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Abstract. We propose FOAKE, a generic construction of two-message authenticated key
exchange (AKE) from any passively secure public key encryption (PKE) in the quantum
random oracle model (QROM). Whereas previous AKE constructions relied on a Diffie-
Hellman key exchange or required the underlying PKE scheme to be perfectly correct, our
transformation allows arbitrary PKE schemes with non-perfect correctness. Dealing with
imperfect schemes is one of the major difficulties in a setting involving active attacks. Our
direct construction, when applied to schemes such as the submissions to the recent NIST post-
quantum competition, is more natural than previous AKE transformations. Furthermore, we
avoid the use of (quantum-secure) digital signature schemes which are considerably less efficient
than their PKE counterparts. As a consequence, we can instantiate our AKE transformation
with any of the submissions to the recent NIST competition, e.g., ones based on codes and
lattices.
FOAKE can be seen as a generalisation of the well known Fujisaki-Okamoto transformation
(for building actively secure PKE from passively secure PKE) to the AKE setting. As a helper
result, we also provide a security proof for the Fujisaki-Okamoto transformation in the QROM
for PKE with non-perfect correctness which is tighter and tolerates a larger correctness error
than previous proofs.
Keywords. Authenticated key exchange, quantum random oracle model, NIST, Fujisaki-
Okamoto.

1 Introduction

Authenticated Key Exchange. Besides public key encryption (PKE) and digital signatures, au-
thenticated key exchange (AKE) is arguably one of the most important cryptographic building blocks
in modern security systems. In the last two decades, research on AKE protocols has made tremendous
progress in developing more solid theoretical foundations [10,19,38,31] as well as increasingly efficient
designs of AKE protocols [37,47,44]. Most AKE protocols rely on constructions based on an ad-hoc
Diffie-Hellman key exchange that is authenticated either via digital signatures, non-interactive key
exchange (usually a Diffie-Hellman key exchange performed on long-term Diffie-Hellman keys), or
public key encryption. While in the literature one can find many protocols that use one of the two
former building blocks, results for PKE-based authentication are rather rare [8,17]. Even rarer are
constructions that only rely on PKE, discarding Diffie-Hellman key exchanges entirely. Notable
recent exceptions are [23,24] and the protocol in [2], the latter of which has been criticised for having
a flawed security proof and a weak security model [46,39].
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The NIST Post-Quantum Competition. Recently, some of the above mentioned designs have
gathered renewed interest in the quest of finding AKE protocols that are secure against quantum
adversaries, i.e., adversaries equipped with a quantum computer. In particular, the National Institute
of Standards and Technology (NIST) announced a competition with the goal to standardise new PKE
and signature algorithms [41] with security against quantum adversaries. With the understanding
that an AKE protocol can be constructed from low level primitives such as quantum-secure PKE and
signature schemes, the NIST did not require the submissions to describe a concrete AKE protocol.
Many PKE and signature candidates base their security on the hardness of certain problems over
lattices and codes, which are generally believed to resist quantum adversaries.
The quantum ROM. Quantum computers may execute all “offline primitives” such as hash
functions on arbitrary superpositions, which motivated the introduction of the quantum (accessible)
random oracle model (QROM) [14]. While the adversary’s capability to issue quantum queries to
the random oracle renders many proof strategies significantly more complicated, it is nowadays
generally believed that only proofs in the QROM imply provable security guarantees against quantum
adversaries.
AKE and Quantum-Secure Signatures. Digital signatures are useful for the “authentication”
part in AKE, but unfortunately all known quantum-secure constructions would add a considerable
overhead to the AKE protocol. Therefore, if at all possible, we prefer to build AKE protocols only
from PKE schemes, without using signatures.3 Our ultimate goal is to build a system that remains
secure in the presence of quantum computers, meaning that even currently employed (very fast)
signatures schemes based on elliptic curves are not an option.
Central Research Question for Quantum-Secure AKE. In summary, motivated by post-
quantum secure cryptography and the NIST competition, we are interested in the following question:

How to build an actively secure AKE protocol from any passively secure PKE
in the quantum random oracle model, without using signatures?

(The terms “actively secure AKE” and “passively secure PKE” will be made more precise later.)
Surprisingly, one of the main technical difficulties is that the underlying PKE scheme might come
with a small probability of decryption failure, i.e., first encrypting and then decrypting does not
yield the original message. This property is called non-perfect correctness, and it is common for
quantum-secure schemes from lattices and codes, rendering them useless for all previous constructions
that relied on perfect correctness.4

Previous Constructions of AKE from public-key primitives. The generic AKE protocol
of Fujioka et al. [23] (itself based on [17]) transforms a passively secure PKE scheme PKE and an
actively (i.e., IND-CCA) secure PKE scheme PKEcca into an AKE protocol. We will refer to this
3 Clearly, PKE requires a working public-key infrastructure (PKI) which in turn requires signatures to
certify the public-key. However, a user only has to verify a given certificate once and for all, which means
the overhead of a quantum-secure signature can be neglected.

4 There exist generic transformations that can immunise against decryption errors (e.g., [22]). Even though
they are quite efficient in theory, the induced overhead is still not acceptable for practical purposes.
While lattice schemes could be rendered perfectly correct by putting a limit on the noise, and setting the
modulus of the LWE instance large enough (see, e.g., [12,29]), the security level cannot be maintained
without increasing the problem’s dimension, accordingly. Since this modification would lead to increased
public-key and ciphertext length, many NIST submissions deliberately made the design choice of having
imperfect correctness.
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transformation as FSXY[PKE,PKEcca]. Since the FSXY transformation is in the standard model, it is
likely to be secure with the same proof in the post-quantum setting and thus also in the QROM. The
standard way to obtain actively secure encryption from passively secure ones is the Fujisaki-Okamoto
transformation PKEcca = FO[PKE,G,H] [25,26]. In its “implicit rejection” variant [28], it comes with
a recently discovered security proof [43] that models the hash functions G and H as quantum random
oracles. Indeed, the combined AKE transformation FSXY[PKE,FO[PKE,G,H]] transforms passively
secure encryption into AKE that is very likely to be secure in the QROM, without using digital
signatures, hence giving a first answer to our above question. It has, however, two main drawbacks.

– Perfect correctness requirement. Transformation FSXY is not known to have a security
proof if the underlying scheme does not satisfy perfect correctness. Likewise, the relatively tight
QROM proof for FO that was given in [43] requires the underlying scheme to be perfectly correct,
and a generalisation of the proof for schemes with non-perfect correctness is not straightforward.
Hence, it is unclear whether FSXY[PKE,FO[PKE,G,H]] can be instantiated with lattice- or
code-based encryption schemes.

– Lack of simplicity. The Fujisaki-Okamoto transformation already involves hashing the key
using hash function H, and FSXY involves even more (potentially redundant) hashing of the
(already hashed) session key. Overall, the combined transformation seems overly complicated
and hence impractical.

In [24], a transformation was given that started from oneway-secure KEMs, but its security proof
was given in the ROM, and its generalisation to the QROM was explicitly left as an open problem.
Furthermore, it involves more hashing, similar to transformation FSXY.

Hence, it seems desirable to provide a simplified transformation that gets rid of unnecessary
hashing steps, and that can be proven secure in the QROM even if the underlying scheme does not
satisfy perfect correctness. As a motivating example, note that the Kyber AKE protocol [16] can be
seen as a result of applying such a simplified transformation to the Kyber PKE scheme, although
coming without a formal security proof.

1.1 Our Contributions

Our main contribution is a transformation, FOAKE[PKE,G,H] (“Fujisaki-Okamoto for AKE”) that
converts any passively secure encryption scheme into an actively secure AKE protocol, with provable
security in the quantum random oracle model. It can deal with non-perfect correctness and does
not use digital signatures. Our transformation FOAKE can be viewed as a modification of the
transformation given in [24]. Furthermore, we provide a precise game-based security definition for
two-message AKE protocols. As a side result, we also give a security proof for the Fujisaki-Okamoto
transformation in the QROM in Section 3 that deals with correctness errors. It can be seen as the
KEM analogue of our main result, the AKE proof. Our proof strategy differs from and improves on
the bounds of a previously published proof of the Fujisaki-Okamoto transformation for KEMs in the
QROM [32].

FO transformation for KEMs. To simplify the presentation of FOAKE, we first give some back-
ground on the Fujisaki-Okamoto transformation for KEMs. In its original form [25,26], FO yields
an encryption scheme that is IND-CCA secure in the random oracle model [9] from combining any
One-Way secure asymmetric encryption scheme with any one-time secure symmetric encryption
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scheme. In “A Designer’s Guide to KEMs”, Dent [21] provided FO-like IND-CCA secure KEMs. (Re-
call that any IND-CCA secure Key Encapsulation Mechanism can be combined with any (one-time)
chosen-ciphertext secure symmetric encryption scheme to obtain a IND-CCA secure PKE scheme
[20].) Since all of the transformations mentioned above required the underlying PKE scheme to be
perfectly correct, and due to the increased popularity of lattice-based schemes with non-perfect
correctness, [28] gave several modularisations of FO-like transformations and proved them robust
against correctness errors. The key observation was that FO-like transformations essentially consists
of two separate steps and can be dissected into two transformations, as sketched in the introduction
of [28]:

– Transformation T: “Derandomise” and “re-encrypt”. Starting from an encryption scheme PKE
and a hash function G, encryption of PKE′ = T[PKE,G] is defined by

Enc′(pk,m) := Enc(pk,m; G(m)),

where G(m) is used as the random coins for Enc, rendering Enc′ deterministic. Dec′(sk, c) first
decrypts c into m′ and rejects if Enc(pk,m′; G(m′)) 6= c (“re-encryption”).

– Transformation U6⊥m: “Hashing”. Starting from an encryption scheme PKE′ and a hash function
H, key encapsulation mechanism KEM6⊥m = U 6⊥m[PKE′,H] with “implicit rejection” is defined by

Encaps(pk) := (c ← Enc′(pk,m),K := H(m)), (1)

where m is picked at random from the message space, and

Decaps(sk, c) =
{

H(m) m 6= ⊥
H(s, c) m = ⊥

,

where m := Dec(sk, c) and s is a random seed which is contained in sk. In the context of the FO
transformation, implicit rejection was first introduced by Persichetti [42, Sec. 5.3].

Transformation T was proven secure both in the (classical) ROM and the QROM, and U 6⊥m was
proven secure in the ROM. To achieve QROM security, [28] gave a modification of U6⊥m , called QU 6⊥m ,
but its security proof in the QROM suffered from a quartic5 loss in tightness, and furthermore, most
real-world proposals are designed such that they fit the framework of FO 6⊥m = U6⊥m ◦ T, not QU6⊥m ◦ T.

A slightly different modularisation was introduced in [43]: they gave transformations TPunc
("Puncturing and Encrypt-with-Hash") and SXY ("Hashing with implicit reject and reencryption").
SXY differs from U6⊥m in that it reencrypts during decryption. Hence, it can only be applied to
deterministic schemes. Even in the QROM, its CCA security tightly reduces to an intermediate
notion called Disjoint Simulatability (DS) of ciphertexts. Intuitively, disjoint simulatability means
that we can efficiently sample “fake ciphertexts” that are computationally indistinguishable from
real PKE ciphertexts (“simulatability”), while the set of possible fake ciphertexts is required to be
(almost) disjoint from the set of real ciphertexts. DS is naturally satisfied by many code/lattice-based
encryption schemes. Additionally, it can be achieved using transformation Punc, i.e., by puncturing
the underlying schemes’ message space at one point and using this message to sample fake encryptions.
Deterministic DS can be achieved by using transformation TPunc, albeit non-tightly: the reduction
suffers from quadratic loss in security and an additional factor of q, the number of the adversary’s
hash queries.
5 not just quadratic, but indeed quartic
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PKE0
IND-CPA

PKE
DS (prob.)
+ IND-CPA

PKE′
DS (det.)

KEM
IND-CCA

Punc[PKE0]

T[PKE,G]TPunc[PKE0,G]

SXY[PKE′,H]

FO 6⊥m [PKE,G,H] = U 6⊥m [T[PKE,G],H]

Fig. 1: Comparison of [43]’s modular transformation (green) with ours. Solid arrows indicate tight
reductions, dashed arrows indicate non-tight reductions.

However, the reduction that is given in [43] requires the underlying encryption scheme to be
perfectly correct. Later, [32] gave non-modular security proofs for the transformations FO 6⊥m and
FO 6⊥ as well as a security proof for SXY6 for schemes with correctness errors, which still suffered
from quadratic loss in security and an additional factor of q, the latter of which this work improves
to √q.

Our transformation FO 6⊥m can be applied to any PKE scheme that is both IND-CPA and DS secure.
The reduction is tighter than the one that results from combining those of TPunc and SXY in [43],
and also than the reduction given in [33]. This is due to our use of the improved Oneway-to-Hiding
lemma [3, Thm. 1: “Semi-classical O2H”]. Furthermore, we achieve a better correctness bound (the
square of the bound given in [33]) due to a better bound for the generic distinguishing problem. In
cases where PKE is not already DS, this requirement can be waived with negligible loss of efficiency:
To rely on IND-CPA alone, all that has to be done is to plug in transformation Punc. A visualisation
is given in Figure 1.

Security Model for Two-Message Authenticated Key Exchange. We introduce a simple
game-based security model for (non-parallel) two-message AKE protocols, i.e., protocols where the
responder sends his message only after having received the initiator’s message. Technically, in our
model, and similar to previous literature, we define several oracles that the attacker has access to.
However, in contrast to most other security models, the inner workings of these oracles and their
management via the challenger are precisely defined with pseudo-code.
Details on our Models. We define two security notions for two-message AKEs: key indistin-
guishability against active attacks (IND-AA) and the weaker notion of indistinguishability against
active attacks without state reveal in the test session (IND-StAA). IND-AA captures the classical
notion of key indistinguishability (as introduced by Bellare and Rogaway [10]) as well as security
against reflection attacks, key compromise impersonation (KCI) attacks, and weak forward secrecy
(wFS) [37]. It is based on the Canetti-Krawczyk (CK) model and allows the attacker to reveal (all)
secret state information as compared to only ephemeral keys. As already pointed out by [17], this
makes our model incomparable to the eCK model [38] but strictly stronger than the CK model.
Essentially, the IND-AA model states that the session key remains indistinguishable from a random
one even if
6 Note that nomenclature of [33] is a bit misleading: while the respective KEM is called U6⊥m , it is actually
transformation SXY (it reencrypts during decryption, which U6⊥m does not).
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1. the attacker knows either the long-term secret key or the secret state information (but not both)
of both parties involved in the test session, as long as it did not modify the message received by
the test session,

2. and also if the attacker modified the message received by the test session, as long as it did not
obtain the long-term secret key of the test session’s peer.

We also consider the slightly weaker model IND-StAA (in which we will prove the security of our
AKE protocols), where 2. is substituted by

2’. and also if the attacker modified the message received by the test session, as long as it did
neither obtain the long-term secret key of the test session’s peer nor the test session’s state.
The latter strategy, we will call a state attack.

We remark that IND-StAA security is essentially the same notion that was achieved by the FSXY
transformation [23].7 In the full version we provide a more general perspective on how our model
compares to existing ones.

Our Authenticated Key-Exchange Protocol. Our transformation FOAKE transforms any pas-
sively secure PKE (with potential non-perfect correctness) into an IND-StAA secure AKE. FOAKE
is a simplification of the transformation FSXY[PKE,FO[PKE,G,H]] mentioned above, where the
derivation of the session key K uses only one single hash function H. FOAKE can be regarded as the
AKE analogue of the Fujisaki-Okamoto transformation.

Transformation FOAKE[PKE,G,H] is described in Figure 2 and uses transform PKE′ = T[PKE,G]
as a building block. (The full construction is given in Figure 15, see Section 5.) Our main security result
(Theorem 3) states that FOAKE[PKE,G,H] is an IND-StAA-secure AKE if the underlying probabilistic
PKE is DS as well as IND-CPA secure and has negligible correctness error, and furthermore G and H
are modeled as quantum random oracles.

The proof essentially is the AKE analogue to the security proof of FO 6⊥m we give in Section 3.2:
By definition of our security model, it always holds that at least one of the messages mi , mj and m̃
is hidden from the adversary (unless it loses trivially) since it may not reveal a party’s secret key
and its session state at the same time. Adapting the simulation technique in [43], we can simulate
the session keys even if we do not know the corresponding secret key ski (skj , s̃k). Assuming that
PKE is DS, we can replace the corresponding ciphertext ci (cj , c̃) of the test session with a fake
ciphertext, rendering the test session’s key completely random from the adversary’s view due to
PKE’s disjointness.

Let us add two remarks. Firstly, we cannot prove the security of FOAKE[PKE,G,H] in the stronger
sense of IND-AA and actually, it is not secure against state attacks. Secondly, note that our security
statement involves the probabilistic scheme PKE rather than PKE′. Unfortunately, we were not able to
provide a modular proof of AKE solely based on reasonable security properties of PKE′ = T[PKE,G].
The reason for this is indeed the non-perfect correctness of PKE. This difficulty corresponds to
the difficulty to generalise [43]’s result for deterministic encryption schemes with correctness errors
discussed above.
7 The difference is that the model from [23] furthermore allows a “partial reveal” of the test session’s state.
For simplicity and due to their little practical relevance, we decided not to include such partial session
reveal queries in our model. We remark that, however, our protocol could be proven secure in this slightly
stronger model.
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Pi(ski , pkj) Pj(skj , pki)

p̃k, cj
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m̃′

c̃

m′i ci

mj

$

Enc′pkj

(p̃k, s̃k)← KG
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Dec′ski
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m′j

p̃k

c̃

m̃

ci mi

Dec′skj

p̃k

Enc′p̃k m̃

$

Enc′pki mi

$

H

K = H(m′i ,mj , m̃′, p̃k, i, j)

H

K = H(mi ,m′j , m̃, p̃k, i, j)

Fig. 2: A visualisation of our authenticated key-exchange protocol FOAKE. We make the convention
that, in case any of the Dec′ algorithms returns ⊥, the session key K is derived deterministically
and pseudorandomly from the player’s state (“implicit rejection”).

Concrete Applications. Our transformation can be applied to any scheme that is IND-CPA
secure with post-quantum security, e.g., Frodo [40], Kyber [16], and Lizard [5]. Recall that the
additional requirement of DS can be achieved with negligible loss of efficiency. However, in many
applications even this negligible loss is inexistent since most of the aforementioned schemes can
already be proven DS under the same assumption that their IND-CPA security is based upon.

Subsequent work. Since this paper was published on eprint, there has been more work on CCA
security of FO in the QROM ([35,13]), essentially achieving the same level of tightness as this work.
[13] achieves more modularity, and covers a class of schemes that is both less and more restrictive at
the same time: They only require schemes to be oneway-secure (instead of CPA, as required in this
work), but the schemes have to meet an additional injectivity requirement (specified below).

Tightness for FO. Reductions from CCA security to CPA security in the QROM usually suffer
from tightness loss in two separate ways: The best known bounds for probabilistic schemes to this
date are essentially of the form √q

√
ε, where q is the number of the adversary’s hash queries, and ε

is the reduction’s CPA advantage. Hence, the loss consists of both a loss regarding q (q-nontightness),
and worse, a quadratic loss regarding the level of CPA security (root-nontightness). For the general
setting where one starts from a probabilistic scheme, there have not been tightness improvements
since this work:

Essentially, [35] is an update of [32] that makes use of the improved Oneway-to-Hiding bounds
given in [3], thereby improving [32]’s bound q

√
ε to √q

√
ε, with the security requirement switching

from onewayness to IND-CPA. The result seems to differ from this work solely in its (nonmodular)
proof structure.
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In [13], a new modular proof for FO was given by starting from probabilistic onewayness and
choosing deterministic oneway-security as their intermediate8 notion, opposed to our (strictly
stronger) intermediate notion of deterministic DS. This approach matches the observation that if one
can start from a scheme that already is deterministically oneway-secure (like [12]), derandomisation
step T is superfluous. In this case, only transformation U has to be applied, which is proven
secure q-tightly. The weaker intermediate notion, however, shifts the root-nontightness to second
transformation U. Therefore, the result still is heavily non-tight, even if derandomising via T is
skipped. Furthermore, no tightness improvements whatsoever are achieved if the underlying scheme
is not already deterministic, and thus has to be derandomised using T first.
Modularity. The modular proof of [13] is achieved by introducing an additional notion for the
intermediate scheme that deals with correctness errors. Unfortunately, the possibility of correctness
errors complicate modular attempts on analysing FO: For underlying probabilistic schemes, [13]
requires more than this work since its approach only is applicable if the "intermediate" scheme is
injective with overwhelming probability. It is very likely that the modular approach of [13] could be
generalised to an AKE proof that similarly is modular and hence, conceptually nicer. But this gain
in modularity would come at a cost: The approach only is applicable if the derandomised scheme is
essentially injective. We would, therefore, add an unnecessary restriction on the class of schemes
that AKE can be based upon.

Open Problems. In the literature, one can find several Diffie-Hellman based protocols that achieve
IND-AA security, for example HMQV [37]. However, none of them provides security against quantum
computers. We leave as an interesting open problem to design a generic and efficient two-message
AKE protocol in our stronger IND-AA model, preferably with a security proof in the QROM to
guarantee its security even in the presence of quantum adversaries.

While [13] gave a proof of CCA security that is conceptually cleaner, it still is heavily non-tight
due to its root-nontightness, with the root-nontightness stemming from its usage of a standard
Oneway-to-Hiding strategy. Recent work [34] proved that for reductions using this standard approach,
suffering from quadratic security loss is inevitable. We would like to point out, however, that we do
not view this result as an impossibility result9. It rather proves impossibility of root-tightness for a
certain type of reduction, and thereby informs us how to adapt possible future proof strategies: A
root-tight proof of CCA security still might be achievable, but the respective reduction would have
to be more sophisticated than extracting oneway solutions for the underlying scheme by simply
applying Oneway-to-Hiding.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . ,n}. For a set S , |S | denotes the cardinality of S. For a finite set S ,
we denote the sampling of a uniform random element x by x ←$ S , while we denote the sampling
according to some distribution D by x ← D. By JBK we denote the bit that is 1 if the boolean
Statement B is true, and otherwise 0.
8 By "intermediate", we mean the deterministic scheme that is to be plugged into one of the U-transforms.
In most cases, it is derived by starting from a probabilistic scheme and first applying derandomisation
transformation T.

9 A strict impossibility result would have to consist of a concrete scheme as well as a concrete attack, with
the latter matching the given upper bound.
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Algorithms. We denote deterministic computation of an algorithm A on input x by y := A(x). We
denote algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our
algorithms to be probabilistic and denote the computation by y ← A(x).
Games. Following [45,11], we use code-based games. We implicitly assume boolean flags to be
initialised to false, numerical types to 0, sets to ∅, and strings to the empty string ε. We make the
convention that a procedure terminates once it has returned an output.

2.1 Public-key Encryption

Syntax. A public-key encryption scheme PKE = (KG,Enc,Dec) consists of three algorithms, and a
finite message spaceM which we assume to be efficiently recognisable. The key generation algorithm
KG outputs a key pair (pk, sk), where pk also defines a finite randomness space R = R(pk) as well as
a ciphertext space C. The encryption algorithm Enc, on input pk and a message m ∈M, outputs an
encryption c ← Enc(pk,m) of m under the public key pk. If necessary, we make the used randomness
of encryption explicit by writing c := Enc(pk,m; r), where r ←$ R. The decryption algorithm Dec,
on input sk and a ciphertext c, outputs either a message m = Dec(sk, c) ∈M or a special symbol
⊥ /∈M to indicate that c is not a valid ciphertext.

Definition 1 (Collision probability of key generation.). We define

µ(KG) := Pr[(pk, sk)← KG, (pk ′, sk ′)← KG : pk = pk ′] .

Definition 2 (Collision probability of ciphertexts.). We define

µ(Enc) := Pr[(pk, sk)← KG,m,m′ ←$ M, c ← Enc(pk,m), c′ ← Enc(pk,m′) : c = c′] .

Definition 3 (γ-Spreadness.). [25] We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈
supp(KG) and all messages m ∈M it holds that

max
c∈C

Pr[r ←$ R : Enc(pk,m; r) = c] ≤ 2−γ .

Definition 4 (Correctness). [28] We define δ := E[maxm∈M Pr[c ← Enc(pk,m) : Dec(sk, c) 6=
m]], where the expectation is taken over (pk, sk)← KG.

Security. We now define the notion of Indistinguishability under Chosen Plaintext Attacks
(IND-CPA) for public-key encryption.

Definition 5 (IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme. We define
game IND-CPA game as in Figure 3, and the IND-CPA advantage function of a quantum adversary
A = (A1,A2) against PKE (such that A2 has binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA

1 ⇒ 1]− Pr[IND-CPAA
0 ⇒ 1]| .

We also define IND-CPA security in the random oracle model model, where PKE and adversary A
are given access to a random oracle.

Disjoint simulatability. Following [43], we consider PKE where it is possible to efficiently sample
fake ciphertexts that are indistinguishable from proper encryptions, while the probability that the
sampling algorithm hits a proper encryption is small.
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GAME IND-CPAb
01 (pk, sk)← KG
02 (m∗0 ,m∗1 , st)← A1(pk)
03 c∗ ← Enc(pk,m∗b )
04 b′ ← A2(pk, c∗, st)
05 return b′

GAME IND-CCA
06 (pk, sk)← KG
07 b ←$ F2
08 (K∗0 , c∗)← Encaps(pk)
09 K∗1 ←$ K
10 b′ ← ADecaps(pk, c∗,K∗b )
11 return Jb′ = bK

Decaps(c 6= c∗)
12 K := Decaps(sk, c)
13 return K

Fig. 3: Games IND-CPAb for PKE (b ∈ F2) and game IND-CCA for KEM.

Definition 6. (DS) Let PKE = (KG,Enc,Dec) be a PKE scheme with message space M and
ciphertext space C, coming with an additional PPT algorithm Enc. For quantum adversaries A, we
define the advantage against PKE’s disjoint simulatability as

AdvDS
PKE,Enc(A) :=|Pr[pk ← KG,m ←$ M, c ← Enc(pk,m) : 1← A(pk, c)]

− Pr[pk ← KG, c ← Enc(pk) : 1← A(pk, c)]| .

When there is no chance of confusion, we will drop Enc from the advantage’s subscript for convenience.
We call PKE εdis-disjoint if for all pk ∈ supp(KG), Pr[c ← Enc(pk) : c ∈ Enc(pk,M;R)] ≤ εdis.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (KG,Encaps,Decaps) consists of three algorithms.
The key generation algorithm KG outputs a key pair (pk, sk), where pk also defines a finite key space
K. The encapsulation algorithm Encaps, on input pk, outputs a tuple (K , c) where c is said to be
an encapsulation of the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K
or a special symbol ⊥ /∈ K to indicate that c is not a valid encapsulation.

We call KEM δ-correct if

Pr [Decaps(sk, c) 6= K | (pk, sk)← KG; (K , c)← Encaps(pk)] ≤ δ .

Note that the above definition also makes sense in the random oracle model since KEM ciphertexts
do not depend on messages.
Security. We now define a security notion for key encapsulation: Indistinguishbility under Chosen
Ciphertext Attacks (IND-CCA).

Definition 7 (IND-CCA). We define the IND-CCA game as in Figure 3 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as

AdvIND-CCA
KEM (A) := |Pr[IND-CCAA ⇒ 1]− 1/2| .

2.3 Quantum computation

Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C2, i.e., a linear combination
|ϕ〉 = α · |0〉+ β · |1〉 of the two basis states (vectors) |0〉 and |1〉 with the additional requirement
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to the probability amplitudes α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard
orthonormal computational basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be
interpreted as quantum bits via the mapping (b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qubits, i.e. a linear
combination |ϕ〉 :=

∑
x∈Fn

2
αx ·|x〉, where αx ∈ C, with the additional restriction that

∑
x∈Fn

2
|αx |2 = 1.

As in the one-dimensional case, we call the basis {|x〉}x∈Fn
2
the standard orthonormal computational

basis. We say that |ϕ〉 =
∑

x∈Fn
2
αx · |x〉 contains the classical query x if αx 6= 0.

Measurements. Qubits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉+ β · |1〉 will be 0
with probability |α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 =

∑
x∈Fn

2
αx · |x〉 will be x with probability |αx |2. Note that the amplitudes collapse during a

measurement, this means that by measuring α · |0〉 + β · |1〉, α and β are switched to one of the
combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched
to 0 except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [14,6], we view a quantum oracle |O〉
as a mapping

|x〉|y〉 7→ |x〉|y ⊕ O(x)〉 ,
where O : Fn

2 → Fm
2 , and model quantum adversaries A with access to O by a sequence U1,

|O〉, U2, · · · , |O〉, UN of unitary transformations. We write A|O〉 to indicate that the oracles are
quantum-accessible (contrary to oracles which can only process classical bits).
Quantum random oracle model. We consider security games in the quantum random oracle
model (QROM) as their counterparts in the classical random oracle model, with the difference that
we consider quantum adversaries that are given quantum access to the (offline) random oracles
involved, and classical access to all other (online) oracles. For example, in the IND-CPA game, the
adversary only obtains a classical encryption, like in [18], and unlike in [15]. In the IND-CCA game,
the adversary only has access to a classical decryption oracle, unlike in [27] and [1].

Zhandry [48] proved that no quantum algorithm A|O〉, issuing at most q quantum queries to |O〉,
can distinguish between a random function O : Fm

2 → Fn
2 and a 2q-wise independent function f2q.

For concreteness, we view f2q : Fm
2 → Fn

2 as a random polynomial of degree 2q over the finite field
F2n . The running time to evaluate f2q is linear in q. In this article, we will use this observation in
the context of security reductions, where quantum adversary B simulates quantum adversary A|O〉
issuing at most q queries to |O〉. Hence, the running time of B is Time(B) = Time(A) + q ·Time(O),
where Time(O) denotes the time it takes to simulate |O〉. Using the observation above, B can use a
2q-wise independent function in order to (information-theoretically) simulate |O〉, and we obtain that
the running time of B is Time(B) = Time(A) + q ·Time(f2q), and the time Time(f2q) to evaluate f2q
is linear in q. Following [43] and [36], we make use of the fact that the second term of this running
time (quadratic in q) can be further reduced to linear in q in the quantum random-oracle model
where B can simply use another random oracle to simulate |O〉. Assuming evaluating the random
oracle takes one time unit, we write Time(B) = Time(A) + q, which is approximately Time(A).
Oneway to Hiding with semi-classical oracles. In [3], Ambainis et al. defined semi-classical
oracles that return a state that was measured with respect to one of the input registers. In particular,
to any subset S ⊂ X , they associated the following semi-classical oracle OSC

S : Algorithm OSC
S , when

queried on |ψ, 0〉, measures with respect to the projectors M1 and M0, where M1 :=
∑

x∈S |x〉〈x| and
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M0 :=
∑

x /∈S |x〉〈x|. The oracle then initialises the second register to |b〉 for the measured bit b. This
means that |ψ, 0〉 collapses to either a state |ψ′, 0〉 such that |ψ′〉 only contains elements of X \ S or
to a state |ψ′, 1〉 such that |ψ′〉 only contains elements of S . Let FIND denote the event that the
latter ever is the case, i.e., that OSC

S ever answers with |ψ′, 1〉 for some ψ′. To a quantum-accessible
oracle G and a subset S ⊂ X , Ambainis et al. associate the following punctured oracle G \ S that
removes S from the domain of G unless FIND occurs.

G \ S|ψ, φ〉
01 |ψ′, b〉 := OSC

S |ψ, 0〉
02 return UG|ψ′, φ〉

Fig. 4: Punctured oracle G \ S for O2H.

The following theorem is a simplification of statement (2) given in [3, Thm. 1: “Semi-classical
O2H”], and of [3, Cor. 1]. It differs in the following way: While [3] consider adversaries that might
execute parallel oracle invocations and therefore differentiate between query depth d and number of
queries q, we use the upper bound q ≥ d for simplicity.

Theorem 1. Let S ⊂ X be random. Let G,H ∈ YX be random functions such that G|X\S = H|X\S ,
and let z be a random bitstring. (S, G, H, and z may have an arbitrary joint distribution.) Then,
for all quantum algorithms A issuing at most q queries that, on input z, output either 0 or 1,

|Pr[1← A|G〉(z)]− Pr[1← A|H〉(z)]| ≤ 2 ·
√
q Pr[b ← A|G\S〉(z) : FIND] .

If furthermore S := {x} for x ←$ X, and x and z are independent,

Pr[b ← A|G\S〉(z) : FIND] ≤ 4q
|X | .

Generic quantum Distinguishing Problem with bounded probabilities. For λ ∈ [0, 1],
let Bλ be the Bernoulli distribution, i.e., Pr[b = 1] = λ for the bit b ← Bλ. Let X be some finite
set. The generic quantum distinguishing problem ([4, Lemma 37], [30, Lem. 3]) is to distinguish
quantum access to an oracle F : X → F2, such that for each x ∈ X , F(x) is distributed according
to Bλ, from quantum access to the zero function. We will need the following slight variation. The
Generic quantum Distinguishing Problem with Bounded probabilities GDPB is like the quantum
distinguishing problem with the difference that the Bernoulli parameter λx may depend on x, but
still is upper bounded by a global λ. The upper bound we give is the same as in [30, Lem. 3]. It is
proven in the full version.

Lemma 1 (Generic Distinguishing Problem with Bounded Probabilities). [Generic Dis-
tinguishing Problem with Bounded Probabilities] Let X be a finite set, and let λ ∈ [0, 1]. Then, for
any (unbounded, quantum) algorithm A issuing at most q quantum queries,

|Pr[GDPBA
λ,0 ⇒ 1]− Pr[GDPBA

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ,

where games GDPBA
λ,b (for bit b ∈ F2) are defined as follows:
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GAME GDPBλ,b
01 (λx)x∈X ← A1
02 if ∃x ∈ X s.t. λx > λ return 0
03 if b = 0
04 F := 0
05 else for all x ∈ X
06 F(x)← Bλx

07 b′ ← A|F〉2
08 return b′

3 The FO Transformation: QROM security with correctness errors

In Section 3.1, we modularise transformation TPunc that was given in [43] and that turns any public
key encryption scheme that is IND-CPA secure into a deterministic one that is DS. Transformation
TPunc essentially consists of first puncturing the message space at one point (transformation Punc,
to achieve probabilistic DS), and then applying transformation T. Next, in Section 3.2, we show
that transformation U 6⊥m, when applied to T, transforms any encryption scheme that is DS as well
as IND-CPA into a KEM that is IND-CCA secure. We believe that many lattice-based schemes
fulfill DS in a natural way,10 but for the sake of completeness, we will show in the full version how
transformation Punc can be used to waive the requirement of DS with negligible loss of efficiency.

3.1 Modularisation of TPunc

We modularise transformation TPunc ("Puncturing and Encrypt-with-Hash") that was given in [43],
and that turns any IND-CPA secure PKE scheme into a deterministic one that is DS. Note that
apart from reencryption, TPunc[PKE0,G] given in [43] and our modularisation T[Punc[PKE0],G] are
equal. We first give transformation Punc that turns any IND-CPA secure scheme into a scheme that
is both DS and IND-CPA. We show that transformation T turns any scheme that is DS as well as
IND-CPA secure into a deterministic scheme that is DS.

Transformation Punc: From IND-CPA to probabilistic DS security Transformation Punc
turns any IND-CPA secure public-key encryption scheme into a DS secure one by puncturing the
message space at one message and sampling encryptions of this message as fake encryptions.
The Construction. To a public-key encryption scheme PKE0 = (KG0,Enc0,Dec0) with message
space M0, we associate PKE := Punc[PKE0, m̂] := (KG := KG0,Enc,Dec := Dec0) with message
spaceM :=M0 \ {m̂} for some message m̂ ∈M. Encryption and fake encryption sampling of PKE
are defined in Figure 5. Note that transformation Punc will only be used as a helper transformation
to achieve DS, generically. We prove that Punc achieves DS from IND-CPA security in the full version.

Transformation T: From probabilistic to deterministic DS security Transformation T [7]
turns any probabilistic public-key encryption scheme into a deterministic one. The transformed
10 Fake encryptions could be sampled uniformly random. DS would follow from the LWE assumption, and

since LWE samples are relatively sparse, uniform sampling should be disjoint.
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Enc(pk,m ∈M)
01 c ← Enc0(pk,m)
02 return c

Enc(pk)
03 c ← Enc0(pk, m̂)
04 return c

Fig. 5: Encryption and fake encryption sampling of PKE = Punc[PKE0].

scheme is DS, given that PKE is DS as well as IND-CPA secure. Our security proof is tighter than
the proof given for TPunc (see [43, Theorem 3.3]) due to our use of the semi-classical O2H theorem.
The Construction. Take an encryption scheme PKE = (KG,Enc,Dec) with message spaceM and
randomness space R. Assume PKE to be additionally endowed with a sampling algorithm Enc (see
Definition 6). To PKE and random oracle G :M→R, we associate PKE′ = T[PKE,G], where the
algorithms of PKE′ = (KG′ := KG,Enc′,Dec′,Enc′ := Enc) are defined in Figure 6. Note that Enc′
deterministically computes the ciphertext as c := Enc(pk,m; G(m)).

Enc′(pk,m)
01 c := Enc(pk,m; G(m))
02 return c

Dec′(sk, c)
03 m′ := Dec(sk, c).
04 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
05 return ⊥
06 else return m′

Fig. 6: Deterministic encryption scheme PKE′ = T[PKE,G].

The following lemma states that combined IND-CPA and DS security of PKE imply the DS
security of PKE′.

Lemma 2 (DS security of PKE′). If PKE is ε-disjoint, so is PKE′. For all adversaries A issuing
at most qG (quantum) queries to G, there exist an adversary BIND and an adversary BDS such that

AdvDS
PKE′(A) ≤ AdvDS

PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

≤ AdvDS
PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) + 4qG√
|M|

,

and the running time of each adversary is about that of B.

Proof. It is straightforward to prove disjointness since Enc′(pk,M) is subset of Enc(pk,M;R). Let
A be a DS adversary against PKE′. Consider the sequence of games given in Figure 7. Per definition,

AdvDS
PKE′(A) = |Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1]|

≤ |Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]|+ |Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| .

To upper bound |Pr[GA
0 ⇒ 1] − Pr[GA

3 ⇒ 1]|, consider adversary BDS against the disjoint
simulatability of the underlying scheme PKE, given in Figure 8. BDS runs in the time that is required
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Games G0-G3
01 pk ← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk) �G0
04 r∗ := G(m∗) �G1
05 r∗ ←$ R �G2-G3
06 c∗ := Enc(pk,m∗; r∗) �G1-G3
07 b′ ← A|G〉(pk, c∗) �G0-G1, G3
08 b′ ← A|H〉(pk, c∗) �G2
09 return b′

Game G4-G5
10 FIND := false
11 pk ← KG
12 m∗ ←$ M
13 r∗ ←$ R
14 c∗ := Enc(pk,m∗; r∗) �G4
15 c∗ := Enc(pk, 0; r∗) �G5
16 b′ ← A|G\{m

∗}〉(pk, c∗)
17 return FIND

G \ {m∗}|ψ, φ〉
18 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
19 if b = 1
20 FIND := true
21 return UG|ψ′, φ〉

Fig. 7: Games G0 - G5 for the proof of Lemma 2.

to run A and to simulate G for qG queries. Since BDS perfectly simulates game G0 if run with a fake
ciphertext as input, and game G3 if run with a random encryption c ← Enc(pk,m∗),

|Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]| = AdvDS
PKE(BDS) .

It remains to upper bound |Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]|. We claim that there exists an adversary
BIND such that

|Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

.

BDS(pk, c)
01 b′ ← A|G〉(pk, c)
02 return b′

BIND,1(pk)
03 m∗ ←$ M
04 return (0,m∗, st := m∗)

BIND,2(pk, c∗, st := m∗)
05 FIND := false
06 b′ ← A|G\{m

∗}〉(pk, c∗)
07 return FIND

G \ {m∗}|ψ, φ〉
08 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
09 if b = 1
10 FIND := true
11 return UG|ψ′, φ〉

Fig. 8: Adversaries BDS and BIND- for the proof of Lemma 2.

Game G2. In game G2, we replace oracle access to G with oracle acess to H in line 08, where H is
defined as follows: we pick a uniformly random r∗ in line 05 and let H(m) := G(m) for all m 6= m∗,
and H(m∗) := r∗. Note that this change also affects the challenge ciphertext c∗ since it is now
defined relative to this new r∗, i.e., we now have c∗ = Enc(pk,m∗; H(m∗)). Since r∗ is uniformly
random and G is a random oracle, so is H, and since we kept c∗ consistent, this change is purely
conceptual and

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1] .
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Game G3. In game G3, we switch back to oracle access to G, but keep c∗ unaffected by this change.
We now are ready to use Oneway to Hiding with semi-classical oracles. Intuitively, the first part of
O2H states that if oracles G and H only differ on point m∗, the probability of an adversary being
able to tell G and H apart is directly related to m∗ being detectable in its random oracle queries.
Detecting m∗ is formalised by game G4, in which each of the random oracle queries of A is measured
with respect to projector |m∗〉〈m∗|, thereby collapsing the query to either m∗ (and switching flag
FIND to true) or a superposition that does not contain m∗ at all. Following the notation of [3], we
denote this process by a call to oracle OSC

{m∗}, see line 08. Applying the first statement of Theorem 1
for S := {m∗}, and z := (pk, c∗ := Enc(pk,m∗; r∗)), we obtain

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2 ·
√
qG · Pr[GA

4 ⇒ 1] .

Game G5. In game G5, c∗ ← Enc(pk,m∗) is replaced with an encryption of 0. Since in game G5,
(pk, c∗) is independent of m∗, we can apply the second statement of O2H that upper bounds the
probability of finding an independent point m∗, relative to the number of queries and the size of the
search spaceM. We obtain

Pr[GA
5 ⇒ 1] ≤ 4qG

|M|
.

To upper bound |Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]|, consider adversary BIND against the IND-CPA security
of PKE, also given in Figure 8. BIND runs in the time that is required to run A and to simulate
the measured version of oracle G for qG queries. BIND perfectly simulates game G4 if run in game
IND-CPA0 and game G5 if run in game IND-CPA1, therefore,

|Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]| = AdvIND-CPA
PKE (BIND) .

Collecting the probabilities yields

Pr[GA
4 ⇒ 1] ≤ AdvIND-CPA

PKE (BIND) + 4qG
|M|

.

ut

3.2 Transformation FO 6⊥
m and correctness errors

Transformation SXY [43] got rid of the additional hash (sometimes called key confirmation) that was
included in [28]’s quantum transformation QU 6⊥m. SXY is essentially the (classical) transformation
U 6⊥m that was also given in [28], and apart from doing without the additional hash, it comes with a
tight security reduction in the QROM. SXY differs from the (classical) transformation U6⊥m only in
the regard that it reencrypts during decapsulation. (In [28], reencryption is done during decryption
of T.)

The security proof given in [43] requires the underlying encryption scheme to be perfectly correct,
and it turned out that their analysis cannot be trivially adapted to take possible decryption failures
into account in a generic setting. A discussion of this matter is given in the full version. What
we show instead is that the combined transformation FO 6⊥m = U 6⊥m[T[−,G],H] turns any encryption
scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure in the QROM, even if the
underlying encryption scheme comes with a small probability of decryption failure. Our reduction is
tighter as the (combined) reduction in [43] due to our tighter security proof for T.
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The Construction. To PKE = (KG,Enc,Dec) with message spaceM and randomness space R,
and random oracles H :M→K, G :M→R, and an additional internal random oracle Hr : C → K
that can not be directly accessed, we associate KEM = FO 6⊥m[PKE,G,H] := U6⊥m[T[PKE,G],H], where
the algorithms of KEM = (KG,Encaps,Decaps) are given in Figure 9.

Encaps(pk)
01 m ←$ M
02 c := Enc(pk,m; G(m))
03 K := H(m)
04 return (K , c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
07 return K := Hr(c)
08 else return K := H(m′)

Fig. 9: Key encapsulation mechanism KEM = FO 6⊥m[PKE,G,H] = U6⊥m[T[PKE,G],H]. Oracle Hr is
used to generate random values whenever reencryption fails. This strategy is called implicit reject.
Amongst others, it is used in [28], [43], and [32]. For simplicity of the proof, Hr is modelled as an
internal random oracle that cannot be accessed directly. For implementation, it would be sufficient
to use a PRF.

Security of KEM. The following theorem (whose proof is essentially the same as in [43] except for
the consideration of possible decryption failure) establishes that IND-CCA security of KEM reduces
to DS and IND-CPA security of PKE, in the quantum random oracle model.

Theorem 2 (PKE DS + IND-CPA QROM⇒ KEM IND-CCA). Assume PKE to be δ-correct, and to
come with a fake sampling algorithm Enc such that PKE is εdis-disjoint. Then, for any (quantum)
IND-CCA adversary A issuing at most qD (classical) queries to the decapsulation oracle Decaps,
at most qH quantum queries to H, and at most qG quantum queries to G, there exist (quantum)
adversaries BDS and BIND such that

AdvIND-CCA
KEM (A) ≤ 8 · (2 · qG + qH + qD + 4)2 · δ + AdvDS

PKE(BDS)

+ 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
+ εdis ,

and the running time of BDS and BIND is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at most qD queries
to Decaps, at most qH queries to the quantum random oracle H, and at most qG queries to the
quantum random oracle G. Consider the sequence of games given in Figure 10.
Game G0. Since game G0 is the original IND-CCA game,

AdvIND-CCA
KEM (A) = |Pr[GA

0 ⇒ 1]− 1/2| .

Game G1. In game G1, we enforce that no decryption failure will occur: For fixed (pk, sk) and
message m ∈M, let

Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m}
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GAMES G0 - G6
01 (pk, sk)← KG
02 Hr ←$ KC
03 G←$ RM �G0, G4 - G6
04 Pick 2q-wise hash f �G1 - G3
05 G := Gpk,sk �G1 - G3
06 H←$ KM �G0 - G1
07 Hq ←$ KC �G2 - G6
08 H := Hq(Enc(pk,−; G(−))) �G2 - G6
09 b ←$ F2
10 m∗ ←M
11 c∗ := Enc(pk,m∗; G(m∗)) �G0 - G4
12 c∗ ← Enc(pk) �G5 - G6
13 K∗0 := H(m∗) �G0 - G1
14 K∗0 := Hq(c∗) �G2 - G5
15 K∗0 ←$ K �G6
16 K∗1 ←$ K
17 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
18 return Jb′ = bK

Decaps(c 6= c∗) �G0 - G2

19 m′ := Dec(sk, c)
20 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
21 return K := Hr(c)
22 else
23 return K := H(m′) �G0 - G1
24 return K := Hq(c) �G2 - G6

Decaps(c 6= c∗) �G3 - G6
25 return K := Hq(c)

Gpk,sk(m)
26 r := Sample(R\Rbad(pk, sk,m); f (m))
27 return r

Fig. 10: Games G0 - G6 for the proof of Theorem 2. f (lines 04 and 26) is an internal 2q-wise
independent hash function, where q := qG + qH + 2 · qD + 1, that cannot be accessed by A. Sample(Y )
is a probabilistic algorithm that returns a uniformly distributed y ←$ Y . Sample(Y ; f (m)) denotes
the deterministic execution of Sample(Y ) using explicitly given randomness f (m).

denote the set of “bad” randomness. We replace random oracle G in line 05 with Gpk,sk that only
samples from good randomness. Further, define

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (2)

as the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). With this notation,
δ = E[maxm∈M δ(pk, sk,m)], where the expectation is taken over (pk, sk)← KG.

To upper bound |Pr[GA
0 = 1]− Pr[GA

1 = 1]|, we construct an (unbounded, quantum) adversary
B against the generic distinguishing problem with bounded probabilities GDPB (see Lemma 1) in
Figure 11, issuing qG + qD + 1 queries to F. B draws a key pair (pk, sk) ← KG and computes the
parameters λ(m) of the generic distinguishing problem as λ(m) := δ(pk, sk,m), which are bounded
by λ := δ(pk, sk). To analyze B, we first fix (pk, sk). For each m ∈ M, by the definition of game
GDPBλ,1, the random variable F(m) is bernoulli-distributed according to Bλ(m) = Bδ(pk,sk,m). By
construction, the random variable G(m) defined in line 28 if F(m) = 0 and in line 30 if F(m) = 1 is
uniformly distributed in R. Therefore, G is a (quantum-accessible) random oracle, and B|F〉 perfectly
simulates game G0 if executed in game GDPBλ,1. Since B|F〉 also perfectly simulates game G1 if
executed in game GDPBλ,0,

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| = |Pr[GDPBB
λ,1 = 1]− Pr[GDPBB

λ,0 = 1]| ,

and according to Lemma 1,

|Pr[GDPBB
λ,1 = 1]− Pr[GDPBB

λ,0 = 1]| ≤ 8 · (qG + qD + 2)2 · δ .
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B1 = B′1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

B|Hr〉,|H〉,|F〉
2

05 Pick 2q-wise hash f
06 b ←$ F2
07 m∗ ←M
08 c∗ := Enc(pk,m∗; G(m∗))
09 K∗0 := H(m∗)
10 K∗1 ←$ K
11 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
12 return Jb′ = bK

B′2
|Hr〉,|Hq〉,|F〉

13 Pick 2q-wise hash f
14 H := Hq(Enc(pk,−; G(−)))
15 b ←$ F2
16 m∗ ←M
17 c∗ := Enc(pk,m∗; G(m∗))
18 K∗0 := Hq(c∗)
19 K∗1 ←$ K
20 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
21 return Jb′ = bK

Decaps(c 6= c∗) �Adversary B
22 m′ := Dec′(sk, c)
23 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
24 return K := Hr(c)
25 else return K := H(m′)

Decaps(c 6= c∗) �Adversary B′
26 return K := Hq(c)

G(m)
27 if F(m) = 0
28 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
29 else
30 G(m) := Sample(Rbad(pk, sk,m); f (m))
31 return G(m)

Fig. 11: Adversaries B and B′ executed in game GDPBδ(pk,sk) with access to F (and additional oracles
Hr and H or Hq, respectively) for the proof of Theorem 2. Parameters δ(pk, sk,m) are defined in
Equation (2). Function f (lines 28 and 30) is an internal 2q-wise independent hash function, where
q := qG + qD + 1 for B, and qG + qH + 1 for B′, that cannot be accessed by A.

Game G2. In game G2, we prepare getting rid of the secret key by plugging in encryption
into random oracle H: Instead of drawing H ←$ KM, we draw Hq ←$ KC in line 07 and define
H := Hq(Enc(pk,−; G(−))) in line 08. For consistency, we also change key K∗0 in line 14 from
letting K∗0 := H(m∗) to letting K∗0 := Hq(c∗), which is a purely conceptual change since c∗ =
Enc(pk,m∗; G(m∗)). Additionally, we make the change of H explicit in oracle Decaps, i.e., we change
oracle Decaps in line 24 such that it returns K := Hq(c) whenever Enc(pk,m′; G(m′)) = c. Since G
only samples from good randomness, encryption is rendered perfectly correct and hence, injective.
Since encryption is injective, H still is uniformly random. Furthermore, since we only change Decaps
for ciphertexts c where c = Enc(pk,m′; G(m′)), we maintain consistency of H and Decaps. In
conclusion, A’s view is identical in both games and

Pr[GA
1 = 1] = Pr[GA

2 = 1] .

Game G3. In game G3, we change oracle Decaps such that it always returns K := Hq(c), as
opposed to returning K := Hr(c) as in game G2 whenever decryption or reencryption fails (see
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line 21). We argue that this change does not affect A’s view: If there exists no message m such
that c = Enc(pk,m; G(m)), oracle Decaps(c) returns a random value (that can not possibly
correlate to any random oracle query to H) in both games, therefore Decaps(c) is a random value
independent of all other input to A in both games. And if there exists some message m such
that c = Enc(pk,m; G(m)), Decaps(c) would have returned Hq(c) in both games, anyway: Since
G(m) ∈ R \ Rbad(pk, sk,m) for all messages m, it holds that m′ := Dec(sk, c) = m 6= ⊥ and that
Enc(pk,m′; G(m′)) = c. Hence, A’s view is identical in both games and

Pr[GA
2 = 1] = Pr[GA

3 = 1] .

Game G4. In game G4, we switch back to using G ←$ RM instead of Gpk,sk . With the same
reasoning as for the gamehop from game G0 to G1,

|Pr[GA
3 = 1]− Pr[GA

4 = 1]| = |Pr[GDPBB′
λ,1 = 1]− Pr[GDPBB′

λ,0 = 1]|
≤ 8 · (qG + qH + 2)2 · δ ,

where adversary B′ (that issues at most issuing qG + qH + 1 queries to F) is also given in Figure 11.
So far, we established

AdvIND-CCA
KEM (A) ≤ |Pr[GA

4 ⇒ 1]− 1/2|+ 8 · (2 · qG + qH + qD + 4)2 · δ .

The rest of the proof proceeds similiar to the proof in [43], aside from the fact that we consider
the particular scheme T[PKE,G] instead of a generic encryption scheme that is deterministically DS.
Game G5. In game G5, the challenge ciphertext c∗ gets decoupled from message m∗ by sampling
c∗ ← Enc(pk) in line 12 instead of letting c∗ := Enc(pk,m∗; G(m∗)). Consider the adversary CDS
against the disjoint simulatability of T[PKE,G] given in Figure 12. Since CDS perfectly simulates
game G4 if run with deterministic encryption c∗ := Enc(pk,m∗; G(m∗)) of a random message m∗,
and game G5 if run with a fake ciphertext,

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| = AdvDS
T[PKE,G](CDS), ,

and according to Lemma 2, there exist an adversary BDS and an adversary BIND with roughly the
same running time such that

AdvDS
T[PKE,G](CDS) ≤AdvDS

PKE(BDS) + 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
.

Game G6. In game G6, the game is changed in line 15 such that it always uses a randomly picked
challenge key. Since both K∗0 and K∗1 are independent of all other input to A in game G6,

Pr[GA
6 ⇒ 1] = 1/2 .

It remains to upper bound |Pr[GA
5 = 1] − Pr[GA

6 = 1]|. To this end, it is sufficient to upper
bound the probability that any of the queries to Hq could possibly contain c∗. Each query to Hq
is either a classical query, triggered by A querying Decaps on some ciphertext c, or a query in
superposition, triggered by A querying H. Since queries to Decaps on c∗ are explicitly forbidden,
the only possibility would be one of A’s queries to H. A’s queries to H trigger queries to Hq that are
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CDS
|G〉,|Hr〉|Hq〉(pk, c∗)

01 b ←$ F2
02 K∗0 := Hq(c∗)
03 K∗1 ←$ K
04 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
05 return Jb′ = bK

Decaps(c 6= c∗)
06 return K := Hq(c)

Fig. 12: Adversary CDS (with access to additional oracles Hr and Hq) against the disjoint simulatability
of T[PKE,G] for the proof of Theorem 2.

of the form
∑

m αm|Enc(pk,m; G(m))〉. They cannot contain c∗ unless there exists some message m
such that Enc(pk,m; G(m)) = c∗. Since we assume PKE to be εdis-disjoint,

|Pr[GA
5 = 1]− Pr[GA

6 = 1]| ≤ εdis .

3.3 CCA security wihout disjoint simulatability.

In the full version we show that transformation Punc can be used to waive the requirement of
DS: Plugging in transformation Punc (before using FO 6⊥m) achieves IND-CCA security from IND-CPA
security alone, as long as PKE is γ-spread (see Definition 3).

4 Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (KG, Init,Derinit,Derresp) consists of four algorithms.
Given the security parameter, the key generation algorithm KG outputs a key pair (pk, sk). The
initialisation algorithm Init, on input sk and pk ′, outputs a message M and a state st. The responder’s
derivation algorithm Derresp, on input sk ′, pk and M , outputs a key K , and also a message M ′. The
initiator’s derivation algorithm Derinit, on input sk, pk ′, M ′ and st, outputs a key K .
Running a Key Exchange Protocol between two Parties. To run a two-message key
exchange protocol, the algorithms KG, Init, Derinit, and Derresp are executed in an interactive manner
between two parties Pi and Pj with key pairs (ski , pki), (skj , pkj)← KG. To execute the protocol,
the parties call the algorithms in the following way:

1. Pi computes (M , st)← Init(ski , pkj) and sends M to Pj .
2. Pj computes (M ′,K ′)← Derresp(skj , pki ,M ) and sends M ′ to Pi .
3. Pi computes K := Derinit(ski , pkj ,M ′, st).

Note that in contrast to the holder Pi , the peer Pj will not be required to save any (secret) state
information besides the key K ′.
Our Security Model. We consider N parties P1, . . . ,PN , each holding a key pair (ski , pki), and
possibly having several sessions at once. The sessions run the protocol with access to the party’s
long-term key material, while also having their own set of (session-specific) local variables. The local
variables of each session, identified by the integer sID, are the following:
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Party Pi (pki , ski) Party Pj (pkj , skj)

(M , st)← Init(ski , pkj)

(M ′,K ′)← Derresp(skj , pki ,M )

K := Derinit(ski , pkj ,M ′, st)

M

M ′

1. An integer holder ∈ [N ] that points to the party running the session.
2. An integer peer ∈ [N ] that points to the party the session is communicating with.
3. A string sent that holds the message sent by the session.
4. A string received that holds the message received by the session.
5. A string st that holds (secret) internal state values and intermediary results required by the

session.
6. A string role that holds the information whether the session’s key was derived by Derinit or

Derresp.
7. The session key K .

In our security model, the adversary A is given black-box access to the set of processes Init, Derresp
and Derinit that execute the AKE algorithms. To model the attacker’s control of the network, we allow
A to establish new sessions via EST, to call either INIT and DERinit or DERresp, each at most
once per session (see Figure 13, page 23). Since both derivation processes can be called on arbitrary
input, A may relay their input faithfully as well as modify the data on transit. Moreover, the attacker
is additionally granted queries to reveal both secret process data, namely using oracles REVEAL,
REV-STATE and CORRUPT (see Figure 14, page 24). Oracles REVEAL and REV-STATE
both can be queried on an arbitrary session ID, with oracle REVEAL revealing the respective
session’s key (if already defined), and oracle REV-STATE revealing the respective session’s internal
state. Oracle CORRUPT can be queried on an arbitrary number i ∈ [N ] to reveal the respective
party’s long-term key material. Usage of this oracle allows the attacker to corrupt the test session’s
holder, the oracle therefore models the possibility of KCI attacks. Combined usage of oracles
REV-STATE and CORRUPT allows the attacker to obtain the state as well as the long-term
secret key on both sides of the session, the oracles therefore model the possibility of MEX attacks.
After choosing a test session, either the session’s key or a uniformly random key is returned. The
attacker’s task is to distinguish these two cases, to this end it outputs a bit.

Definition 8 (Key Indistinguishability of AKE).
We define games IND-AAb and IND-StAAb for b ∈ F2 as in Figure 13 and Figure 14.
We define the IND-AA advantage function of an adversary A against AKE as

AdvIND-AA
AKE (A) := |Pr[IND-AAA

1 ⇒ 1]− Pr[IND-AAA
0 ⇒ 1]| ,

and the IND-StAA advantage function of an adversary A against AKE excluding test-state-attacks as

AdvIND-StAA
AKE (A) := |Pr[IND-StAAA

1 ⇒ 1]− Pr[IND-StAAA
0 ⇒ 1]| .

We call a session completed iff sKey[sID] 6= ⊥, which implies that either DERresp(sID,m) or
DERinit(sID,m) was queried for some message m. We say that a completed session sID was recreated
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GAME IND-AAb
01 cnt := 0 �session counter
02 sID∗ := 0 �test session’s id
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 b′ ← AO(pk1, · · · , pkN )
06 if Trivial(sID∗)
07 return 0
08 return b′

EST((i, j) ∈ [N ]2)
09 cnt ++
10 holder[cnt] := i
11 peer[cnt] := j
12 return cnt

DERresp(sID,M )
13 if holder[sID] = ⊥
14 return ⊥ �Session not established
15 if sKey[sID] 6= ⊥ return ⊥ �no re-use
16 if role[sID] = "initiator" return ⊥
17 role[sID] := "responder"
18 (j, i) := (holder[sID],peer[sID])
19 (M ′,K ′)← Derresp(skj , pki ,M )
20 sKey[sID] := K ′
21 (received[sID], sent[sID]) := (M ,M ′)
22 return M ′

GAME IND-StAAb
23 cnt := 0 �session counter
24 sID∗ := 0 �test session’s id
25 for n ∈ [N ]
26 (pkn , skn)← KG
27 b′ ← AO(pk1, · · · , pkN )
28 if ATTACK(sID∗)
29 return 0
30 return b′

INIT(sID)
31 if holder[sID] = ⊥
32 return ⊥ �Session not established
33 if sent[sID] 6= ⊥ return ⊥ �no re-use
34 role[sID] := "initiator"
35 (i, j) := (holder[sID], peer[sID])
36 (M , st)← Init(ski , pkj)
37 (sent[sID], state[sID]) := (M , st)
38 return M

DERinit(sID,M ′)
39 if holder[sID] = ⊥ or state[sID] = ⊥
40 return ⊥ �Session not initalised
41 if sKey[sID] 6= ⊥ return ⊥ �no re-use
42 (i, j) := (holder[sID], peer[sID])
43 st := state[sID]
44 sKey[sID] := Derinit(ski , pkj ,M ′, st)
45 received[sID] := M ′

Fig. 13: Games IND-AAb and IND-StAAb for AKE, where b ∈ F2. The collection of oracles O used
in lines 05 and 27 is defined by O := {EST, INIT, DERresp, DERinit, REVEAL, REV-STATE,
CORRUPT,TEST}. Oracles REVEAL, REV-STATE, CORRUPT, and TEST are given in
Figure 14. Game IND-StAAb only differs from IND-AAb in ruling out one more kind of attack: A’s
bit b′ does not count in games IND-AAb if helper procedure Trivial returns true, see line 06. In
games IND-StAAb, A’s bit b′ does not count already if procedure ATTACK (that includes Trivial
and additionally checks for state-attacks on the test session) returns true, see line 28.

iff there exists a session sID′ 6= sID such that (holder[sID],peer[sID]) = (holder[sID′],peer[sID′]),
role[sID] = role[sID′], sent[sID] = sent[sID′], received[sID] = received[sID′] and state[sID] =
state[sID′]. We say that two completed sessions sID1 and sID2 match iff (holder[sID1],peer[sID1]) =
(peer[sID2], holder[sID2]), (sent[sID1], received[sID1]) = (received[sID2], sent[sID2]), and role[sID1]
6= role[sID2]. We say that A tampered with the test session sID∗ if at the end of the security game,
there exists no matching session for sID∗ Nonexistence of a matching session implies that A must
have called the derivation process on a message of its own choosing.

Helper procedure Trivial (Figure 14) is used in all games to exclude the possibility of trivial
attacks, and helper procedure ATTACK (also Figure 14) is defined in games IND-StAAb to exclude
the possibility of trivial attacks as well as one nontrivial attack that we will discuss below. During
execution of Trivial, the game creates list M(sID∗) of all matching sessions that were executed
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Trivial(sID∗) �helper procedure to exclude trivial attacks
46 if sKey[sID∗] = ⊥ return true �test session was never completed
47 v := false
48 (i, j) := (holder[sID∗], peer[sID∗])
49 if revealed[sID∗] return true �A trivially learned the test session’s key
50 if corrupted[i] and revState[sID∗]
51 return true �A may simply compute Der(ski , pkj , received[sID∗], state[sID∗])
52 M(sID∗) := ∅ �create list of matching sessions
53 for 1 ≤ ptr ≤ cnt
54 if (sent[ptr], received[ptr]) = (received[sID∗], sent[sID∗])

and (holder[ptr],peer[ptr]) = (j, i) and role[ptr] 6= role[sID∗]
55 M(sID∗) := M(sID∗) ∪ {ptr} �session matches
56 if revealed[ptr] v := true �A trivially learned the test session’s key via matching session
57 if corrupted[j] and revState[ptr]
58 v := true �A may simply compute Der(skj , pki , received[ptr], state[ptr])
59 if |M(sID∗)| > 1 return false �reward for adversary - protocol was not appropr. random.
60 if v = true return true
61 if M(sID∗) = ∅ and corrupted[j] return true �A tampered with test session, knowing skj
62 return false

ATTACK(sID∗) �helper procedure to exclude trivial attacks as well as state-attacks
63 if Trivial(sID∗) return true �trivial attack
64 if M(sID∗) = ∅ and revState[sID∗] return true �state-attack
65 return false

REVEAL(sID)
66 if sKey[sID] = ⊥ return ⊥
67 revealed[sID] := true
68 return sKey[sID]

CORRUPT(i ∈ [N ])
69 if corrupted[i] return ⊥
70 corrupted[i] := true
71 return ski

REV-STATE(sID)
72 if state[sID] = ⊥ return ⊥
73 revState[sID] := true
74 return state[sID]

TEST(sID) �only one query
75 sID∗ := sID
76 if sKey[sID∗] = ⊥
77 return ⊥
78 K∗0 := sKey[sID∗]
79 K∗1 ←$ K
80 return K∗b

Fig. 14: Helper procedures Trivial and ATTACK and oracles REVEAL, REV-STATE,
CORRUPT, and TEST of games IND-AA and IND-StAA defined in Figure 13.

throughout the game (see line 55), and A’s output bit b′ counts in games IND-AAb only if Trivial
returns false, i.e., if test session sID∗ was completed and all of the following conditions hold:

1. A did not obtain the key of sID∗ by querying REVEAL on sID∗ or any matching session, see
lines 49 and 56.

2. A did not obtain both the holder i’s secret key ski and the test session’s internal state, see line
51. We enforce that ¬corrupted[i] or ¬revState[sID∗] since otherwise, A is allowed to obtain all
information required to trivially compute Der(ski , pkj , received[sID∗], state[sID∗]).

3. A did not obtain both the peer’s secret key skj and the internal state of any matching session, see
line 58. We enforce that ¬corrupted[j] or ¬revState[sID] for all sID s. th. sID ∈M(sID∗) for the
same reason as discussed in 2: A could trivially compute Der(skj , pki , received[sID], state[sID])
for some matching session sID.
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4. A did not both tamper with the test session and obtain the peer j’s secret key skj , see line 61.
We enforce that M(sID∗) 6= ∅ or ¬corrupted[j] to exclude the following trivial attack: A could
learn the peer’s secret key skj via query CORRUPT[j] and either
- receive a message M by querying INIT on sID∗, compute (M ′,K ′) ← Derresp(skj , pki ,M )
without having to call DERresp, and then call DERinit(sID∗,M ′), thereby ensuring that
sKey[sID∗] = K ′,

- or compute (M , st)← Init(skj , pki) without having to call INIT, receive a message M ′ by
querying DERresp(sID∗,M ), and trivially compute Derinit(skj , pki ,M ′, st).

A’s output bit b′ only counts in games IND-StAAb if ATTACK returns false, i.e., if both of the
following conditions hold:

1. Trivial returns false
2. A did not both tamper with the test session and obtain its internal state, see line 64. We enforce

that M(sID∗) 6= ∅ or ¬revState[sID∗] in game IND-StAA for the following reason: In an active
attack, given that the test session’s internal state got leaked, it is possible for some protocols to
choose a message M ′ such that the result of algorithm Derinit(ski , pkj ,M ′, st) can be computed
without knowledge of any of the long-term keys ski or skj . In this setting, an adversary might
query INIT on sID∗, learn the internal state st by querying REV-STATE on sID∗, choose its
own message M ′ without a call to DERresp and finally call DERinit(sID∗,M ′), thereby being
enabled to anticipate the resulting key.

5 Transformation from PKE to AKE

Transformation FOAKE constructs a IND-StAA-secure AKE protocol from a PKE scheme that is
both DS and IND-CPA secure. If we plug in transformation Punc before applying FOAKE, we achieve
IND-StAA-security from CPA security alone.
The Construction. To a PKE scheme PKE = (KG,Enc,Dec) with message spaceM, and random
oracles G and H, we associate

AKE = FOAKE[PKE,G,H] = (KG, Init,Derresp,Derinit) .

The algorithms of AKE are defined in Figure 15.
IND-StAA Security of FOAKE. The following theorem establishes that IND-StAA security of AKE
reduces to DS and IND-CPA security of PKE (see Definition 6).

Theorem 3 (PKE DS + IND-CPA⇒ AKE IND-StAA). Assume PKE to be δ-correct, and to come
with a sampling algorithm Enc such that it is ε-disjoint. Then, for any IND-StAA adversary B that
establishes S sessions and issues at most qR (classical) queries to REVEAL, at most qG (quantum)
queries to random oracle G and at most qH (quantum) queries to random oracle H, there exists an
adversary ADS against the disjoint simulatability of T[PKE,G] issuing at most qG + 2qH + 3S queries
to G such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 ·N ) ·AdvDS

T[PKE,G](ADS) + 32 · (S + 3 ·N ) · (qG + 2qH + 4S)2 · δ
+ 4 · S · (S + N ) · εdis + S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,
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Init(ski , pkj):
01 mj ←$ M
02 cj := Enc(pkj ,mj ; G(mj))
03 (s̃k, p̃k)← KG
04 M := (p̃k, cj)
05 st := (s̃k,mj ,M )
06 return (M , st)

Derresp(skj , pki ,M ):
07 Parse (p̃k, cj) := M
08 mi , m̃ ←$ M
09 ci := Enc(pki ,mi ; G(mi))
10 c̃ := Enc(p̃k, m̃; G(m̃))
11 M ′ := (ci , c̃)
12 m′j := Dec(skj , cj)
13 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
14 K ′ := H′R(mi , cj , m̃, i, j,M ,M ′)
15 else
16 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
17 return (M ′,K ′)

Derinit(ski , pkj ,M ′, st):
18 Parse (ci , c̃) := M ′
19 Parse (s̃k,mj ,M := (p̃k, cj)) := st
20 m′i := Dec(ski , ci)
21 m̃′ := Dec(s̃k, c̃)
22 if m′i = ⊥

or ci 6= Enc(pki ,m′i ; G(m′i))
23 if m̃′ = ⊥
24 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
25 else
26 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
27 else if m̃′ = ⊥
28 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
29 else K := H(m′i ,mj , m̃′, i, j,M ,M ′)
30 return K

Fig. 15: IND-StAA secure AKE protocol AKE = FOAKE[PKE,G,H]. Oracles H′R and H′L1, H′L2 and
H′L3 are used to generate random values whenever reencryption fails. (For encryption, this strategy
is called implicit reject Amongst others, it is used in [28], [43] and [32].) For simplicity of the
proof, H′R and H′L1, H′L2 and H′L3 are internal random oracles that cannot be accessed directly. For
implementation, it would be sufficient to use a PRF.

and the running time of ADS is about that of B. Due to Lemma 2, there exist adversaries CDS and
CIND against PKE such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 ·N ) ·AdvDS

PKE(CDS)

+ 4 · S · (S + 3 ·N ) ·

√
(qG + 2qH + 3S) ·AdvIND-CPA

PKE (CIND) + 4(qG + 2qH + 3S)2

|M|
+ 32 · (S + 3 ·N ) · (qG + 2qH + 3S)2 · δ + 4 · S · (S + N ) · εdis

+ S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,

and the running times of CDS and CIND is about that of B.

Proof Sketch. To prove IND-StAA security of FOAKE[PKE,G,H], we consider an adversary B with
black-box access to the protocols’ algorithms and to oracles that reveal keys of completed sessions,
internal states, and long-term secret keys of participating parties as specified in game IND-StAA
(see Figure 13). Intuitively, B will always be able to obtain all-but-one of the three secret messages
mi , mj and m̃ that are picked during execution of the test session between Pi and Pj :

1. We first consider the case that B executed the test session honestly. Note that on the right-hand
side of the protocol there exists no state. We assume that B has learned the secret key of party
Pj and hence knows mj . Additionally, B could either learn the secret key of party Pi and thereby,
compute mi , or the state on the left-hand side of the protocol including s̃k, and thereby, compute
m̃, but not both.

2. In the case that B did not execute the test session honestly, B is not only forbidden to obtain
the long-term secret key of the test session’s peer, but also to obtain the test session’s state
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due to our restriction in game IND-StAA. Given that B modified the exchanged messages, the
test session’s side is decoupled from the other side. If the test session is on the right-hand side,
messages mj and m̃ can be obtained, but message mi can not because we forbid to learn peer i’s
secret key. If the test session is on the left-hand side, messages mi and m̃ can be obtained, but
message mj can not because we forbid both to learn the test session’s state and to learn peer j’s
secret key.

In every possible scenario of game IND-StAA, at least one message can not be obtained trivially and
is still protected by PKE’s IND-CPA security, and the respective ciphertext can be replaced with fake
encryptions due to PKE’s disjoint simulatability. Consequently, the session key K is pseudorandom.
A detailed, game-based proof is given in the full version.

So far we have ignored the fact that B has access to an oracle that reveals the keys of completed
sessions. This implicitly provides B a decryption oracle with respect to the secret keys ski and skj .
In our proof, we want to make use of the technique from [43] to simulate the decryption oracles by
patching encryption into the random oracle H. In order to extend their technique to PKE schemes
with non-perfect correctness, during the security proof we also need to patch random oracle G in
a way that (Enc′,Dec′) (relative to the patched G) provides perfect correctness. This strategy is
the AKE analogue to the technique used in our analysis of the Fujisaki-Okamoto transformation
given in Section 3, in particular, during our proof of Theorem 2. The latter also explains why our
transformation does not work with any deterministic encryption scheme, but only with the ones
that are derived by using transformation T. For more details on this issue, we also refer to the full
version.

5.1 IND-StAA security wihout disjoint simulatability

In the full version we show that transformation Punc can be used to waive the requirement of DS:
Plugging in transformation Punc before using FOAKE achieves IND-StAA security from IND-CPA
security alone, as long as PKE is γ-spread.
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