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Abstract. Password-based authenticated key exchange (PAKE) allows
two parties with a shared password to agree on a session key. In the
last decade, the design of PAKE protocols from lattice assumptions has
attracted lots of attention. However, existing solutions in the standard
model do not have appealing efficiency. In this work, we first introduce a
new PAKE framework. We then provide two realizations in the standard
model, under the Learning With Errors (LWE) and Ring-LWE assump-
tions, respectively. Our protocols are much more efficient than previous
proposals, thanks to three novel technical ingredients that may be of
independent interests. The first ingredient consists of two approximate
smooth projective hash (ASPH) functions from LWE, as well as two AS-
PHs from Ring-LWE. The latter are the first ring-based constructions
in the literature, one of which only has a quasi-linear runtime while its
function value contains Θ(n) field elements (where n is the degree of the
polynomial defining the ring). The second ingredient is a new key con-
ciliation scheme that is approximately rate-optimal and that leads to a
very efficient key derivation for PAKE protocols. The third one is a new
authentication code that allows to verify a MAC with a noisy key.

1 Introduction

Key exchange is a fundamental and widely used cryptographic mechanism allow-
ing two parties to securely share a session key over a public unreliable channel.
In its original form, suggested in the seminal work of Diffie and Hellman, key ex-
change does not provide authentication and security against an active adversary
who has full control of the communication channel. Authenticated key exchange
additionally allows each user to authenticate identities of others using either
Public-key Infrastructure (PKI) such as TLS/SSL and IKE, or some pre-shared



information. The pre-shared information can be either a high-entropy crypto-
graphic key or a low-entropy password. In practice, the latter is more convenient
for human users who have limited memory. The study of password authenticated
key exchange (PAKE) was initiated by Bellovin and Merritt [4]. A secure PAKE
protocol must resist offline dictionary attacks, in which the adversary attempts
to determine the password using information from previous executions.

Related work. Since the pioneering work of Bellovin and Merritt [4] in 1992,
PAKE has been extensively studied. The first provably secure PAKE protocol
was suggested in [3], but its security analysis resorts to the random oracle model
(ROM). Goldreich and Lindell [13] then introduced the first construction without
ROM, based on general assumptions. A reasonably efficient protocol was put for-
ward by Katz, Ostrovsky and Yung [17], which was later abstracted by Gennaro
and Lindell [11] into a framework based on smooth projective hash (SPH) func-
tions. However, these protocols did not support mutual authentication (MA).
That is, the participant cannot make sure that the party he is interacting with,
is the right person. Of course, one can make it up with additional flows, but this
will increase the round complexity. Jiang and Gong (JG) [16] then proposed a
more efficient protocol with MA without increasing round complexity.

In this work, we are interested in PAKE protocols from lattices. The first
protocol was introduced in 2009 by Katz and Vaikuntanathan (KV) [18], whose
main ideas are as follows. Alice and Bob first send a CCA-secure ciphertext to
each other. Then, they try to compute approximate smooth projective hashing
(ASPH) values on the ciphertexts and conduct a key reconciliation to derive a
session key. Their key reconciliation mechanism consists of two steps: the first
step aims to extract a bit from the ASPH value which is slightly noisy, while the
second step is dedicated to correct the error using error-correcting code (ECC).
This mechanism is relatively inefficient as it can extract at most one bit per field
element. Furthermore, the underlying CCA-secure ciphertext (hence the ASPH)
is quite costly, as it includes ω(log n) CPA-secure ciphertexts1.

Groce and Katz (GK) [15] abstracted the JG protocol [16] into a frame-
work for PAKE, yielding a more efficient lattice-based protocol than KV. The
idea of the GK framework is as follows. Alice sends a CPA-secure encryption
C of password π to Bob. Bob then computes an SPH value h on (π,C). Then,
they conduct authentication via a CCA-secure encryption with randomness de-
termined by h. This framework can be adapted into the ASPH setting using
KV’s ASPH with their two-step key reconciliation. A realization was given by
Benhamouda et al. [5]. Canetti et al. [6] demonstrated another framework for
obtaining PAKE (without ASPH), via oblivious transfer (OT). They use OT to
transfer L′ bits for each password bit and finally achieve the authentication via
the CCA-secure encryption approach [15,16].

Zhang and Yu [28] proposed a PAKE framework from a new ASPH built on
a “splittable CCA-secure encryption”. However, their realization is in the ROM.
Another ROM-based PAKE protocol from lattices is due to Ding et al. [8]. In
this work, we only study PAKE protocols without the ROM.

1 The authors actually used n CPA-secure ciphertexts.
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Thus, all existing PAKE frameworks have certain efficiency issues, and do
not admit efficient lattice-based realizations in the standard model. Moreover, a
CCA-secure encryption seems to be an essential ingredient in them. This raises
two interesting questions: (1) From a theoretical point of view, is it possible to
achieve a secure PAKE without relying on any CCA-secure encryption or its
variant? (2) From a more practical point of view, how to design lattice-based
PAKEs in the standard model with better efficiency than previous ones? Tackling
these questions would likely require new technical insights.

Our Contributions and Techniques. In this work, we answer the above
two questions in the affirmative. Our contributions are threefold. First, we put
forward a new framework for obtaining secure PAKE protocols that does not
require any CCA-secure encryption or its variant. Second, we introduce several
new technical building blocks, that enable efficient standard-model instantiations
of our framework in general, and from lattices - in particular. Third, we explicitly
give two realizations of our framework, based on the plain Learning With Errors
(LWE) and the Ring-LWE assumptions, which enjoy security guarantees from
worst-case problems in general lattices [26] and ideal lattices [19], respectively.
Our PAKEs compare very favourably with previous lattice-based protocols in the
standard model. We also provide implementation results of the Ring-LWE-based
scheme to demonstrate its practical feasibility. To the best of our knowledge, this
is the first implementation of any lattice-based PAKE in the standard model,
and the performance is quite encouraging.

New PAKE framework. Let us first discuss the high-level ideas of our new
PAKE framework. It relies on an ASPH, a key reconciliation scheme and a new
notion of key-fuzzy message authentication code (KF-MAC). KF-MAC allows
the verification key to be slightly different from the original authentication key.
We define a generic ASPH on top of a commitment scheme. Given secret k,
input π and a value y in the commitment space (not necessarily a commitment
to π), an ASPH function H computes the hash value H(k, π, y). If y is indeed
a commitment to π with witness τ , then H(k, π, y) can also be approximated
by an alternative function Ĥ as Ĥ(τ, α(k)), where α(k) is called the projection
key of k. The important property for ASPH is smoothness: if y is a commitment
to π′( ̸= π), then (H(k, π, y), α(k)) are jointly random. We describe our PAKE
framework using this generic ASPH. However, to prove the framework security,
additional properties on ASPH (which will be clarified later) are required. Our
PAKE framework is an integration of three basic processes below.

– Basic key exchange. Alice and Bob use ASPH (H1, Ĥ1, α1) to obtain close
secrets.

1. Bob (initiator) first generates a commitment y (with witness τ1) to password
π. He then sends y to Alice.

2. Upon receiving y, Alice samples a secret k, computes and sends a projection
key α1(k) to Bob. She also computes a hash value H1(k, π, y).

3. Upon receiving α1(k), Bob computes Ĥ1(τ1, α1(k)). Note that the distance
between H1(k, π, y) and Ĥ1(τ1, α1(k)) is typically small.
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– Key reconciliation. This process enables Alice (with H1(k, π, y)) and Bob
(with Ĥ1(τ1, α1(k))) to agree on a secret ξ, via a one-message key reconcili-
ation scheme £. If no attack exists, then ξ derived by Alice and Bob will be
the same. To assure this, they need to authenticate each other.

– Authentication. This process uses another ASPH (H2, Ĥ2, α2) and a projec-
tion key V = α2(O) (with a hidden key O) as public parameters. Here Alice
and Bob will authenticate each other and derive a session key.

1. Alice deterministically computes commitment w (with witness τ2) on pass-
word π, using randomness determined by ξ. Next, she computes KF-MAC
η0 on traffic using key Ĥ2(τ2, V ). Finally, she sends (w, η0) to Bob.

2. Bob uses ξ to repeat Alice’s procedure to verify (w, η0) and compute τ2.
Then, he uses Ĥ2(τ2, V ) to authenticate himself.

We stress that although three procedures are described separately, they can
be integrated into a 3-round protocol. The pictorial outline is given in Fig. 1 and
a more detailed version is in Fig. 2. For security, we require the commitment for
ASPH (H1, Ĥ1, α1) to have a trapdoor property: with a trapdoor (but without
witness τ1), one verifies if y is a commitment of π. We call this ASPH type-
B ASPH. We require ASPH (H2, Ĥ2, α2) to have strong smoothness: if w is a
random (i.e., honestly generated) commitment to π, then Ĥ2(τ2, V ) is random
(given w, V, π). We call this ASPH type-A ASPH.

At a high level, our main strategy for proving framework security is the se-
quence of games: modify the protocol gradually so that the messages in the final
game contain no password. Firstly, we can modify the protocol so that π in y
is a dummy password. This is unnoticeable to the attacker by the commitment
hiding property. Then, under this revision, y normally does not contain the cor-
rect π. If this is the case (which can be checked by the trapdoor property of
type-B ASPH), then, by smoothness of H1, H1(k, π, y) is random. This random
distribution will propagate to ξ. Thus, on the one hand, w is a random com-
mitment to π, and so, by the commitment hiding property, we can revise π in
w to be a dummy password. On the other hand, by strong smoothness of Ĥ2,
KF-MAC key Ĥ2(τ2, α2(O)) looks random to attacker, and hence, the traffic can
not be tampered by KF-MAC property. In fact, an attacker can not imperson-
ate Alice successfully either. Indeed, if he modifies Alice’s message only a little,
then the KF-MAC will not change and the traffic will not consistent with the
KF-MAC tag. If the attacker modifies Alice’s message too much (or even creates
a new one), (simulated) Bob will use H2(O, π,w) to verify the KF-MAC. By
smoothness of H2, he will not succeed unless w contains the password π.

After modifications, protocol messages have no password. Attacker can suc-
ceed beyond trivial attacks only by constructing y or w that contains the correct
π. So he can not succeed better than simply guessing the password.

New technical building blocks. Together with the new framework, we also
introduce three new technical ingredients that may be of independent interest.

1) We construct a new reconciliation scheme for close secrets in Zµ
q (in Sec-

tion 3.2). Our scheme can extract Θ(log q) per element in Zq and is proven
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asymptotically rate-optimal. It is much more efficient than all the previous two-
step schemes [18,5,24], where at most one bit per element in Zq can be extracted.

2) We give an authentication code with a noisy verification key in Section 3.3.

3) We provide efficient constructions of ASPHs from both plain LWE and Ring-
LWE. In each setting, we construct a type-A ASPH and a type-B ASPH. The
LWE-based schemes are as follows.

a. Type-A ASPH. For public parameters B ∈ Zm×(n+L)
q and g ∈ Zm

q and an
m-length error-correcting code C with k information symbols, the commitment
to π has the form w = Bt + g ⊙ C(π) + x, where ⊙ is the coordinate-wise
multiplication, t is uniformly random over Zn+L

q and x is a discrete Gaussian
over Zm

q . The commitment witness is (t,x). For secret key O - which is a discrete

Gaussian over Zm×L
q , the projection key is OTB. Then, the projective hashing

is computed as H(O, π,w) = OT (w − g ⊙ C(π)), while the alternative hashing
is defined as Ĥ((t,x),OTB) = OTBt. If w is a commitment honestly generated
as above, then the two hashing values differ by OTx (which is short as x and
O are short). For the smoothness, if w is a commitment on π′ ̸= π, then given
OTB, value OT (w − g ⊙ C(π)) is statistically close to uniform over ZL

q (see

Theorem 2). For strong smoothness, it requires that given Bt + x and OTB,
value OTBt looks random. We prove this using hidden-bits lemma in [9].

b. Type-B ASPH. Type B ASPH is similar to Type A ASPH, except it needs
to provide a trapdoor property for the commitment. This property is achieved
via the trapdoor simulation techniques in [1,18].

The ASPHs in the ring-LWE setting essentially follow the same strategy
as the LWE-based ones. However, the supporting techniques (i.e., hidden-bits
lemma, trapdoor simulation and adaptive smoothness theorem) have to be re-
built. This turns out to be highly non-trivial. Essentially, this is due to the
sparseness of matrix representations for ring operations. Consequently, the ran-
dom arguments for the LWE case are no longer useful. However, this rebuilding
work is worth as ring-LWE ASPHs are much more efficient than LWE-based
ones. A detailed informal description is presented in Section 5.

Efficient lattice-based instantiations of PAKE in the standard model.
When putting all building blocks together, we obtain PAKE protocols from
plain LWE and Ring-LWE that are much more efficient than previous lattice-
based constructions in the standard model. Table 1 provides a summary of the
comparison. For simplicity, the table only counts the dominating costs.

We provide the implementation in Section 5.5 for our Ring-LWE-based PAKE
protocol. In this proof-of-concept implementation, the Number Theory Library
(NTL) [27] is employed without further optimization. To agree on a 16-byte
session key, the bandwidth from Pi to Pj is about 40 KB and 167 KB from Pj to
Pi. Generating public parameters requires about 1.31 seconds, while Pi’s and Pj ’s
computations cost about 0.2 seconds and 0.71 seconds, respectively. Although
the efficiency is (expectedly) not competitive with the ROM protocol from [8],
our implementation demonstrates that the technical ingredients introduced in
this work do advance the state of the art of lattice-based PAKEs in the standard
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Scheme Client (Mult) Server(Mult) Comm assum MA q

[5]A O(kL′nm) O(kL′nm) kL′n DLWE no Ω(n3)

[5]B knm O(kL′nm) kn2 DLWE no Ω(n3)

[6] O(nmk) O(nmk) kmn DLWE yes ω(n2)

[15] 2nm O(L′nm) L′n DLWE yes poly(n)

[18] ω(L′nm logn) ω(L′nm logn) 2L′n DLWE no poly(n)

Ours nm O(L′nm/ log q) O( L′n
logn

+ n logn) DLWE yes Ω(nλ)

Ours O( L′n
logn

+ n log2 n) O(L′n logn) O( L′n
logn

+ n logn) R-DLWE yes Ω(nλ)

Table 1. Comparison among lattice-based PAKEs in the standard model. Here, m =
Ω(n logn); k is the password length; L′ is the key reconciliation output length (since
the output is mostly used as a key for a symmetric-key primitive, L′ ≪ n); the cost for
client/server is ♯ of multiplications in Zq; Comm is the message length in Zq; λ > 3.

model and do bring them much closer to practice. But it still needs further
improvement toward practical application. This will be our future direction.

Organization. The rest of the paper is organized as follows. In Section 2, we
provide necessary background on PAKEs and lattices. The technical ideas, tech-
nical building blocks and description of our new PAKE framework are presented
in Section 3. Our LWE-based and Ring-LWE-based instantiations are provided
in Sections 4 and 5, respectively.

Notations. The transposition of matrix Γ is denoted by ΓT ; [k] denotes set
{0, · · · , k − 1}. Vectors are column vectors (unless stated otherwise); vi or v[i]
denotes the ith component of v; [v]L1 denotes the sub-vector (v1, · · · , vL)T of
v. Sampling x from set S uniformly at random is denoted by x ← S; A|B
is a concatenation of A with B. negl : N → R represents a negligible func-
tion: limn→∞ negl(n)p(n) = 0 for any polynomial p(n). The statistical distance
between X1, X2 is ∆(X1, X2) := 1

2

∑
x |PX1(x) − PX2(x)|, where PX() is the

probability mass function of X. We say that X1 and X2 are statistically close
if ∆(X1, X2) is negligible. ||x|| is the Euclidean norm of x; ||x||∞ = maxi |xi| is
the ℓ∞-norm and dist∞(·, ·) is the distance measure under ℓ∞-norm. x mod q
denotes the residue of x ∈ Zq in [0, · · · , q) and (x)q denotes the residue of
x ∈ Zq in [−q/2, q/2). The ⊙ product is defined as (a1, · · · , an)⊙ (b1, · · · , bn) =
(a1b1, · · · , anbn). For v ∈ Rn, Diag(v) is the diagonal matrix with vi as the
(i, i)th entry. For m1 × n1 matrix A and m2 × n2 matrix B, the tensor prod-
uct A ⊗ B is the m1m2 × n1n2 matrix (Cij) in the block format, where block
Cij = aijB for any i ∈ [m1], j ∈ [n1]. The (column) concatenation of vectors
v1, . . . ,vt is a long vector, denoted by (v1;v2; · · · ;vt).

2 Preliminaries

2.1 Security Model of PAKE

In this section, we recall a formal model for a password-authenticated key ex-
change protocol Σ. This model is mainly adopted from Bellare et al. [3] with a
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minor revision in [15]. There are n parties P1, · · · , Pn in the system and any two
parties share a password. We will use the following notations.

- D: This is the password dictionary. For simplicity, we assume that pass-
words are chosen uniformly from D.

- Πℓi
i : This is the ℓi-th instance of protocol Σ executed by party Pi. The

number ℓi is used by Pi to distinguish these instances.

- Flowd: This is the d-th message flow in the execution of protocol Σ.

- sidℓi
i : This is the session identifier of Πℓi

i . It is only for the purpose of
security analysis. Intuitively, two instances jointly executing Σ should share
the same session identifier. The specification is available only if Σ is known.

- pidℓi
i : This is the party, which Πℓi

i is interacting with.

- skℓii : This is the session key derived by Πℓi
i after successfully executing Σ.

Partnering. Instances Πℓi
i and Π

ℓj
j are partnered if (1) pidℓi

i = Pj and

pid
ℓj
j = Pi; (2) sidℓi

i = sid
ℓj
j . The partnering is motivated to identify two

instances that are jointly executing protocol Σ.

Adversarial model. To define security, we have to specify an attacker’s capa-
bilities. Essentially, we wish to capture man-in-the-middle attacks. The protocol
is secure if the adversary can not obtain anything about a session key beyond
the trivial findings. Formally, the attacks are modelled through oracles that are
maintained by a challenger as follows.

• Execute(i, ℓi, j, ℓj): When this oracle is called, it first checks whether Πℓi
i

and Π
ℓj
j are fresh. If not, it does nothing; otherwise, a protocol execution

between Πℓi
i and Π

ℓj
j takes place. Finally, the transcript is returned. This is

an eavesdropping attack.

• Send(d, i, ℓi,M) : When this oracle is called, M is sent to Πℓi
i as Flowd. If

d = 0 or 1, then a new instance Πℓi
i is created. If d = 0, then M = “ke, pidℓii ”

is a key exchange request message (from an upper layer program inside Pi).
In any case, Πℓi

i acts according to the specification of Σ.

• Reveal(i, ℓi) : This oracle call assumes thatΠℓi
i has successfully completed

with a session key skℓii derived. Under this, skℓii is returned.

• Test(i, ℓi) : This oracle is to test the secrecy of skℓii . The adversary is

only allowed to query it once. Toward this, Πℓi
i must have successfully com-

pleted with skℓii derived. Furthermore, Πℓi
i and its partnered instance (if

any) should not have been issued a Reveal query. Then, it takes b← {0, 1}.
If b = 1, then α1 = skℓii is provided to adversary; otherwise, a random num-
ber α0 from the space of the session key is provided. The adversary then
tries to output a guess bit b′ of b. He is announced for success if b′ = b.

Correctness. If two partnered instances both accept, they derive the same key.

Adversarial success. Having specified the adversarial behaviour, we now de-
fine its success. This consists of authentication and secrecy.
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⋄ Mutual authentication. We first define the semi-partnering [15]: instances

Πℓi
i and Π

ℓj
j are semi-partnered if they are partnered, or, the following con-

ditions hold: (1) sidℓii and sid
ℓj
j agree except possibly for the final message

flow in Σ; (2) pidℓi
i = Pj and pid

ℓj
j = Pi. This relaxed partnering is defined

to rule out the possible trivial attack where an attacker forwards all the mes-
sages except the final one. An attacker breaks mutual authentication if some
Πℓi

i with pidℓi
i = Pj has successfully completed the execution of Σ with a

session key derived while there does not exist a semi-partnered instance Π
ℓj
j .

⋄ Secrecy. An adversary succeeds if b′ = b.

We use random variable Succ to denote either of the above two success events.
Define the advantage of adversary A as Adv(A):= 2Pr[Succ]− 1.

Definition 1. A password authenticated key exchange protocol Σ is secure if
it is correct and for any PPT adversary A that makes Send queries at most Qs

times, it holds that Adv(A) ≤ Qs

|D| + negl(n).

2.2 Lattices and Hard Random Lattices

We now give a brief background on lattices. Let B = {b1, · · · ,bn} ⊂ Cm con-
sist of n linearly independent vectors. An m-dimensional lattice with basis B is
defined as L(B) = {

∑n
i=1 aibi | ai ∈ Z}. For lattice Λ, the Euclidean norm of

its shortest non-zero vector is denoted by λ1(Λ). If we use the ℓ∞-norm, it is
denoted by λ∞

1 (Λ). The dual lattice of Λ ⊆ Cm is defined as Λ∨ = {y : ⟨x, ȳ⟩ =∑
i xiyi ∈ Z, ∀x ∈ Λ}, where ȳ is the complex conjugate of y.
For s > 0 and x ∈ Rm, Gaussian function with parameter s is ρs(x) =

exp(−π||x||2
s2 ). The discrete Gaussian distribution over lattice Λ ⊆ Rm with pa-

rameter s is defined as DΛ,s(x) =
ρs(x)
ρs(Λ) , ∀x ∈ Λ.

For m ≥ 2, let H = {x ∈ Cϕ(m) : xi = x̄m−i, ∀i ∈ Z∗
m}, where xi in x ∈ H is

indexed by i ∈ Z∗
m and ϕ(m) is the Euler function. We are interested in lattice

Λ ⊆ H. It is an inner product space over R, isomorphic to Rϕ(m); see [20] for
details. Hence, DΛ,s(x) with Λ ⊂ H can be defined in exactly the same way as
Λ ⊆ Rn. Micciancio and Regev [22] defined a quantity smoothing parameter.

Definition 2. For a lattice Λ and ϵ > 0, the smoothing parameter ηϵ(Λ) is the
smallest s so that ρ1/s(Λ

∨\{0}) ≤ ϵ.

Usually, ηϵ(Λ) is desired to be small. Then, the following result is useful.

Lemma 1. [25] For an m-dimensional lattice Λ, ηϵ(Λ) ≤
√

log(2m/(1+1/ϵ))/π

λ∞
1 (Λ∨) .

The following bounds are taken from [22, Lemma 4.4] and [2, Lemma 2.4].

Lemma 2. For s ≥ ω(
√
logm) and any v ∈ Rm and any t > 0, if e ← DZm,s,

then P (||e|| > s
√
m) ≤ O(2−m) and P (|vTe| > st||v||) ≤ 2e−πt2 .
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Hard random lattices. For integers q,m, n and A ∈ Zm×n
q of rank n,

let Λ⊥(A) = {e ∈ Zm | eTA = 0 mod q} and Λ(A) = {y ∈ Zm | y = As
mod q, s ∈ Zn}. It is easy to verify that Λ⊥(A) = q · (Λ(A))

∨
and Λ(A) =

q ·
(
Λ⊥(A)

)∨
. Here is a useful lemma on Λ⊥(A).

Lemma 3. [12] If rows of A ∈ Zm×n
q generate Z1×n

q and r ≥ ηϵ(Λ
⊥(A)), then

for e← DZm,r, ∆(eTA,U) ≤ 2ϵ, where U is uniformly random in Z1×n
q .

3 A New PAKE Framework

3.1 Intuition

We now introduce the ideas for our PAKE framework. We need three notions: key
reconciliation, key-fuzzy message authentication code (KF-MAC), and approxi-
mate smooth projective hash (ASPH). Key reconciliation is a standard notion. It
allows two parties with similar secrets to agree on an identical secret. The notion
of KF-MAC is new. It works like a normal MAC for the MAC generation and
verification. But it also allows a receiver with a slightly noisy key to (in)validate
the MAC.

We define a generic ASPH on the top of a commitment scheme. Given se-
cret k, input π and a value y in the commitment space (but not necessarily a
commitment to π), an ASPH function H computes the hash value H(k, π, y). If
y is indeed a commitment of π with witness τ , then H(k, π, y) can also be ap-
proximated by an alternative function Ĥ as Ĥ(τ, α(k)), where α(k) is called the
projection key of k. The important property for generic ASPH is smoothness: if
y is a commitment of π′(̸= π), then (H(k, π, y), α(k)) are jointly random. Based
on a generic ASPH, we define two types of strengthened ASPHs. Type-A ASPH
is a generic ASPH with a strong smoothness: if w is a random commitment of
π with witness τ2, then Ĥ2(τ2, α2(O)) appears to be random (given (w,α2(O))).
Type-B ASPH is a generic ASPH with trapdoor property: with a trapdoor
(but without a witness), one can check whether y is a commitment of π.

Our PAKE framework proceeds as follows. Assume that (H1, Ĥ1, α1) is a
type-B ASPH and (H2, Ĥ2, α2) is a type-A ASPH.

a. approximate key establishment Initiator Bob generates commitment y (and
its witness τ1) on password π. He then sends y to Alice (responder). Alice
then samples a secret key k, computes and sends the projection key α1(k)
to Bob. At this moment, Bob and Alice can compute two close secrets: Bob
computes Ĥ1(τ1, α(k)) and Alice computes H1(k, π, y).

b. key reconciliation Alice (with H1(k, π, y)) and Bob (with Ĥ1(τ1, α(k)))
executes a one-message key reconciliation scheme £ to agree on a common
secret ξ. This one-message σ is sent by Alice.

c. authentication with ξ Alice authenticates herself. To do this, she generates
a commitment w (and its witness τ2) on π but with randomness determined
by ξ. She then generates a KF-MAC on traffic using secret key H2(τ2, V ),
where V is a projection key (a public parameter). She then sends w and the
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KF-MAC to Bob. Bob has ξ and will repeat Alice’s procedure to verify the
authentication. He also authenticates himself using H2(τ2, V ).

d. key derivation. If the authentication above succeeds, they both derive the
session key sk using ξ.

Although the framework has several stages, some messages can be combined.
It turns out that the overall protocol has only 3 flows (see Fig. 1), where comi

is the commitment w.r.t. Hi.

Bob(π) Alice(π)public: V = α2(O)

(τ1, y)← com1(π)
y //

ξ = £bob(σ, Ĥ1(τ1, α1(k)))
(τ2, w

′)=com2(π) determined by ξ

w′ ?
= w

Sample k
(σ, ξ)← £alice(H1(k, π, y))

(τ2, w) = com2(π) determined by ξ

w | α1(k) | σoo

ksKF-MACs on traffic

with key Ĥ2(τ2, α2(O))

+3

output: sk determined by ξ output: sk determined by ξ

Fig. 1. Outline of Our PAKE Framework

We now outline the security. The idea is to iteratively modify the protocol
so that messages in the final protocol variant do not contain password π at all.

First, if w|α1(k)|σ is attacker-generated, we modify the protocol so that Bob
verifies KF-MACs using key H2(O, π,w) (instead of Ĥ2(τ2, V )). This is consis-
tent as the original verification guarantees that Ĥ2(τ2, V ) and H2(O, π,w) are
close and so the two MAC verifications give the same result. Under the change,
the attacker can succeed only if w contains π; otherwise, by smoothness of H2,
H2(O, π,w) is random to him and so the KF-MAC will be rejected.

Then, we modify the protocol so that π in y is a dummy password. This is
unnoticeable to the attacker by the commitment hiding property.

Under the above revision, y normally does not contain the correct π. If
this is the case (which can be checked by the trapdoor property of com1),
then, by smoothness, H1(k, π, y) (further ξ) is random. Thus, w is a random
commitment of π. Then, by strong smoothness, KF-MAC key Ĥ2(τ2, α2(O))
looks random to attacker. So we can modify π in w to a dummy password and
Ĥ2(τ2, α2(O)) to be a random key. At this moment, a skillful attacker can not
modify Alice’s message to fool Bob unless w contains π. Indeed, if he modifies the
message too much, then (simulated) Bob will regard it as an attacker-generated
message. As said above, he will fail. If he only changes a little, then (simulated)
Bob will use the same key of Alice to verify and reject KF-MAC. Our authenti-
cation approach is different from the previous CCA-encryption approach [16,15],
where the non-malleability is used to refute a modification attack.

10



After modifications above, protocol messages have no password and attacker
can only succeed by producing y or w that contains π (beyond trivial success).
Thus, he cannot succeed better than simply guessing the password.

3.2 Key Reconciliation

Key reconciliation is a mechanism that allows two parties with close secrets to
share a common secret. We consider a special scenario of this problem.

Alice has a secret d uniformly random over set S and Bob has a secret d′ with
Dist(d, d′) ≤ δ for a measure Dist : S × S → R+ and threshold δ ∈ R+. Then,
they jointly execute a protocol Π (called key reconciliation protocol). In the end,
they output a value ξ ∈ Ξ. The correctness requires that for any d, d′ with
Dist(d′, d) ≤ δ, Alice and Bob will agree on ξ. Protocol Π is passively secure
with respect to (S,Ξ, δ) if the correctness holds andH(ξ|trans) = H(ξ) = log |Ξ|,
where trans is the transcript of Π and H() is the (conditional) entropy function.
If Π is a one-message protocol (from Alice to Bob), it is called one-message key
reconciliation protocol.

Trivially, H(ξ|trans) = H(ξ) implies that ξ and trans are independent (i.e.,
Pξ,trans = PξPtrans), where PX is the distribution of X.

Lemma 4. Let Π be a passively secure key reconciliation that has d for Alice’s
input, trans for the transcript and ξ for the common secret. Take trans1 ← Ptrans

and ξ1 ← Pξ and d1 ← Pd|(trans,ξ)(·|trans1, ξ1). Then, Pd,trans,ξ = Pd1,trans1,ξ1 .

Proof. By definition of (trans1, ξ1), Ptrans1,ξ1 = Ptrans1Pξ1 = PtransPξ, which
equals Ptrans,ξ, as trans and ξ are independent. Thus, for any feasible (a, b, c),
Pd1,trans1,ξ1(a, b, c) = Pd1|(trans1,ξ1)(a|b, c) ·Ptrans1,ξ1(b, c). This is Pd|(trans,ξ)(a|b, c) ·
Ptrans1,ξ1(b, c) = Pd|(trans,ξ)(a|b, c) ·Ptrans,ξ(b, c) = Pd,trans,ξ(a, b, c). Since a, b, c are
arbitrary, Pd,trans,ξ = Pd1,trans1,ξ1 . ⊓⊔

A New Key Reconciliation Scheme For close secrets over Zq, we show
how to share a random binary sequence. We start with an example for q = 401.
Let d′, d ∈ Z401 with d uniformly random in Z401 and |(d′ − d)401| ≤ 8. Alice
has secret d and Bob has d′. They want to agree on a secret ξ. Toward this, a
crucial observation is as follows. For any integer f ∈ [0, 2⌊log 401⌋) with a binary
representation a7a6a501a2a1a0, we have f + d′− d mod 401 = f +(d′− d)401 ∈
[0, 256), which has a binary representation a7a6a5a

′
4a

′
3a

′
2a

′
1a

′
0, as 8 ≤ 01a2a1a0 <

16 and −8 ≤ (d′ − d)401 ≤ 8. Then, Alice and Bob can reconciliate as follows.
Alice samples a random f ∈ [0, 256) of a binary form a7a6a501a2a1a0. Next,

she evaluates σ = f + d mod 401 and sends it to Bob.
Upon receiving σ, Bob computes σ− d′ mod 401 = f + d− d′ mod 401. As

seen above, this number has a binary form a7a6a5a
′
4a

′
3a

′
2a

′
1a

′
0. So both Alice and

Bob can define the common secret as ξ = a7a6a5.
This shared key is confidential (given σ) as d is uniformly random in Z401

and hence f in σ is masked by a one-time pad d ∈ Z401.
The above example can be easily generalized to general parameters. Assume

that Alice has a secret d← Zq and Bob has a secret d′ ∈ Zq with |(d′− d)q| < δ
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for some integer δ ≤ q/32. They want to agree on a common secret ξ. Our scheme
works as follows. Let t = ⌊log q⌋ and b = ⌈log δ⌉.

Alice: 1. Alice defines ab = 1 and ab+1 = 0. For 0 ≤ j ≤ t − 1 but j ̸= b, b + 1,
she takes aj ← {0, 1} and lets f = at−1 · · · a1a0 (an integer in a binary
representation). She defines ξ = (at−1, · · · , ab+2)

T .
2. Alice sends σ = (f + d) mod q to Bob and sets the shared secret as ξ.

Bob: Upon σ, Bob uses d′ to compute ξ as the binary form of ⌊ (σ−d′) mod q
2b+2 ⌋.

Finally, he sets the shared secret as ξ.

This protocol can be generalized. If Alice has secret d ← Zµ
q and Bob has

d′ ∈ Zµ
q s.t. |(di−d′i)q| ≤ δ for i ∈ [µ], they can run it in parallel with input di, d

′
i

for each i to generate a vector ξ. We use £ to denote this scheme, use (σ, ξ)←
£alice(d) to denote Alice’s computation and ξ ← £bob(σ,d

′) to denote Bob’s
computation, where σi, ξi are the message and common secret w.r.t. (di, d

′
i).

Lemma 5. Alice and Bob obtain the same ξ with ξ uniformly random over
{0, 1}(t−b−2)µ and independent of σ. Also, entropy H(ξ) = H(ξ|σ) ≥ µ log q

16δ .

Proof. Let fi be the sample of f in the ith copy of the basic protocol. Notice that
σ = f + d mod q and f is independent of d. Hence, d is the one-time pad for f
in σ. Thus, f is independent of σ. Also, ξ is independent of σ as it is determined
by f . Further, ξ is uniformly random as every bit aij of fi for j ̸= b, b + 1
is uniformly random. Consider the correctness now. It suffices to consider the
basic protocol. Since b = ⌈log δ⌉ and f has ab = 1 and ab+1 = 0, it follows that
f±h for any 0 ≤ h ≤ 2b has a binary representation at−1 · · · ab+2a

′
b+1a

′
b · · · a′1a′0.

This especially implies (f ± h) mod q = f ± h, as 0 < f ± h < 2t ≤ q. Thus,
⌊ f±h
2b+2 ⌋ = at−1 · · · ab+2. Since |(d−d′)q| ≤ δ ≤ 2b, it follows that (σ−d′) mod q =

f+(d−d′)q, which has a binary representation at−1 · · · ab+2a
′
b+1a

′
b · · · a′1a′0. Thus,

⌊ (σ−d′) mod q
2b+2 ⌋ = at−1 · · · ab+2. Finally, since 2t−b−2 = 2⌊log q⌋−⌈log δ⌉−2 ≥ q

16δ , ξ
has an entropy at least log q

16δ bits. ⊓⊔
Next lemma reflects the strength of our scheme. A proof is in the full version.

Lemma 6. Let d be a random variable over Zµ
q , and let e be uniformly ran-

dom over {−δ, · · · , δ}µ. Define d′ = d + e mod q. Let Π be any protocol be-
tween Alice with input d and Bob with input d′, following which they derive
a shared ξ. Assume the interaction transcript between Alice and Bob be trans.
Then, H(ξ|trans) ≤ H(d)− µ log(2δ + 1), where H is the entropy function.

Remark. Since d is uniformly random over Zµ
q , any key reconciliation protocol

in our setting must satisfy H(ξ|trans) ≤ µ log q
2δ+1 . In comparison with this

bound, our ξ loses entropy at most log(16δ)− log(2δ+1) ≤ 3 bits per coordinate.

Define extraction bit rate to be H(ξ)
µ log q . The ratio of the extraction rate between

our scheme and any rate-optimal scheme is lower bounded by
log q

16δ

log q
2δ+1

→ 1

when δ = o(q) and hence it is asymptotically optimal. Further, our rate is
asymptotically 1− logq δ, which is a constant for δ in our concrete PAKEs.
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3.3 Authentication Code for Close Secrets

Message authentication code (MAC) is a keyed function FK :M→ V such that
without K no one can compute FK(M) for any M . For simplicity, we assume

that a normal verification of MAC η is simply to check η
?
= FK(M). Now we

introduce a new notion of δ-key-fuzzy MAC, where if a verifier’s secret key gets
a little noisy, then he can still verify the MAC. He can accept a normal MAC
while he also rejects a forged MAC. This notion is motivated by the approximate
MAC [7], where the MAC is valid even if the input message gets a little noisy.

Definition 3. A keyed deterministic function FK :M→ V with key space K is
a δ-KeyFuzzy MAC (or simply, δ-KF MAC), if there exists a keyed function ΦK′ :
V → {0, 1} (called a fuzzy verification function) so that ΦK′(FK(M),M) = 1 for
any K ′ ∈ K with D(K ′,K) ≤ δ, where D : K ×K → R is a distance measure.

In this definition, we only say that a fuzzy verification function (FVF) with
an approximate key can accept a MAC. For it to be useful, it needs to reject a
forged MAC. This is formalized as follows in terms of one-time security.

Definition 4. Let FK : M → V be a δ-KF MAC with key space K, distance
measure D, and FVF ΦK′ . We say that FK is (1, δ, ϵ)-KF secure if no PPT
attacker A, after seeing any (M,FK(M)), can compute MAC η of M ′ ̸= M s.t.

P
[
ΦK′(η,M ′) = 1 for some K ′ ∈ K with D(K ′,K) ≤ δ

]
≥ ϵ+ negl(n).

A New (1, δ, ϵ)-KF Authentication Code We now construct a (1, δ, ϵ)-
KF authentication code. Our scheme will use an error-correcting code with a
large distance. For a constant prime p, a [N, k, d]p-code is an error-correcting
code over Zp with a codeword length N , minimal Hamming distance d and k
information symbols. The following lemma gives a random code with a large
Hamming distance (see a proof in the full paper). A random code usually is not
practical as its decoding is inefficient. However, our work does not need decoding.

Lemma 7. Let d ≤ N . Let H ← Z(N−k)×N
p and C ⊆ ZN

p be a k-dimensional
subspace with H as its parity-check matrix (i.e., Hx = 0 for any x ∈ C). Then,
C is a [N, k, d]p-code, except for a probability N · pd+k−N−2 · 2N .

Now we are ready to give our (1, δ, ϵ)-KF authentication code.

Construction. Our new fuzzy MAC scheme is as follows. Let p be a constant
prime less than q, and L ∈ N with p | L and H : {0, 1}∗ → Zk2

p is a collision-

resistant hashing. Let secret d = (d0, · · · , dL−1)
T ← ZL

q and message space

M = {0, 1}∗. Assume that Cmac : Zk2
p → ZL/p

p is a [L/p, k2, θmacL/p]p-code for a
constant θmac ∈ (0, 1). The authentication function Fd(M) of M is to first com-
pute codeword a = Cmac(H(M)) and then define Fd(M) = (t0, · · · , tL/p−1)

T ,
where ti = dpi+ai for i = 0, · · · , L/p − 1. The normal verification of (M, t) is

to check t
?
= Fd(M). The fuzzy verification Φd′(t,M) with ||(d′ − d)q||∞ ≤ δ,

computes t′ = Fd′(M) and then outputs 1 if and only if ||(t− t′)q||∞ ≤ δ.
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The security idea of this scheme is that the codewords for M and M ′ with
M ̸= M ′, have a large Hamming distance (as H is collision-resistant). Hence,
given the MAC of M , the MAC of M ′ has at least θmacL/p coordinates that are
uniformly random in Zq. It is hard to guess them correctly with a small error.

Lemma 8. Our scheme is a (1, δ, ( 4δq )
θmacL

p )-KF MAC for δ < q
4 , θmac ∈ (0, 1).

Proof. Correctness holds obviously. Consider the authentication. Assume at-
tacker A forges a pair (M∗, t∗) after seeing (M, t) for M∗ ̸= M , where t =
Fd(M). As H is collision-resistant, a∗ = Cmac(H(M∗)) and a = Cmac(H(M))
have a Hamming distance at least θmacL/p. Let A = {i | ai ̸= a∗i , i ∈ [L/p]}
and η = Fd(M

∗). Then, ηi for any i ∈ A is independent of (M, t). Since
t∗ is computed from A’s view (M, t), it follows that ηi for i ∈ A is inde-
pendent of t∗ as well. Let η′ = Fd′(M∗) and so ||(η′ − η)q||∞ ≤ δ. Then,
P [|(t∗i − η′i)q| ≤ δ : i ∈ A] ≤ P [|(t∗i − ηi)q| ≤ 2δ : i ∈ A] ≤ ( 4δq )

|A|, given (M, t).

Hence, P [Φd′(t∗,M∗) = 1 | (M, t)] ≤ (4δ/q)θmacL/p. ⊓⊔

3.4 Approximate Smooth Projective Hashings

We define two types of approximate smooth projective hashings (ASPH). Both
of them are based on a generic ASPH below revised from [18].

Approximate Smooth Projective Hashing (Generic). We start with the
definition of a general commitment.

Definition 5. Commitment scheme Π is a tuple (gen, com, ver) with domain D.

– gen(1n). Upon 1n, it generates a public-key e.
– come(m). Upon public-key e and m ∈ D, it executes (τ, y) ← come(m) to

generate commitment y and witness τ ∈ {0, 1}∗. Also we use come(m;Υ ) to
denote the execution with randomness Υ .

– vere(τ,m, y). To decommit y, sender sends (m, τ) to receiver who then ver-
ifies it via algorithm vere and finally outputs 0 (for reject) or 1 (for accept).

A commitment scheme Π = (gen, com, ver) is secure if it satisfies the correct-
ness, computational hiding property, and unconditional binding property.

For a commitment scheme Π = (gen, com, ver) with domain D, we define two
NP-languages L and L∗. Let Y be the set of all possible commitment y and
X = D×Y. For e← gen(1n), define L = {(m, y) ∈ X | ∃τ s.t. vere(τ,m, y) = 1};
define L∗ via an algorithm ver∗: L∗ = {(m, y) ∈ X | ∃τ s.t. ver∗e(τ,m, y) = 1},
where ver∗ is chosen so that L∗ has two properties:

1. L ⊆ L∗.
2. For any y ∈ Y, there exists at most one m ∈ D so that (m, y) ∈ L∗.

The approximate smooth projective hashing (generic) is described by Π, ver∗

and efficient functions: α : K → U,H : K × X → S and Ĥ : {0, 1}∗ × U → S,
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where K is the key space with distribution D(K), k ← D(K) is the secret key and
α(k) is the projection key. A generic ASPH with parameter δ (or generic δ-ASPH
for short) is a tuple H = (Π, ver∗,H, Ĥ, α) with the following properties.

Correctness. For (m, y) ∈ L with witness τ and k←D(K) (where D(K) is
the key distribution), P (Dist[H(k,m, y), Ĥ(τ, α(k))] ≤ δ) = 1 − negl(n), where
Dist : S×S → R+ is a distance measure and the probability is over choices of k.

Adaptive smoothness. Given m ∈ D and an arbitrary function f : U → Y,
let k ← D(K) and y = f(α(k)). If (m, y) ∈ X\L∗, then (α(k),H(k,m, y)) is
statistically close to uniform over U× S.

Based on generic δ-ASPH, we define two types of ASPHs, each of which has a
strengthened property over a generic ASPH.

Approximate Smooth Projective Hashing (Type A). Type A δ-ASPH (or
δ-ASPHA for short) is a generic δ-ASPH with a strong smoothness below.

Strong smoothness. Given m ∈ D, let (τ, y) ← come(m), k ← D(K) and
U ← S. Then, (α(k), y, Ĥ(τ, α(k))) and (α(k), y, U) are indistinguishable.

The smoothness is concerned with the randomness of H(·) while the strong
smoothness is concerned with the randomness of Ĥ(·). In general, the former
does not imply the latter. It is not hard to find ASPH with the least significant
bit of Ĥ(·) could always be zero while H has the smoothness.

Approximate Smooth Projective Hashing (Type B). The type-B δ-
ASPH is a generic δ-ASPH (Π,H, Ĥ, α), except Π = (gen, com, ver) has a trap-
door property below.

– There exists algorithm sim(1n) that generates a public-key e and a trap-
door trap. Further, there exists an efficient algorithm trapVer so that for any
(m, y), trapVere(trap,m, y) = 1 if and only if (m, y) ∈ L. Also, there exists an
efficient algorithm trapVer∗ so that for any (m, y), trapVer∗e(trap,m, y) = 1
if and only if (m, y) ∈ L∗. In addition, e ← gen(1n) and e from sim(1n) are
indistinguishable.

Our trapdoor differs from a trapdoor commitment, where the latter opens
a commitment to any message while our trapdoor is only used to check the
membership of L and L∗ without a witness. Especially, it cannot recover or
equivocate a commitment. For convenience, we also include sim into Π and call
it a commitment with trapdoor simulation (or trapSim commitment for short).

Remark. Even if a generic ASPH is revised from [18], their ASPH (also [28])
is defined on a public-key encryption. Adaptive smoothness was introduced in
[28]. But strong smoothness and trapdoor property are new here.

3.5 Our PAKE Framework

We will use the following parameters, notations and functions.

– D is the password dictionary; G : Ξ → {0, 1}∗ is a pseudorandom generator.

15



– H1 = (Π1, ver
∗
1,H1, Ĥ1, α1) is a δ-ASPHB and H2 = (Π2, ver

∗
2,H2, Ĥ2, α2) is

a δ-ASPHA, whereΠ1 = (gen1, com1, ver1, sim1) andΠ2 = (gen2, com2, ver2).
Also, Hi (i = 1, 2) is associated with Di,Ki, Si,Ui,Xi,Li and L∗

i s.t. D ( Di.

– Let ei ← geni(1
n) for i = 1, 2 and V = α2(O) for O ← D(K2).

– FK : {0, 1}∗ → V is (1, δ, ϵ)-KFMAC with key space S2 and fuzzy verification
function ΦK′ .

– £ is a one-message reconciliation scheme for Alice and Bob, w.r.t, (S1, Ξ, δ).
Alice uses her secret d to compute (σ, ξ) ← £alice(d) and sends σ to Bob;
Bob uses his secret d′ to compute ξ = £bob(σ, d

′); ξ ∈ Ξ is the shared secret.

Initially, a trustee prepares parameters {ei|ver∗i |Πi|Hi|Ĥi|αi}2i=1|V |F |£. If
Pi and Pj wish to establish a key, they interact as follows (see Fig. 2). For
simplicity, comb,eb (resp. verb,eb) for b = 1, 2 is denoted by comb (resp. verb).

Pi(πij) Pj(πij)Pub: {ei|Πi|Hi|Ĥi|αi|ver∗i }2i=1|V |F |£

(τ1, y)← com1(πij)
y|Pi //

ξ = £bob(σ, Ĥ1(τ1, U)), Υ |sk = G(ξ)
ω = w|y|U |σ|i|j

(τ2, w
′)=com2(πij ;Υ ), w

?
= w′

ver2(τ2, πij , w)
?
= 1,

η0
?
= FĤ2(τ2,V )(ω|0)

If yes, η1=FĤ2(τ2,V )(ω|1) & output sk

k ← D(K1), U = α1(k)
(σ, ξ)← £alice(H1(k, πij , y))
ω = w|y|U |σ|i|j, Υ |sk = G(ξ)

(τ2, w) = com2(πij ;Υ )
η0 = FĤ2(τ2,V )(ω|0)

w|U|σ|η0|Pjoo

η1 // If η1=FĤ2(τ2,V )(ω|1), output sk

Fig. 2. Our PAKE Framework

1. Pi samples (τ1, y)←com1(πij) and sends y|Pi to Pj .

2. Upon receiving y|Pi, Pj samples k ← D(K1) and derives U = α1(k) and
(σ, ξ) ← £alice(H1(k, πij , y)). Then, she derives Υ |sk = G(ξ) and com-
putes (τ2, w) = com2(πij ;Υ ). Next, she computes ω = w|y|U |σ|i|j and
η0 = FĤ2(τ2,V ) (ω|0) . Finally, she sends w|U |σ|η0|Pj to Pi.

3. Upon receiving w|U |σ|η0|Pj , Pi computes ξ = £bob(σ, Ĥ1(τ1, U)), Υ |sk =

G(ξ), ω = w|y|U |σ|i|j and (τ2, w
′) = com2(πij ;Υ ). Then, he checks w

?
= w′,

η0
?
= FĤ2(τ2,V ) (ω|0), ver2(τ2, πij , w)

?
= 1. If any of them fails, he rejects;

otherwise, he sends η1 = FĤ2(τ2,V )(ω|1) to Pj and sets session key sk.

4. Upon receiving η1, Pj checks η1
?
= FĤ2(τ2,V )(ω|1). If yes, she sets session key

sk; otherwise, she rejects.
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3.6 Correctness

Let sidℓii = sid
ℓj
j = Pi|Pj |y|U |σ. If Pi and Pj share the same sid, then y is

generated by Pi while (U, σ) is generated by Pj . Hence, (σ, y, U) has the specified
distribution: (τ1, y) ← com1(πij) and U = α1(k) for k ← D(K1). They will
derive the same sk. Indeed, the correctness of com1 implies (πij , y) ∈ L1. The

correctness of ASPHB implies that Dist[H1(k, πij , y), Ĥ1(τ, α1(k))] ≤ δ. So the
correctness of £ implies Pi and Pj computes the same ξ. Since Υ |sk is determined
by ξ and the definition of PAKE correctness assumes that both Pi and Pj accept,
they both conclude with the same sk.

3.7 Security

We now state our security theorem. The main ideas have been presented at the
beginning of this section and proof details will appear in the full paper.

Theorem 1. Let £ be a secure one-message key reconciliation w.r.t. (S1, Ξ, δ),
G : Ξ → {0, 1}∗ be a pseudorandom generator, and (F,Φ) be (1, δ, ϵ)-KF MAC
with key space S2, domain M and negligible ϵ. Let H1 = (Π1, ver

∗
1,H1, Ĥ1, α1)

be a δ-ASPHB on a secure trapSim-commitment Π1 = (gen1, com1, ver1, sim1),
H2 = (Π2, ver

∗
2,H2, Ĥ2, α2) be a δ-ASPHA on a secure commitment Π2 =

(gen2, com2, ver2). Then, our framework is secure.

4 LWE-based Instantiation

4.1 The Learning With Errors Assumption

We next recall the Learning With Errors (LWE) assumption due to Regev [26].
For a vector s ∈ Zn

q and distribution χ over Zq, define distribution As,χ with
m samples as follows. It chooses a matrix A ← Zm×n

q , takes x ← χm, and
outputs (A,As+ x). The decisional LWE assumption DLWEq,χ,m,n states that
(A,As+ x) is pseudorandom when s is uniformly random over Zn

q .

For s ∈ R+, let Ψs be the Gaussian distribution of zero mean and standard
deviation s/

√
2π. Regev [26] proved that DLWE is hard when χ = Ψs with

s > 2
√
n. Usually, it is more convenient to work with χ = DZm,s. Gordon

et al. [14, Lemma 2] showed that the hardness of DLWEq,Ψs,m,n implies the
hardness of DLWEq,DZm,

√
2s,m,n when s = ω(

√
log n). For convenience, later we

denote DLWEq,DZm,s,m,n assumption by DLWEq,s,m,n.

4.2 Supporting properties from LWE

Hidden-Bits Lemma from LWE. The hidden-bits lemma states that given a
LWE tuple (A,As+ x), some linear function on s is confidential. This result is
essentially a corollary of [9, Lemma C.6]. We now present it without a proof.
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Lemma 9. Let L ≤ n and UL be the uniformly random variable over ZL
q . Let

C ∈ ZL×(n+L)
q be an arbitrary but fixed matrix with rank L. Then, (A,As +

x,Cs) and (A,As + x,UL) are indistinguishable under DLWEq,β,m,n assump-

tion, where A← Zm×(n+L)
q , s← Zn+L

q , x← DZm,β.

Trapdoor generation for LWE. The next lemma is adapted from [18, Lemma 3].

Lemma 10. Let m ≥ 6n log q and n log q = o(q1−α) for constant α ∈ (0, 1).
Then, there is an efficient algorithm GenTrap(1n, 1m, q) that outputs A ∈ Zm×n

q

and a trapdoor T ∈ Zm×m such that ||T|| ≤ O(n log q) and A is statistically close
to uniform over Zm×n

q . Further, there exists a PPT algorithm BD(T, ·) that takes
z ∈ Zm

q as input and does the following: if z = As + x with ||x||∞ ≤ ⌊ q
α−2
4 ⌋,

then output (t,x); if z cannot be expressed in this form, then output ⊥.

We require m ≥ 6n log q (using [1, Theorem 3.2] with ||T|| ≤ O(n log q)),
while m ≥ n log2 q in [18] (using [1, Theorem 3.1]). However, their proof only

requires ||T|| · q
1−α−2

4 < q/2. We satisfy this as ||T|| ≤ O(n log q) = o(qα).

Adaptive smoothness from LWE. The adaptive smoothness below states that
for almost every A ∈ Zm×n′

q and h ∈ Zm
q , ET (A,v−u⊙h) are close to uniform

for all but one codeword u in a m-length code C, where E is discrete Gaussian
and v is adaptively chosen (after given ETA). The idea is to employ a similar
result ([28, Lemma 19]) of [12, Lemma 8.3], under which we essentially only need
to show that mins∈Zn+1

q −{0} ||(A,v − u ⊙ h)s||∞ is large for all but one u ∈ C.
Let s = (s1, · · · , sn′+1). Notice that Lemma 11 below implies this is true when
minimizing with sn′+1 ̸= 0, while case sn′+1 = 0 (i.e., mins′∈Zn

q −{0} ||As′||∞ is

large for most of A) is well known. The proof detail is given in the full paper.

Theorem 2. For θ ∈ (0, 1), let s ≥ q1−
θ
3 · ω(

√
logm) and C be a [m, k, θm]p-

code with p < q. Take A ← Zm×n′

q ,h ← Zm
q . Then, with probability 1 −

2−mqn
′−(1− θ

3 )m − |C|22−2mq2n
′+2−θm/3 (over A,h), the following is true for

E← (DZm,s)
µ and v = f(ETA) with an arbitrary function f : Zµ×n′

q → Zm
q .

1. min
s∈Zn′+1

q −{0} ||(A,v − u⊙ h)s||∞ ≥ ⌊ q
θ/3−2
4 ⌋ for all but one u in C;

2. ET [A,v−u⊙h] is close to uniform in Zµ×(n′+1)
q for all but the exceptional

u in item 1.

The following lemma presents a core technique in this paper.

Lemma 11. Let B ∈ Zm×ν
q , χ ∈ N and C ∈ Zm×m

q be arbitrary but fixed ma-
trices with C invertible. Take h ← Zm

q . Let w be any random variable (maybe
computed from h,B) over Zm

q . Assume C is a [m, k′, θm]p-code for a constant

θ ∈ (0, 1) and p < q. Then, with probability at least 1−|C|2q2ν+2(4χ2q−θ)m (over
choices of h), there is at most one u ∈ C that kC(w − h ⊙ u) = Bs + x holds
for some (k, s,x) ∈ Z∗

q × Zν
q × Zm

q with ||x||∞ < χ.

18



Proof. For any distinct u1,u2 ∈ C, let zi = C(w − h ⊙ ui), i = 1, 2. Then,
∀y1,y2 ∈ Zm

q and k1, k2 ∈ Z∗
q , we have

P (k1z1 = k1y1 ∧ k2z2 = k2y2) = P (z1 = y1 ∧ z2 = y2)

=P (z1 = y1 ∧ (u1 − u2)⊙ h = δ), where δ = C−1(y1 − y2)

≤P ((u1 − u2)⊙ h = δ)

≤P ((u1i − u2i)hi = δi, ∀i ∈ A) (where A = {i | u1i ̸= u2i, i ∈ [m]}) (1)

≤q−θm (as |A| ≥ θm and hi is uniformly random. )

Let Z ⊆ Zm be the cube of radius χ−1 (centered at 0), and S def
= ∪s∈Zν

q
(Bs+

Z)∩Zm mod q. Obviously, kz = Bs+x for ||x||∞ < χ is equivalent to kz ∈ S.
Hence, P (k1z1 ∈ S ∧ k2z2 ∈ S) ≤ |S|2 · q−θm = q2ν(4χ2q−θ)m. Since (k1, k2)
has at most q2 choices and (u1,u2) has at most |C|2 choices, the bound follows.
Finally, the probability bound is obtained only over choices of h, as Eq. (1) only
depends on the coins of h and the final result is a union bound on Eq. (1). ⊓⊔

Remark. The adaptiveness of v in Theorem 2 is important. In our PAKE,
ETA is known to attacker. Hence, he can choose v based on it.

4.3 ASPHs from LWE

We will construct ASPHA and ASPHB with the following common parameters.

– n is the security parameter; prime modulus q = nλ for a constant λ > 3
θ

with θ ∈ (0, 1 − 1/ log p) and p a constant prime less than q; k = o(n);

δ1 = 6n log n; r1 = 3n1/2; r2 = q1−
θ
3 logn; δ = qα (for 1− θ

3 + 1
λ < α < 1);

4.3.1 Construction of δ-ASPHA

Let L ≤ n, 7(n+L)
θ ≤ m ≤ Θ(n). Take g ← Zm

q , B ← Zm×(n+L)
q . Let C be a

[m, k, θm]p-code, constructed from Lemma 7 with negligible failure probability
mp(−1+θ+1/ log p−o(1))m.

The commitment scheme. The commitment key is (B,g). To commit π ∈
Zk
p, take z← (DZ,r1)

m and t← Zn+L
q . The commitment is w = Bt+z+g⊙C(π)

with witness τ = (t, z). The decommitment is (π, τ). Define ver(τ, π,w) = 1 if
and only if w = Bt + z + g ⊙ C(π) and ||z|| ≤ δ1. From ver, language L is
generically defined. Define L∗ so that (π,w) ∈ L∗ if ||(B,w − g ⊙ C(π))s||∞ <

⌊ q
θ/3−2
4 ⌋ for some s ∈ Zn+L+1

q − {0}.

Lemma 12. Our commitment is secure under DLWEq,r1,m,n assumption.

Proof. Consider correctness first. Let w = Bt+g⊙C(π)+ z be a commitment
of π with z← DZm,r1 . Then, correctness holds if ||z|| ≤ δ1, which is true except
for probability O(2−m), by Lemma 2 (noticing r1

√
m = Θ(n) = o(δ1)). Hiding

property directly follows from DLWEq,r1,m,n assumption. The binding property
follows from the properties of L∗ (to be verified soon): L ⊆ L∗ and for any
w ∈ Zm

q , there is only one π so that (π,w) ∈ L∗. ⊓⊔
Description of δ-ASPHA. We verify the required properties for L∗.
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1. L ⊆ L∗. This is obvious as || · ||∞ ≤ || · || and δ1 = o(qθ/3) using λθ/3 > 1.
2. For any w ∈ Zm

q , there is at most one π ∈ Zk
p with (π,w) ∈ L∗. This

directly follows from Theorem 2(1) (with n′ = n + L), where the exception
probability is O(q(−1/3+o(1))n) (negligible!).

We define H and Ĥ. For secret O ← (DZ,r2)
m×L, let the projection key

V=OTB. Let H(O, π,w)=OT (w − g ⊙ C(π)). If (π,w) ∈ L with witness τ =
(t, z), let Ĥ(τ,V) = Vt.

Correctness. Assume the closeness uses the || · ||∞ metric. Let (π,w) ∈ L.
Then, w = Bt + g ⊙ C(π) + z with ||z|| ≤ δ1. For O ← (DZ,r2)

m×L, we have
||Vt − OT (w − g ⊙ C(π))||∞ = maxi |oT

i z| ≤ δ1r2 logn = o(δ) (except for a
negligible probability by Lemma 2), where oi is the ith column of O.
Adaptive smoothness. For (π,w) ̸∈ L∗, C(π) is not the exceptional u in The-

orem 2 and hence OT (B,w − g ⊙ C(π)) is close to uniform over ZL×(n+L+1)
q .

Further, under our setup (n′ = n + L,m ≥ 7(n+L)
θ , k = o(n)), the exceptional

probability for Theorem 2 is O(q−(1/3+o(1))n) (negligible).
Strong smoothness. We need to show that (OTB,Bt + z,OTBt) is indis-

tinguishable from (OTB,Bt + z,U), where (z, t,O,U) ← (DZ,r1)
m × Zn+L

q ×
(DZ,r2)

m×L×ZL
q . This follows from Lemma 9, as OTB is close to uniform (well-

known and also implied by Theorem 2) and hence has a rank < L only negligibly.

4.3.2 Construction of δ-ASPHB

δ-ASPHB is identical to δ-ASPHA, except that we need a trapdoor property
while strong smoothness is no longer needed. Even though, we still need to
validate claims adapted from δ-ASPHA under our new parameter choices. This
is shown below in the security item. The trapdoor property is from Lemma 10.

Let µ ∈ N,m = 6n log n. Take h ← Zm
q ,A ← Zm×n

q . C is a [m, k, θm]p-code

(from Lemma 7 with a negligible failure probability mp(−1+θ+1/ log p−o(1))m).

trapSim-commitment scheme. The commitment key is (A,h). The com-
mitment to π ∈ Zk

p is y = As+x+h⊙C(π) for x← (DZ,r1)
m and s← Zm

q with
witness τ = (s,x). Further, ver,L, and L∗ are defined the same as in δ-ASPHA

via equation y = As+x+h⊙C(π). The trapdoor simulation is to apply Lemma
10 to generate A with trapdoor T ∈ Zm×m, by setting α = θ/3 and noticing
that n log q = o(q1−θ/3) (as λ(1− θ/3) ≥ 2λ/3 ≥ 2, due to λ > 3

θ ≥ 3).
For (A,T)← TrapGen(1n), membership (π,y) ∈ L∗ can be verified as follows.

For each u ∈ Z∗
q , try to use T to recover (s,x) so that u(y − h ⊙ C(π)) =

As+x with ||x||∞ ≤ ⌊ q
θ/3−2
4 ⌋. If it succeeds for some u, then claim (π,y) ∈ L∗;

otherwise, claim (m,y) ̸∈ L∗. By Lemma 10, this decision is always correct.

Description of δ-ASPHB. This is identical to δ-ASPHA. For secret E ←
Dm×µ

Z,r2 , the projection key is U=ETA. Also, let H(E, π,y)=ET (y − h⊙ C(π)).
If (π,y) ∈ L with witness τ = (s,x), let Ĥ(τ,U) = Us.

Security. Security proofs for commitment, correctness and adaptive smoothness
are identical to δ-ASPHA. However, we need to verify that the cited results have
negligible exception probabilities under our setup. Commitment security has
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used Lemma 2 to correctness. In our setting, r1
√
m = Θ(n

√
log n) = o(δ1) still

holds and so the result remains valid. The correctness has cited Lemma 2 which
requires δ1r1 log n = o(δ) and remains valid in our setting. Theorem 2 is cited for
smoothness and property 2 of L∗. In our setting, it only has negligible exception
probability O(q(−θ/3+o(1))m).

4.4 LWE-based PAKE Instantiation

Using δ-ASPHB and δ-ASPHA just obtained, together with pseudorandom gen-
erator G, KF-MAC F (in Section 3.3) and reconciliation £ (in Section 3.2), we
can realize our PAKE framework in the LWE setting (see Fig. 3). By the secu-
rity theorem of PAKE framework, we only need to make sure that each of these
mechanisms is secure in our parameter choices. This is specified as follow.

- θ ∈ (0, 1−1/ log p); q = nλ (λ > 3
θ ); p is constant prime with p < q; k = o(n);

r1 = 3n
1
2 , δ1 = 6n log n, r2 = q1−

θ
3 log n, δ = qα with 1− θ

3 + 1
λ < α < 1.

- G : {0, 1}L′ → {0, 1}∗ is a pseudorandom generator.

- password dictionary D ( Zk
p.

- Instantiate KF-MAC. Set FK as the (1, δ, ( 4δq )
θmacL/p)-KF MAC in Section

3.3 with key space ZL
q , where θmac ∈ (0, 1− 1/ log p), L = k2p(1+β)

1−θmac−1/ log p for

constant β > 0 (where k2 = o(n) is the p-ary output length of H in FK).

/* In this setup, insecurity error (4δq )
θmacL/p = (4qα−1)Θ(k2) (negligible);

[L/p, k2, θmacL/p]p-code in the scheme is constructed from Lemma 7 with
negligible exception probability O(p−k2βL/p). */

- Instantiate (H1, Ĥ1) with our LWE-based δ-ASPHB : Setm = 6n log n, µ =
L′ log q

16δ (L′ is the key length of G); other parameters such as δ1, δ, r2, r1 are
set as above; [m, k, θm]p-code C is from Lemma 7. TakeA← Zm×n

q ,h← Zm
q .

/* Under our setup, C fails to be constructed by Lemma 7 only with negli-
gible probability mp(−1+θ+1/ log p)m; our setup is consistent with parameter
description in δ-ASPHB and hence the resulting scheme is secure. */

- Instantiate (H2, Ĥ2) with our LWE-based δ-ASPHA: Set m1 = 7(L+n)
θ ;

δ1, δ, r2, r1, L etc set as above; [m1, k, θm1]p-code C1 is from Lemma 7. Take

B← Zm1×(n+L)
q and g← Zm1

q as public parameters for δ-ASPHA.

/* Under our setup, C1 fails to be constructed by Lemma 7 only with negligi-
ble probability m1p

(−1+θ+1/ log p)m1 ; our setup is consistent with parameter
description in δ-ASPHA and hence the resulting scheme is secure. */

- Set V = OTB ∈ ZL×(n+L)
q for O← (DZm1 ,r2)

L as the public projection key.

- For π ∈ Zk
p, define gπ = g ⊙ C1(π) and hπ = h⊙ C(π).

- Instantiate £. Set £ as the reconciliation scheme in Section 3.2 with µ, δ and
q as above. Thus, the reconciliated key ξ has a bit-length at least µ log q

16δ =
L′ (fit the key length of G).
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The public parameter list for our PAKE isA|B|g|h|V|F |£|C|C1. The detailed
protocol is simply to plug the primitives above into our PAKE framework. This
is graphically shown in Fig. 3. Since primitives are secure by our parameter
clarification, our protocol is secure by Theorem 1.

Pi(πij) Pj(πij)Pub: A|B|V|g|h|F |£|C|C1

x←DZm,r1 , s← Zn
q

y = As+ x+ hπij

y|Pi //

ξ = £bob(σ,Us), ||z||
?

≤ δ1
ω = w|y|U|σ|i|j|

w
?
= Bt+ z+ gπij , η0

?
= FVt(ω|0)

If yes, η1=FVt(ω|1) & output sk

E← (DZm,r2)
µ, U = ETA

y′ = y − hπij

(σ, ξ)← £alice(E
Ty′),

ω = w|y|U|σ|i|j|
w = Bt+ z+ gπij ,

η0 = FVt(ω|0)

w|U|σ|η0|Pjoo

η1 // If η1=FVt(ω|1), output sk

Fig. 3. Our Protocol LWE-PAKE

t← Zn+L
q and z← DZm1 ,r1 are sampled with randomness Υ where Υ |sk = G(ξ).

Efficiency. Note that gπij and hπij can be pre-computed and Dm
Z,r can be

sampled in Õ(m) time [23]. Thus, the cost of Pi is dominated by Bt,Us,As
and Vt which totally is about mn multiplications over Zq (as L = O(n), µ =
O(n) and m1 = o(m)); the cost of Pj is dominated by ETA,ETy′,Bt,Vt
which is µmn = O(L′mn/ log q) multiplications. The communication cost is

dominated by (U,w,y) which has O( L′n
logn + n log n) field elements. Finally, the

authentication is provided by (w, η0) with a cost dominated by Bt and Vt,
which is (m1 + L)(n + L) = O(n2) multiplications. This is more efficient than
authentication [15,6] from CCA-secure encryption, which has a cost O(n2 log n)
[29,21] in the LWE setting. Our main saving for this comes from the fact that
δ-ASPHA doesn’t need a trapdoor simulation so it can take m1 = O(n) while
[29,21] needs this and hence the corresponding parameter is O(n log n). That is,
authentication data (w, η0) can not enable to decrypt πij and so it is different
from authentication by CCA-secure encryption.

5 Instantiation from Ring-LWE

This section will present our PAKE instantiation based on Ring-LWE. This is
important as it is more efficient than LWE-based one.
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5.1 Basics of Rings, Ring-LWE and Operational Properties

5.1.1 Introduction to Algebraic Number Theory
We provide some facts from algebraic number theory (also see [20]). Let m be a
power of 2 and n = m/2.

Power basis of cyclotomic field. We are interested in the mth cyclotomic
field K = Q(ζm), where ζm is the mth primitive root of unity and has the
minimal polynomial Φm(x) = xn + 1 with n = m/2. Then, K has a Q-basis
{1, ζm, ζ2m, · · · , ζn−1

m } (called power basis, denoted by p).

Canonical embedding. K = Q(ζm) has n embeddings σi : K → C, ∀i ∈ Z∗
m.

The canonical embedding σ : K → Cϕ(m) is σ(a) = (σi(a))i∈Z∗
m

for a ∈ K. Since
σi(a) = σ̄m−i(a), σ(a) ∈ H.

Ring of integers and ideals. An algebraic integer in K is an element in it
that is a root of a monic polynomial in Z[x]. The set of all integers of K is a
ring, denoted by R in this paper. For K = Q(ζm), R = Z[ζm]. Thus, the power
basis {1, ζm, · · · , ζn−1

m } is a Z-basis of R.

Chinese remainder basis and its relation with power basis. In this
paper, q is a prime with q = 1 mod m and ωm is the mth root of 1 in Z∗

q . let pi =

(q, ζm−ωi
m) (i.e., the ring generated by q and ζm−ωi

m). By Chinese remainder
theorem, for each i ∈ Z∗

m, there exists ci ∈ R so that ci = 1 mod pi and ci = 0

mod pj for any j ̸= i. Then, c = (cj)j∈Z∗
m

forms a basis of Rq
def
= R mod q,

called the CRT basis. Note that c2i = ci mod qR, as c2i = ci mod pi for each
i ∈ Z∗

m. Hence, if a = cTv, b = cTu ∈ Rq for v,u ∈ Zn
q , then ab = cT (v⊙u). Let

CRTm = (ωij
m)i∈Z∗

m,j∈[n]. Then, the power basis p and CRT basis c is connected

by pT = cT · CRTm. Thus, if a = pTv for some v ∈ Zn
q , then a = cT · CRTmv.

Coefficient vector representation. For a = pTv with some v ∈ Zn
q , we

call v the coefficient vector of a under p and denote it by a. For a ∈ Rℓ
q, let

a = (pTv1, · · · ,pTvℓ)
T for some vi ∈ Zn

q . We call (v1; · · · ;vℓ) the coefficient
vector of a under p and denote it by a. Similarly, we can define the coefficient
vector of a and a under basis c and denote them by a˜ and a˜ respectively. As

pT = cT · CRTm, we know that a˜ = CRTm · a. For a ∈ Rℓ
q, we have a˜ =

(Iℓ ⊗CRTm)a and a = (Iℓ ⊗CRT−1
m )a˜.

5.1.2 Gaussian samplings

Gaussian distribution over K⊗R. Since m is a power of 2, the power basis
p is an orthogonal basis of H (via canonical embedding σ and [20, Lemma 2.15])
and ||ζjm|| =

√
n, ∀j ∈ Z∗

m. Hence, Gaussian distribution over K ⊗ R (or H via

σ) with parameter ξ can be sampled as z =
∑n−1

i=0 ζjmrj , where r0, · · · , rn−1 is
i.i.d. Gaussian over R with parameter ξ/

√
n. Denote this distribution by Ψξ.

Discrete Gaussian over R. Since p is an orthogonal basis of R (embedded

into H), e =
∑n−1

i=0 ζjmei with ei ← DZ,s/
√
n is according to DR,s.

5.1.3 Ring-LWE

23



The Learning With Errors over rings (Ring-LWE) was introduced in [19], where
the worst-case hardness result was also proven. Based on basis p, x ∈ K ⊗ R
can be represented as x =

∑
i xiζ

i
m for xi ∈ R. Also, x ∈ K/qR ⊗ R can be

represented as x =
∑

i xiζ
i
m for xi ∈ [0, q). Let T = K/qR⊗ R.

For s ∈ Rq and distribution χ over K ⊗ R, a sample from distribution As,χ

over Rq × T consists of (a, b) with a← Rq, e← χ and b = as+ e mod q.
Decisional ring-LWE (ring-DLWEq,χ,m) states that independent samples

from As,χ for s← Rq and the same number of samples uniformly over Rq×T are
indistinguishable. Denote this assumption with χ = DR,r by ring-DLWEq,r,m.

5.1.4 Matrix Representations for Operations over Rq

In this subsection, we will give some useful facts on the matrix representation
over Zq for elements, vector or matrix over Rq. For b ∈ Rq, define ϕ1(b) =

CRT−1
m ·diag(b˜), ϕ2(b) = CRTT

m ·diag(b˜) ·CRT−T
m . Generally, for D = (dij) ∈

Rℓ×k
q and u = 1, 2, define ϕu(D) = (ϕu(dij))1≤i≤ℓ,1≤j≤k (a block matrix with

entry (i, j) being ϕu(dij)). For v ∈ Zn
q , define ‡(v) =


v0 v1 · · · vn−1

−vn−1 v0 · · · vn−2

...
...

. . .
...

−v1 −v2 · · · v0

.
The following facts about ϕ1, ϕ2, ‡ are useful.

Lemma 13. Let s ∈ Rq, e,b ∈ Rℓ
q and D = (d(1), · · · ,d(k)) ∈ Rℓ×k

q . 1.

ϕ1(b) = (Iℓ⊗CRT−1
m )

diag(b1˜ )...
diag(bℓ˜ )

 , ϕ2(b) = (Iℓ⊗CRTT
m)

diag(b1˜ )...
diag(bℓ˜ )

CRT−T
m .

2. ϕ2(D) = (Iℓ ⊗CRTT
m)

diag(d11˜ ) · · · diag(d1k˜ )
...

. . .
...

diag(dℓ1˜ ) · · · diag(dℓk˜ )

 (Ik ⊗CRT−T
m ).

3. bs = ϕ1(b)s˜.
4. [eTb]T = [e]Tϕ2(b). Further, ((e

Td(1))T , · · · , (eTd(k))T ) = [e]T · ϕ2(D).
5. ϕ2(s) = ‡(s).

Proof. Items 1 and 2 follow by definition. For item 3, notice that for s, b ∈ Rq,
bs = CRT−1

m (b˜⊙ s˜) = ϕ1(b)s˜. Generalizing to b ∈ Rℓ
q follows by definition of

ϕ1(b). For item 4, notice (bs)T = s˜TϕT
1 (b) = sT · CRTT

mϕT
1 (b) = sTϕ2(b) for

s, b ∈ Rq. Thus, [e
Tb]T =

∑
i[eibi]

T =
∑

i[ei]
Tϕ2(bi) = [e]Tϕ2(b). Generalizing

to the second part of item 4 follows by definition of ϕ2(D). For item 5, notice
that [bs]T = sT · ‡(b) (as xn+1 = 0 in Rq). But we know that [bs]T = sT ·ϕ2(b).
Since s is arbitrary in Rq, the result follows. ⊓⊔

In the remaining of this section, we will present materials for ring-LWE based
PAKE instantiation. Due to the space limitation, we present it in the intuitive
level. The formal details appear in the full paper.
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5.2 Supporting Properties from Ring-LWE

Regularity. We prove a regularity result: for discrete Gaussian e over Rℓ and
uniformly random D over Rℓ×k

q , eTD is statistically close to uniform over Rk
q

(for quite general k, ℓ). The strategy is as follows. By Lemma 13(4), eTD is
represented by [e]Tϕ2(D). It suffices to show that [e]Tϕ2(D) is close to uniform in
Z1×nk
q . We use Lemma 3 (with Lemma 1) to do this. This essentially only requires

to show that mins∈Zkn
q −{0} ||ϕ2(D)s||∞ is large, as it implies a full column rank

of ϕ2(D) and large λ∞
1 (Λ(ϕ2(D))). This requirement is shown in the full paper.

It should be noted that our regularity result with a special form of D appeared
in [20] while the case of k = 1 is in [10].

Adaptive smoothness-I. Given a,h← Rℓ
q and a [ℓn, k, d]p-code C with large d,

we show the following holds with high probability (over a,h): let E be discrete
Gaussian over Zℓn×µ and w be adaptively chosen after given ET · ϕ1(a). Then,

1. mins∈Zn+1
q −0 ||

(
ϕ1(a),w − hu

)
s||∞ is large for all but one u in C, where

hu ∈ Rℓ
q is defined so that hu˜ = h˜ ⊙ u;

2. ET
(
ϕ1(a),w − hu

)
is close to uniform over Zµ×(n+1)

q for all u ∈ C but the

exceptional one in item 1, where the statistical closeness is over E.

To show item 1, it suffices to show ||ϕ1(a) · s′||∞ for any s′ ∈ Zn
q − {0} is large

and the || · ||∞-distance from t(w − hu) to L(ϕ1(a)), ∀t ∈ Z∗
q , is large for all

but one u in C. The former is given by a random argument and the latter is a
consequence of Lemma 11, using w − hu = (Iℓ ⊗ CRT−1

m )(w˜ − h˜ ⊙ u). Item 2
follows from the adaptive version of Lemma 3, using item 1.

Adaptive smoothness-II. In smoothness-I, we can extract µ random elements
in Zq (i.e., ET (w − hu)) from µ×n matrix ETϕ1(a). In smoothness-II, we show
this extraction efficiency can be improved. Specifically, for D ← Rℓ×k

q ,h ← Rℓ
q

and a [ℓn, k′, d]p-code C with large d, we show the following holds with high
probability (over D,h). Let e be discrete Gaussian in Rℓ and w is adaptively
chosen after given eTD.

1. mins∈Zkn+L
q −0 ||

(
ϕ2(D), ϕ2(w − hu)L

)
s||∞ is large for all but one u in C,

where hu ∈ Rℓ
q is defined s.t. hu˜ = h˜ ⊙ u and ϕ2(v)L is the first L columns

of ϕ2(v).
2. (eTD, [eT (w − hu)]

L
1 ) is close to uniform in Rk

q × ZL
q for all u ∈ C but the

exceptional one in item 1, where [x]L1 is the first L components of vector x
and the statistical closeness is over e.

Here k ∈ N is arbitrary (e.g. k = 1 and later we will take k = 2). The
parameter L < n but we can achieve L = Θ(n). Consequently, we can now
extract Θ(n) elements in Zq from eTD ∈ Rk

q . The proof of item 1 is given by a
strengthened regularity. The idea of item 2 is to use Lemma 13(4) to study the
distribution of its matrix form [e]T (ϕ2(D), ϕ2(w−hu)L). This is provably close
to uniform for all but one u by item 1 and a variant of [28, Lemma 19].
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Hidden-bits lemma from ring-LWE. We extend LWE-based hidden-bits lemma
in Section 4.2 to the ring-LWE setting. It essentially says that given a redundant
ring-LWE tuple, we can extract some random bits of the secret that is confiden-
tial to an attacker. Formally, for fixed α, β ∈ Rq, let L′ = |{i | (α˜[i], β˜[i]) ̸=
(0, 0), i ∈ [n]}|. Then, given a,b ← Rℓ

q and as + bt + x for s, t ← Rq and x

discrete Gaussian over Rℓ, it holds that
[
αs+ βt

]L
1
is indistinguishable from

uniformly random in ZL
q under the ring-DLWE assumption.

Trapdoor generation from ring-LWE. We generalize the trapdoor generation
algorithm in Zm in [21] to the ring-LWE setting. The algorithm will generate a
random matrix D ∈ Rℓ×ν

q together with a trapdoor R so that R can be used
to decode t from Dt + x when x is short. Ducas and Micciancio [10] obtained
the generalization for case ν = 1. We obtain the result for the general ν case.
Our algorithm is simply the ring version of [21]: D = (D0; Iν ⊗g−RTD0) for a

random matrixD0 in R
(ℓ−kν)×ν
q and a discrete Gaussian matrixR in R(ℓ−kν)×kν ,

where g = (1, 2, · · · , 2k−1)T and k = ⌈log q⌉. To show that D is random, it
requires to show that given D0, R

TD0 is statistically random. This follows by
our regularity result above. The decoding property is a trivial extension of [21].

5.3 ASPHs from Ideal Lattices

In this section, we will present our construction of ASPH from ideal lattices.
The idea is to extend the LWE-based schemes to the ring-LWE setting.

5.6.1 Construction of δ-ASPHA

Let L ≤ n, θ ∈ (0, 1), k = o(n), ℓ ∈ N, p constant prime. Take g ← Rℓ
q, D =

(d1,d2)← Rℓ×2
q . Let C be a [ℓn, k, θℓn]p-code. For π ∈ Zk

p, define gπ ∈ Rℓ
q such

that gπ˜ = g˜ ⊙ C(π).
The commitment scheme. The commitment key is (D,g). To commit to π ∈
Zk
p, take t← R2

q and z discrete Gaussian over Rℓ. The commitment is w = Dt+
gπ + z with witness (t, z). The decommitment is (π, t, z). Let ver(t, z, π,w) = 1
if and only if w = Dt+ gπ + z with ||z|| small.

Then, we define L and L∗. Let X = Zk
p×Rℓ

q. Then, L is generically defined by

ver. Define L∗ = {(π,w) ∈ X | ||
(
ϕ2(D), ϕ2(w−gπ)L

)
s||∞ is small for some s ∈

Z2n+L
q − {0}}, where ϕ2(v)L is the first L columns of matrix ϕ2(v).
Our commitment is secure: the hiding property directly follows from ring-

DLWE assumption and binding property is implied by properties of L∗:

(1) L ⊆ L∗. This is true as ||
(
ϕ2(D), ϕ2(Dt + z)L

)
s||∞ with short z is small

for some non-zero s. Indeed, via Lemma 13, one can find 2n × n matrix A s.t.
ϕ2(D)A = ϕ2(Dt). Let 1L = (1, · · · , 1)T (with L 1s), 1+

L = (1, · · · , 1, 0, · · · , 0)T

(with L 1s and (n−L) 0s). For s = (−A1+
L ;1L), ||

(
ϕ2(D), ϕ2(Dt+ z)L

)
s||∞ =

||ϕ2(z)1
+
L ||∞ ≤ ||z|| (small), where ϕ2(zi) = ‡(zi) (Lemma 13(5)) is used.

(2) For w ∈ Rℓ
q, there is at most one π so that (π,w) ∈ L∗. This follows from

property 1 of adaptive smoothness-II.
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Description of δ-ASPHA. For secret key o discrete Gaussian over Rℓ, define

the projection key α(o)=oTD. For (π,w) ∈ X , let H(o, π,w) =
[
oT (w − gπ)

]L
1
.

If (π,w) ∈ L with witness τ = (t, z), then let Ĥ(τ, α(o)) =
[
oTDt

]L
1
.

Correctness. For (π,w) ∈ L, there exists τ = (t, z) with small ||z|| s.t. w =

Dt+ gπ + z. Then, H(o, π,w)− Ĥ(τ, α(o)) =
[
oT z

]L
1
=

[∑ℓ
i=1[zi]

T ‡(oi)
]L
1
(by

Lemma 13(4)(5)), which is short by Lemma 2 as o is Gaussian and ||z|| is small.
Adaptive smoothness. Given π and any function f : R2

q → Rℓ
q, let o discrete

Gaussian over Rℓ and w = f(oTD). If (π,w) ∈ X\L∗, then by definition of
L∗, gπ is not the exceptional u in the result of adaptive smoothness-II. Thus,(
oTD,

[
oT (w − gu)

]L
1

)
is close to uniform in R2

q × ZL
q .

Strong smoothness. It suffices to show that (α(o),D,Dt + z,
[
oTDt

]L
1
) and

(α(o),D,Dt+ z,U) are indistinguishable, when o, z discrete Gaussian over Rℓ

and (t,U) ← R2
q × ZL

q . Let (a, b) = oTD. By regularity property, with high
probability, (a˜[i], b˜[i]) ̸= 0 holds for most of i’s. So strong smoothness follows
from hidden-bit lemma in Section 5.2.

5.6.2 Construction of δ-ASPHB

Let µ ∈ N, θ ∈ (0, 1), k = o(n), ℓ ∈ N, p constant prime. Take h,a← Rℓ
q. Let

C be a [ℓn, k, θℓn]p-code. For π ∈ Zk
p, define hπ ∈ Rℓ

q such that hπ˜ = h˜ ⊙ C(π).
trapSim-commitment. The commitment to π ∈ Zk

p using public-key (a,h) is

y = as + hπ + x for s ← Rq and x discrete Gaussian over Rℓ. Details and
language L are identical to δ-ASPHA. Further, the trapdoor simulation follows.

– sim(1n). Take h ← Rℓ
q; use the trapdoor generation algorithm in Section

5.2 with ν = 1 to generate a and R so that R can decode as+ x as long as
||x|| is not large. With R, membership (π,y) ∈ L can be verified, by trying
to decode (s,x) so that y = as+ x+ hπ.

Let X = Zk
p×Rℓ

q. We define L∗ ⊆ X so that (π,y) ∈ L∗ if t(y−hπ) = as+x

for some (t, s,x) ∈ Zq ×Rq ×Rℓ
q with x short and (t, s) ̸= (0, 0). We now verify

three required properties for L∗.

1. L ⊆ L∗. It is evident by adapting witness (s,x) for L to (1, s,x) for L∗.
2. Given y ∈ Rℓ

q, there is at most one π with (π,y) ∈ L∗. Notice that
t(y−hπ) = as+x (via Lemma 13(3)) is equivalent to t(y − hπ) = ϕ1(a)s˜+x.
By adaptive smoothness-I, there is at most one π so that this holds with short
x and non-zero (t, s˜), desired.3. For (a,R) ← sim(1n), (π,y) ∈ L∗ can be verified using R as follows. For
each t ∈ Z∗

q , try to use R to recover (s,x) so that t(y − hπ) = as + x for
short x. If it succeeds, then claim (π,y) ∈ L∗; otherwise, claim (π,y) ̸∈ L∗.
The validity of this algorithm is by the decoding capability of R.

The commitment security is evident: the hiding property is by the ring-DLWE
assumption and the binding property follows from properties 1, 2 above for L∗.
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Description of δ-ASPHB. We now define H and Ĥ. Take secret E discrete Gaus-
sian over Znℓ×µ and the projection key is U = α(E)=ETϕ1(a). The projective
hash H(E, π,y)=ET (y − hπ). With witness τ = (s,x), define Ĥ(τ,U) = Us˜.Correctness. For (π,y) ∈ L, let y = as + hπ + x with short x. Then, by
Lemma 13(3), ET (y − hπ) = ETϕ1(a)s˜+ ETx = Us˜+ ETx. The correctness

follows as ||ETx||∞ is small by Lemma 2 (since E is Gaussian and x is short).
Smoothness. For any (π,y) ̸∈ L∗, y can not be expressed as t(y−hπ) = as+x

with short x for some (t, s) ̸= (0, 0). Via Lemma 13(3), ||
(
ϕ1(a),y − hπ

)(s
t̃

)
||∞

is large for any non-zero (t, s). By adaptive smoothness-I, ET (ϕ1(a),y − hπ), is

close to uniform over Zµ×(n+1)
q .

5.4 A Ring-LWE-Based Instantiation of PAKE

We now instantiate our framework from Ring-LWE. In a nutshell, we realize the
KF-MAC using the construction in Section 3.3 and key reconciliation scheme
from Section 3.2, while instantiating H1 = (Π1, ver

∗
1,H1, Ĥ1, α1) by δ-ASPHB

and H2 = (Π2, ver
∗
2,H2, Ĥ2, α2) by δ-ASPHA, constructed in the last subsection.

Our protocol will use the following parameters, notations and functions.

– m is a power of 2; n = m
2 ; θ ∈ (0, 1); prime q; p a constant prime with p < q;

ℓ1 = Θ(log n) and ℓ2 = ω(1) ≤ ℓ1; k = o(n); password dictionary D ⊆ Zk
p.

– For i = 1, 2, let Ci be a [ℓin, k, θℓin]p-code from Lemma 7.
– H1 takes a,h← Rℓ1

q as its public-key and uses code C1.
– H2 takes g ← Rℓ2

q ,D = (dij) ← Rℓ2×2
q as its public-key and uses code C2.

In addition, we use v = oTD ∈ R2
q with o ← (DR,

√
nr2)

ℓ2 as the public
projection key for the PAKE framework.

– δ1 is the bound on the noise term for the commitment in H1 and H2.
– As before, FK is the KF-MAC in Section 3.3 with a fuzzy verification function

ΦK′ ; G is a pseudorandom generator; £ is a reconciliation scheme for Alice
and Bob, as in Section 3.2.

The public parameter is a|D|v|g|h|F |£|C1|C2|q. Then, the instantiated PAKE
protocol between Pi and Pj is described in Fig. 4 (see Section 5.4 for details).

5.5 Implementation Results

Due to the space limitation, the efficiency details and comparison are given in the
full paper and a summary is given in Table 1. We now provide a proof-of-concept
implementation of our RLWE-PAKE scheme. The parameters are chosen as Fig. 5
(a) and the output of H is 256bits. The implementation is done on the platform
of Intel Core i7-7700HQ CPU at 2.80GHz with 7.7GiB RAM running on the
Ubuntu 16.04 LTS 64-bits operation system. Our program uses C++ language
and the Number Theory Library (NTL) [27] without parallel techniques. The
computational performance is presented in Fig. 5 (b). In the setup phase, public
parameters are generated. The columns of Pi and Pj denote the time cost of
computations by Pi and Pj respectively. The message size and session key size
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Pi(πij) Pj(πij)Pub: a|D|v|g|h|F |£|C1|C2|q

x←(DR,
√

nr1)
ℓ1 , s←Rq

y = as+ hπij + x

y|Pi //

ξ = £bob(σ,Us˜), ||z|| ?

≤ δ1

ω = w|y|U|σ|i|j
w

?
= Dt+ gπij + z, η0

?
= F[vt]L1

(ω|0)
If yes, η1=F[vt]L1

(ω|1) & output sk

E← (DZ,r2)
ℓ1n×µ,

U = ETϕ1(a), y′ = y − hπij

(σ, ξ) ← £alice(E
Ty′),

w = Dt + gπij + z

ω = w|y|U|σ|i|j, η0 = F[vt]L1
(ω|0)

w|U|σ|η0|Pjoo

η1 // If η1=F[vt]L1
(ω|1), output sk

Fig. 4. Our Protocol RLWE-PAKE:
t← R2

q and z← (DR,
√

nr1)
ℓ2 are sampled with randomness Υ , where Υ |sk = G(ξ).

n q p ℓ1 ℓ2 L µ k1 k2 r1 r2 L′

1024 230 + 213 + 1 13 10 10 1014 32 64 64 5.7 4571 128

(a) parameters

Setup Pi Pj

1.36s 0.20s 0.71s

(b) time cost

Pi (bytes) Pj (bytes) sk (bytes)

39990 167090 16

(c) message and sk size

Fig. 5. Performance of RLWE-PAKE

are listed in Fig. 5 (c). It shows the message sizes by Pi and Pj respectively in
order to agree on a 16 bytes session key. This is a reference implementation
without optimizing. Practically, matrix multiplications can be done in parallel.
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