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Abstract. We construct the first hierarchical identity-based encryption
(HIBE) scheme with tight adaptive security in the multi-challenge setting,
where adversaries are allowed to ask for ciphertexts for multiple adap-
tively chosen identities. Technically, we develop a novel technique that
can tightly introduce randomness into user secret keys for hierarchical
identities in the multi-challenge setting, which cannot be easily achieved
by the existing techniques for tightly multi-challenge secure IBE.

In contrast to the previous constructions, the security of our scheme is
independent of the number of user secret key queries and that of challenge
ciphertext queries. We prove the tight security of our scheme based on the
Matrix Decisional Diffie-Hellman Assumption, which is an abstraction of
standard and simple decisional Diffie-Hellman assumptions, such as the
k-Linear and SXDH assumptions.
Finally, we also extend our ideas to achieve tight chosen-ciphertext

security and anonymity, respectively. These security notions for HIBE
have not been tightly achieved in the multi-challenge setting before.
Keywords. Hierarchical identity-based encryption, tight security, multi-
challenge security, chosen-ciphertext security, anonymity.

1 Introduction

Tight Reductions. In public-key cryptography, most of the schemes are con-
structed with reduction-based security proofs. A security reduction efficiently
maps an adversary A against the security of a scheme with success probability
εA to a solver B that breaks the hardness of a suitable computational problem
with success probability εB. We call the quotient ` := εA/εB the security loss of
a reduction, which can be viewed as a quantitative measurement of the distance
between the security of the scheme and the hardness of the problem. Ideally, we
want (1) the underlying problem to be standard and well-established, (2) the
security notion to be realistic, and (3) the security of the scheme to be as close to
the hardness of the problem as possible, namely, ` to be as close to 1 as possible.
? Parts of the work were done at Karlsruhe Institute of Technology, Karlsruhe, Germany
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We consider a reduction tight if ` is a small constant and the running time
of B is approximately the same as that of A. Many existing works [8,11,12,13]
consider a notion of tightness called “almost tight security”. Different to the (full)
tightness, almost tight security allows the security loss ` to be a small polynomial,
which is usually a linear function of the security parameter, but still independent
of the size of A. We do not distinguish these two notions, but we are precise
about the security loss in our comparison tables and security proofs.

Tight reductions are not only theoretically interesting but also beneficial in
practice. A tight reduction enables us to give universal key-length recommen-
dations that are independent of the size of an application and shorter than the
non-tight ones. This is, in particular, useful in the setting where the envisioned
size of an application cannot be reasonably bounded a priori. As a result of
that, many recent works have been pursuing efficient tightly secure cryptographic
schemes, including digital signature [21,26,13], public-key encryption [11,20,12],
identity-based encryption [8,5] schemes, and authenticated key exchange protocols
[15].
HIBE meets Tight Security. In this paper, we focus on hierarchical identity-
based encryption (HIBE) schemes [24,14]. In an L-level HIBE, an identity is a
vector of maximal L identities. It is considered to be more difficult to construct
HIBE than IBE and PKE since an HIBE scheme provides more functionalities.
For instance, an L-level HIBE scheme allows a user at level α < L to delegate a
secret key for its descendants at level α′ > α.

Constructing tightly secure HIBE appears to be much more challenging. The
first tightly secure IBE from standard assumptions was constructed in 2013 [8],
while the first tightly secure HIBE was just proposed very recently [28]. We
believe that it is not a coincidence. Firstly, Lewko and Waters [32] showed the
potential difficulty of constructing tightly secure HIBE. More precisely, they
proved that there is a (relatively) large class of HIBE schemes that cannot be
tightly proven secure. Secondly, Blazy, Kiltz, and Pan (BKP) [5] made the first
attempt to bypass the aforementioned impossibility result. Unfortunately, it has
been found that the BKP proof strategy is insufficient for the tight adaptive
security of HIBE (cf. [6] and Appendix A of [29]). Adaptive security allows an
adversary A to adaptively choose a challenge identity id? after it sees the master
public key and asks for polynomial many user secret keys for identities chosen by
A.

Very recently, Langrehr and Pan (LP) proposed the first tightly secure HIBE
based on standard assumptions. Their proof strategy improves the one of BKP
in the sense that the LP strategy can tightly introduce (suitable) randomness
in user secret keys for identities with flexible lengths. Inherently, the LP proof
strategy seems to only work tightly in the single-challenge setting, where an
adversary is restricted to ask for a ciphertext for at most one challenge identity.
From Single- to Multi-Challenge Security. In the real world, an adversary
can learn ciphertexts of multiple challenge identities. This is captured by the more
realistic multi-challenge security. We note that single-challenge security implies
multi-challenge security via a straightforward, but non-tight reduction. This is
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mainly the reason why the security of many (H)IBE schemes (e.g. [35,31,30,5,28])
is analyzed in this simple single-challenge setting. However, this straightforward
“single- to multi-challenge” reduction loses a relatively large polynomial factor.
Namely, if an adversary makes Qc many queries for challenge ciphertexts, then
the overall security loses a factor of Qc. This defeats the purpose of establishing
tight reductions for the overall scheme in a more realistic setting.
Our Goal: HIBE with Tight Multi-Challenge Security. We aim at
constructing tightly secure HIBE schemes in the more realistic multi-challenge
setting. We note that there exist several techniques in constructing tightly
multi-challenge secure IBE schemes (for instance, [23,17,18,22]) in composite- or
prime-order pairing groups. However, as already observed by the LP paper, these
techniques cannot be easily used in the HIBE setting. Thus, to achieve our goal,
it requires us to develop a new technique for tight multi-challenge security that
is useful for HIBE schemes.

1.1 Our Contribution

We construct the first tightly chosen-plaintext secure HIBE schemes in the
multi-challenge setting. The main novelty of this paper is a new randomization
technique that enables us to randomize user secret keys for hierarchical identities
in the multi-challenge setting. We highlight that our technique improves the
existing techniques [23,17,18,22] for tightly multi-challenge secure IBE schemes in
the sense that ours can handle randomization for identities with flexible lengths.
We postpone the detailed comparison of these techniques in Section 1.3.

Following the “MAC-to-(H)IBE” framework [5,28], we capture our core tech-
nique with the notion of affine MACs with levels (which was firstly proposed
in [28]) in the multi-challenge setting. By using prime-order pairings and the
Matrix Decisional Diffie-Hellman (MDDH) assumption [10], we compile any of
these MAC schemes to an HIBE tightly in the multi-challenge setting. We have
two main constructions of the affine MACs, MAC1 and MAC2, and they give us
two HIBE with different advantages and disadvantages, respectively: Considering
identity space ID := ({0, 1}n)≤L, our first scheme has constant amount of group
elements in the ciphertext, but O(nL) many elements in the user secret key; and
our second scheme has shorter user secret key that contains O(L) many elements,
but its ciphertext contains O(L) many elements. Both schemes have security loss
O(n · L2) and independent of the numbers of challenge ciphertext queries and
user secret key queries. Table 1 compares our schemes with the existing HIBE
schemes in prime-order pairing groups.

We extend our main results in the following directions by using known
techniques:
Anonymity. Additionally, the first construction of our MACs, MAC1, has tight
anonymity. By using the anonymity-preserving transformation of [5], we construct
the first tightly secure, anonymous HIBE scheme in the multi-challenge setting. An
(H)IBE scheme is anonymous if its challenge ciphertexts hide the corresponding
identities. An application of anonymous HIBE is PKE with keyword search [1].
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Scheme |mpk| |usk| |C| Loss MC Ass.
Wat05 [35] O(nL)|G| O(nL)|G| (1 + p)|G| O(nQe)L 7 DBDH
Wat09 [34] O(L)|G| O(p)(|G|+ |Zq|) O(p)(|G|+ |Zq|) O(Qe) 7 2-LIN
Lew12 [30] 60|G|+ 2|GT | (60 + 10p)|G| 10p|G| O(QeL) 7 2-LIN
CW13 [8] O(Lk2)(|G1|+ |G2|) O(Lk)|G2| (2k + 2)|G1| O(Qe) 7 k-LIN
BKP14 [5] O(Lk2)(|G1|+ |G2|) O(Lk)|G2| (2k + 2)|G1| O(Qe) 7 k-LIN

GCTC16 [16] (6k2 + 12k)(|G1|+ |G2|)
+ (k + 2)|GT |

((6k + 12)dp/3e
− (k + 2)p)|G2|

(3k + 6)dp/3e|G1| O(QL) 7 k-LIN

LP191 [28] O(nL2k2)(|G1|+ |G2|) O(nL2k)|G2| (4k + 1)|G1| O(nL2k) 7 k-LIN
LP19H1 [28] O(γLk2)(|G1|+ |G2|) O(γLk)|G2| (4k + 1)|G1| O(γLk) 7 k-LIN
LP192 [28] O(nL2k2)(|G1|+ |G2|) (3kp+ k + 1)|G2| (3kp+ k + 1)|G1| O(nLk) 7 k-LIN
LP19H2 [28] O(γLk2)(|G1|+ |G2|) (3kp+ k + 1)|G2| (3kp+ k + 1)|G1| O(γk) 7 k-LIN
HIBKEM1 O(nL2k2)(|G1|+ |G2|) O(nL2k)|G2| 5k|G1| O(nL2k) 3 k-LIN
HIBKEMH1 O(γLk2)(|G1|+ |G2|) O(γLk)|G2| 5k|G1| O(γLk) 3 k-LIN
HIBKEM2 O(nL2k2)(|G1|+ |G2|) (3kp+ 2k)|G2| (3kp+ 2k)|G1| O(nLk) 3 k-LIN
HIBKEMH2 O(γLk2)(|G1|+ |G2|) (3kp+ 2k)|G2| (3kp+ 2k)|G1| O(γk) 3 k-LIN

Table 1. Comparison of HIBEs in prime-order pairing groups with adaptive security
in the standard model based on static assumptions. The highlighted rows are from this
paper. The schemes with H in the superscript are obtained by hashing the identities as
described in the full version of [28].
The hierarchical identity space is ({0, 1}n)≤L, and γ is the bit length of the range

of a collision-resistant hash function. ‘|mpk|,’ ‘|usk|,’ and ‘|C|’ stand for the size of the
master public key, a user secret key and a ciphertext, respectively. We count the number
of group elements in G1,G2, and GT . For a scheme that works in symmetric pairing
groups, we write G(:= G1 = G2). The schemes that work in asymmetric pairing groups
can be instantiated with SXDH=1-LIN. In the ‘|usk|’ and ‘|C|’ columns p stands for the
hierarchy depth of the identity vector. In bounded HIBEs, L denotes the maximum
hierarchy depth. In the security loss, Qe denotes the number of user secret key queries
by the adversary. The last but one column indicates whether the adversary is allowed
to query multiple challenge ciphertexts (3) or just one (7). The last column shows the
underlying security assumption.

We note that it was unknown how to construct a tightly adaptively secure
anonymous HIBE scheme even in the single-challenge setting.

Chosen-Ciphertext Security. We note that ciphertexts of our HIBE schemes
have compatible structure to use Quasi-Adaptive Non-Interactive Zero-Knowledge
(QANIZK) argument for linear subspace systems [25,27,22,2]. Similar to [22], we
upgrade our schemes to chosen-ciphertext security by using any tightly unbounded
simulation-sound QANIZK scheme. These schemes are the first tightly chosen-
ciphertext secure HIBE schemes in the multi-challenge setting. Combining with
the technique in the first extension, we also construct a tightly chosen-ciphertext
secure and anonymous HIBE.

More (Minor) Extensions. Additionally, our schemes have tight multi-instance
security. In the multi-instance setting, an adversary can get multiple instances of
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the HIBE scheme. It is trivial that our HIBE schemes are tightly secure in this
setting, since, given an instance of our HIBE, it can be easily rerandomized to
get multiple instances from it.

In the full version of [28], they use a collision-resistant hash function to further
improve the security loss and master public key size of their schemes. Here we
can also do the same improvement.

These two extensions are rather minor and we skip the technical details here,
but include them in Table 1 for a more complete comparison of different HIBE
schemes.

1.2 Technical Details

We give an overview of our main technique in achieving tight adaptive security for
HIBE in the multi-challenge setting. Here we restrict ourselves to chosen-plaintext
security.
Starting Point: The BKP Framework. To set up the stage of our discussion,
we recall the BKP framework [5], which transforms an algebraic MAC scheme
to an IBE scheme in prime-order pairing groups. The algebraic MAC is called
affine MAC, due to its affine structure. Their framework is an abstraction of
the Chen-Wee (CW) IBE [8] and can also be viewed as an extension of the
“MAC-to-Signature” framework by Bellare and Goldwasser (BG) [4] in the IBE
context. In particular, the BKP framework can be viewed as a fine-grained reverse
of the Naor transformation [7] on the BG signature scheme.

We give some informal ideas about how an affine MAC can be turned into an
IBE. The master public key of an IBE, pk := Com(skMAC), is a commitment of
the MAC secret key, skMAC. A user secret key usk[id] of an identity id consists of
a BG signature, namely, a MAC tag τid on the message id and a NIZK proof of
the validity of τid w.r.t. the secret key committed in pk. The observation of BKP
is that one can implement these commitments and NIZK proofs with the (tuned)
Groth-Sahai proof system [19].

Due to the fact that the BKP MAC has affine structures, the NIZK verification
involves only linear equations and can be randomized. Indeed, the BKP IBE
ciphertext Cid can be viewed as a randomized linear combination of pk w.r.t. id.
Implicitly, the decryption algorithm is a randomized NIZK verification of the
validity of τid (from usk[id]): If τid is valid, then the ciphertext Cid can be correctly
decrypted.
Obstacles in Achieving our Goal with BKP. The BKP framework has a
nice property that the security of the IBE scheme can be tightly reduced to the
security of the MAC scheme. Thus, we can only focus on constructing tightly
secure MAC, which is more fundamental. In particular, the BKP framework
has a tightly secure MAC scheme MACNR in the single-challenge setting under
a standard assumption. MACNR is implicitly in the CW IBE and borrows some
idea from the Naor-Reingold PRF [33]. However, MACNR has limitations that

(a) it can only be used to handle at most one IBE challenge ciphertext, and
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(b) it cannot provide tight adaptive security for HIBE.

We recall MACNR and give more technical discussion about these two limitations.
Let G2 := 〈P2〉 be an additive prime-order group. We use the implicit notation

[x]2 := xP2 as in [10]. MACNR chooses B ∈ Z(k+1)×k
q according to the underlying

assumption. B always has rank k and, for simplicity, we assume that the first
k rows of B, denoted by B, forms a full-rank square matrix. For message space
M := {0, 1}n, which is the same as the identity space of the resulting IBE, its
secret key is chosen uniformly at random and has the form of

skMAC :=
(

(xi,b)1≤i≤n,b∈{0,1}, x
′
0

)
∈
(
Zk·2q

)n × Zq .

Its MAC tag τ := ([t]2, [u]2) contains a random vector [t]2 and a message-
dependent value [u]2 in the form of

t = Bs ∈ Zkq for random s ∈ Zkq
u =

∑
i
x>i,mi

t + x′0 ∈ Zq. (1)

Based on the MDDH assumption, MACNR is tightly pseudorandom against chosen-
message attacks (PR-CMA security), which is a decisional variant of the standard
existential unforgeability against chosen-message attacks (EUF-CMA security) for
MAC schemes [9]. Essentially, the PR-CMA security of MACNR shows that [u]2 is
pseudorandom.

To understand the intuition of the BKP proof strategy, we consider the
standard EUF-CMA security, where an adversary A can ask for polynomial many
MAC tags τm := ([tm]2, [um]2) on messages m of its adaptive choice and submit
a forgery τ? := ([t?]2, [u?]2) for one single verification. The MAC tag query is
corresponding to the IBE user secret key query, and the verification query is
related to the IBE challenge ciphertext query.

The overall proof strategy of MACNR is to gradually randomize all the u values
in answering A’s tag queries. During this process, the reduction must be able to
compute u? =

∑
i x>i,m?

i
t? + x′0 for a fresh m?, which is the main difficulty in the

proof. To solve it, the BKP argument conceptually replace x′0 with a constant
random function RF0(ε). Then, by using the MDDH assumption, it develops a
random function RFi+1 : {0, 1}i+1 → Zq from another random function RFi : {0,
1}i → Zq on-the-fly for some integer 0 ≤ i < n. After n recursions, a random
function RF : {0, 1}n → Zq is developed and thus the security loss of MACNR is
O(n). More precisely, in each step, the reduction guesses the (i+ 1)-th bit of m?

as b? ∈ {0, 1} and defines the function RFi+1 as:

RFi+1(m|i+1) :=
{

RFi(m|i) (if mi+1 = b?)
RFi(m|i) +Rm|i

(if mi+1 = 1− b?)
, (2)

where m|i is the first i bits of m and Rm|i
is a random value from Zq chosen

for m|i. Alternatively, the BKP strategy can be viewed as gradually injecting
randomness directly into x′0, during developing the random function above.
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There are two important observations of this strategy, which lead to Limita-
tions (a) and (b) above. These observations are in the proof step from Hybrid i
(using RFi) to Hybrid (i+ 1) (using RFi+1):
Reason for Limitation (a): In this step, the reduction embeds a MDDH prob-

lem instance in [xi+1,1−b? ]2 and chooses the other xj,b in Zq. Thus, xi+1,1−b?

in Zq is unknown to the reduction during this step, but xi+1,b? is known in
Zq for verifying the forgery on a single m?. However, this strategy cannot
work tightly if there is more than one verification queries, which is required
in the multi-challenge setting. For instance, after guessing b?, the reduction
fails to answer two verification queries for challenge messages, 0n and 1n,
respectively.

Reason for Limitation (b): RFi+1 defined via Equation (2) is a random func-
tion for message spaces with fixed length based on the crucial fact that the
outputs of RFi+1 and RFi are not revealed at the same time. However, for
hierarchical identity spaces, ID := ({0, 1}n)≤L, it is not the case anymore.

As a concrete example, we consider the transition from Hybrids n to (n+1).
Via Equation (2), RFn(m) = RFn+1(m||b?) and adversaries can learn this
by asking MAC tags for m and m||b?||m′ (where m′ ∈ {0, 1}n−1). Thus, the
tags for these two message are not independent and we cannot continue the
hybrid argument.
In order to solve our task, we need to develop new techniques to overcome

both limitations described above. Our approach essentially has two main steps: In
the first step, we target at tight multi-challenge security, and, at the same time,
we are looking ahead and making it suitable for handling hierarchical identities;
and, in the second step, we upgrade the technique developed in the first step to
the HIBE setting.
Step 1: New Strategy for Tight Multi-Challenge Security. We call
this randomization strategy subspace randomization, since it first increases
the dimension of t in the tag so that there exist subspaces, and our crucial
randomization happens in some of these subspaces. This subspace randomization
is compatible with the independent randomization of Langrehr and Pan [28]
and, thus, it gets extended in Step 2 to randomize MAC tags for messages with
flexible length, namely, hierarchical identities.

Our starting point of achieving tight multi-challenge security is to design a
new randomization strategy that does not depend on any bit of m?. To implement
this strategy, our first attempt is to choose the random vector t in the MAC tag
from a larger vector space Z2k

q . Accordingly, we choose xj,b values in skMAC from
Z2k
q and compute ([t]2, [u]2) in the MAC tag as

t $← Z2k
q

u =
∑

i
x>i,mi

t + x′0 ∈ Zq. (3)

Our proof strategy is rather algebraic and make use of some simple facts
about the vector space Z2k

q . We choose two random matrices B0,B1
$← Z2k×k

q

and B⊥0 ,B⊥1 ∈ Z2k×k
q are the corresponding non-zero kernel matrices, respectively.
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Namely,
B>0 ·B⊥0 = B>1 B⊥1 = 0 ∈ Zk×kq (4)

(B0 | B1) is a basis of Z2k
q . Span(B0) := {v ∈ Zq | ∃w ∈ Zkq s.t. v = B0 ·w} is a

linear subspace of Z2k
q and it is the same for Span(B1).

We note that in the value u the information of the secret xj,b values is only
projected to t. When we answer a tag query on message m, we can switch t to
a suitable subspace (either Span(B0) or Span(B1)) by the MDDH assumption.
After the switch, some information about xj,b values is perfectly hidden, and we
can use it to gradually randomize the u values. Choosing t from the suitable
subspace depends on the corresponding bit of m, but independent of the guess of
m?.

More precisely, in our Hybrid i, for a tag query on m, our um has the form

um :=
(∑

j
x>j,mj

+ OFi(m|i)(B⊥0 )> + ZFi(m|i)(B⊥1 )>︸ ︷︷ ︸
=:RFi(m|i)

)
tm + x′0 ,

where OFi,ZFi : {0, 1}i → Z1×k
q are two independent random functions. Since

(B⊥0 | B⊥1 )> ∈ Z2k×2k
q is full-rank with overwhelming probability, we can view(

OFi(m|i) | ZFi(m|i)
)
(B⊥0 | B⊥1 )> as a random function RFi : {0, 1}i → Z1×2k

q .
In the transition to Hybrid (i+ 1), we do the following two sub-steps:

– Step 1.1 (using MDDH): If mi+1 = 0, then we choose tm from Span(B0),
otherwise, from Span(B1).

– Step 1.2 (information-theoretic argument): For all tag queries with mi+1 = 0,
we increase the entropy in OFi and develop OFi+1. By Equation (4), this
change is perfectly hidden from the adversary A. Similarly, we also develop
ZFi+1 from ZFi.

Now we can introduce RFi+1 and, after n of these recursions, we can have RFn
to randomize all the tags.

The only thing left is to handle multiple verification queries. To this end, in
our scheme, we choose random Xj,b ∈ Zk×2k

q . Compared with x>j,b ∈ Z2k
q , our new

Xj,b has more rows such that we can embed the MDDH challenge to randomize
multiple verification queries as well. We do not always know all the whole Xj,b

values over Zq. However, different to the BKP or CW strategy, we multiply the
unknown part in Xj,b with the suitable kernel matrix, either B⊥0 or B⊥1 . This
is done implicitly. Since, in all the tag queries, tm has already been chosen in
the correct subspace, the unknown part will not appear, and we can simulate
the tag queries. When we answer the verification queries, this unknown part will
“react with” these queries and randomize them, which will later be the challenge
ciphertext queries of the resulting IBE.

To sum up the discussion above, our strategy increases the dimension of
x>j,b ∈ Z1×k

q to Xj,b ∈ Zk×2k
q in such a way that we have enough entropy from the

row vectors to randomize tag queries and, combining it with the entropy from
the column vectors, we can handle the verification queries at the same time.

We capture all the above discussion formally by presenting an affine MAC in
Section 3.1, which can be used to construct a tightly multi-challenge secure IBE.
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We are not claiming any efficiency improvement with this IBE, but technical
achievement, instead, since it has roughly the same efficiency as its counterparts
from [17,18,22]. However, our techniques involved in this IBE scheme improves
those in [17,18,22] in the sense that ours can be extended to randomize user
secret keys for hierarchical identities, while those in [17,18,22] cannot.
Step 2: Upgrade to Hierarchical Identities. For the random function RFi
developed via the strategy above, an important observation is that its output is
only projected in t during the hybrid argument. This gives us “room” to upgrade
the subspace randomization to handle hierarchical identities: By controlling the
choice of t, we can make sure that the outputs of RFi and RFi+1 will not appear
at the same time via the value u.

The strategy in this step is motivated by the work of Langrehr and Pan
[28], where their core technique is to isolate the randomization for messages
at different levels (which will be identities at different levels in the HIBE). To
implement this, we add a “layer” to t by choosing t from Z3k

q . Similar to Step
1, we exploit some properties of the linear space Z3k

q . We choose two random
matrices B0,B1

$← Z3k×k
q and decompose Z3k

q into Span(B | B0 | B1). The span
of B⊥ is decomposed into that of B∗0 ∈ Z3k×k

q and B∗1 ∈ Z3k×k
q . An overview of

the orthogonal relations between all these matrices is given in Figure 1.

a basis for Z3k
q

a basis for Span(B⊥)

B B0 B1

B∗0 B∗1

Fig. 1. Solid lines mean orthogonal: B>B∗0 = B>1 B∗0 = 0 = B>B∗1 = B>0 B∗1 ∈ Zk×kq .

The intuition of our technique is that we develop a random function in
Span(B⊥), which is orthogonal to Span(B). Thus, it is easy to isolate the ran-
domization for messages at level α(≤ L)3 from that at other levels by choosing
tm from Span(B) for m ∈ ({0, 1}n)α′ and α′ 6= α. The randomization with a level
α is done similar to Step 1. In particular, (B0,B∗1) functions similar to (B0,B⊥0 )
in Step 1, and the same for (B1,B∗0) vs. (B1,B⊥1 ).

We only present our intuitions here and refer Section 3.2 and the full version
for the actual constructions and formal proofs.

1.3 More on Related Works

As we discussed before, there are different techniques [3,23,17,18,22] to achieve
tight multi-challenge security for IBE schemes. Schemes in [18,22] are based on
3 For message space with flexible lengthM := ({0, 1}n)≤L, a message at level α means

m ∈ ({0, 1}n)α.
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the BKP framework and close to ours, while the other schemes are either using
composite-order pairings [23] or based on stronger, non-standard assumptions
[3,17]. We suppose the proof strategy in the work of Hofheinz, Jia, and Pan
(HJP) [22] cannot be easily extended to randomize MAC tags for hierarchical
identities, since their technique develops the random function RFi in the full
space Zq and directly introduce randomness into x′0. Inherently, in the HIBE
setting, this strategy has the same limitation as BKP, namely, the outputs of
RFi and RFi+1 are both leaked when identities have different lengths. The work
of Gong et al. [18] has the same issue as well. This limitation explains why some
proof steps of LP HIBE schemes cannot be done in the multi-challenge setting,
even with the HJP technique.

1.4 Open Problems

As mentioned before and observed in Table 1, the tighter security loss of our
schemes is O(γk), but with relatively larger ciphertext. We leave further improving
the security loss with compact ciphertext as an open problem.

Another interesting direction is to make our schemes more efficient. A main
disadvantage of our schemes is that they require relatively large master public
keys. More precisely, ignoring the small constant k, mpk contains either O(αL2) or
O(γL) group elements, because of the use of the LP technique [28]. An interesting
open problem is to construct a tightly secure HIBE with shorter master public
keys, probably first in the single-challenge setting. A similar interesting open
problem is to shorten the size of either user secret keys or ciphertexts to have a
more efficient, tightly secure HIBE scheme in the multi-challenge setting.

1.5 Roadmap

We recall useful definitions in Section 2. Section 3 proposes affine MACs that can
be used to construct tightly multi-challenge secure IBE and HIBE, respectively. It
presents our core techniques as described above in a detailed and formal manner.
Section 4 gives a transformation to HIBE, similar to the BKP framework. Its
security proof is in the full version. For completeness of our claims, in the full
version, we constructs an anonymous HIBE and a CCA-secure HIBE tightly in
the multi-challenge setting. Furthermore, concrete instantiations of our schemes
can be found in the full version as well.

2 Preliminaries

Notations. We use x $← S to denote the process of sampling an element x from
S uniformly at random if S is a set and to denote the process of running S with its
internal randomness and assign the output to x if S is an algorithm. The expression
a

?= b stands for comparing a and b on equality and returning the result in Boolean
value. For positive integers k, η ∈ N+ and a matrix A ∈ Z(k+η)×k

q , we denote the
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upper square matrix of A by A ∈ Zk×kq and the lower η rows of A by A ∈ Zη×kq .
Similarly, for a column vector v ∈ Zk+η

q , we denote the upper k elements by v ∈ Zkq
and the lower η elements of v by v ∈ Zηq . We use A−> as shorthand for

(
A−1)>.

For a matrix A ∈ Zn×mq , we use Span(A) :=
{

Av | v ∈ Zmq
}
to denote the linear

span of A and A⊥ denotes an arbitrary matrix with Span
(
A⊥
)

=
{

v | A>v = 0
}
.

For a set S and n ∈ N+, Sn denotes the set of all n-tuples with components
in S. For a string m ∈ Σn, mi denotes the i-th component of m (1 ≤ i ≤ n) and
m|i denotes the prefix of length i of m. Furthermore for a p-tuple of bit strings
m ∈ ({0, 1}n)p, we use JmK to denote the string m1|| . . . ||mp. Thus for 1 ≤ i ≤ np,
JmKi denotes the i-th bit of m1|| . . . ||mp and JmK|i denotes the i-bit-long prefix
of m1|| . . . ||mp.

All algorithms in this paper are probabilistic polynomial-time unless we state
otherwise. If A is an algorithm, then we write a $← A(b) to denote the random
variable outputted by A on input b.
Games. Following [5], we use code-based games to define and prove security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), all sets are empty (denote by ∅), and all partial maps
(denoted by f : A 99K B) are totally undefined. An adversary A is executed in
game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification), again obtaining
their output. Finally, it makes one single call to Finalize(·) and stops. We use
GA ⇒ d to denote that G outputs d after interacting with A, and d is the output
of Finalize.

T (A) denotes the running time of A.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial-time (PPT) algorithm that on input 1λ
returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q. The group
elements P1 and P2 are generators of G1 and G2, respectively. The function
e : G1 × G2 → GT is an efficient computable (non-degenerated) bilinear map.
Define PT := e(P1, P2), which is a generator in GT . In this paper, we only consider
Type III pairings, where G1 6= G2 and there is no efficient homomorphism between
them. All constructions in this paper can be easily instantiated with Type I
pairings by setting G1 = G2 and defining the dimension k to be greater than 1.

We use the implicit representation of group elements as in [10]. For s ∈ {1,
2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zmq } ⊂ Znq denotes the linear
span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zmq } ⊂ Gns . Note that it is
efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions.
We define [A]1◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.
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Next we recall the definition of the matrix Diffie-Hellman (MDDH) and related
assumptions [10].

Definition 1 (Matrix Distribution). Let k, ` ∈ N with ` > k. We call D`,k
a matrix distribution if it outputs matrices in Z`×kq of full rank k in polynomial
time.

Without loss of generality, we assume the first k rows of A $← D`,k form an
invertible matrix. The D`,k-matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D`,k, w $← Zkq and
u $← Z`q.

Definition 2 (D`,k-matrix Diffie-Hellman Assumption). Let D`,k be a
matrix distribution and s ∈ {1, 2, T}. We say that the D`,k-matrix Diffie-Hellman
(D`,k-MDDH) assumption holds relative to PGGen in group Gs if for all PPT
adversaries A, it holds that

Advmddh
D`,k,PGGen,s(A) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|

is negligible where the probability is taken over PG $← PGGen(1λ), A $← D`,k,
w $← Zkq and u $← Z`q.

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U`,k assumption can also distin-
guish between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [11] that Uk-MDDH and
U`,k-MDDH assumptions are equivalent.

Definition 3 (Uniform Distribution). Let k, ` ∈ N+ with ` > k. We call U`,k
a uniform distribution if it outputs uniformly random matrices in Z`×kq of rank k
in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (U`,k-MDDH ⇔ Uk-MDDH [11]). Let `, k ∈ N+ with ` > k. An
U`,k-MDDH instance is as hard as an Uk-MDDH instance. More precisely, for
each adversary A there exists an adversary B and vice versa with

Advmddh
U`,k,PGGen,s(A) = Advmddh

Uk,PGGen,s(B)

and T (A) ≈ T (B).

Proof. An U`,k-MDDH instance (PG, [A]s, [v]s) can be transformed into an Uk-
MDDH by picking uniformly random a full-rank matrix T ∈ Z(k+1)×`

q and
returning (PG, [TA]s, [Tv]s).

For the other direction one picks uniformly random a full-rank matrix T′ ∈
Z`×(k+1)
q to turn the Uk-MDDH instance (PG, [A]s, [v]s) into an U`,k-MDDH

instance (PG, [T′A]s, [T′v]s). ut



HIBE with Tight Multi-Challenge Security 13

Lemma 2 (D`,k-MDDH⇒ Uk-MDDH [10]). Let `, k ∈ N+ with ` > k and let
D`,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an D`,k
instance. More precisely, for each adversary A there exists an adversary B with

Advmddh
Uk,PGGen,s(A) ≤ Advmddh

D`,k,PGGen,s(B)

and T (A) ≈ T (B).

For Q ∈ N+, W $← Zk×Qq ,U $← Z`×Qq , consider the Q-fold D`,k-MDDH
problem which is distinguishing the distributions (PG, [A], [AW]) and (PG, [A],
[U]). That is, the Q-fold D`,k-MDDH problem contains Q independent instances
of the D`,k-MDDH problem (with the same A but different wi). By a hybrid
argument, one can show that the two problems are equivalent, where the reduction
loses a factor Q. The following lemma gives a tight reduction.

Lemma 3 (Random Self-reducibility [10]). For ` > k and any matrix dis-
tribution D`,k, the D`,k-MDDH assumption is random self-reducible. In particular,
for any Q ∈ N+ and any adversary A there exists an adversary B with

(`− k)Advmddh
D`,k,PGGen,s(A) + 1

q − 1 ≥ AdvQ-mddh
D`,k,PGGen,s(B) :=

|Pr[B(PG, [A], [AW]⇒ 1)]− Pr[B(PG, [A], [U]⇒ 1)]| ,

where PG $← PGGen
(
1λ
)
, A $← D`,k, W $← Zk×Qq , U $← Z(k+1)×Q

q , and T (B) ≈
T (A) +Q · poly(λ), where poly is a polynomial independent of A.

To reduce the Q-fold U`,k-MDDH assumption to the Uk-MDDH assumption
we have to apply Lemma 3 to get from Q-fold U`,k-MDDH to standard U`,k-
MDDH and then Lemma 1 to get from U`,k-MDDH to Uk-MDDH. Thus for every
adversary A there exists an adversary B with

AdvQ-mddh
U`,k,PGGen,s(A) ≤ (`− k)Advmddh

Uk,PGGen,s(B) + 1
q − 1 .

The following Lemma is often helpful with the uniform matrix distribution.

Lemma 4.
Pr
[
rank(A) = k | A $← Zk×kq

]
≥ 1− 1

q − 1
A proof can be found in the full version.

2.2 Pseudorandom Functions

For the IBE construction we need pseudorandom functions (PRFs).

Definition 4 (Pseudorandom Function). A family of pseudorandom func-
tions is a tuple F := (GenPRF,PRF) of polynomial-time algorithms with:
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– K $← GenPRF
(
1λ
)
is a probabilistic algorithm that gets the security parameter

1λ and returns a (private) key K.
– PRF is a deterministic algorithm that gets a key K and an input X ∈ D and
outputs PRFK(X) ∈ R, where D is the domain set and R is the finite range
set.

The security notion for pseudorandom functions is pseudorandomness.

Definition 5 (Pseudorandomness). A family of pseudorandom functions
F := (GenPRF,PRF) is pseudorandom if for all PPT adversaries A,

Advpr
F (A) :=

∣∣∣Pr
[
APRFK(·) ⇒ 1 | K $← GenPRF

(
1λ
)]
− Pr

[
ARF(·) ⇒ 1

]∣∣∣
is negligible in λ. The notion Af(·) means A has oracle access to the function f
and RF : D → R is random function (i.e. a function that maps every input to a
uniform random value from R).

2.3 Affine MACs

The HIBEs in this paper are constructed in the BKP framework: The HIBEs are
obtained from a Message Authentication Code with suitable algebraic structures
(affine MAC with levels). The main work is to achieve tight security in the
multi-challenge setting for the MACs.

To achieve this, we need to generalize the structure of the affine MAC with
levels slightly and allow that X can be a matrix (instead of a vector) and x′ can
be a vector (instead of only a scalar value). Please note that in the definition
in this paper, X is transposed compared to the original affine MAC with levels
definition.

Definition 6 (Affine MAC with Levels). An affine MAC with levels MAC
consists of three PPT algorithms (GenMAC,Tag,VerMAC) with the following prop-
erties:
– GenMAC(G2, q, P2) gets a description of a prime-order group (G2, q, P2) and
returns a secret key skMAC :=

(
B, (Xl,i,j)1≤l≤`(p),1≤i≤L,1≤j≤`′(l,i),x

′
)
where

B ∈ Zn×n′

q , Xl,i,j ∈ Zη×nq for l ∈ {1, . . . , `(L)}, i ∈ {1, . . . , L}, and j ∈
{0, . . . , `′(l, i)} and x′ ∈ Zηq .

– Tag
(
skMAC,m ∈ Sp≤L

)
returns a tag τ :=

(
([tl]2)1≤l≤`(p), [u]2

)
where

tl := Bsl for sl $← Zn
′

q (1 ≤ l ≤ `(p))

u :=
`(p)∑
l=1

 p∑
i=1

`′(l,i)∑
j=1

fl,i,j
(
m|i
)
Xl,i,j

tl + x′ . (5)

– VerMAC

(
skMAC,m, τ =

(
([tl]2)1≤l≤`(p), [u]2

))
checks, whether Equation (5)

holds.
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InitMAC:
PG $← PGGen

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
skMAC

$← GenMAC(G2, q, P2)
parse skMAC =:

(
B, (Xj)1≤j≤`,x

′)
return PG

Eval(m ∈ S):
QM := QM ∪ {m}
return Tag(skMAC,m)

FinalizeMAC(β ∈ {0, 1}):
return (CM ∩QM = ∅) ∧ β

Chal(m? ∈ S):
CM := CM ∪ {m?}
h $← Zηq

h0 :=
(∑̀
j=1

fj(m?)X>j

)
h

h0
$← Znq

h1 = (x′)>h ∈ Zq
h1

$← Zq
return

(
[h]1, [h0]1, [h1]T

)

Fig. 2. Games mPR-CMAreal and mPR-CMArand for defining mPR-CMA security for
affine MACs.

The messages of MAC have the form m = (m1, . . . ,mp) where p ≤ L and mi ∈ S.
After the transformation to an HIBE, S will be the base set of the identity space
and L will be the maximum number of levels. The functions fl,i,j : Si → Zq must
be public, efficiently computable functions. The parameters ` : {1, . . . , p} → N+,
n, n′, η ∈ N+ and `′ : {1, . . . , p} × {1, . . . , L} → N+ (1 ≤ i ≤ L) are arbitrary,
scheme-depending parameters. The function ` must be monotonous increasing.

A delegatable affine MAC is an affine MAC with levels with `(p) = 1 and an
affine MAC is a delegatable affine MAC with L = 1. We can use affine MACs
with levels to build HIBEs, delegatable affine MACs to build anonymous HIBEs
and affine MACs to build anonymous IBEs.

Security. To build anonymous IBE, we need an affine MAC that satisfies
multi-challenge pseudorandomness against chosen message attacks (mPR-CMA)
security.

We require multi-challenge hierarchical pseudorandomness against chosen-
message attacks (mHPR-CMA) for affine MACs with levels to obtain mIND-HID-
CPA and mIND-HID-CCA secure HIBEs.The security notion is defined by the
games in Figure 3.

Definition 7 (mXPR-CMA Security). An affine MAC (with levels) MAC is
mXPR-CMA-secure for X ∈ {ε,H} in G2 if for all PPT adversaries A the
function

Advmxpr-cma
MAC,G2

(A) :=
∣∣∣Pr
[
mXPR-CMAAreal ⇒ 1

]
− Pr

[
mXPR-CMAArand ⇒ 1

]∣∣∣
is negligible.
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InitMAC:
PG $← PGGen

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
skMAC

$← GenMAC(G2, q, P2)

skMAC =:
(

B, (Xl,i,j)1≤l≤`(p),1≤i≤L,
1≤j≤`′(l,i)

,x′
)

dk :=
(
[Xl,i,jB]2

)
1≤l≤`(p),1≤i≤L

1≤j≤`′(l,i)

return
(
PG, [B]2, dk

)
Eval(m ∈ Sp):
QM := QM ∪ {m}((

[tl]2
)

1≤l≤`(p)
, [u]2

)
$← Tag(skMAC,m)

for l ∈ {1, . . . , `(p)}, i ∈ {p+ 1, . . . , L},
j ∈ {1, . . . , `′(l, i)} do dl,i,j := Xl,i,jtl
tdk :=

(
[dl,i,j ]2

)
1≤l≤`(p),p+1≤i≤L,1≤j≤`′(l,i)

return
((

[tl]2
)

1≤l≤`(p)
, [u]2, tdk

)

Chal(m? ∈ Sp):
CM := CM ∪ {m?}
h $← Zηq
for l ∈ {1, . . . , `(p)} do

h0,l :=

(
L∑
i=1

`′(l,i)∑
j=1

fl,i,j
(

m?
|i
)
X>l,i,j

)
h

h1 = (x′)>h ∈ Zq
h1

$← Zq

return
(

[h]1,
(
[h0,l]1

)
1≤l≤`(p)

, [h1]T
)

FinalizeMAC(β ∈ {0, 1}):
return

(⋃
m?∈CM

Prefix(m?)∩QM = ∅
)
∧β

Fig. 3. Games mHPR-CMAreal and mHPR-CMArand for defining mHPR-CMA security
for affine MACs with levels.

3 Delegatable Affine MACs with Tight Multi-Challenge
Security.

3.1 Warm-up: IBE

First, we present the technique to handle multiple challenge queries in the IBE
setting (L = 1). The MAC is given in Figure 4. This affine MAC has identity
space S = {0, 1}α (for arbitrary α ∈ N+) and uses n = 2k, n′ = k, η = k
and `′ = α. To match the formal definition, Xj,b should be renamed to X2j−b

and f2j−b(m) :=
(

mj
?= b
)
. The MAC looks very similar to the one in [22] and

achieves the same security and very similar efficiency, however the security proof
is quite different. A comparison of the resulting IBE with other tightly secure
IBEs can be found in Table 2.

As in [22], we need to ensure that the adversary can only query one tag per
message. The key generator can ensure this by making the tags deterministic. He
can achieve this by storing the generated tags for duplicated queries (stateful
scheme) or by generating the randomness with a pseudorandom function. We
have done the later in our presentation. The affine MACs with levels we present
later solve this by having rerandomizable tags. Of course, they can be used as
affine MAC as well by setting L = 1, but this comes at the cost of being slightly
less efficient.
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Scheme A |mpk| |usk| |C| Loss MC Ass.
CW13 [8] 7 2k2(2n+ 1)|G1|+ k|GT | 4k|G2 4k|G1 O(n) 7 k-LIN
BKP14 [5] 3 (2nk2 + 2k)G1| (2k + 1)|G2| (2k + 1)|G1| O(λ) 7 k-LIN
AHY15 [3] 3 (16n+ 8)|G1|+ 2|GT | 8|G2| 8|G1| O(n) 3 DLIN
GCD+161 [17] 7 (6nk2 + 3k2)|G1|+ k|GT | 6k|G2| 6k|G1| O(n) 3 k-LIN
GCD+162 [17] 7 (4nk2 + 2k2)|G1|+ k|GT | 4k|G2| 4k|G1| O(n) 3 k-LINAI
GDCC16 [18] 3 (2nk2 + 3k2)|G1|+ k|GT | 4k|G2| 4k|G1| O(n) 3 k-LIN
HJP18 [22] 3 ((3 + n)k2 + k)|G1| 4k|G2| 4k|G1| O(n) 3 k-LIN
Ours 3 ((2 + 2n)k2 + k)|G1| 4k|G2| 4k|G1| O(n) 3 k-LIN

Table 2. Comparison of IBEs in prime-order pairing groups with tight adaptive IND-
ID-CPA-security in the standard model based on static assumptions. The schemes in
the last two rows can also be made IND-ID-CCA secure. The second column indicates
whether an IBE is anonymous (3) or not (7). The identity space is {0, 1}n. ‘|mpk|,’
‘|usk|,’ and ‘|C|’ stand for the size of the master public key, the user secret key and
a ciphertext, respectively. We count the number of group elements in G1,G2, and
GT . For a scheme that works in symmetric pairing groups, we write G(:= G1 = G2).
The last but one column indicates whether the adversary is allowed to query multiple
challenge ciphertexts (3) or just one (7). The last column shows the underlying security
assumption.

GenMAC(G2, q, P2):
K $← GenPRF

(
1λ
)

for j ∈ {1, . . . , α}, b ∈ {0, 1} do Xj,b
$← Zk×2k

q

x′ $← Zkq
return skMAC :=

(
K, (Xj,b)1≤j≤α,b∈{0,1},x

′)
Tag(skMAC,m ∈ S):
parse skMAC =:

(
K, (Xj,b)1≤j≤α,b∈{0,1},x

′)
t := PRFK(m) ∈ Z2k

q

u :=
α∑
j=1

Xj,mj t + x′

return
(
[t]2, [u]2

)
VerMAC(skMAC,m ∈ S, τ):
parse skMAC =:

(
K, (Xj,b)1≤j≤α,b∈{0,1},x

′)
parse τ =:

(
[t]2, [u]2

)
return u ?=

α∑
j=1

Xj,mj t + x′

Fig. 4. The new multi-challenge tightly secure affine MAC MACmc.
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Theorem 1 (Security of MACmc). MACmc is tightly mPR-CMA secure in G2
under the Uk-MDDH assumption for G1, the Uk-MDDH assumption for G2 and
the pseudorandomness of F := (GenPRF,PRF). More precisely, for all adversaries
A there exists adversaries B1, B2 and B3 with

Advmpr-cma
MACmc

(A) ≤ 8kαAdvmddh
Uk,PGGen,2(B1) + (kα+ 2k + 1)Advmddh

Uk,PGGen,1(B2)

+ 2Advpr
F (B3) + (Qc + 10)α+ 4

q − 1 + 2Qe
q2k

and T (B1) ≈ T (B2) ≈ T (B3) ≈ T (A) + (Qe +Qc) · poly(λ), where Qe resp. Qc
denotes the number of Eval resp. Chal queries of A and poly is a polynomial
independent of A.

Proof. The proof uses a hybrid argument with the hybrids G0, G1, G2,̂,0 for
̂ ∈ {0, . . . , α}, G2,̂,1–G2,̂,3 for ̂ ∈ {0, . . . , α− 1} and finally G3–G5. They are
given in Table 3. They make use of the random functions RF : S → Z2k

q ,
RF′ : S → Zkq , RF̂ : {0, 1}̂ → Zk×2k

q , ZF̂ : {0, 1}̂ → Zk×kq and OF̂ : {0, 1}̂ →
Zk×kq for ̂ ∈ {1, . . . , α} and R̃F : S → Zkq .

Lemma 5 (G0  G1). For all adversaries A there exists an adversary B with∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ Advpr
F (B)

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. The value t for in the Eval oracle is chosen randomly in game G1 instead
of pseudorandom in game G0. This leads to a straight forward reduction to the
pseudorandomness of F := (GenPRF,PRF). ut

Lemma 6 (G1  G2,0,0).

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2,0,0 ⇒ 1

]
Proof. In game G1 replace X1,b with X1,b + RF0(ε) for b ∈ {0, 1} to obtain game
G2,0,0. ut

Lemma 7 (G2,̂,0  G2,̂,1). For ̂ < α and all adversaries A there exists an
adversary B with

∣∣Pr
[
GA2,̂,0 ⇒ 1

]
− Pr

[
GA2,̂,1 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

A proof can be found in the full version.
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G0 G1 G2,̂,0 G2,̂,1 G2,̂,2 G2,̂,3 G3 G4
�� ��G5

InitMAC:
PG $← PGGen

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
B0,B1

$← U2k,k
such that B0,B1 is a basis of Z2k

q

K $← GenPRF
(
1λ
)

for j ∈ {1, . . . , α}, b ∈ {0, 1} do
Xj,b

$← Zk×2k
q

x′ $← Zkq
return PG

Chal(m? ∈ S):
CM := CM ∪ {m?}
h $← Zkq
h0 :=

α∑
j=1

X>j,m?
j
h

+ RF̂
(

m?
|̂
)>h

+
(

B⊥1 ZF̂+1
(

m?
|̂+1
)>

+ B⊥0 OF̂
(

m?
|̂
)>)h

+
(

B⊥1 ZF̂+1
(

m?
|̂+1
)>

+ B⊥0 OF̂+1
(

m?
|̂+1
)>)h

+ RFα(m?)>h

h0
$← Z2k

q

h1 := (x′)>h�� ��h1
$← Zq

return
(
[h]1, [h0]1, [h1]T

)

Eval(m ∈ S):
QM := QM ∪ {m}
t := PRFK(m) ∈ Z2k

q

t := RF(m) ∈ Z2k
q

s := RF′(m) ∈ Zkq
if m̂+1 = 0 then
t := B0s

else
t := B1s

u :=
α∑
j=1

Xj,mj t + x′

+ RF̂
(

m|̂
)
t

+
(

ZF̂+1
(

m|̂+1
)(

B⊥1
)>

+ OF̂
(

m|̂
)(

B⊥0
)>)t

+
(

ZF̂+1
(

m|̂+1
)(

B⊥1
)>

+ OF̂+1
(

m|̂+1
)(

B⊥0
)>)t

u := R̃F(m)
return

(
[t]2, [u]2

)
FinalizeMAC(β ∈ {0, 1}):
return (CM ∩QM = ∅) ∧ β

Fig. 5. Hybrids for the security proof of MACmc.
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Hybrid t uniform in ru(m) rh0 (m) Transition

G0 Z2k
q (pseudorandom) 0 Original game

G1 Z2k
q 0 PRF

G2,̂,0 Z2k
q RF̂

(
m|̂
)

Identical

G2,̂,1 RF̂
(

m|̂
)

Uk-MDDH in G2

G2,̂,2

(
ZF̂+1

(
m|̂+1

)(
B⊥1
)>

+ OF̂
(

m|̂
)(

B⊥0
)>) Uk-MDDH in G1

G2,̂,3

if m̂+1 = 0 then
Span(B0)

else
Span(B1)

(
ZF̂+1

(
m|̂+1

)(
B⊥1
)>

+ OF̂+1
(

m|̂+1
)(

B⊥0
)>) Uk-MDDH in G1

G2,̂+1,0 Z2k
q RF̂+1

(
m|̂+1

)
Uk-MDDH in G2

G3 Z2k
q uniform random RFα(m) Statistically close

G4 Z2k
q uniform random uniform random Uk-MDDH in G1

G5 Z2k
q uniform random uniform random Uk-MDDH in G1

Table 3. Summary of the hybrids of Figure 5. Non-duplicated Eval queries draw
(pseudo-)randomly t from the set described by the second column and add the ran-
domness ru(m)t to u or choose u uniform random. The Chal queries add the term
rh0 (m?)>h to h0 or choose h0 uniform random. The column “Transition” displays how
we can switch to this hybrid from the previous one. The background color indicates
repeated transitions.

Lemma 8 (G2,̂,1  G2,̂,2). For all adversaries A there exists an adversary B
with ∣∣Pr

[
GA2,̂,1 ⇒ 1

]
− Pr

[
GA2,̂,2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1
and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. First of all, we replace the term RF̂
(
m|̂
)
in G2,̂,1 with ZF̂

(
m|̂
)(

B⊥1
)> +

OF̂
(
m|̂
)(

B⊥0
)>. This does not change the distribution, since B⊥1 ,B⊥0 is a basis

of Z2k
q . To show this, we assume

(
B⊥1 |B⊥0

)
does not have full rank. Since both

B⊥1 and B⊥0 have rank k, there is a non-zero vector v ∈ Span
(
B⊥1
)
∩ Span

(
B⊥0
)

such that (B0|B1)v = 0, which contradicts the fact that B0,B1 is a basis of Z2k
q .

Define

ZF̂+1
(
m|̂+1

)
:=
{

ZF̂
(
m|̂
)

if m̂+1 = 0
ZF̂
(
m|̂
)

+ ZF′̂
(
m|̂
)

if m̂+1 = 1
,

where ZF′̂ : {0, 1}̂ → Z1×k
q is another independent random function. Since ZF̂

does not appear in game G2,̂,2 anymore, ZF̂+1 is a random function.
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Let
(
[D]1, [f1]1, . . . , [fkQc

]1
)
be a (kQc)-fold U2k,k-MDDH challenge and define

Fc :=
(
f(c−1)k+1| . . . |fck

)
to get Qc 2k × k matrices, whose column vectors are

uniformly random chosen from either Span(D) or Z2k
q . Then the reduction in

Figure 6 can be used to bound the difference between G2,̂,1 and G2,̂,2.

InitMAC:
parse PG =: (G1,G2,GT , q, P1, P2, e)
B0,B1

$← U2k,k
such that B0,B1 is a basis of Z2k

q

for j ∈ {1, . . . , α}, b ∈ {0, 1} do
Jj,b $← Zk×2k

q

if (j, b) 6= (̂+ 1, 1) then Xj,b := Jj,b

// Implicit: X̂+1,1 := J̂+1,1 +
(

B⊥1 DD−1
)>

x′ $← Zkq
return PG

Eval(m ∈ S):
QM := QM ∪ {m}
s := RF′(m) ∈ Zkq
if m̂+1 = 0 then

t := B0s
else

t := B1s

u :=
(

α∑
j=1

Jj,mj + ZF̂
(

m|̂
)(

B⊥1
)>

+ OF̂
(

m|̂
)(

B⊥0
)>)t + x′

return
(
[t]2, [u]2

)

Chal(m? ∈ S):
CM := CM ∪ {m?}
Let c be the index of the first Chal
query on a message with prefix m?

|̂.
h′ $← Zkq
h := Fch′

h0 :=
(

α∑
j=1

J>j,m?
j

+ B⊥1 ZF̂
(

m?
|̂
)>

+ B⊥0 OF̂
(

m?
|̂
)>)h

if m?
̂+1 = 1 then h0 := h0 + B⊥1 Fch′

h1 := (x′)>h
return

(
[h]1, [h0]1, [h1]T

)
FinalizeMAC(β ∈ {0, 1}):
return (CM ∩QM = ∅) ∧ β

Fig. 6. Reduction for the transition from G2,̂,1 to G2,̂,2 to the kQc-fold U2k,k-MDDH
challenge

(
[D]1, [F1]1, . . . , [FQc ]1

)
.

Eval queries are distributed identically in game G2,̂,1 and G2,̂,2: If m̂+1 = 0,
they are the same by the definition of ZF̂+1. If m̂+1 = 1, t ∈ Span(B0) and
thus the term ZF̂

(
m|̂
)(

B⊥1
)> resp. ZF̂+1

(
m|̂+1

)(
B⊥1
)> cancels out in this query.

Note that ZF′̂ is not evaluated in Eval queries.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). For Chal queries we write Fc =:
(

DWc
DWc+Rc

)
where Wc is uniform

random in Zk×kq and Rc is 0 ∈ Zk×kq or uniform random in Zk×kq . In the following
we will assume that Wc has full rank. This happens with probability at least
(1− 1/(q − 1)).
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The value h is uniform random in Zkq , since h′ is uniformly random and Fc is
an invertible k × k matrix, since D and Wc are invertible.

If m?
̂+1 = 0 the Chal queries are distributed identically in G2,̂,1 and G2,̂,2.

If m?
̂+1 = 1 The reduction computes h0 as

h0 :=

 α∑
j=1

J>j,m?
j

+ F
(

m?
|̂

)h + B⊥1 Fch′

=

 α∑
j=1

J>j,m?
j

+ F
(

m?
|̂

)h + B⊥1 DD−1Fch′ + B⊥1 Rch′

=

 α∑
j=1

X>j,m?
j

+ F
(

m?
|̂

)h + B⊥1 RcFc
−1h

with
F
(

m?
|̂

)
:= B⊥1 ZF̂

(
m?
|̂

)>
+ B⊥0 OF̂

(
m?
|̂

)>
.

If Rc = 0, the reduction is simulating G2,̂,1. If Rc is uniformly random, we
implicitly set ZF′̂

(
m|̂
)

:= RcFc
−1 and are simulating game G2,̂,2. ut

Lemma 9 (G2,̂,2  G2,̂,3). For all adversaries A there exists an adversary B
with ∣∣Pr

[
GA2,̂,2 ⇒ 1

]
− Pr

[
GA2,̂,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. We define

OF̂+1
(
m|̂+1

)
:=
{

OF̂
(
m|̂
)

+ OF′̂
(
m|̂
)

if m̂+1 = 0
OF̂

(
m|̂
)

if m̂+1 = 1
,

where OF′̂ : {0, 1}̂ → Z1×k
q is another independent random function. Since OF̂

in not used in game G2,̂,3, OF̂+1 is a random function.
The argument that the games G2,̂,2 and G2,̂,3 are computationally indistin-

guishable under an MDDH assumption in G1 is the same as in Lemma 8, just
with the roles of 0 and 1 swapped. ut

Lemma 10 (Optimization: G2,̂,1  G2,̂,3). For all adversaries A there exists
an adversary B with∣∣Pr

[
GA2,̂,1 ⇒ 1

]
− Pr

[
GA2,̂,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).
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Proof. We can do the reduction of Lemmata 8 and 9 in one step using only one
MDDH challenge in G1. This combined reduction embeds the challenge in both
X̂+1,1 as X̂+1,1 := J̂+1,1+B⊥1 DD−1 and X̂+1,0 as X̂+1,0 := J̂+1,0+B⊥0 DD−1

and picks in each Chal query on m? c as the index of the first Chal query on a
message with prefix m?

|̂+1. ut

Lemma 11 (G2,̂,3  G2,̂+1,0). For all adversaries A there exists an adversary
B with ∣∣Pr

[
GA2,̂,3 ⇒ 1

]
− Pr

[
GA2,̂+1,0 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. In G2,̂,3 we replace the term ZF̂+1
(
m|̂+1

)(
B⊥1
)> + OF̂+1

(
m|̂+1

)(
B⊥0
)>

with RF̂+1
(
m|̂+1

)
. This does not change the distribution, since B⊥1 ,B⊥0 is a

basis of Z2k
q .

The remaining transition is the reverse of Lemma 7. ut

Lemma 12 (G2,α,0  G3). For all adversaries A there exists an adversary B
with ∣∣Pr

[
GA2,α,0 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ Qe
q2k

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. Assume Qe∩Qc = ∅; otherwise, the adversary has lost the game regardless
of her output. Furthermore assume, that t 6= 0 ∈ Z2k

q . This happens with
probability at least (1− 1/q2k).

In each Eval query the value RFα(m)t is then distributed like a fresh random
vector from Zkq the first time a tag for m is queried. We can ignore duplicated
queries for m since they will be answered with the same tag. ut

Lemma 13 (G3  G4). For all adversaries A there exists an adversary B with

∣∣Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,1(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. We pick a Qc fold U3k,k-MDDH challenge
(
[D]1, [f1]1, . . . , [fQc

]1
)
and use

the reduction given in Figure 7.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). Write fc =:
(

Dwc
Dwc+rc

)
where wc is uniform random in Zkq and rc is

0 ∈ Z2k
q or uniform random in Z2k

q . Then h := fc is a uniform random vector in
Zkq , since D has full rank and wc is uniformly random.
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InitMAC:
parse PG =: (G1,G2,GT , q, P1, P2, e)
B0,B1

$← U2k,k
such that B0,B1 is a basis of Z2k

q

for j ∈ {1, . . . , α}, b ∈ {0, 1} do
Jj,b $← Zk×2k

q

if j 6= 1 then Xj,b := Jj,b
// Implicit: For b ∈ {0, 1} :

// X1,b := J1,b +
(

DD−1
)>

x′ $← Zkq
return PG

FinalizeMAC(β ∈ {0, 1}):
return (CM ∩QM = ∅) ∧ β

Eval(m ∈ S):
QM := QM ∪ {m}
t := RF(m) ∈ Z2k

q

u := R̃F(m)
return

(
[t]2, [u]2

)
Chal(m? ∈ S):
CM := CM ∪ {m?}
Let this be the c-th Chal query.
h := fc
h0 :=

(
α∑
j=1

J>j,m?
j

+ B⊥1 RFα(m?)>
)

h + fc

h1 := (x′)>h
return

(
[h]1, [h0]1, [h1]T

)

Fig. 7. Reduction for the transition from G3 to G4 to the Qc-fold U3k,k-MDDH challenge(
[D]1, [f1]1, . . . , [fQc ]1

)
.

The value h0 is calculated as

h0 :=

 α∑
j=1

J>j,m?
j

+ B⊥1 RFα(m?)>
h + fc

=

 α∑
j=1

J>j,m?
j

+ B⊥1 RFα(m?)>
h + DD−1fc + rc

=

 α∑
j=1

X>j,m?
j

+ B⊥1 RFα(m?)>
h + rc .

If rc = 0, we are simulating game G3. If rc is uniform random, then h0 is uniform
random and we are simulating game G4. ut

Lemma 14 (G4  G5). For all adversaries A there exists an adversary B with∣∣Pr
[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣ ≤ Advmddh
Uk,PGGen,1(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. We pick a Qc fold Uk-MDDH challenge
(
[D]1, [f1]1, . . . , [fQc

]1
)
and use

the reduction given in Figure 8.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). Write fc =:
(

Dwc
Dwc+rc

)
where wc is uniform random in Zkq and rc is 0
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InitMAC:
parse PG =: (G1,G2,GT , q, P1, P2, e)
B0,B1

$← U2k,k
such that B0,B1 is a basis of Z2k

q

for j ∈ {1, . . . , α}, b ∈ {0, 1} do
Xj,b

$← Zk×2k
q

j′ $← Zkq

// Implicit: x′ := j′ +
(

DD−1
)>

return PG

FinalizeMAC(β ∈ {0, 1}):
return (CM ∩QM = ∅) ∧ β

Eval(m ∈ S):
QM := QM ∪ {m}
t := RF(m) ∈ Z2k

q

u := R̃F(m)
return

(
[t]2, [u]2

)
Chal(m? ∈ S):
CM := CM ∪ {m?}
Let this be the c-th Chal query.
h := fc
h0

$← Z2k
q

h1 := (j′)>h + fc
return

(
[h]1, [h0]1, [h1]T

)
Fig. 8. Reduction for the transition from G4 to G5 to the Qc-fold Uk-MDDH challenge(
[D]1, [f1]1, . . . , [fQc ]1

)
.

or uniform random in Zq. Then, just like in the previous Lemma, h := fc is a
uniform random vector in Zkq , since D has full rank and wc is uniformly random.

The value h1 is calculated as

h1 := (j′)>h + fc = (j′)>h + DD−1fc + rc = (x′)>h + rc .

If rc = 0, we are simulating game G4. If rc is uniform random, then h1 is uniform
random and we are simulating game G5. ut
Summary. To prove Theorem 1, we combine Lemmata 5–14 to change h0 and h1
from real to random and then apply Lemmata 12–5 in reverse order to undo all
changes to the Eval oracle to get to the mPR-CMArand game. The Lemmata 8
and 9 resp. Lemma 10 get information theoretic arguments then. ut

3.2 Tight Multi-challenge Security for the first LP MAC

Here we show how tight multi-challenge security can be obtained for the first
HIBE from [28]. The MAC, given in Figure 9, only differs in the parameter η,
that is k here. Furthermore this MAC has identity space base set S = {0, 1}α
(for arbitrary α ∈ N+) and uses n = 3k, n′ = k, `(p) = 1 (thus also satisfies
the delegatable, affine MAC notion) and `′(l, i) = 2iα. To match the formal
definition, Xi,j,b should be renamed to Xi,2j−b and fi,2j−b(m) :=

(q
m|i

y
j

?= b
)
.

In the single-challenge setting, all of these transitions are information-theoretic
secure, but in the multi-challenge setting we need a MDDH-assumption in G1 to
proof them.

Theorem 2 (Security of MAC1). MAC1 is tightly mHPR-CMA secure under
the Uk-MDDH assumption for G1 and G2. More precisely, for all adversaries A
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GenMAC(G2, q, P2):
B $← U3k,k
for i ∈ {1, . . . , L}, j ∈ {1, . . . , iα}, b ∈ {0, 1} do Xi,j,b

$← Zk×3k
q

x′ $← Zkq
return skMAC :=

(
B, (Xi,j,b)1≤i≤L,1≤j≤iα,b∈{0,1},x

′)
Tag(skMAC,m ∈ Sp):
parse skMAC =:

(
B, (Xi,j,b)1≤i≤L,1≤j≤iα,b∈{0,1},x

′)
s $← Zkq ; t := Bs

u :=
p∑
i=1

iα∑
j=1

Xi,j,JmKj
t + x′

return
(
[t]2, [u]2

)
VerMAC(skMAC,m ∈ Sp, τ):
parse skMAC =:

(
B, (Xi,j,b)1≤i≤L,1≤j≤iα,b∈{0,1},x

′)
parse τ =:

(
[t]2, [u]2

)
return u ?=

p∑
i=1

iα∑
j=1

Xi,j,JmKj
t + x′

Fig. 9. The new multi-challenge tightly secure delegatable affine MAC MAC1.

there exist adversaries B1 and B2 with

Advmhpr-cma
MAC1,PGGen(A) ≤

(
8k(α+ 1)L+ 8kαL2)Advmddh

Uk,PGGen,2(B1)

+
(
1 + k(α+ 4)L+ kαL2)Advmddh

Uk,PGGen,1(B2)

+
10 + 2Qc + (Qc + 6)α

(
L2 + L

)
q − 1 + 2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc) ·poly(λ), where Qe resp. Qc denotes the
number of Eval resp. Chal queries of A and poly is a polynomial independent
of A.

The proof can be found in the full version. A summary of the hybrids can be
found in Table 4.

3.3 Tight Multi-challenge Security for the second LP MAC

The second MAC of [28] can be made tightly secure in a similar way to the first
MAC. Details can be found in the full version.

4 Transformation to HIBE

Any mHPR-CMA affine MAC with levels can be tightly transformed to an hi-
erarchical identity-based key encapsulation mechanism (HIBKEM) under the
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Hybrid t uniform in ru(m) rh0 (m) Transition

G0 Span(B) 0 Original game
G1 Span(B) 0 Identical

G2,ı̂,0 Span(B) 0 Identical
G2,ı̂,1 Z3k

q 0 Uk-MDDH in G2

G2,ı̂,2,̂,0 Z3k
q RFı̂,̂

(
JmK|̂

)(
B⊥
)> Identical

G2,ı̂,2,̂,1 RFı̂,̂
(
JmK|̂

)(
B⊥
)> Uk-MDDH in G2

G2,ı̂,2,̂,2

(
ZFı̂,̂+1

(
JmK|̂+1

)
(B∗0)>

+ OFı̂,̂
(
JmK|̂

)
(B∗1)>

) Uk-MDDH in G1

G2,ı̂,2,̂,3

if JmK̂+1 = 0 then
Span(B|B0)

else
Span(B|B1) (

ZFı̂,̂+1
(
JmK|̂+1

)
(B∗0)>

+ OFı̂,̂+1
(
JmK|̂+1

)
(B∗1)>

) Uk-MDDH in G1

G2,ı̂,2,̂+1,0 Z3k
q RFı̂,̂+1

(
JmK|̂+1

)(
B⊥
)> Uk-MDDH in G2

G2,ı̂,3 Z3k
q uniform random RFı̂

(
m|ı̂
)(

B⊥
)> Statistically close

G2,ı̂,4 Z3k
q uniform random 0 Uk-MDDH in G1

G2,ı̂,5 Span(B) uniform random 0 Uk-MDDH in G2

G3 Span(B) uniform random 0 Uk-MDDH in G1

Table 4. Summary of the hybrids for the security proof of Theorem 2. Non-duplicated
Eval queries (with p = ı̂) draw t from the set described by the second column and add
the randomness ru(m)t to u or choose u uniform random. The Chal queries add the
term rh0 (m?)>h to h0 (if m? has length ≥ ı̂). The column “Transition” displays how
we can switch to this hybrid from the previous one. The background colors indicate
repeated transitions.

Dk+η,k-MDDH assumption in G1 with the transformation given in Figure 10.
The transformation follows the same idea as [5]. A security proof can be found in
the full version. With a QANIZK for linear subspaces we can use the idea of [22]
to obtain an IND-HID-CCA-secure HIBE. Details can be found in the full version.
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Gen
(
1λ
)
:

PG $← PGGen
(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
skMAC

$← GenMAC(G2, q, P2)

skMAC =:
(

B, (Xl,i,j)1≤l≤`(p),1≤i≤L,
1≤j≤`′(l,i)

,x′
)

A $← Dk+η,k
for l ∈ {1, . . . , `(L)}, i ∈ {1, . . . , L}, j ∈
{1, . . . , `′(l, i)} do

Yl,i,j $← Zk×nq ; Zl,i,j :=
(
Y>l,i,j | X>l,i,j

)
A

Dl,i,j := Xl,i,j ·B; El,i,j := Yl,i,j ·B
y′ $← Zkq ; z′ :=

(
y′> | x′>

)
·A

Z̃ :=
(
[Zl,i,j ]1

)
1≤l≤`(p),1≤i≤L,1≤j≤`′(l,i)

pk :=
(
PG, [A]1, Z̃, [z

′]1
)

d̃k :=
(
[Dl,i,j ]2, [El,i,j ]2

)
1≤l≤`(p),1≤i≤L,

1≤j≤`′(l,i)
dk :=

(
[B]2, d̃k

)
sk :=

(
skMAC, (Yl,i,j)1≤l≤`(p),1≤i≤L,

1≤j≤`′(l,i)
,y′
)

return (pk, dk, sk)

Ext(sk, id ∈ Sp):((
[tl]2

)
1≤l≤`(p)

, [u]2
)

$←Tag(skMAC, id)

v :=
`(p)∑
l=1

(
p∑
i=1

`′(l,i)∑
j=1

fl,i,j
(

id|i
)
Yl,i,j

)
tl + y′

for l ∈ {1, . . . , `(p)}, i ∈ {p + 1, . . . , L},
j ∈ {1, . . . , `′(l, i)} do

dl,i,j := Xl,i,jtl; el,i,j := Yl,i,jtl

usk[id] :=
((

[tl]2
)

1≤l≤`(p)
, [u]2, [v]2

)
udk[id] :=

(
[dl,i,j ]2, [el,i,j ]2

)
1≤l≤`(p),
p+1≤i≤L,
1≤j≤`′(l,i)return (usk[id], udk[id])

Enc(pk, id ∈ Sp):
r $← Zkq ; c0 := Ar
for l ∈ {1, . . . , `(p)} do

c1,l :=
p∑
i=1

`′(l,i)∑
j=1

fl,i,j
(

id|i
)
Zl,i,jr

C :=
(

[c0]1,
(
[c1,l]1

)
1≤l≤`(p)

)
K := z′ · r
return

(
[K]T ,C

)

Del(dk, usk[id], udk[id], id ∈ Sp, idp+1):

usk[id] =:
((

[tl]2
)

1≤l≤`(p)
, [u]2, [v]2

)
udk[id] =:

(
[dl,i,j ]2, [el,i,j ]2

)
1≤l≤`(p),
p+1≤i≤L,
1≤j≤`′(l,i)

for l ∈ {`(p) + 1, . . . , `(p+ 1)} do
tl := 0

for l ∈ {1, . . . , `(p+ 1)} do
s′l $← Zn

′
q ; t′l := tl + Bs′l

id′ := (id1, . . . , idp, idp+1)

u′ := u+
`(p)∑
l=1

`′(l,p+1)∑
j=1

fl,p+1,j(id′)dl,p+1,j

+
`(p+1)∑
l=1

(
p+1∑
i=1

`′(l,i)∑
j=1

fl,i,j
(

id′|i
)
Dl,i,j

)
s′l

v′ := v+
`(p)∑
l=1

`′(l,p+1)∑
j=1

fl,p+1,j(id′)el,p+1,j

+
`(p+1)∑
l=1

(
p+1∑
i=1

`′(l,i)∑
j=1

fl,i,j
(

id′|i
)
El,i,j

)
s′l

for l ∈ {1, . . . , `(p)}, i ∈ {p + 2, . . .
. . . , L}, j ∈ {1, . . . , `′(l, i)} do
d′l,i,j := dl,i,j + Dl,i,js′l
e′l,i,j := el,i,j + El,i,js′l

for l ∈ {`(p) + 1, . . . , `(p + 1)}, i ∈
{p+ 2, . . . , L}, j ∈ {1, . . . , `′(l, i)} do
d′l,i,j := Dl,i,js′l; e′l,i,j := El,i,js′l

usk′ :=
((

[t′l]2
)

1≤l≤`(p+1)
, [u′]2, [v

′]2
)

udk′ :=
([

d′l,i,j
]

2
,
[
e′l,i,j

]
2

)
1≤l≤`(p+1),
p+2≤i≤L,
1≤j≤`′(l,i)

return (usk′, udk′)

Dec(usk[id], id ∈ Sp,C):

usk[id] =:
((

[tl]2
)

1≤l≤`(p)
, [u]2, [v]2

)
parse C =:

(
[c0]1,

(
[c1,l]1

)
1≤l≤`(p)

)
[K]T := e

([
c>0
]

1
,

[
v
u

]
2

)
−
`(p)∑
l=1

e
([

c>1,l
]

1
, [tl]2

)
return [K]T

Fig. 10. The Transformation HIBKEMCPA of an affine MAC with levels to an HIBKEM.
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