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Abstract. Currently, lattice-based cryptosystems are less efficient than
their number-theoretic counterparts (based on RSA, discrete logarithm,
etc.) in terms of key and ciphertext (signature) sizes. For adequate se-
curity the former typically needs thousands of bytes while in contrast
the latter only requires at most hundreds of bytes. This significant dif-
ference has become one of the main concerns in replacing currently de-
ployed public-key cryptosystems with lattice-based ones. Observing the
inherent asymmetries in existing lattice-based cryptosystems, we propose
asymmetric variants of the (module-)LWE and (module-)SIS assump-
tions, which yield further size-optimized KEM and signature schemes
than those from standard counterparts.

Following the framework of Lindner and Peikert (CT-RSA 2011) and
the Crystals-Kyber proposal (EuroS&P 2018), we propose an IND-CCA
secure KEM scheme from the hardness of the asymmetric module-LWE
(AMLWE), whose asymmetry is fully exploited to obtain shorter public
keys and ciphertexts. To target at a 128-bit quantum security, the public
key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes).

Our signature scheme bears most resemblance to and improves upon
the Crystals-Dilithium scheme (ToCHES 2018). By making full use of the
underlying asymmetric module-LWE and module-SIS assumptions and
carefully selecting the parameters, we construct an SUF-CMA secure
signature scheme with shorter public keys and signatures. For a 128-
bit quantum security, the public key (resp., signature) of our signature
scheme only has 1312 bytes (resp., 2445 bytes).

We adapt the best known attacks and their variants to our AMLWE
and AMSIS problems and conduct a comprehensive and thorough anal-
ysis of several parameter choices (aiming at different security strengths)
and their impacts on the sizes, security and error probability of lattice-
based cryptosystems. Our analysis demonstrates that AMLWE and AM-
SIS problems admit more flexible and size-efficient choices of parameters
than the respective standard versions.



1 Introduction

Despite the tremendous success of traditional public-key cryptography (also
known as asymmetric-key cryptography), the typical public-key cryptosystems in
widespread deployment on the Internet are based on number-theoretic hardness
assumptions such as factoring and discrete logarithms, and thus are susceptible
to quantum attacks [?] if large-scale quantum computers become a reality. With
the advancement of quantum computing technology in recent years [?], devel-
oping post-quantum cryptography (PQC) with resistance to both classical and
quantum computers has become a primary problem as well as a priority issue for
the crypto community. Actually, several government agencies and standardiza-
tion organizations have announced plans to solicit and standardize PQC algo-
rithms. In 2015, the NSA [?] has announced its schedule for migration to PQC.
In 2016, the NIST initiated its standardization process for post-quantum public-
key encryption (PKE), key-establishment (KE) and digital signatures. Among
the 69 PQC submissions received worldwide, 17 candidate PKE and KE algo-
rithms (e.g., Kyber [?]), and 9 candidate signature schemes (e.g., Dilithium [?])
have been selected to the 2nd round of the NIST PQC standardization, where
12 out of the total 26 2nd-round candidates are lattice-based algorithms.

Most lattice-based cryptosystems base their security on the conjectured quan-
tum hardness of the Short Integer Solution (SIS) problem [?,?] and the Learning
With Errors (LWE) problem [?]. Informally speaking, the two problems are both
related to solving systems of linear congruences (and are in some sense dual to
each other). Let n, m, q be integers and α, β be reals, and let χα be some dis-
tribution (e.g., a Gaussian distribution) with parameter α defined over Z. The
SIS problem SIS∞n,m,q,β in the infinity norm asks to find out a non-zero vector

x ∈ Zm, given a random matrix A
$←− Zn×m

q , such that Ax = 0 mod q and
∥x∥∞ ≤ β. Correspondingly, the search LWE problem LWEn,m,q,α searches for

s ∈ Zn
q from samples (A,b = As+e) ∈ Zm×n

q ×Zm
q , where A

$←− Zm×n
q , s

$←− Zn
q

and e
$←− χm

α . Decisional LWE problem asks to distinguish (A,b = As+e) from
uniform distribution over Zm×n

q × Zm
q . For certain parameters the two (search

and decisional) LWE problems are polynomially equivalent [?,?].
It has been shown that the two average-case problems SIS and LWE are at

least as hard as some worst-case lattice problems (e.g., Gap-SIVP) for certain
parameter choices [?,?]. Moreover, quantum algorithms are not known to have
substantial advantages (beyond polynomial speedup) over classical ones in solv-
ing these problems, which makes SIS and LWE ideal candidates for post-quantum
cryptography. We mention a useful variant of LWE, called the (Hermite) normal
form of LWE, where the secret s is sampled from noise distribution χn

α (instead
of uniform). The standard LWE and its normal form were known to be equiva-
lent up to a polynomial number of samples [?]. Furthermore, the use of a “small”
secret in LWE comes in handy in certain application scenarios, e.g., for better
managing the growth of the noise in fully homomorphic encryption [?,?].

SIS is usually used in constructing signature schemes, and LWE is better
suited for PKE schemes. However, the standard LWE and SIS problems seem to
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suffer some constraints in choosing parameters for some practical cryptographic
schemes. For example, the LWE parameter for achieving a 128-bit (quantum)
security typically cannot provide a matching decryption failure probability ν
(say ν = 2−128) for the resulting LWE-based PKE scheme. Note that a larger ν
(i.e., ν > 2−128) may sacrifice the security, and a smaller ν (i.e., ν < 2−128) may
compromise the performance. To this end, we introduce special variants of SIS
and LWE, referred to as asymmetric SIS (ASIS) and asymmetric LWE (ALWE).

Informally, the ASIS problem ASIS∞n,m1,m2,q,β1,β2
refers to the problem that,

given a random A
$←− Zn×(m1+m2)

q , find out a non-zero x = (xT
1 ,x

T
2 )

T ∈ Zm1+m2

satisfying Ax = 0 mod q, ∥x1∥∞ ≤ β1 and ∥x2∥∞ ≤ β2. It is easy to see that
ASIS∞n,m1,m2,q,β1,β2

is at least as hard as SIS∞n,m1+m2,q,max(β1,β2). Thus, we have

SIS∞n,m1+m2,q,max(β1,β2) ⪯ ASIS∞n,m1,m2,q,β1,β2
⪯ SIS∞n,m1+m2,q,min(β1,β2).

This lays the theoretical foundation for constructing secure signatures based on
the ASIS problem. In addition, we investigate a class of algorithms for solving
the ASIS problem, and provide a method for selecting appropriate parameters
for different security levels with reasonable security margin.

Correspondingly, the ALWE problem ALWEn,m,q,α1,α2 asks to find out s ∈
Zn
q from samples (A,b = As+e) ∈ Zm×n

q ×Zm
q , whereA

$←− Zm×n
q , s

$←− χn
α1
, e

$←−
χm
α2
. The hardness of ALWE may depend on the actual distribution from which

s (or e) is sampled, and thus we cannot simply compare the hardness of LWE
and ALWE like we did for SIS and ASIS. However, the relation below remains
valid for our parameter choices in respect to all known solving algorithms despite
the lack of a proof in general:4

LWEn,m,q,min(α1,α2) ⪯ ALWEn,m,q,α1,α2 ⪯ LWEn,m,q,max(α1,α2).

More importantly, the literature [?,?,?] suggests that ALWE can reach compara-
ble hardness to standard LWE as long as the secret is sampled from a distribution
(i.e., χn

α1
) with sufficiently large entropy (e.g., uniform distribution over {0, 1}n)

and appropriate values are chosen for other parameters. This shows the possibil-
ity of constructing secure cryptographic schemes based on the ALWE problem.
We also note that Cheon et al. [?] introduced a variant of LWE that is quite
related to ALWE, where s and e are sampled from different distributions (no-
tice that s and e in the ALWE problem are sampled from the same distribution
χ, albeit with different parameters α1 and α2). By comprehensively comparing,
analyzing and optimizing the state-of-the-art LWE solving algorithms, we estab-
lish approximate relations between parameters of ALWE and LWE, and suggest
practical parameter choices for several levels of security strength intended for
ALWE.

The definitions of the aforementioned variants can be naturally generalized
to the corresponding ring and module versions, i.e., ring-LWE/SIS and module-
LWE/SIS. As exhibited in [?,?], module-LWE/SIS allows for better trade-off

4 In the full version, we show that the relations actually hold for discrete Gaussian
distributions and binomial distributions under certain choices of parameters.
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between security and performance. We will use the asymmetric module-LWE
problem (AMLWE) and the asymmetric module-SIS problem (AMSIS) to build
a key encapsulation mechanism (KEM) and a signature scheme of smaller sizes.

Technically, our KEM scheme is mainly based on the PKE schemes in [?,?],
except that we make several modifications to utilize the inherent asymmetry of
the (M)LWE secret and noise in contributing to the decryption failure probabili-
ties, which allow us to obtain smaller public keys and ciphertexts. In Section 3.1,
we will further discuss this asymmetry in the design of existing schemes, and il-
lustrate our design rationale in more details. For a targeted 128-bit security, the
public key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes).

Our signature scheme bears most resemblance to Dilithium in [?]. The main
difference is that we make several modifications to utilize the asymmetric pa-
rameterization of the (M)LWE and (M)SIS to reach better trade-offs among
computational costs, storage overhead and security, which yields smaller public
keys and signatures without sacrificing the security or computational efficiency.
In Section 4.1, we will further discuss the asymmetries in existing constructions,
and illustrate our design rationale in more details. For a targeted 128-bit quan-
tum security, the public key (resp., signature) of our signature scheme only has
1312 bytes (resp., 2445 bytes).

We make a comprehensive and in-depth study on the concrete hardness of
AMLWE and AMSIS by adapting the best known attacks (that were originally
intended for MLWE and MSIS respectively) and their variants (that were mod-
ified to solve AMLWE and AMSIS respectively), and provide several choices
of parameters for our KEM and signature schemes aiming at different security
strengths. The implementation of our schemes (and its comparison with the
counterparts) confirms that our schemes are practical and competitive. We com-
pare our KEM with NIST round2 lattice-based PKEs/KEMs in Section 1.1, and
compare our signature with NIST round2 lattice-based signatures in Section 1.2.

1.1 Comparison with NIST Round2 Lattice-based PKEs/KEMs

As our KEM is built upon Kyber [?], we would like to first give a slightly detailed
comparison between our KEM and Kyber-round2 [?] in Table 1. Our software
is implemented in C language with optimized number theory transform (NTT)
and vector multiplication using AVX2 instructions. The running times of KeyGen,
Encap and Decap algorithms are measured in averaged CPU cycles of 10000 times
running on a 64-bit Ubuntu 14.4 LTS ThinkCenter desktop (equipped with Intel
Core-i7 4790 3.6 GHz CPU and 4GB memory). The sizes of public key |pk|, secret
key |sk|, ciphertext |C| are measured in terms of bytes. The column |ss| gives the
size of the session key that is encapsulated by each ciphertext. The column “Dec.
Failure” lists the probabilities of decryption failure. The last column “Quant.
Sec.” gives the estimated quantum security level expressed in bits.

Note that for X ∈ {512, 768, 1024} aiming at NIST Category I, III and V,
the estimated quantum security of our KEM ΠKEM-X is slightly lower than that
of Kyber-X, but we emphasize that our parameter choices have left out suffi-
cient security margin reserved for further development of attacks. For example,
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Table 1. Comparison between Our KEM ΠKEM and Kyber-round2

Schemes
|pk| |sk| |C| |ss| KeyGen Encap Decap Dec. Quant.

(Bytes) (Bytes) (Bytes) (Bytes) (AVX2) (AVX2) (AVX2) Failure Sec.

Kyber-512 800 1632 736 32 37 792 54 465 41 614 2−178 100

ΠKEM-512 672 1568 672 32 66 089 70 546 56 385 2−82 102

ΠKEM-512† 800 1632 640 32 - - - 2−82 99

Kyber-768 1184 2400 1088 32 66 760 86 608 69 449 2−164 164

ΠKEM-768 896 2208 992 32 84 504 93 069 76 568 2−128 147

ΠKEM-768† 1184 2400 960 32 - - - 2−130 157

Kyber-1024 1568 3168 1568 32 88 503 116 610 96 100 2−174 230

ΠKEM-1024 1472 3392 1536 64 115 268 106 740 92 447 2−211 213

ΠKEM-1024† 1728 3648 1472 64 - - - 2−198 206

our ΠKEM-768 reaches an estimated quantum security of 147 bits and a 2−128

decryption failure probability, which we believe is sufficient to claim the same
targeted 128-bit quantum security (i.e., NIST Category III) as Kyber-768. We
also note that the parameter choice of ΠKEM-1024 is set to encapsulate a 64-byte
session key, which is twice the size of that achieved by Kyber-1024. This deci-
sion is based on the fact that a 32-byte session key may not be able to provide
a matching security strength, say, more than 210-bit quantum security (even if
the Grover algorithm [?] cannot provide a real quadratic speedup over classical
algorithms in practice).

We note that the Kyber team [?] removed the public-key compression to
purely base their Kyber-round2 scheme on the standard MLWE problem and
obtained (slightly) better computational efficiency (for saving several operations
such as NTT). On the first hand, as commented by the Kyber team that “we
strongly believe that this didn’t lower actual security”, we prefer to use the
public-key compression to obtain smaller public key sizes (with the cost of a
slightly worse computational performance). On the other hand, one can remove
the public-key compression and still obtain a scheme with shorter ciphertext
size (see ΠKEM-X† in Table 1), e.g., a reduction of 128 bytes in the ciphertext
size over Kyber-768 at the targeted 128-bit quantum security by using a new
parameter set (n, k, q, η1, η2, du, dv) = (256, 3, 3329, 1, 2, 9, 3) (see ΠKEM-X† in
Table 5).

We also give a comparison between our KEM and NIST round2 lattice-based
PKEs/KEMs in Table 2. For simplicity, we only compare those schemes under the
parameter choices targeted at IND-CCA security and 128-bit quantum security
in terms of space and time (measured in averaged CPU cycles of running 10000
times) on the same computer. We failed to run the softwares of the schemes
marked with ‘∗’ on our experiment computer (but a public evaluation on the
Round1 submissions suggests that Three-Bears may have better computational
efficiency than Kyber and ours). As shown in Table 2, our ΠKEM has a very
competitive performance in terms of both sizes and computational efficiency.
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Table 2. Comparison between ΠKEM and NIST Round2 Lattice-based PKEs/KEMs

Schemes
|pk| |sk| |C| KeyGen Encap Decap Problems

(Bytes) (Bytes) (Bytes) (AVX2) (AVX2) (AVX2)

Frodo∗ 15 632 31 296 15 744 - - - LWE

Kyber 1184 2400 1088 66 760 86 608 69 449 MLWE

LAC 1056 2080 1188 108 724 166 458 208 814 RLWE

Newhope 1824 3680 2208 146 909 233 308 237 619 RLWE

NTRU-Prime∗ 1158 1763 1039 - - - NTRU variant

NTRU 1138 1450 1138 378 728 109 929 75 905 NTRU

Round5∗ 983 1031 1119 - - - GLWR

Saber 992 2304 1088 117 504 139 044 133 875 MLWER

Three-Bears∗ 1194 40 1307 - - - MLWE variant

ΠKEM-768 896 2208 992 84 504 93 069 76 568 AMLWE

1.2 Comparison with NIST Round2 Lattice-based Signatures

We first give a slightly detailed comparison between our signature ΠSIG with
Dilithium-round2 [?] in Table 3. Similarly, the running times of the KeyGen,
Sign and Verify algorithms are measured in the average number of CPU cycles
(over 10000 times) on the same machine configuration as before.The sizes of
public key |pk|, secret key |sk|, signature |σ| are counted in bytes. As shown in
Table 3, the estimated quantum security of ΠSIG-1024 is slightly lower than that
of Dilithium-1024, but those at ΠSIG-1280 and ΠSIG-1536 are slightly higher.
In all, our scheme has smaller public key and signatures while still providing
comparable efficiency to (or even slightly faster than) Dilithium-round2.

Table 3. Comparison between Our Signature ΠSIG and Dilithium-round2

Schemes
|pk| |sk| |σ| KeyGen Sign Verify Quantum

(Bytes) (Bytes) (Bytes) (AVX2) (AVX2) (AVX2) Sec.

Dilithium-1024 1184 2800 2044 140 181 476 598 129 256 91

ΠSIG-1024 1056 2448 1852 126 719 407 981 113 885 90

Dilithium-1280 1472 3504 2701 198 333 657 838 187 222 125

ΠSIG-1280 1312 3376 2445 198 876 634 128 170 283 128

Dilithium-1536 1760 3856 3366 269 430 639 966 260 503 158

ΠSIG-1536 1568 3888 3046 296 000 800 831 259 855 163

We also compare our signature with NIST round2 lattice-based signatures:
Falcon, qTESLA and Dilithium, where the first one is an instantiation of full-
domain hash and trapdoor sampling [?] on NTRU lattices (briefly denoted as
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FDH-like methodology), and the last two follows the more efficient Fiat-Shamir
heuristic with rejection sampling (briefly denoted as FS-like methodology) [?].
As we failed to run the softwares of Falcon and qTESLA on our experiment
computer (but a public evaluation on the round1 submissions suggests that Fal-
con and qTESLA are probably much slower than Dilithium), we only compare
the sizes of those schemes at all parameter choices in Table 4. Note that the
qTESLA team had dropped all the parameter sets of qTESLA-round2, the fig-
ures in Table 4 corresponds to their new choices of parameter sets.

Table 4. Comparison between ΠSIG and NIST Round2 Lattice-based Signatures

NIST
Schemes

|pk| |sk| |σ|
Problems Methodology

Category (Bytes) (Bytes) (Bytes)

I

Falcon-512 897 4097 690 NTRU FDH-like

qTESLA-1024 14 880 5 184 2 592 RLWE

FS-likeDilithium-1024 1184 2800 2044 MLWE, MSIS

ΠSIG-1024 1056 2448 1852 AMLWE, AMSIS

II
Dilithium-1280 1472 3504 2701 MLWE, MSIS

FS-like
ΠSIG-1280 1312 3376 2445 AMLWE, AMSIS

III

Falcon-1024 1793 8193 1330 NTRU FDH-like

qTESLA-2048 38 432 12 352 5 664 RLWE

FS-likeDilithium-1536 1760 3856 3366 MLWE, MSIS

ΠSIG-1536 1568 3888 3046 AMLWE, AMSIS

1.3 Organizations

Section 2 gives the preliminaries and background information. Section 3 describes
the KEM scheme from AMLWE. Section 4 presents the digital signature scheme
from AMLWE and AMSIS. Section 5 analyzes the concrete hardness of AMLWE
and AMSIS by adapting the best known attacks.

2 Preliminaries

2.1 Notation

We use κ to denote the security parameter. For a real number x ∈ R, ⌈x⌋ denotes
the closest integer to x (with ties being rounded down, i.e., ⌈0.5⌋ = 0). We denote
by R the ring R = Z[X]/(Xn + 1) and by Rq the ring Rq = Zq[X]/(Xn + 1),
where n is a power of 2 so that Xn + 1 is a cyclotomic polynomial. For any
positive integer η, Sη denotes the set of ring elements of R that each coefficient
is taken from {−η,−η + 1 . . . , η}. The regular font letters (e.g., a, b) represent
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elements in R or Rq (including elements in Z or Zq), and bold lower-case letters
(e.g., a, b) denote vectors with coefficients in R or Rq. By default, all vectors
will be column vectors. Bold upper-case letters (e.g., A, B) represent matrices.
We denote by aT and AT the transposes of vector a and matrix A respectively.

We denote by x
$←− D sampling x according to a distribution D and by x

$←− S
denote sampling x from a set S uniformly at random. For two bit-strings s and
t, s∥t denotes the concatenation of s and t. We use logb to denote the logarithm
function in base b (e.g., 2 or natural constant e) and log to represent loge. We
say that a function f : N → [0, 1] is negligible, if for every positive c and all
sufficiently large κ it holds that f(κ) < 1/κc. We denote by negl : N → [0, 1]
an (unspecified) negligible function. We say that f is overwhelming if 1 − f is
negligible.

2.2 Definitions

Modular reductions. For an even positive integer α, we define r′ = r mod± α
as the unique element in the range (−α

2 ,
α
2 ] such that r′ = r mod α. For an

odd positive integer α, we define r′ = r mod± α as the unique element in the
range [−α−1

2 , α−1
2 ] such that r′ = r mod α. For any positive integer α, we define

r′ = r mod+ α as the unique element in the range [0, α) such that r′ = r mod α.
When the exact representation is not important, we simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ∥w∥∞ to mean |w mod± q|.
The ℓ∞ and ℓ2 norms of a ring element w = w0 + w1X + · · ·+ wn−1X

n−1 ∈ R
are defined as follows:

∥w∥∞ = max
i
∥wi∥∞, ∥w∥ =

√
∥w0∥2∞ + . . .+ ∥wn−1∥2∞ .

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

∥w∥∞ = max
i
∥wi∥∞, ∥w∥ =

√
∥w1∥2 + . . .+ ∥wk∥2 .

Modulus switching. For any positive integers p, q, we define the modulus
switching function ⌈·⌋q→p as:

⌈x⌋q→p = ⌈(p/q) · x⌋ mod+ p.

It is easy to show that for any x ∈ Zq and p < q ∈ N, x′ = ⌈⌈x⌋q→p⌋p→q is an
element close to x, i.e,

|x′ − x mod± q| ≤
⌈
q

2p

⌋
.

When ⌈·⌋q→p is used to a ring element x ∈ Rq or a vector x ∈ Rk
q , the procedure

is applied to each coefficient individually.
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Binomial Distribution. The centered binomial distribution Bη with some pos-
itive integer η is defined as follows:

Bη =

{
η∑

i=1

(ai − bi) : (a1, . . . , aη, b1, . . . , bη)
$←− {0, 1}2η

}

When we write that sampling a polynomial g
$←− Bη or a vector of such polyno-

mials g
$←− Bη, we mean that sampling each coefficient from Bη individually.

2.3 High/Low Order Bits and Hints

Our signature scheme will adopt several simple algorithms proposed in [?] to
extract the “higher-order” bits and “lower-order” bits from elements in Zq. The
goal is that given an arbitrary element r ∈ Zq and another small element z ∈ Zq,
we would like to recover the higher order bits of r + z without needing to store
z. Ducas et al. [?] define algorithms that take r, z and generate a 1-bit hint
h that allows one to compute the higher order bits of r + z just using r and
h. They consider two different ways which break up elements in Zq into their
“higher-order” bits and “lower-order” bits. The related algorithms are described
in Algorithms 1–6. We refer the reader to [?] for the illustration of the algorithms.

The following lemmas claim some crucial properties of the above supporting
algorithms, which are necessary for the correctness and security of our signature
scheme. We refer to [?] for their proofs.

Lemma 1. Let q and α be positive integers such that q > 2α, q mod α = 1 and
α is even. Suppose that r, z are vectors of elements in Rq, where ∥z∥∞ ≤ α/2.
Let h,h′be vectors of bits. Then, algorithms HighBitsq, MakeHintq and UseHintq
satisfy the following properties:

– UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r+ z, α).
– Let v1 = UseHintq(h, r, α). Then ∥r− v1 · α∥∞ ≤ α+1. Furthermore, if the

number of 1’s in h is at most ω, then all except for at most ω coefficients of
r− v1 · α will have magnitude at most α/2 after centered reduction modulo
q.

– For any h,h′, if UseHintq(h, r, α) = UseHintq(h
′, r, α), then h = h′.

Lemma 2. If ∥s∥∞ ≤ β and ∥LowBitsq(r, α)∥∞ < α/2− β, then we have:

HighBitsq(r, α) = HighBitsq(r+ s, α).

3 An Improved KEM from AMLWE

Our scheme is based on the key encapsulation mechanism in [?,?]. The main
difference is that our scheme uses a (slightly) different hardness problem, which
gives us a flexible way to set the parameters for both performance and security.
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Algorithm 1: Power2Roundq(r, d)

1 r := r mod+ q;

2 r0 := r mod± 2d;

3 r1 := (r − r0)/2
d;

4 return (r1, r0);

Algorithm 2: Decomposeq(r, α)

1 r := r mod+ q;
2 r0 := r mod± α;
3 if r − r0 = q − 1 then
4 r1 := 0;
5 r0 := r0 − 1;

6 else
7 r1 := (r − r0)/α;
8 end
9 return (r1, r0);

Algorithm 3: HighBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r1;

Algorithm 4: LowBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r0;

Algorithm 5: MakeHintq(z, r, α)

1 r1 := HighBitsq(r, α);

2 v1 := HighBitsq(r + z, α);

3 if r1 ̸= v1 then
4 h := 1;
5 else
6 h := 0;
7 end
8 return h;
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Algorithm 6: UseHintq(h, r, α)

1 k := (q − 1)/α;
2 (r1, r0) := Decomposeq(r, α);

3 if h = 1 and r0 > 0 then
4 r1 := (r1 + 1) mod+ k;
5 end
6 if h = 1 and r0 ≤ 0 then
7 r1 := (r1 − 1) mod+ k;
8 end
9 return r1;

3.1 Design Rationale

For simplicity and clarity, we explain the core idea using the (A)LWE-based
public-key encryption (PKE) scheme as an example. Note that most LWE-based
PKE schemes mainly follow the framework in [?] up to the choices of parameters
and noise distributions. Let n, q ∈ Z be positive integers, and let χα ⊂ Z be a
discrete Gaussian distribution with standard variance α ∈ R. The LWE-based
PKE works as follows:

– Key generation: randomly choose A
$←− Zn×n

q , s, e
$←− χn

α and compute
b = As+ e. Return the public key pk = (A,b) and secret key sk = s.

– Encryption: given the public key pk = (A,b) and a plaintext µ ∈ {0, 1},
randomly choose r,x1

$←− χn
α, x2

$←− χα and compute c1 = AT r + x1, c2 =
bT r+ x2 + µ · ⌈ q2⌋. Finally, return the ciphertext C = (c1, c2).

– Decryption: given the secret key sk = s and a ciphertext C = (c1, c2),
compute z = c2 − sT c1 and output ⌈z · 2q ⌋ mod 2 as the decryption result.

For a honestly generated ciphertext C = (c1, c2) that encrypts plaintext
µ ∈ {0, 1}, we have:

z = c2 − sT c1 = µ ·
⌈q
2

⌋
+ eT r− sTx1 + x2︸ ︷︷ ︸

noise e′

. (1)

Thus, the decryption algorithm is correct as long as |e′| < q
4 . Since |x2| ≪

|eT r − sTx1|, the magnitude of |e′| mainly depends on |eT r − sTx1|. That is,
the LWE secret (s, r) and the noise (e,x1) contribute almost equally to the
magnitude of |e′|. Moreover, for a fixed n the expected magnitude of |eT r−sTx1|
is a monotonically increasing function of α:

larger α ⇒ larger |eT r− sTx1| ⇒ larger |e′|.

Let ν be the probability that the decryption algorithm fails, and let λ be the
complexity of solving the underlying LWE problem. Ideally, for a targeted secu-
rity strength κ, we hope that ν = 2−κ and λ = 2κ, since a large ν (i.e., ν > 2−κ)
will sacrifice the overall security, and a large λ (i.e., λ > 2κ) may compromise
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the overall performance. Since both ν and λ are strongly related to the ratio α/q
of the Gaussian parameter α and the modulus q, it is hard to come up with an
appropriate choice of (α, q) to simultaneously achieve the best of the two worlds.

To obtain smaller public keys and ciphertexts (and thus improve the com-
munication efficiency), many schemes use the modulus switching technique [?,?]
to compress public keys and ciphertexts. We refer to the following scheme that
adopts modulus switching technique to compress public keys and ciphertexts,
where p1, p2, p3 ∈ Z are parameters for compression (p1 for the public key and
p2, p3 for ciphertexts).

– Key generation: pick A
$←− Zn×n

q and s, e
$←− χn

α and compute b = As+ e.

Then, return the public key pk = (A, b̄ = ⌈b⌋q→p1
) and the secret key

sk = s.
– Encryption: given the public key pk = (A, b̄) and a plaintext µ ∈ {0, 1},

randomly choose r,x1
$←− χn

α, x2
$←− χα, and compute c1 = AT r + x1 and

c2 = ⌈b̄⌋Tp1→qr+x2+µ·⌈ q2⌋. Return the ciphertext C = (c̄1 = ⌈c1⌋q→p2
, c̄2 =

⌈c2⌋q→p3
).

– Decryption: given the secret key sk = s and a ciphertext C = (c̄1, c̄2),
compute z = ⌈c̄2⌋p3→q − sT ⌈c̄1⌋p2→q and output ⌈z⌋q→2 = ⌈z · 2q ⌋ mod 2 as
the decryption result.

Let

ē = ⌈⌈b⌋q→p1
⌋p1→q − b, x̄1 = ⌈⌈c1⌋q→p2

⌋p2→q − c1, x̄2 = ⌈⌈c2⌋q→p3
⌋p3→q − c2.

It is easy to verify ∥ē∥∞ ≤
q

2p1
, ∥x̄1∥∞ ≤

q
2p2

, and |x̄2| ≤ q
2p3

. For any valid

ciphertext C = (c̄1, c̄2) that encrypts µ ∈ {0, 1} we have

z = ⌈c̄2⌋p3→q − sT ⌈c̄1⌋p2→q

= µ · ⌈ q2⌋+ (e+ ē)T r− sT (x1 + x̄1) + (x2 + x̄2)︸ ︷︷ ︸
noise e′

(2)

Apparently, the smaller values for p1, p2, p3 the better compression rate is
achieved for public keys and ciphertexts. At the same time, however, by the def-
initions of ē, x̄1, x̄2 we know that smaller p1, p2, p3 also result in a larger noise e′.
Notice that when p1, p2, p3 are much smaller than q, we will have ∥ē∥∞ ≫ ∥e∥∞,
∥x̄1∥∞ ≫ ∥x1∥∞ and |x̄2| ≫ |x2|, which further leads to asymmetric roles of
(e,x1, x2) and (s, r) in contributing to the resulting size of |e′|, i.e., for spe-
cific (p1, p2, p3) decreasing (resp., increasing) ∥s∥∞ or ∥r∥∞ would significantly
reducing (resp., enlarging) the noise |e′|, and in contrast, changing the size of
∥e∥∞, ∥x1∥∞ and |x2| would not result in substantial change to |e′|.

The asymmetry observed above motivates the design of our ALWE-based
PKE, which uses different noise distributions χα1 and χα2 (i.e., same distribution
with different parameters α1 and α2) for the secrets (i.e., s and r) and the errors
(i.e., e,x1, x2), respectively.
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– Key generation: pick A
$←− Zn×n

q , s
$←− χn

α1
and e

$←− χn
α2
, compute b =

As + e. Then, return the public key pk = (A, b̄ = ⌈b⌋q→p1
) and the secret

key sk = s.
– Encryption: given the public key pk = (A, b̄) and a plaintext µ ∈ {0, 1},

randomly choose r
$←− χn

α1
,x1

$←− χn
α2
, x2

$←− χα2 , compute c1 = AT r+x1 and

c2 = ⌈b⌋Tp1→qr + x2 + µ ·⌈ q2⌋, and return the ciphertext C = (c̄1 = ⌈c1⌋q→p2

and c̄2 = ⌈c2⌋q→p3
).

– Decryption: Given the secret key sk = s and the ciphertext C = (c̄1, c̄2),
compute z = ⌈c̄2⌋p3→q − sT ⌈c̄1⌋p2→q and output ⌈z⌋q→2 = ⌈z · 2q ⌋ mod 2 as
the decryption result.

Similarly, for ciphertext C = (c̄1, c̄2) we have the same z and e′ as defined in (2),
where the difference is that now ∥s∥∞ and ∥r∥∞ are determined by α1, and that
∥e∥∞, ∥x1∥∞ and |x2| are determined by α2. Intuitively, we wish to use small
α1 in order to keep |e′| small, and at the same time choose relatively large α2 to
remedy the potential security loss due to the choice of a small α1.

While the intuition seems reasonable, it does not shed light on the choices of
parameters, in particular, how parameters α1 and α2 (jointly) affect security. To
this end, we consider the best known attacks and their variants against (A)LWE
problems, and obtain the following conclusions: Let χα1 and χα2 be subgaus-
sians with standard variances α1, α2 ∈ R respectively, then we have the following
approximate relation between the hardness of ALWE and LWE: the hardness of
ALWE with subgaussian standard variances α1, α2 ∈ R is polynomially equiva-
lent to the hardness of LWE with subgaussian standard variance

√
α1α2. Clearly,

the equivalence is trivial for α1 = α2. This confirms the feasibility of our idea:
use a small α1 to keep the probability ν of decryption failures small while pick
a relatively larger α2 remain the security of the resulting PKE scheme.

The above idea can be naturally generalized to the schemes based on the
ring and module versions of LWE. Actually, we will use AMLWE for achieving
a better trade-off between computational and communication costs.

3.2 The Construction

We now formally describe a CCA-secure KEM from AMLWE (and AMLWE-R).
For ease of implementation, we will use centered binomial distributions instead of
Gaussian distributions as in [?,?]. We first give an intermediate IND-CPA secure
PKE, which is then transformed into an IND-CCA secure KEM by applying a
tweaked Fujisaki-Okamoto (FO) transformation [?,?].

An IND-CPA Secure PKE Let n, q, k, η1, η2, dt, du, dv be positive integers.
Let H : {0, 1}n → Rk×k

q be a hash function, which is modeled as a random
oracle. The PKE scheme ΠPKE consists of three algorithms (KeyGen,Enc,Dec):

– ΠPKE.KeyGen(κ): randomly choose ρ
$←− {0, 1}n, s $←− Bk

η1
, e

$←− Bk
η2
, compute

A = H(ρ) ∈ Rk×k
q , t = As + e ∈ Rk

q and t̄ = ⌈t⌋q→2dt . Then, return the

public key pk = (ρ, t̄) and the secret key sk = s.
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– ΠPKE.Enc(pk, µ): given the public key pk = (ρ, t̄) and a plaintext µ ∈ R2,

randomly choose r
$←− Bk

η1
, e1

$←− Bk
η2
, e2

$←− Bη2 , compute A = H(ρ), u =

AT r+ e1, v = ⌈t̄⌋T2dt→qr+ e2, and return the ciphertext

C = (ū = ⌈u⌋q→2du , v̄ = ⌈v + µ · ⌈q
2
⌋⌋q→2dv ).

– ΠPKE.Dec(sk, C): given the secret key sk = s and a ciphertext C = (ū, v̄),
compute z = ⌈v̄⌋2dv→q − sT ⌈ū⌋2du→q, output ⌈z⌋q→2 = ⌈z · 2q ⌋ mod 2.

Let ct ∈ Rk satisfy that

⌈t̄⌋2dt→q = ⌈⌈As+ e⌋q→2dt ⌋2dt→q = As+ e− ct.

Let cu ∈ Rk satisfy that

⌈ū⌋2du→q = ⌈⌈AT r+ e1⌋q→2du ⌋2du→q = AT r+ e1 − cu.

Let cv ∈ R satisfy that

⌈v̄⌋2dv→q = ⌈⌈⌈t̄⌋T2dt→qr+ e2 + ⌈q/2⌋ · µ⌋q→2dv ⌋2dv→q

= ⌈t̄⌋T2dt→qr+ e2 + ⌈q/2⌋ · µ− cv
= (As+ e− ct)

T r+ e2 + ⌈q/2⌋ · µ− cv
= (As+ e)T r+ e2 + ⌈q/2⌋ · µ− cv − cTt r.

Using the above equations, we have

z = ⌈v̄⌋2dv→q − sT ⌈ū⌋2du→q

= eT r+ e2 − cv − cTt r− sTe1 + sT cu︸ ︷︷ ︸
= w

+⌈q/2⌋ · µ

= w + ⌈q/2⌋ · µ.

It is easy to check that for any odd number q, we have that µ = ⌈z⌋q→2 holds
as long as ∥w∥∞ < ⌈q/4⌋. In Section 3.4, we will choose the parameters such
that the decryption algorithm succeeds with overwhelming probability.

IND-CCA Secure KEM Let G : {0, 1}∗ → {0, 1}n, and H : {0, 1}∗ →
{0, 1}n × {0, 1}n be two hash functions, which are modeled as random oracles.
By applying a slightly tweaked Fujisaki-Okamoto (FO) transformation [?,?], we
can transform the above IND-CPA secure PKE ΠPKE into an IND-CCA secure
KEM (with implicit rejection) ΠKEM = (KeyGen,Encap,Decap) as follows.

– ΠKEM.KeyGen(κ): choose z
$←− {0, 1}n, compute (pk′, sk′) = ΠPKE.KeyGen(κ).

Then, return the public key pk = pk′ and the secret key sk = (pk′, sk′, z).
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– ΠKEM.Encap(pk): given the public key pk, randomly choose µ
$←− {0, 1}n,

compute µ′ = H(µ), (K̄, r) = G(µ′∥H(pk)) C = ΠPKE.Enc(pk, µ
′; r) and

K = H(K̄∥H(C)), where the notation ΠPKE.Enc(pk, µ
′; r) denotes running

the algorithm ΠPKE.Enc(pk, µ
′) with fixed randomness r. Finally, return the

ciphertext C and the encapsulated key K.
– ΠKEM.Decap(sk, C): given the secret key sk = (pk′, sk′, z) and a cipher-

text C, compute µ′ = ΠKEM.Dec(sk′, C) and (K̄ ′, r′) = G(µ′∥H(pk′)), C ′ =
ΠKEM.Enc(pk, µ′; r′). If C = C ′, return K = H(K̄ ′∥H(C)), else return
H(z∥H(C)).

3.3 Provable Security

In the full version [?], we will show that under the hardness of the AMLWE
problem and its rounding variant AMLWE-R (which is needed for compressing
the public key, see Appendix A), our scheme ΠPKE is provably IND-CPA secure.
Formally, we have the following theorem.

Theorem 1. Let H : {0, 1}n → Rk×k
q be a random oracle. If both problems

AMLWEn,q,k,k,η1,η2 and AMLWE-Rn,q,2dt ,k,k,η1,η2
are hard, then the scheme

ΠPKE is IND-CPA secure.

Since ΠKEM is obtained by applying a slighlty tweaked Fujisaki-Okamoto
(FO) transformation [?,?] to the PKE scheme ΠPKE, given the results in [?,?]
and Theorem 1, we have the following theorem.

Theorem 2. Under the AMLWE assumption and the AMLWE-R assumption,
ΠKEM is IND-CCA secure in the random oracle model.

Notice that the algorithm Decap will always return a random “session key”
even if the check fails (i.e., implicit rejection). Furthermore, the paper [?] showed
that if the underlying PKE is IND-CPA secure, then the resulting KEM with
implicit rejection obtained by using the FO transformation is also IND-CCA
secure in the quantum random oracle model (QROM). Given the results in [?]
and Theorem 1, we have the following theorem.

Theorem 3. Under the AMLWE assumption and the AMLWE-R assumption,
ΠKEM is IND-CCA secure in the QROM.

3.4 Choices of Parameters

In Table 5, we give three sets of parameters (namely, ΠKEM-512, ΠKEM-768 and
ΠKEM-1024) for ΠKEM, aiming at providing quantum security of at least 80,
128 and 192 bits, respectively. These parameters are carefully chosen such that
the decryption failure probabilities (i.e., 2−82, 2−128 and 2−211, respectively) are
commensurate with the respective targeted security strengths. A concrete esti-
mation of the security strength provided by the parameter sets will be given in
Section 5. Among them, ΠKEM-768 is the recommended parameter set. By the
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Table 5. Parameters Sets for ΠKEM

Parameters (n, k, q) (η1, η2) (dt, du, dv) |pk| |sk| |C| |ss| Dec. Fail. Quant. Sec.

ΠKEM-512 (256, 2, 7681) (2, 12) (10, 9, 3) 672 1568 672 32 2−82 100

ΠKEM-512† (256, 2, 3329) (1, 4) (−, 8, 4) 800 1632 640 32 2−82 99

ΠKEM-768 (256, 3, 7681) (1, 4) (9, 9, 4) 896 2208 992 32 2−128 147

ΠKEM-768† (256, 3, 3329) (1, 2) (−, 9, 3) 1184 2400 960 32 2−130 157

ΠKEM-1024 (512, 2, 12289) (2, 8) (11, 10, 4) 1472 3392 1536 64 2−211 213

ΠKEM-1024† (512, 2, 7681) (1, 4) (−, 9, 5) 1728 3648 1472 64 2−198 206

quantum searching algorithm [?], 2κ-bit randomness/session key can only pro-
vide at most κ security. Even if the Grover algorithm cannot provide a quadratic
speedup over classical algorithms in practice, we still set ΠKEM-1024 to support
an encryption of 64-bytes (512-bit) randomness/session key, aiming at providing
a matching security strength, say, more than 210-bit estimated quantum secu-
rity. Note that ΠKEM-512 and ΠKEM-768 only support an encryption of 32-byte
(256-bit) session key.

We implemented our ΠKEM on a 64-bit Ubuntu 14.4 LTS ThinkCenter desk-
top (equipped with Intel Core-i7 4790 3.6 GHz CPU and 4GB memory). Partic-
ularly, the codes are mainly written using the C language, with partially opti-
mized codes using AVX2 instructions to speedup some basic operations such as
NTT operation and vector multiplications. The average number of CPU cycles
(averaged over 10000 times) for running each algorithm is given in Table 1.

4 An Improved Signature from AMLWE and AMSIS

Our signature scheme is based on the “Fiat-Shamir with Aborts” technique [?],
and bears most resemblance to Dilithium in [?]. The main difference is that
our scheme uses the asymmetric MLWE and MSIS problems, which provides a
flexible way to make a better trade-off between performance and security.

4.1 Design Rationale

Several lattice-based signature schemes were obtained by applying the Fiat-
Shamir heuristic [?] to three-move identification schemes. For any positive integer
n and q, let R = Z[x]/(xn+1) (resp., Rq = Zq[x]/(x

n+1)). Let H : {0, 1}∗ → R2

be a hash function. Let k, ℓ, η be positive integers, and γ, β > 0 be reals. We
first consider an identification protocol between two users A and B based on the
MSIS∞n,q,k,ℓ,β problem. Formally, user A owns a pair of public key pk = (A, t =

Ax) ∈ Rk×ℓ
q ×Rk

q and secret key sk = x ∈ Rℓ
q. In order to convince another user

B (who knows the public key pk) of his ownership of sk, A and B can execute
the following protocol: 1) A first chooses a vector y ∈ Rℓ from some distribution,
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and sends w = Ay to user B; 2) B randomly chooses a bit c ∈ Rq, and sends it
as a challenge to A; 3) A computes z := y + cx and sends it back to B; B will
accept the response z by check if Az = w + ct.

For the soundness (i.e., user A cannot cheat user B), B also has to make
sure that β2 = ∥z∥∞ is sufficiently small (to ensure that the MSIS∞n,q,k,ℓ,β prob-
lem is hard), otherwise anyone can easily complete the proof by solving a lin-
ear equation. Moreover, we require that β1 = ∥x∥∞ is sufficiently small and
∥y∥∞ ≫ ∥x∥∞ (and thus β2 ≫ β1) holds to prevent user B from recovering
the secret x from the public key pk or the response z. Typically, we should
require β2/β1 > 2ω(log κ), where κ is the security parameter. This means that
the identification protocol as well as its derived signature from the Fiat-Shamir
heuristic will have a very large parameter size. To solve this problem, Lyuba-
shevsky [?,?] introduce the rejection sampling, which allows A to abort and
restart the protocol (by choosing another y) if he thinks z might leak the infor-
mation of x. This technique could greatly reduce the size of z (since it allows
to set β2/β1 = poly(κ)), but the cost is painful for an interactive identification
protocol. Fortunately, this technique will only increase the computation time of
the signer when we transform the identification protocol into a signature scheme.

For any positive integer η, Sη denotes the set of elements of R that each
coefficient is taken from {−η,−η + 1 . . . , η}. By the Fiat-Shamir heuristic, one
can construct a signature scheme from the MSIS problem as follows:

– Key generation: randomly choose A
$←− Rk×ℓ

q ,x
$←− Sℓ

η, and compute t =
Ax. Return the public key pk = (A, t) and secret key sk = (x, pk).

– Signing: given the secret key sk = (x, pk) and a message µ ∈ {0, 1}∗,
1. randomly choose y

$←− Sℓ
γ−1;

2. compute w = Ay and c = H(w∥µ);
3. compute z = y + cx;
4. If ∥z∥∞ ≥ γ − β, restart the computation from step 1), where β is a

bound such that ∥cx∥∞ ≤ β for all possible c and x. Otherwise, return
the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and a
signature σ = (z, c), return 1 if ∥z∥∞ < γ − β and c = H(Az− ct∥µ), and 0
otherwise.

Informally, we require the MSIS∞n,q,k,ℓ,η problem to be hard for the security
of the secret key (i.e., it is computationally infeasible to compute sk from pk).
Moreover, we also require the MSIS∞n,q,k,ℓ,2γ problem to be hard for the un-
forgeability of signatures (i.e., it is computationally infeasible to forge a valid
signature). Since ∥cx∥∞ ≤ β, for any (c,x) and z output by the signing algo-
rithm there always exists a y ∈ Sℓ

γ such that z = y+ cx, which guarantees that
the signature will not leak the information of the secret key. In terms of effi-

ciency, the signing algorithm will repeat about
(

2(γ−β)−1
2γ−1

)−n·ℓ
times to output

a signature, and the signature size is about nℓ⌈log2(2(γ − β)− 1)⌉+ n. Clearly,
we wish to use a small ℓ for better efficiency, but the hardness of the underlying
MSIS problems require a relatively large ℓ.
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To mediate the above conflict, one can use the MLWE problem, which can
be seen as a special MSIS problem, to reduce the size of the key and signature.
Formally, we can obtain the following improved signature scheme:

– Key generation: randomly choose A
$←− Rk×ℓ

q , and s1
$←− Sℓ

η, s2
$←− Sk

η ,
compute t = As1 + s2. Return the public key pk = (A, t) and secret key
sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message µ ∈ {0, 1}∗,

1. randomly choose y
$←− Sℓ+k

γ−1;

2. compute w = (A∥Ik)y and c = H(w∥µ);

3. compute z = y + c

 s1

s2

;

4. If ∥z∥∞ ≥ γ−β, restart the computation from step 1), where β is a bound

such that

∥∥∥∥∥∥c
 s1

s2

∥∥∥∥∥∥
∞

≤ β holds for all possible c, s1, s2. Otherwise,

output the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and a
signature σ = (z, c), return 1 if ∥z∥∞ < γ − β and c = H((A∥Ik)z − ct∥µ),
otherwise return 0.

Furthermore, since w = (A∥Ik)y = Ay1+y2 where y = (yT
1 ,y

T
2 ) and γ ≪ q,

we have that the higher bits of (each coefficient of) w is almost determined by
high order bits of (the corresponding coefficient of) Ay1. This fact has been
utilized by [?,?] to compress the signature size. Formally, denote HighBits(z, 2γ2)
and LowBits(z, 2γ2) be polynomial vector defined by the high order bits and low
order bits of a polynomial vector z ∈ Rk

q related to a parameter γ2. We can
obtain the following signature scheme:

– Key generation: randomly choose A
$←− Rk×ℓ

q , and s1
$←− Sℓ

η, s2
$←− Sk

η ,
compute t = As1 + s2. Return the public key pk = (A, t) and secret key
sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message µ ∈ {0, 1}∗,

1. randomly choose y
$←− Sℓ

γ1−1;

2. compute w = Ay and
c = H(HighBits(w, 2γ2)∥µ);

3. compute z = y + cs1;

4. If ∥z∥∞ ≥ γ1−β or LowBits(Ay− cs2, 2γ2) ≥ γ2−β, restart the compu-
tation from step 1), where β is a bound such that ∥cs1∥∞, ∥cs2∥∞ ≤ β
hold for all possible c, s1, s2. Otherwise, output the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and
a signature σ = (z, c), return 1 if ∥z∥∞ < γ1 − β and c = H(HighBits(Az−
ct, 2γ2)∥µ), otherwise return 0.
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Essentially, the checks in step (4) are used to ensure that 1) the signature
(z, c) will not leak the information of s1 and s2; and 2) HighBits(Az− ct, 2γ2) =
HighBits(Ay−cs2, 2γ2) = HighBits(w, 2γ2) (note that w = Ay = Ay−cs2+cs2,
LowBits(Ay−cs2, 2γ2) < γ2−β and ∥cs2∥∞ ≤ β). By setting γ1 = 2γ2, we require
the MLWEn,k,ℓ,q,η problem and the (variant of) MSIS∞n,k,(ℓ+k+1),q,2γ1+2 problem
to be hard to ensure the security of the secret key and the unforgeability of the
signature, respectively.

By a careful examination on the above scheme, one can find that the compu-
tational efficiency of the signing algorithm is determined by the expected number
of repetitions in step 4):(

2(γ1 − β)− 1

2γ1 − 1

)−n·ℓ

︸ ︷︷ ︸
=N1

·
(
2(γ2 − β)− 1

2γ2 − 1

)−n·k

︸ ︷︷ ︸
=N2

,

where N1 and N2 are determined by the first and second checks in step (4),
respectively. Clearly, it is possible to modify N1 and N2 while keeping the total
number of repetitions N = N1 ·N2 unchanged. Note that the size of the signature
is related to γ1 and is irrelevant to γ2, which means that a shorter signature can
be obtained by using a smaller γ1. However, simply using a smaller γ1 will also
give a bigger N1, and thus a worse computational efficiency. In order to obtain a
short signature size without (significantly) affecting the computational efficiency:

– We use the AMLWE problem for the security of the secret key, which allows
us to use a smaller γ1 by reducing ∥s1∥∞ (and thus β = ∥cs1∥∞ in the
expression of N1);

– We use the AMSIS problem for the unforgeability of the signatures, which
further allows us to use a smaller γ1 by increasing γ2 to keep N = N1 · N2

unchanged.

Note that reducing ∥s1∥∞ (by choosing a smaller η1) may weaken the hardness
of the underlying AMLWE problem (if we do not change other parameters).
We choose to increase η2 (and thus ∥s2∥∞) to remain the hardness. Similarly,
increasing γ2 will weaken the hardness of the underlying AMSIS problem, and
we choose to reduce γ1 to remain the hardness. Both strategies crucially rely on
the asymmetries of the underlying problems.

4.2 The Construction

Let n, k, ℓ, q, η1, η2, β1, β2, γ1, γ2, ω ∈ Z be positive integers. Let R = Z[x]/(xn +
1) and Rq = Zq[x]/(x

n + 1). Denote B60 as the set of elements of R that have
60 coefficients are either −1 or 1 and the rest are 0, and |B60| = 260 ·

(
n
60

)
. When

n = 256, |B60| > 2256. Let H1 : {0, 1}256 → Rk×ℓ
q ,H2 : {0, 1}∗ → {0, 1}384,

H3 : {0, 1}∗ → Sℓ
γ1−1 and H4 : {0, 1}∗ → B60 be four hash functions. We now

present the description of our scheme ΠSIG = (KeyGen, Sign,Verify):
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– ΠSIG.KeyGen(κ): first randomly choose ρ,K
$←− {0, 1}256, s1

$←− Sℓ
η1
, s2

$←−
Sk
η2
. Then, compute A = H1(ρ) ∈ Rk×ℓ

q , t = As1 + s2 ∈ Rk
q , (t1, t0) =

Power2Roundq(t, d) and tr = H2(ρ∥t1) ∈ {0, 1}384. Finally, return the public
key pk = (ρ, t1) and secret key sk = (ρ,K, tr , s1, s2, t0).

– ΠSIG.Sign(sk,M): given sk = (ρ,K, tr , s1, s2, t0) and a messageM ∈ {0, 1}∗,
first computeA = H1(ρ) ∈ Rk×ℓ

q , µ = H2(tr∥M) ∈ {0, 1}384, and set ctr = 0.
Then, perform the following computations:
1. y = H3(K∥µ∥ctr) ∈ Sℓ

γ1−1 and w = Ay;
2. w1 = HighBitsq(w, 2γ2) and c = H4(µ∥w1) ∈ B60;
3. z = y + cs1 and u = w − cs2;
4. (r1, r0) = Decomposeq(u, 2γ2);
5. if ∥z∥∞ ≥ γ1− β1 or ∥r0∥∞ ≥ γ2− β2 or r1 ̸= w1, then set ctr = ctr+1

and restart the computation from step 1);
6. compute v = ct0 and h = MakeHintq(−v,u+ v, 2γ2);
7. if ∥v∥∞ ≥ γ2 or the number of 1’s in h is greater than ω, then set

ctr = ctr + 1 and restart the computation from step 1);
8. return the signature σ = (z,h, c).

– ΠSIG.Verify(pk,M, σ): given the public key pk = (ρ, t1), a message M ∈
{0, 1}∗ and a signature σ = (z,h, c), first compute A = H1(ρ) ∈ Rk×ℓ

q , µ =

H2(H2(pk)∥M) ∈ {0, 1}384. Let u = Az− ct1 · 2d,w′
1 = UseHintsq(h,u, 2γ2)

and c′ = H4(µ∥w′
1). Finally, return 1 if ∥z∥∞ < γ1 − β1, c = c′ and the

number of 1’s in h is ≤ ω, otherwise return 0.

We note that the hash function H3 is basically used to make the signing
algorithm Sign deterministic, which is needed for a (slightly) tighter security
proof in the quantum random oracle model. One can remove H3 by directly

choosing y
$←− Sℓ

γ1−1 at random, and obtain a probabilistic signing algorithm.
We also note that the hash function H4 can be constructed by using an extendable
output function such as SHAKE-256 [?] and a so-called “inside-out” version of
Fisher-Yates shuffle algorithm [?]. The detailed constructions of hash functions
H3 and H4 can be found in [?].

Correctness Note that if ∥ct0∥∞ < γ2, by Lemma 1 we have UseHintq(h,w −
cs2 + ct0, 2γ2) = HighBitsq(w − cs2, 2γ2). Since w = Ay and t = As1 + s2, we
have that

w − cs2 = Ay − cs2 = A(z− cs1)− cs2 = Az− ct,

w − cs2 + ct0 = Az− ct1 · 2d,

where t = t1 · 2d + t0. Therefore, the verification algorithm computes

UseHintq(h,Az− ct1 · 2d, 2γ2) = HighBitsq(w − cs2, 2γ2).

As the signing algorithm checks that r1 = w1, this is equivalent to

HighBitsq(w − cs2, 2γ2) = HighBitsq(w, 2γ2).

Hence, the w1 computed by the verification algorithm is the same as that of the
signing algorithm, and thus the verification algorithm will always return 1.
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Number of Repetitions Since our signature scheme uses the rejection sam-
pling [?,?] to generate (z,h), the efficiency of the signing algorithm is determined
by the number of repetitions that will be caused by steps (5) and (7) of the sign-
ing algorithm. We first estimate the probability that ∥z∥∞ < γ1−β1 holds in step
(5). Assuming that ∥cs1∥∞ ≤ β1 holds, then we always have ∥z∥∞ ≤ γ1−β1− 1
whenever ∥y∥∞ ≤ γ1 − 2β1 − 1. The size of this range is 2(γ1 − β1) − 1. Note
that each coefficient of y is chosen randomly from 2γ1 − 1 possible values. That
is, for a fixed cs1, each coefficient of vector z = y+ cs1 has 2γ1 − 1 possibilities.
Therefore, the probability that ∥z∥∞ ≤ γ1 − β1 − 1 is(

2(γ1 − β1)− 1

2γ1 − 1

)n·ℓ

=

(
1− β1

γ1 − 1/2

)n·ℓ

≈ e−nℓβ1/γ1 .

Now, we estimate the probability that

∥r0∥∞ = ∥LowBitsq(w − cs2, 2γ2)∥∞ < γ2 − β2

holds in step (5). If we (heuristically) assume that each coefficient of r0 is uni-
formly distributed modulo 2γ2, the probability that ∥r0∥∞ < γ2 − β2 is(

2(γ2 − β2)− 1

2γ2

)n·k

≈ e−nkβ2/γ2 .

By Lemma 2, if ∥cs2∥∞ ≤ β2, then ∥r0∥∞ < γ2 − β2 implies that r1 = w1.
This means that the overall probability that step (5) will not cause a repetition
is

≈ e−n(ℓβ1/γ1+kβ2/γ2).

Finally, under our choice of parameters, the probability that step (7) of the
signing algorithm will cause a repetition is less than 1%. Thus, the expected
number of repetitions is roughly en(ℓβ1/γ1+kβ2/γ2).

4.3 Provable Security

In the full version [?], we show that under the hardness of the AMLWE problem
and a rounding variant AMSIS-R of AMSIS (which is needed for compressing
the public key, see Appendix A), our scheme ΠSIG is provably SUF-CMA secure
in the ROM. Formally, we have the following theorem.

Theorem 4. If H1 : {0, 1}256 → Rk×ℓ
q and H4 : {0, 1}∗ → B60 are ran-

dom oracles, the outputs of H3 : {0, 1}∗ → Sℓ
γ1−1 are pseudo-random, and

H2 : {0, 1}∗ → {0, 1}384 is a collision-resistant hash function, then ΠSIG is
SUF-CMA secure under the AMLWEn,q,k,ℓ,η1,η2 and AMSIS-R∞

n,q,d,k,ℓ,4γ2+2,2γ1

assumptions.

Furthermore, under an interactive variant SelfTargetAMSIS of the AMSIS
problem (which is an asymmetric analogue of the SelfTargetMSIS problem in-
troduced by Ducas et al. [?]), we can also prove that our scheme ΠSIG is provably
SUF-CMA secure. Formally, we have that following theorem.
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Theorem 5. In the quantum random oracle model (QROM), signature scheme
ΠSIG is SUF-CMA secure under the following assumptions: AMLWEn,q,k,ℓ,η1,η2 ,
AMSIS∞n,q,d,k,ℓ,4γ2+2,2(γ1−β1) and SelfTargetAMSIS∞H4,n,q,k,ℓ1,ℓ2,4γ2,(γ1−β1).

4.4 Choices of Parameters

Table 6. Parameters for ΠSIG (The column ”Reps.” indicates the excepted number of
repetitions that the signing algorithm takes to output a valid signature)

Parameters (k, ℓ, q, d, ω) (η1, η2) (β1, β2) (γ1, γ2) Reps. Quant. Sec.

ΠSIG-1024 (4, 3, 2021377, 13, 80) (2, 3) (120, 175) (131072, 168448) 5.86 90

ΠSIG-1280 (5, 4, 3870721, 14, 96) (2, 5) (120, 275) (131072, 322560) 7.61 128

ΠSIG-1536 (6, 5, 3870721, 14, 120) (1, 5) (60, 275) (131072, 322560) 6.67 163

In Table 6, we provide three sets of parameters (i.e., ΠSIG-1024, ΠSIG-1280
and ΠSIG-1536) for our signature scheme ΠSIG, which provide 80-bit, 128-bit
and 160-bit quantum security, respectively (corresponding to 98-bit, 141-bit and
178-bit classical security, respectively). A concrete estimation of the security
provided by the parameter sets will be given in Section 5. Among them, ΠSIG-
1280 is the recommended parameter set.

Our scheme ΠSIG under the same machine configuration as in Section 3.4 is
implemented using standard C, where some partial optimization techniques (e.g.,
AVX2 instructions) are adopted to speedup basic operations such as NTT oper-
ation. The average CPU cycles (averaged over 10000 times) needed for running
the algorithms are given in Table 3.

5 Known Attacks against AMLWE and AMSIS

Solvers for LWE mainly include primal attacks, dual attacks (against the under-
lying lattice problems) and direct solving algorithms such as BKW and Arora-Ge
[?]. BKW and Arora-Ge attacks need sub-exponentially (or even exponentially)
many samples, and thus they are not relevant to the public-key cryptography
scenario where only a restricted amount of samples is available. Therefore, for
analyzing and evaluating practical lattice-based cryptosystems, we typically con-
sider only primal attacks and dual attacks. Further, these two attacks, which are
the currently most relevant and effective, seem not to have additional advantages
in solving RLWE/MLWE over standard LWE. Thus, when analyzing RLWE or
MLWE based cryptosystems, one often translates RLWE/MLWE instances to
the corresponding LWE counterparts [?,?] and then applies the attacks. In partic-
ular, one first transforms AMLWEn,q,k,ℓ,α1,α2 into ALWEnk,q,kℓ,α1,α2 , and then
applies, generalizes and optimizes the LWE solving algorithms to ALWE. Since
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any bounded centrally symmetric distribution can be regarded as subgaussian
for a certain parameter, for simplicity and without loss of generality, we consider
the case that secret vector and error vector in ALWEn,q,m,α1,α2 are sampled from
subgaussians with parameters α1 and α2 respectively. Formally, the problem is
to recover s from samples

(A,b = As+ e) ∈ Zm×n
q × Zm

q ,

where A
$←− Zm×n

q , s← χn
α1

and e← χm
α2
.

In the full version [?], we will not only consider the traditional primal attack
and dual attack against ALWE, but also consider two variants of primal attack
and three variants of dual attack, which are more efficient to solve the ALWE
problem by taking into account the asymmetry of ALWE.

As for the best known attacks against (A)SIS, the BKZ lattice basis reduc-
tion algorithm and its variants are more useful for solving the ℓ2-norm (A)SIS
problem than the ℓ∞-norm counterpart. Note that a solution x = (xT

1 ,x
T
2 )

T ∈
Zm1+m2 to the infinity-norm ASIS instanceA ∈ Zn×(m1+m2−n)

q , where (In∥A)x =
0 mod q and ∥x∥∞ ≤ max(β1, β2) < q, may have ∥x∥ > q, whose ℓ2-norm is even
larger than that of a trivial solution u = (q, 0, . . . , 0)T . We will follow [?] to solve
the ℓ∞-norm SIS problem. Further, we can always apply an ℓ2-norm SIS solve
to the ℓ∞-norm SIS problem due to the relation ∥x∥∞ ≤ ∥x∥. Hereafter we refer
to the above two algorithms as ℓ∞-norm and ℓ2-norm attacks respectively, and
use them to estimate the concrete complexity of solving ASIS∞n,q,m1,m2,β1,β2

. As
before, when analyzing RSIS or MSIS based cryptosystems, one often translates
RSIS/MSIS instances to the corresponding SIS counterparts [?] and then applies
the attacks.

In the full version [?], we will not only consider the traditional ℓ2 norm attack
and ℓ∞ norm attack against ASIS, but also consider one variant of ℓ2 norm attack
and two variants of ℓ∞ norm attack, which are more efficient to solve the ASIS
problem by taking into consideration the asymmetry of ASIS .

In the following two subsections, we will summarize those attacks against our
ΠKEM and ΠSIG schemes.

5.1 Concrete Security of ΠKEM

The complexity varies for the type of attacks, the number m of samples used
and choice of b ∈ Z to run the BKZ-b algorithm. Therefore, in order to obtain an
overall security estimation sec of the ΠKEM under the three proposed parameter
settings, we enumerate all possible values of m (the number of ALWE samples)
and b to reach a conservative estimation about the computational complexity
of primal attacks and dual attacks, by using a python script (which is planned
to be uploaded together with the implementation of our schemes to a public
repository later). Table 7 and Table 8 estimate the complexities of the three
parameter sets against primal attacks and dual attacks by taking the minimum
of sec over all possible values of (m, b). Taking into account the above, Table 9
shows the overall security of ΠKEM.
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Table 7. The security of ΠKEM against primal attacks

Parameters
Attack Traditional Variant 1 Variant 2

Model (m, b, sec) (m, b, sec) (m, b, sec)

ΠKEM-512
Classical (761, 390, 114) (531, 405, 118) (476,385,112)

Quantum (761, 390, 103) (531, 405, 107) (476,385,102)

ΠKEM-768
Classical (1021, 640, 187) (646, 575, 168) (556,560,163)

Quantum (1021, 640, 169) (646, 575, 152) (556,560,148)

ΠKEM-1024
Classical (1526, 825, 241) (886, 835, 244) (786,815,238)

Quantum (1531, 825, 218) (886, 835, 221) (786,815,216)

Table 8. The security of ΠKEM against dual attacks

Parameters
Attack Traditional Variation 1 Variation 2 Variation 3

Model (m, b, sec) (m, b, sec) (m, b, sec) (m, b, sec)

ΠKEM-512
Classical (766, 385, 112) (736, 395, 115) (595, 380, 111) (711,380,111)

Quantum (766, 385, 102) (736, 395, 104) (596,380,100) (711,380,100)

ΠKEM-768
Classical (1021, 620, 181) (881, 570, 166) (586,555,162) (776,555,162)

Quantum (1021, 620, 164) (881, 570, 151) (586,555,147) (776,555,147)

ΠKEM-1024
Classical (1531, 810, 237) (981, 810, 239) (906, 805, 236) (1171,805,235)

Quantum (1531, 810, 215) (981, 810, 217) (906, 805, 214) (1171,805,213)

Table 9. The overall security of ΠKEM

Parameters Classical Security Quantum Security

ΠKEM-512 111 100

ΠKEM-768 162 147

ΠKEM-1024 235 213
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Table 10. Comparison between AMLWE and MLWE under “comparable” parameters

Parameters (n, k, q, η1, η2) Classical Security Quantum Security η1 · η2

ΠKEM-512 (256, 2, 7681, 2, 12) 111 100 24

MLWE I (256, 2, 7681, 5, 5) 112 102 25

ΠKEM-768 (256, 3, 7681, 1, 4) 162 147 4

MLWE II (256, 3, 7681, 2, 2) 163 148 4

ΠKEM-1024 (512, 2, 12289, 2, 8) 235 213 16

MLWE III (512, 2, 12289, 4, 4) 236 214 16

Further, in order to study the complexity relations of asymmetric (M)LWE
and standard (M)LWE, we give a comparison in Table 10 between the AMLWE
and the corresponding MLWE, in terms of the parameter choices used by ΠKEM,
which shows that the hardness of AMLWE with Gaussian standard variances
α1, α2 is “comparable” to that of MLWE with Gaussian standard variance√
α1α2. We note that the comparison only focuses on security, and the cor-

responding MLWE, for the parameters given in Table 10, if ever used to build a
KEM, cannot achieve the same efficiency and correctness as our ΠKEM does.

5.2 Concrete Security of ΠSIG

As before, in order to obtain an overall security estimation of the ΠSIG under the
three proposed parameter settings against key recovery attacks, we enumerate
all possible values of m and b to reach a conservative estimation sec about the
computational complexities of primal attacks and dual attacks by using a python
script. Table 11 and Table 12 estimate the complexities of the three parameter
sets of the underlying ALWE problem against primal attacks and dual attacks
by taking the minimum of sec over all possible values of (m, b).

Likewise, we enumerate all possible values of m and b to reach a conservative
estimation sec about the computational complexities of ℓ2-norm and ℓ∞-norm
attacks. Table 13 and Table 14 estimate the complexities of the three parameter
sets of the underlying ASIS problem against ℓ2-normal and ℓ∞-normal attacks
by taking the minimum of sec over all possible values of (m, b).

In Table 15, we give the overall security of ΠSIG under the three parameter
settings against key recovery and forgery attacks, which takes account of both
AMLWE and AMSIS attacks.
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the Young Elite Scientists Sponsorship Program by CAST (2016QNRC001), and
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Table 11. The security of ΠSIG against AMLWE primal attacks (The last row of the
third column has no figures, because the complexity (i.e., sec) of the traditional attack
for ΠSIG-1536 is too large, and our python script fails to compute it)

Parameters
Attack Traditional Variant 1 Variant 2

Model (m, b, sec) (m, b, sec) (m, b, sec)

ΠSIG-1024
Classical (1021, 555, 162) (671, 345, 100) (741,340,99)

Quantum (1021, 555, 147) (671, 345, 91) (741,340,90)

ΠSIG-1280
Classical (1276, 1060, 310) (996, 500, 146) (896,490,143)

Quantum (1276, 1060, 281) (996, 500, 132) (896,490,129)

ΠSIG-1536
Classical - (1101, 660, 193) (1106,615,179)

Quantum - (1101, 660, 175) (1106,615,163)

Table 12. The security of ΠSIG against AMLWE dual attacks

Parameters
Attack Traditional Variant 1 Variant 2 Variant 3

Model (m, b, sec) (m, b, sec) (m, b, sec) (m, b, sec)

ΠSIG-1024
Classical (1021, 550, 160) (786,340,99) (706,340,99) (706,340,99)

Quantum (1021, 550, 145) (786,340,90) (706,340,90) (706,340,90)

ΠSIG-1280
Classical (1276, 1050, 307) (1121, 495, 144) (966,485,141) (966,485,141)

Quantum (1276, 1050, 278) (1121, 495, 131) (966,485,128) (966,485,128)

ΠSIG-1536
Classical (1535, 1535, 464) (1381, 650, 190) (1031,615,179) (1036,615,179)

Quantum (1235, 1535, 422) (1381, 650, 172) (1031,615,163) (1036,615,163)

Table 13. The security of ΠSIG against two-norm attack (for ASIS problem)

Parameters
Attack Traditional Variation 1

Model (m, b, sec) (m, b, sec)

ΠSIG-1024
Classical (2031, 750, 219) (2031,665,194)

Quantum (2031, 750, 198) (2031,665,176)

ΠSIG-1280
Classical (2537, 1100, 321) (2537,900,263)

Quantum (2537, 1100, 291) (2537,900,238)

ΠSIG-1536
Classical (3043, 1395, 408) (3043,1140,333)

Quantum (3043, 1395, 370) (3043,1140,302)
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Table 14. The security of ΠSIG against infinity-norm attack (for ASIS problem)

Parameters
Attack Traditional Variant 1 Variant 2

Model (m, b, sec) (m, b, sec) (m, b, sec)

ΠSIG-1024
Classical (1831, 385, 112) (1781, 385, 112) (1731,360,105)

Quantum (1831, 385, 102) (1781, 385, 102) (1731,360,95)

ΠSIG-1280
Classical (2387, 495, 144) (2387, 545, 159) (2187,485,141)

Quantum (2387, 495, 131) (2387, 545, 144) (2187,485,128)

ΠSIG-1536
Classical (2743, 630, 184) (2793, 690, 201) (2543,615,179)

Quantum (2743, 630, 167) (2793, 690, 183) (2543,615,163)

Table 15. The Overall Security of ΠSIG

Parameters Classical Security Quantum Security

ΠSIG-1024 99 90

ΠSIG-1280 141 128

ΠSIG-1536 179 163
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A Definitions of Hard Problems

The AMLWE Problem (with Binomial Distributions). The decisional
AMLWE problem AMLWEn,q,k,ℓ,η1,η2

asks to distinguish (A,b = As + e) and

uniform over Rk×ℓ
q ×Rk

q , where A
$←− Rk×ℓ

q , s
$←− Bℓ

η1
, e

$←− Bk
η2
. Obviously, when

η1 = η2, the AMLWE problem is the standard MLWE problem.

The AMLWE-R Problem. The AMLWE-R problem AMLWE-Rn,q,p,k,ℓ,η1,η2

asks to distinguish

(A, t̄ = ⌈t⌋q→p,A
T s+ e, ⌈t̄⌋Tp→qs+ e)
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from (A′, ⌈t′⌋q→p,u, v) ∈ Rℓ×k
q × Rℓ

p × Rk
q × Rq, where A,A′ $←− Rℓ×k

q , s
$←−

Bℓ
η1
, e

$←− Bk
η2
, e

$←− Bη2 , t, t
′ $←− Rℓ

q,u
$←− Rk

q , v
$←− Rq.

The AMSIS Problem. Given a uniform matrix A ∈ R
k×(ℓ1+ℓ2−k)
q , the (Her-

mite Normal Form) AMSIS problem AMSIS∞n,q,k,ℓ1,ℓ2,β1,β2
over ring Rq asks to

find a non-zero vector x ∈ Rℓ1+ℓ2
q \{0} such that (Ik∥A)x = 0 mod q, ∥x1∥∞ ≤

β1 and ∥x2∥∞ ≤ β2, where x =

x1

x2

 ∈ Rℓ1+ℓ2
q ,x1 ∈ Rℓ1

q ,x2 ∈ Rℓ2
q .

The AMSIS-R Problem. Given a uniformly random matrixA ∈ R
k×(ℓ1+ℓ2−k)
q

and a uniformly random vector t ∈ Rk
q , the (Hermite Normal Form) AMSIS-R

problem AMSIS-R∞
n,q,d,k,ℓ1,ℓ2,β1,β2

over ring Rq asks to find a non-zero vector

x ∈ Rℓ1+ℓ2+1
q \{0} such that

(
Ik∥A∥t1 · 2d

)
x = 0 mod q, ∥x1∥∞ ≤ β1, ∥x2∥∞ ≤

β2 and ∥x3∥∞ ≤ 2, where x =


x1

x2

x3

 ∈ Rℓ1+ℓ2+1
q ,x1 ∈ Rℓ1

q ,x2 ∈ Rℓ2
q , x3 ∈ Rq

and (t1, t0) = Power2Roundq(t, d).

The SelfTargetAMSIS Problem. Let H : {0, 1}∗ → B60 is a (quantum) ran-

dom oracle. Given a uniformly random matrix A ∈ R
k×(ℓ1+ℓ2−k)
q and a uniform

vector t ∈ Rk
q , the SelfTargetAMSIS problem SelfTargetAMSIS∞n,q,k,ℓ1,ℓ2,β1,β2

over ring Rq asks to find a vector y =


y1

y2

c

 and µ ∈ {0, 1}∗, such that

∥y1∥∞ ≤ β1, ∥y2∥∞ ≤ β2, ∥c∥∞ ≤ 1 and H (µ, (Ik∥A∥t)y) = c holds.
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