki
certified, one can also extract them. Actually, one just needs to extract ui for
all the corrupted users. Then one knows all the legitimate ui’s (for honest and
corrupted users).

Under the unforgeability of the signature scheme (Setup∗, Keygen∗, NewTag∗,
RandTag∗, VerifTag∗, Sign∗, DerivSign∗, Verif∗), for any output ballot with ver-
ification key vk′j there exists a related legitimate verification key vki such that
vk′j = vkαii × vkzi0 , for some scalars zi, and αi.

Since in our construction vki = (g0, fi, li, gi, hi) and vk0 = (1, 1, g0, 1, 1),
and vk′j = (g′0, f′j , l′j , g′j , h′j) and vk′0 = (1, 1, g′0, 1, 1) with a common g′0 for all
the keys, αi is a common scalar α: vk′j = (vki × vkδi0 )α and vk′0 = vkα0 . As a
consequence, all the keys in the output ballot-box are derived in a similar way
from legitimate keys (signed by the Certification Authority): u′j = ui remains
unchanged. However this does not means they were all in the input ballot-box:
the adversary could insert a ballot with a legitimate verification key vki, which
was not in the initial ballot-box.

The verification process also includes a Diffie-Hellman proof for the tuple
(g0, g

′
0,
∏
i fi,

∏
j f
′
j). This means that

∑
i ui are the same on the input ballots

and the output ballots. As one additionally checks the numbers of input ballots
and output ballots are the same, the adversary can just replace an input ballot
by a new one: if N is the set of new ballots and D the set of deleted ballots, the
sums must compensate:

∑
D ui =

∑
N ui.

The second game uses the SEDL assumption and the simulation-soundness
of the proof of knowledge of ski (in the certified key setting): Let us be given
a tuple (g, f = gu, g, f = gu), as input of a SEDL challenge in G2 and G1: the
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simulator will guess an honest user i∗ that will be deleted, and implicitly sets
ui∗ = u, with fi∗ , which allows it to use f = gui∗ in the signature of Ci∗ on
the first component g, while all the other scalars are chosen by the simulator
(vi∗ , xi∗ , yi∗), as well as all the other honest user’ keys, the authority signing
keys, and, for all the corrupted users, the secret element ui can be extracted
at the certification time (using the extractor from the zero-knowledge proof of
knowledge) while the zero-knowledge simulator is used for i∗, thanks to the
simulation-soundness.

If some honest user is deleted in the output ballot-box, with probability
greater than 1/n, this is i∗: as shown above,

∑
D ui =

∑
N ui, so ui∗ =

∑
N ui−∑

D\{i∗} ui, which breaks the symmetric external discrete logarithm assumption.

Permutation of Honest Ballots. The last game uses the unforgeability of the OT-
LH-Sign signature scheme under Chosen-Message Attacks: the simulator receives
one verification key vk, that will be assigned at a random honest user i∗, whereas
all the other keys are honestly generated. The simulator also generates (SK,VK)
and (DK,EK), as well as all signatures Σi and the honest ballots (with a signing
query for σi∗). Then, the adversary outputs a proven mix of the ballot-box.
We have just proven that there exists a bijection Π from I into J such that
vk′Π(i) = (vki × vkδi0 )α for some scalar δi, for all the honest users i among the
input users in I.

From the signature verification on the output tuples, C ′Π(i) is signed under
vk′Π(i) in σ′Π(i),1, for every i: e(σ′Π(i),1, g

′
0) = e(g, fαi )·e(`′Π(i), l

α
i g

αδi
0 )·e(a′Π(i), g

α
i )·

e(b′Π(i), h
α
i ), and since the same α appears in g′0 = gα0 , then for every i, we have

e(σ′Π(i), g0) = e(g, fi) · e(`′Π(i), lig
δi
0 ) · e(a′Π(i), gi) · e(b′Π(i), hi)

= e(g, fi) · e(`′Π(i), li) · e(a′Π(i), gi) · e(b′Π(i), hi) · e(`′
δi
Π(i), g0)

and so σ′Π(i)/`
′δi
Π(i) is a signature of C ′Π(i) = (g, `′Π(i), a

′
Π(i), b

′
Π(i)) under vki: un-

der the unforgeability assumption of the signature scheme, C ′Π(i∗) is necessarily
a linear combination of the already signed vectors under vki∗ , which are Ci∗ and
C0, with some coefficients u, v: a′Π(i∗) = aui∗g

v, b′Π(i∗) = bui∗h
v, and g = gu1v.

Hence, u = 1, which means that C ′Π(i∗) is a randomization of Ci∗ .
We stress that for this property to hold, each key vki must appear at most

once in the ballots, otherwise some combinations would be possible. Hence the
test that all the fi’s are distinct in the input ballot-box. ut

We stress that this proposition only guarantees permutation of ciphertexts for
honest users. There is indeed no formal guarantee for corrupted users whose
signing keys are under the control of a mix-server. The latter could indeed replace
the ciphertexts of some corrupted users, by some other ciphertexts under the
same identity or even under the identity of another corrupted user. One can
note that replacing ciphertexts (and plaintexts) even for corrupted users is not
that easy because of the additional Diffie-Hellman proof on the ciphertexts,
which implies

∏
Mi =

∏
M ′i where the first product is over all the messages Mi
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in BBox and the second product is over all the messages M ′i in BBox′. However,
this property is more for the privacy, as we will see below. As a consequence, our
result that guarantees a permutation on the honest ballots is optimal. We cannot
guarantee anything for the users that share their keys with the mix-servers.

5.2 Proof of Privacy: Unlinkability

After proving the soundness, we have to prove the anonymity (a.k.a. unlinkabil-
ity), which can also be seen as zero-knowledge property. More precisely, as for
the soundness, privacy will only be guaranteed for honest users.

Definition 14 (Privacy for Honest Users). A mix-net M is said to provide
privacy for honest users in the certified key setting, if any PPT adversary A has
a negligible advantage in guessing b in the following security game:

1. The challenger generates the certification keys (SK,VK) and the encryption
keys (DK,EK);

2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗;
– proves its knowledge of the secret keys to get the certifications Σi on vki,

for i ∈ I∗;
– decides on the corrupted mix-servers J ∗ and generates itself their keys

(VKj)j∈J ∗ ;
– decides on the set J of the (honest and corrupted) mix-servers that will

make mixes;
– decides on the set I of the (honest and corrupted) users that will generate

a ballot;
– generates the ballots (Bi)i∈I∗ for the corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest users;
3. The challenger generates the keys of the honest mix-servers (SKj ,VKj)j∈J\J ∗

the keys of the honest users (ski, vki)i∈I\I∗ and their ballots (Bi)i∈I\I∗ .

The initial ballot-box is thus defined by BBox = (Bi)i∈I . The challenger randomly
chooses a bit b $← {0, 1} and then enters into a loop for j ∈ J with the attacker:

– let I∗j−1 be the set of indices of the ballots of the corrupted users in the input
ballot-box BBox(j−1);

– if j ∈ J ∗, A builds itself the new ballot-box BBox(j) with the proof proof(j);
– if j 6∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, with

the restriction they must be identical on I∗j−1, then the challenger runs the
mixing with Πj,b, and provides the output (BBox(j), proof(j));

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if
b′ = b and 0 otherwise.

Contrarily to the soundness security game, the adversary can see the outputs of
all the mixing steps to make its decision, hence the index j for the mix-servers.
In addition, some can be honest, some can be corrupted. We will assume at least
one is honest.
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Theorem 15. Our Mix-Net protocol provides privacy for honest users, in the
certified key setting, if (at least) one mix-server is honest, under our unlinkability
assumption (see Definition 4), and the DDH assumptions in both G1 and G2.

Proof. This proof will follow a series of games (Gi)i, where we study the advan-
tage Advi of the adversary in guessing b. We start from the real security game
and conclude with a game where all the ballots are random, independently from
the permutations. Hence, the advantage will be trivially 0.

Game G0: This is the real game, where the challenger (our simulator) gen-
erates SK and VK for the certification authority signature, and randomly
chooses d $← Zp to generate the encryption public key EK = h = gd. One
also sets vk0 = (1, 1, g0 = gA, 1, 1) and C0 = EncryptEK(1) = (g, h) expanded
into C0 = (1, `, C0) with the noise parameter ` $← G1. Actually, A = 1 in the
initial step, when the user encrypts his message Mi, but since the shuffling
may happens after several other shuffling iterations, we have the successive
exponentiations to multiple α (in A) for vk0. The attacker A chooses the
set of the initial indices of the corrupted users I∗ and the set of the ini-
tial indices of the corrupted mix-servers J ∗, provides their verification keys
((vki)i∈I∗ , (VKj)j∈J ∗) together with an extractable zero-knowledge proof of
knowledge of ski.
From I and J , one generates the signing keys for the honest mix-servers
j ∈ J \J ∗, and set J to the index of the last honest mix-server. For each
i ∈ I, one chooses τi = Ri

$← Zp and sets τi = (τi,1 = g1/Ri , τi,2 = g1/Ri). For
each honest user i ∈ I\I∗, one randomly chooses ui, vi, xi, yi, ri, ρi $← Zp to
generate vki = (g0 = g, fi = gui0 , li = gvi0 , gi = gxi0 , hi = gyi0 ), and eventually
generates all the signatures Σi of (vki, vk0) under SK with respect to the tag
τi (using SK and (τ̃i)i).
For the corrupted users, the simulator directly receives the ballots (Bi =
(Ci, σi, vki, Σi, τi))i∈I∗ while for the honest users, it receives (Mi)i∈I\I∗ and
computes Ci = EncryptEK(Mi) = (ai = gri , bi = hriMi), Ci = (g, `i =
`ρi , Ci) and the signature σi of (Ci, C0) under ski. The input ballot-box is
then BBox(0) = {(Bi)i∈I} including the ballots of the honest and corrupted
users. Let I∗0 = I∗ be the set of the initial indices of the corrupted users.
The simulator randomly chooses b $← {0, 1} and now begins the loop of the
mixes: depending if the mix-server j is corrupted or not, the simulator di-
rectly receives (BBox(j), proof(j)) from the adversary or receives (Πj,0, Πj,1).
In the latter case, one first checks if Πj,0

∣∣
I∗
j−1

= Πj,1
∣∣
I∗
j−1

using the hon-
est secret keys to determine I∗j−1. Then, the simulator randomly chooses
global α $← Zp and individual γi, δi, µi $← Zp for all the users, as an honest
mix-server would do, to compute

vk′i = (g′0 = gα0 , f
′
i = fαi , l

′
i = (li · gδi0 )α, g′i = gαi , h

′
i = hαi ) = (vki · vkδi0 )α

vk′0 = (1, 1, g′0, 1, 1) = vkα0
C
′
i = (g, `′i = `i · `γi0 , a

′
i = ai · gγi0 , b

′
i = bi · hγi0 ) = Ci · C0

γi
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σ′i = (σ′i,0 = σi,0 · `′0
δi , σ′i,1 = σi,1 · σγii,0 · `

′
i
δi)

Σ′i = (Σ′i,0 = Σαµi
i,0 , Σ′i,1 = (Σi,1 ·Σδi

i,0)αµi)

τ ′i = (τ ′i,1 = τ
1/µi
i,1 , τ ′i,2 = τ

1/µi
i,2 )

and sets BBox(j) = (B′Πj,b(i))i. Eventually, the simulator computes the proof
proof(j) for (g0, g

′
0,
∏

fi,
∏

f′i) and (g, h,
∏
a′i/
∏
ai,
∏
b′i/
∏
bi), and signs it

using SKj .
After the full loop on all the mix-servers, the adversary outputs its guess
b′: AdvG0 = PrG0 [b′ = b]. One important remark is that under the previous
soundness result, which has exactly the same setup, the input ballot-box for
the last honest mix-server necessarily contains a randomization of the initial
honest ballots (the adversary against the soundness is the above adversary
together with the honest simulator up to its last honest round, that does
not need any secret). Only the behavior of this last honest mix-server will
be modified below.

Game G1: We first switch the Diffie-Hellman proofs for (g0, g
′
0,
∏

fi,
∏

f′i) to
the zero-knowledge setting: if the input ballot-box for the last honest mix-
server is not a randomization of the initial honest ballots, that can be tested
using the decryption key, one has built a distinguisher between the settings
of the zero-knowledge proofs. In this new setting, one can use the zero-
knowledge simulator that does not use α. Under the zero-knowledge property,
AdvG0 < AdvG1 + negl().

Game G2: We also switch the proofs for (g, h,
∏
a′i/
∏
ai,
∏
b′i/
∏
bi) to the

zero-knowledge setting: as above, the distance remains negligible. In this new
setting, one can use the zero-knowledge simulator that does not use

∑
i γi.

Under the zero-knowledge property, AdvG1 < AdvG2 + negl().
Game G3: In this game, we do not know anymore the decryption key, and

use the indistinguishability of the encryption scheme (which relies on the
Decisional Diffie-Hellman assumption): in an hybrid way, we replace the
ciphertexts Ci of the honest users by an encryption of 1: Ci = EncryptEK(1).
Under the DDH assumption in G1, AdvG2 < AdvG3 + negl().

Game G4: This corresponds to Ci = (ai = gri , bi = hri). But now we can
know d, but ` is random: under the DDH assumption, we can replace the
random value `i = `ρi by `i = `ri . Ultimately, we set Ci = (g, `i = `ri , ai =
gri , bi = hri) for ri $← Zp, for all the honest users, in the initial ballot-box.
Under the DDH assumption in G1, AdvG3 < AdvG4 + negl().

Game G5: In this game, one can first extract the keys of the corrupted users
during the certification phase. Then, all the honest mix-servers generate
random signing keys sk′i, random tags τ ′i , and random encryptions C ′i of 1,
for all the honest users (the one who do not correspond to the extracted
keys), and generate the signatures using the signing keys SK and sk′i, but
still behave honestly for the ballots of the corrupted users. Then, they apply
the permutations Πj,b on the randomized ballots.
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Lemma 16 (Random Ballots for Honest Users). Under the Unlinka-
bility Assumption (see Definition 4) and DDH assumption in G2, the view is
computationally indistinguishable: AdvG4 < AdvG5 + negl().

In this last game, the i-th honest user is simulated with initial and output (after
each honest mix-server) ciphertexts that are random encryptions of 1, and initial
and output signing keys (and thus verification keys vki and vk′i) independently
random. As a consequence, permutations Πj,b are applied on random ballots,
which is perfectly indistinguishable from applying Πj,1−b (as we have restricted
the two permutations to be identical on ballots of corrupted users): AdvG5 = 0.
Which leads to Adv0 ≤ negl(). ut

Proof of Lemma 16. In the above sequences of games, from G0 to G4, we
could have checked whether the honest vki’s in the successive ballot-boxes are
permutations of randomized honest initial keys, just using the secret keys of the
honest users. So, we can assume in the next hybrid games, from G0(j) to G8(j),
for j = N, . . . , 1 that the input ballots in BBox(j−1) contain proper permutations
of randomized honest initial keys, as nothing is modified before the generation
of this ballot-box. In the following series of hybrid games, for index j, the honest
mix-servers up to the j− 1-th round play as in G4 and from the j+ 1-th round,
they play as inG5. Only the behavior of the j-th mix-server is modified: starting
from an honest behavior. Hence, G0(N) = G4.

Game G0(j): In this hybrid game, we assume that the initial ballot-box has
been correctly generated (with Ci = (g, `i = `ri , ai = gri , bi = hri) for
ri

$← Zp, for all the honest users), and mixing steps up to BBox(j) have
been honestly generated (excepted the zero-knowledge proofs that have been
simulated). The next rounds are generated at random by honest mix-servers:
random signing keys sk′i and random ciphertexts C ′i = (g, `′i = `r

′
i , a′i =

gr
′
i , b′i = hr

′
i), with random r′i, and then correct signatures, using SK and sk′i.

The following sequence of games will modify the randomization of BBox(j−1)

into BBox(j) if the j-th mix-server is honest.
Game G1(j): We now start modifying the randomization of the ballots by

the j-th mix-server, for the corrupted users. As we assumed the signatures
Σi provided by the certification authority from a proof of knowledge of ski,
our simulator has access to ski = (ui, vi, xi, zi) for all the corrupted users.
The mixing step consists in updating the ciphertexts, the keys and the sig-
natures, and we show how to do it without using α such that g′0 = gα0
but, instead, just g′0, ski, C0 = (1, `, g, h) and the individual random coins
γi, δi: from Bi a received ballot of a corrupted user, one can compute
vk′i = (g′0, g′0

ui , g′0
vi+δi , g′0

xi , g′0
yi) and C ′i = Ci ·C

γi
0 , and then the signatures

σ′i and Σ′i using the signing keys, and choosing τ̃ ′i
$← Zp. This simulation is

perfect for the corrupted users: AdvG1(j) = AdvG0(j).
Game G2(j): We now modify the simulation of the honest ballots. In this

game, we choose random d, e
$← Zp for h = gd and ` = ge. Then we have

simulated Ci = (g, `i = `ri , ai = gri , bi = hri) the ciphertext in BBox(0) and
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we can set C ′i = (g, `′i = `r
′
i , a′i = gr

′
i , b′i = hr

′
i) the ciphertext in BBox(j)

for known random scalars ri, r′i
$← Zp, where r′i is actually ri + γi: γi is the

accumulation of all the noises. All the signatures are still simulated using
the signing keys (and τ̃ ′i = R′i

$← Zp), with g′0 = gα0 for a random scalar α.
This simulation is perfectly the same as above: AdvG2(j) = AdvG1(j).
Before continuing, we study the format of the initial and randomized bal-
lots: by denoting σi the initial signature in BBox(0) and σ′i the signature to
generate in BBox(j), we have the following relations:

e(σi,0, g0) = e(g, gihidlie) e(σi,1, g0) = e(g, fi(gihidlie)ri)

e(σ′i,0, g′0) = e(g, g′ih′i
d
l′i
e) e(σ′i,1, g′0) = e(g, f′i(g′ih′i

d
l′i
e)r
′
i)

If we formally denote σi,0 = gti and σi,1 = gsi , then we have

g0
ti = gihi

dli
e and g0

si = fi(gihidlie)ri = fig0
tiri

which implies si = ui + tiri. Similarly, if we formally denote σ′i,0 = g′
t′i and

σ′i,1 = gs
′
i , and set α as the product of all the α’s and δi as aggregation of

all the δi’s (with α’s) in the previous rounds plus this round, from
g0
αt′i = g′0

t′i = g′ih
′
i
d
l′i
e = gi

αhi
αd(ligδi0 )αe

g0
αs′i = g′0

s′i = f′i(g′ih′i
d
l′i
e)r
′
i = fαi (gαi hαi

d(ligδi0 )αe)r
′
i

we also have g0
t′i = (gihidlei )g

δie
0 and g0

s′i = fi(gihdi lei )r
′
ig
eδir

′
i

0 which implies
s′i = ui + t′ir

′
i. As consequence:

σi,1 = gui · (gri)ti = gui · aiti and σ′i,1 = gui · (gr
′
i)t
′
i = gui · a′i

t′i

Game G3(j): Let us randomly choose scalars ui, ri, r′i, ti, t′i and α, then, from
(g, g0), we can set g′0 ← gα0 , ai ← gri , σi,1 ← atii g

ui , fi ← gui0 , as well as
a′i ← gr

′
i , σ′i,1 ← a′i

t′igui , f′i ← g′0
ui .

Then, one additionally chooses xi, yi $← Zp and sets
gi ← gxi0 hi ← gyi0 li ← (gti0 /(gihdi ))1/e Ci ← (g, aei , ai, adi )

g′i ← g′0
xi h′i ← g′0

yi l′i ← (g′0
t′i/(g′ih′i

d))1/e C
′
i ← (g, a′i

e
, a′i, a

′
i
d)

By construction: gti0 = gih
d
i l
e
i , g′0

t′i = g′ih
′
i
d
l′i
e, and

σi,1 = atii g
ui = gtiri × gui σ′i,1 = a′i

t′igui = gt
′
ir
′
i × gui

With σi,0 ← gti and σ′i,0 ← gt
′
i , σi and σ′i are valid signatures of (Ci, C0) and

(C ′i, C0) respectively. Then, the verification keys vki = (g0, fi, li, gi, hi) and
vk′i = (g′0, f′i, l′i, g′i, h′i) are correctly related for the secret keys (ui, vi, xi, yi).
From li = (gti0 /(gihdi ))1/e = g

(ti−xi−dyi)/e
0 : we have vi = (ti − xi − dyi)/e.
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From l′i = (g′0
t′i/(g′ih′i

d))1/e = g′0
(t′i−xi−dyi)/e: we have v′i = (t′i−xi−dyi)/e =

(t′i − ti)/e+ vi, which means that δi = (t′i − ti)/e.
Using the signing key SK, we can complete and sign vki (with random Ri)
and vk′i (with random R′i, which implicitly defines µi). As shown above, this
perfectly simulates the view of the adversary for the honest ballots in the
initial ballot-box BBox(0), with Bi = (Ci, σi, vki, Σi, τi) and a randomized
version in the updated ballot-box BBox(j), with B′i = (C ′i, σ′i, vk′i, Σ′i, τ ′i):
AdvG3(j) = AdvG2(j).

Game G4(j): Let us be given Cred(ui, g; g0, ri, ti) and Cred(ui, g; g′0, r′i, t′i), for
random ui

$← Zp, which provide all the required inputs from the first part of
the simulation in the previous game (before choosing xi, yi). They all follow
the distribution Dg,g0(ui, ui). As we do not need to know α to randomize
ballots for corrupted users, we can thus continue the simulation as above, in
a perfectly indistinguishable way: AdvG4(j) = AdvG3(j).

Game G5(j): Let us be given two credentials of ui and u′i, Cred(ui, g; g0, ri, ti)
and Cred(u′i, g; g′0, r′i, t′i), for random ui, u

′
i

$← Zp. Inputs follow the dis-
tribution Dg,g0(ui, u′i) and we do as above. Under the Unlinkability As-
sumption (see Definition 4) the view is computationally indistinguishable:
AdvG4(j) < AdvG5(j) + negl().

Game G6(j): We receive a Multi Diffie-Hellman tuple (g0, gi, hi, g
′
0, g
′
i, h
′
i)

$←
D6

mdh(g0). So we know all the scalars, except xi, yi and α, which are implic-
itly defined by the input challenge. Then, by choosing ti, t′i

$← Zp, we can
define li, l

′
i as in the previous game, and the ciphertexts and signatures are

generated honestly with random scalars ri, r′i
$← Zp: AdvG6(j) = AdvG5(j).

Game G7(j): We now receive (g0, gi, hi, g
′
0, g
′
i, h
′
i)

$← D6
$(g0). We do the sim-

ulation as above. The view of the adversary is indistinguishable under the
DDH assumption in G2: AdvG6(j) < AdvG7(j) + negl().
In this game, vk′i = (g′0, fi = g′0

u′i , li = g′0
v′i , gi = g′0

x′i , hi = g′0
y′i), with

x′i, y
′
i

$← Zp because of the random tuple, v′i = vi + (t′i − ti)/e, for random t′i
and ti, it is thus also random, and u′i is chosen at random.

Game G8(j): We now choose at random the signing keys ski = (ui, vi, xi, yi)
and sk′i = (u′i, v′i, x′i, y′i) in order to sign the ciphertexts: AdvG8(j) = AdvG7(j).

With this last game, one can see that G8(1) = G5. Furthermore, for each round
j = N, . . . , 1, we have AdvG0(j) ≤ AdvG8(j) + negl(), while G0(j − 1) = G8(j):
AdvG4 = AdvG0(N) ≤ AdvG8(1) + negl() = AdvG5 + negl(). ut

6 Applications

We now discuss use-cases of mix-nets: electronic voting and anonymous routing.
In both cases, a mix-server can, on the fly, perform individual verifications and
randomization of ballots, as well as the product of the fi’s and the ciphertexts
adaptively until the ballots are all sent. Eventually, at the closing time for a vote
or at the end of a time lapse for routing, one just has to do and sign global proof
of Diffie-Hellman tuples, and then output the ballots in a permuted order.
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6.1 Electronic Voting

Our mix-net fits well the case of e-voting because after the multiple mixing steps,
all the mix-servers can perform a second round to sign in a compact way the
constant-size proof, certifying each of their contributions. The input size as well
as the computation cost of the verifier are both independent on the number of
mixing steps. To our knowledge it is the first scheme with this very nice property.

About security, as explained, soundness and privacy are guaranteed for the
honest users only: honest users are sure that their votes are randomized in the
output ballot-box, and their input-output ballots are unlinkable. This is of course
the most important requirements. However, since the ui’s are used to guarantee
that no ballots are deleted or inserted, this is important those values to be
unknown to the mix-server.

In the full version [27], we propose a second construction that uses Square
Diffie-Hellman tuples (gr,Ai = gwir ,Bi = Awii ) as tags to add in any one-time lin-
early homomorphic signature to obtain a linearly homomorphic signature with
randomizable tags. Then, one can use

∏
A′j = (

∏
Ai)α instead of

∏
f′j and

(
∏

fi)α, in the Diffie-Hellman tuple, to guarantee the permutation of the verifi-
cation keys. Only the privacy of the wi’s is required to guarantee the soundness.

The proof that
∏
Mi =

∏
M ′i is actually never used in the previous security

proofs, as it counts for privacy in e-voting only. Indeed, in our privacy security
game we let the adversary choose the messages of the honest users. In a voting
scheme, the adversary could not choose them and would like to learn the vote
of a target voter. The first mix-server could take the vote (ciphertext) of this
voter and ask several corrupted voters to duplicate this vote. The bias in the
tally would reveal the vote of the target voter: the proof on the products of
the plaintexts avoids this modification during the mixing. This does not exclude
the attack of Cortier-Smyth [15] if the votes are publicly sent, as the corrupted
voters could simply use the ciphertext for their own ballots.

6.2 Message Routing

Another important use case of mix-nets is in routing protocols where the mix-
servers are proxy servers guaranteeing that no one can trace a request of a
message. In this scenario, it is not possible to perform a second round on the
mix-servers to obtain the multi-signature and the efficiency is thus linear in the
number of mixing steps. It is still an open problem to avoid the second round
while maintaining the independence in the number of mix-servers.
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