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Abstract. We introduce the notion of Witness Maps as a cryptographic
notion of a proof system. A Unique Witness Map (UWM) determinis-
tically maps all witnesses for an NP statement to a single representa-
tive witness, resulting in a computationally sound, deterministic-prover,
non-interactive witness independent proof system. A relaxation of UWM,
called Compact Witness Map (CWM), maps all the witnesses to a small
number of witnesses, resulting in a “lossy” deterministic-prover, non-
interactive proof-system. We also define a Dual Mode Witness Map (DMWM)
which adds an “extractable” mode to a CWM.

Our main construction is a DMWM for all NP relations, assuming sub-
exponentially secure indistinguishability obfuscation (iO), along with
standard cryptographic assumptions. The DMWM construction relies
on a CWM and a new primitive called Cumulative All-Lossy-But-One
Trapdoor Functions (C-ALBO-TDF), both of which are in turn instanti-
ated based on iO and other primitives. Our instantiation of a CWM is in
fact a UWM; in turn, we show that a UWM implies Witness Encryption.
Along the way to constructing UWM and C-ALBO-TDF, we also con-
struct, from standard assumptions, Puncturable Digital Signatures and
a new primitive called Cumulative Lossy Trapdoor Functions (C-LTDF).
The former improves up on a construction of Bellare et al. (Eurocrypt
2016), who relied on sub-exponentially secure iO and sub-exponentially
secure OWF.

As an application of our constructions, we show how to use a DMWM
to construct the first leakage and tamper-resilient signatures with a de-
terministic signer, thereby solving a decade old open problem posed by
Katz and Vaikunthanathan (Asiacrypt 2009), by Boyle, Segev and Wichs
(Eurocrypt 2011), as well as by Faonio and Venturi (Asiacrypt 2016). Our
construction achieves the optimal leakage rate of 1− o(1).

1 Introduction

A foundational innovation of theoretical computer science has been the
generalization of the notion of what a proof is. Interactive proofs, zero-
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knowledge proofs and probabilistically checkable proofs are all critical to
the current theory – and practice – of computer science. In this work, we
introduce and explore yet another notion of a proof, against the backdrop
of recent advances in cryptography.

A conventional proof of a statement that can be verified by an effi-
cient program is called a witness for the statement. Goldwasser, Micali
and Rackoff, in their seminal work on interactive proofs [26], introduced
the fascinating concept of zero-knowledge proof protocols which reveal
no “knowledge” about the witness to a verifier, yet can soundly convince
her of the existence of a witness. The notion of knowledge was formalized
using simulators. An important direction of subsequent investigation has
been to develop more rudimentary models of proofs, which when realized,
offer powerful cryptographic applications. In particular, Blum, Feldman
and Micali [4] introduced the notion of non-interactive zero-knowledge
proofs (NIZK), wherein they reverted to the conventional notion of a
proof being just a single message that the prover can send to the verifier,
but allowed a “trusted setup” in the form of a common reference string,
with respect to which the proof would be verified. Feige and Shamir [21]
defined witness indistinguishability as a simpler notion of hiding informa-
tion about the witness.

The central object we investigate in this paper – called a Witness
Map – is an even more rudimentary notion of a proof, wherein a
proof is simply an alternate representation of a witness, verified
using an alternate relation.

The prover and the verifier are required to be efficient and deterministic,
and the proof system is required to be computationally sound. A common
reference string is used to generate and verify the proofs. Instead of zero-
knowledge property, we require a “lossiness” property. Specifically, in a
Compact Witness Map (CWM), each statement has a small number of
proofs that its witnesses could map to, with an important special case
being that of a Unique Witness Map (UWM).

One may wonder if it is possible to hide the witness to any extent at
all, when the prover is deterministic. But we show that if indistinguisha-
bility obfuscation (iO) and one-way functions exist, then UWMs do exist.
On the other hand, we show that the existence of UWMs imply the exis-
tence of Witness Encryption (WE). Hence UWM could be viewed as the
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newest member of “obfustopia,” and arguably the one with the simplest
definition.1

We extend the scope of witness maps further to define the notion
of a Dual Mode Witness Map (DMWM). In a DMWM, a proof either
allows the original witness to be extracted (using a trapdoor) or it is
lossy. Which mode a proof falls into depends on whether or not the “tag”
used for constructing the proof equals a hidden tag used to derive the
mapping key. In defining the lossy mode, we introduce a strong form of
lossiness – called cumulative lossiness – which bounds the total amount
of information about a witness that can be revealed by all the proofs
using all the lossy tags. We also show how to construct a DMWM for any
NP relation using a CWM and a new notion of lossy trapdoor functions
(which may be of independent interest).

We show that DMWMs can be readily used to solve an open problem
in the area of leakage-resilient cryptography, namely, that of constructing
a leakage and tamper resilient signature scheme (where all the data and
randomness used by the signer are open to leakage and tampering). A
crucial aspect of our construction that helps in achieving this is that
signing algorithm in our scheme is deterministic, a property it inherits
from the prover in a DMWM. We also extend our results to a continuous
leakage and tampering model.

We expand on each of these contributions in greater detail below.

1.1 Witness Maps

We introduce a new primitive called a compact/unique witness map
(CWM/UWM). Informally, CWM/UWM deterministically maps all pos-
sible valid witnesses for some NP statement to a much smaller number
of representative witnesses, resulting in loss of information regarding the
original witness. Nevertheless, the mapping should preserve the function-
ality of the witnesses, namely that the representative witnesses should
be efficiently verifiable and (computationally) guarantee the soundness
of the statement. A particularly strong form of CWM is a Unique Wit-
ness Map (UWM), in which all the possible witnesses for a statement are
mapped to a single representative witness. In other words, in a UWM the
representative witness only depends on the statement being proved, but

1 We present a brief formulation (omitting some formalism) here. A UWM for an NP
language L is specified by a distribution over polynomial time verifiable relations RK,
such that (1) for every x ∈ L, there is a canonical witness w∗K,x with (x,w∗K,x) ∈ RK,
which can be efficiently computed from any witness w for x ∈ L, and (2) it is
computationally infeasible to find a pair (x,w∗) ∈ RK such that x 6∈ L.
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not which of the original witnesses was used to prove it.2 While we re-
quire the CWM/UWM to be deterministic, it can depend on some public
common reference string (CRS). A UWM is essentially equivalent to a
non-interactive witness indistinguishable argument (in the CRS model)
with a deterministic prover and a deterministic verifier.

Defining CWM/UWM. In more detail, a CWM consists of three
algorithms (setup,map, check). The setup algorithm generates a CRS K.
The deterministic algorithm map(K, x, w) takes as input a statement x
and a witness w and maps it to a representative witness w∗. The algo-
rithm check(K, x, w∗) takes as input the statement x and the represen-
tative witness w∗ and outputs 1 if it verifies and 0 otherwise. We re-
quire the standard completeness property (if w is good witness for x then
check(K,map(K, x, w)) = 1) and computational soundness (if x is false
then it’s computationally hard to produce w∗ such that check(K, x, w∗) =
1). Lastly, we require that for any true statement x the set of possible
representative witnesses {w∗ = map(K, x, w) : w witness for x} is small,
and potentially much smaller than the set of all original witnesses w for
x. In a UWM, the set of representative witnesses needs to be of size 1,
meaning there is a unique representative witness for each x in the lan-
guage.

Constructing UWM. We give a simple construction of a UWM from
iO and a punctured digital signature (PDS) scheme (see below), by lever-
aging the framework of Sahai and Waters [41] previously used to construct
NIZKs. Our construction could be seen as implementing “deterministic
witness signatures,” wherein the signing key is a valid witness to a state-
ment. We remark that a notion of witness signatures exists in the lit-
erature [28], building on the notion of “Signatures of Knowledge” [12];
however, these are incomparable to our UWM construction, as they al-
low randomized provers, but demand extractability of the witness (and
in the case of Signatures of Knowledge, simulatability as well).

Puncturable Digital Signatures (PDS). As part of our UWM con-
struction, we rely on Puncturable Digital Signatures (PDS). This prim-
itive allows us to create a punctured signing key that cannot be used
to sign some specified message m but otherwise correctly produces signa-
tures for all other messages m′ 6= m. We improve upon the construction of
PDS by Bellare et al. [3], who relied on sub-exponentially secure Indistin-

2 Note that uniqueness is a property of the map/prover, but we do not require unique-
ness for the verifier; for any given statement, there may be many representative wit-
nesses that the verifier would accept, but the map/prover always produces a unique
one.
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guishability Obfuscation andsub-exponentially secure one-way functions
(OWF). Our construction shows that PDS is equivalent to OWF.

Implications of UWM. We show that UWMs are a powerful primitive
and, in particular, imply witness encryption (WE) [23]. However, we do
not know of any such implication for CWMs in general, especially if the
image size of the map can be (slightly) super-polynomial.

Dual-Mode Witness Maps. We also introduce a generalization of
compact/unique witness maps (CWM/UWM) that we call dual-mode wit-
ness maps (DMWM). In a DMWM the map and check algorithms take
as input an additional tag or branch parameter b. Furthermore the setup
algorithm also takes as input a special “injective branch” b∗ which is used
to generate the CRS along with a trapdoor td. If b = b∗ then the map
is injective and the original witness w can be extracted from the repre-
sentative witness w∗ output by the map using the trapdoor td. On the
other hand, the maps for all b 6= b∗ is cumulatively lossy – i.e., even taken
together, they do not reveal much information about the original witness.
The identity of the injective branch b∗ is hidden by the CRS.

Our definition of the cumulative lossiness property for DMWM is
motivated by its application to leakage and tamper resilient signatures
(see below). But it is in itself a property that can be applied more broadly.
In particular, we introduce the following primitives and employ them in
our construction of DMWMs (in combination with CWMs).

Cumulatively Lossy Trapdoor Functions. We introduce new vari-
ants of lossy trapdoor functions (LTDFs) [38], which we call cumulatively
lossy trapdoor functions (C-LTDFs). Recall that, in an LTDF, a function
f can be sampled to either be injective (and the sampling algorithm also
generates an inversion trapdoor) or lossy (the image of f is substantially
smaller than the input domain) and the two modes should be indistin-
guishable. For C-LTDFs, we further require that arbitrarily many lossy
functions taken together are jointly lossy. In other words, if we sample
arbitrarily many independent lossy functions fi then their concatena-
tion (f1, . . . , f`)(x) = (f1(x), . . . , f`(x)) is also lossy. We can construct
C-LTDFs from DDH or LWE.

We also define cumulatively all-lossy-but-one trapdoor functions (C-
ALBO-TDFs). This is a collection of functions f(b, ·) parametrized by a
branch index b. We can sample f with a special injective branch b∗ such
that f(b∗, ·) is injective (and we have the corresponding inversion trap-
door) but f(b, ·) is lossy for all b 6= b∗. We should not be able to distin-
guish which branch is the injective one. Furthermore, the lossy branches
b 6= b∗ are cumulatively lossy. Previous constructions of LTDFs with
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branches [38] only achieved the opposite notion of “all-but-one lossy”,
where there is one lossy branch and all the other branches are injective.
To the best of our knowledge, constructing ALBO-LTDFs (even without
the cumulative loss requirement) was previously open. We show how to
boost C-LTDFs to get C-ALBO-LTDFs via iO.

1.2 Application: Leakage and Tamper Resilient Signatures

A digital signature scheme is one of the most fundamental cryptographic
primitives and is used as an important building block in many crypto-
graphic protocols and applications. Signature schemes are used ubiqui-
tously in practice, in a variety of settings and applications. In partic-
ular, signing keys are often embedded in smart cards and devices op-
erated by untrusted users. Such settings admit powerful “physical at-
tacks” exploiting numerous side-channels for leaking (e.g. power analy-
sis, timing measurements, microwave attacks [31,32]) and tampering (see
for instance [6, 40]). This has led to several works over the last decade
that addressed security of cryptographic primitives – and in particu-
lar of digital signature schemes – that are leakage and/or tamper re-
sistant [9, 14, 19, 29, 33]. In this work, we address an important question
that this body of work has raised again and again:

Is there a leakage and tamper resilient (LTR) signature scheme?
Is there one with a deterministic signing algorithm?

The significance of this question lies in the fact that it appears harder
to protect against an adversary who can target the randomness used in
the scheme. When the randomness is open to attacks, current state of the
art can protect only against leakage attacks [9, 13, 17], and not against
tampering attacks (as explicitly posed in [19]). Note that if the adversary
can obtain signatures produced using arbitrarily tampered randomness, it
can set the randomness to a constant (say, all 0s) and therefore effectively
make the signing algorithm deterministic. Therefore, a natural solution
is to entirely eliminate attacks on the randomness by constructing a LTR
signature scheme with a deterministic signing algorithm. Indeed, this is
the approach taken in [13], but unfortunately their solution does not offer
security against tampering of the secret key.

LTR Signature Results. Our main contribution is the construction of
a leakage and tamper resilient (LTR) signature scheme with a determin-
istic signing algorithm. We focus on the bounded leakage and tampering
model of Damg̊ard et al. [14]. In this model, the adversary can get some
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bounded amount of leakage on the secret key and can also tamper with
the secret key some bounded number of times; these bounds can be made
arbitrarily large but have to be chosen a-priori. We strengthen the model
so that only publicly known, fixed components of the scheme (namely, the
code and public parameters) are fully protected. In particular, any ran-
domness used during computation is subject to leakage and tampering.
The key-generation phase is also subject to leakage (but is protected from
tampering). Note that tamperability of the signing randomness invali-
dates prior results [14,19], and motivates the need for finding a determin-
istic solution. A recent work of Chen et al. [13] constructs a deterministic
leakage-resilient (but not tamper-resilient) signature scheme from iO and
puncturable primitives. However, as we argue later, this construction does
not generalize to the setting of tampering.

Our schemes achieve a leakage rate of 1 − o(1), where the leakage
rate is defined as the ratio of the amount of leakage to the size of the
secret signing key. The scheme natively only achieves selective security,
where the message to be forged is chosen by the adversary at the very
beginning of the attack game. Adaptive security follows via complexity
leveraging. We present our construction using generic primitives discussed
below. While current instantiations of these primitives rely on indistin-
guishability obfuscation (iO) and either DDH or LWE, there is hope
that our template can also be instantiated under weaker assumptions in
the future. Our construction combines ideas from leakage-resilience [9]
and tamper-resilience [19], but replaces various ingredients with our new
building blocks to facilitate a deterministic solution.

We also discuss how to extend our results to the continuous leakage
and tampering model. In this model, the key is periodically refreshed and
the adversary is only bounded in the amount of leakage and tampering
that can be performed in each time period, but can continuously attack
the system for arbitrarily many time periods. However, in this model, we
inherently cannot allow tampering of the randomness used to perform the
refreshes.

Along the way toward our main result for LTR Signatures, we intro-
duce several new cryptographic primitives and constructions, which may
be of independent interest and which we now proceed to describe.

Construction Outline. We construct deterministic leakage and tam-
per resilient signatures directly from dual-mode witness maps (DMWM)
and a leakage-resilient one-way function (which, as we shall see, can be
based on general one-way functions). As mentioned above, we construct
DMWMs by combining a compact witness map (CWM) for NP, with a C-
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ALBO-LTDF, constructing other primitives like PDS and C-LTDF along
the way. While current instantiations of CWMs and C-ALBO-LTDFs rely
on strong assumptions (i.e., iO and either DDH or LWE), this does not
appear inherent and there is hope that future work can find alternate
instantiations based on weaker assumptions. In particular, while UWMs
imply a strong primitive (namely, Witness Encryption), the same is not
known for DMWM, CWM or C-ALBO-LTDF.

1.2.1 Related Work on Leakage & Tamper-Resilient Signatures
Various notions of leakage-resilient signatures (LRS) have been studied for
about a decade now. Alwen, Dodis and Wichs [1] and Katz and Vaikun-
tanathan [29] gave initial constructions of LRS schemes in the bounded
leakage model, where the leakage is allowed to happen from the entire
memory of the device. The construction of [1] was in the random oracle
(RO) model. [29] gave a standard model construction, which had a de-
terministic signing scheme as well, but which allowed only a logarithmic
number of signature queries, and the total leakage allowed degraded with
number of queries. Meanwhile, Faust, Kiltz, Pietrzak and Rothblum [20]
gave a construction of a stateful LRS scheme in the “Only Computation
Leaks” model of Micali and Reyzin [35]. The first full-fledged construc-
tion of fully leakage-resilient (FLR) signatures – which allowed bounded
leakage from the randomness used for key-generation and signing – were
proposed independently by Boyle et al. [9] and Malkin et al. [33]. Fao-
nio et al. [17] also gave a construction of FLR signatures in the bounded
retrieval model, where the secret key (and the leakage from it) may be
larger than the size of a signature. In this setting, standard existential
unforgeability is impossible to achieve, since the adversary can simply
leak a forgery. Hence the authors only demand a graceful degradation of
security to hold. Yuen et al. [42] constructed a FLR signature scheme
in the selective auxiliary input leakage model, where it is assumed that
the leakage is a computationally hard-to-invert function. The recent work
of Chen et al. [13] gave an FLR signature scheme with a deterministic
signing algorithm, and achieved selective unforgeability, relying on iO.

Tamper resilience was addressed in [14,19]. The question of fully leak-
age and tamper resilient signatures (i.e., allowing leakage from and tam-
pering of randomness as well as secret key) was explicitly posed as an
open problem in [19]. The continual memory leakage (CML) model has
been studied in [10,15,33].

Comparison with the work of [13]. Recently, Chen et al. [13] con-
structed a deterministic leakage-resilient (but not tamper-resilient) sig-
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nature scheme in the bounded leakage model. An important limitation
of their construction is that it does not appear amenable to a leakage-to-
tamper reduction, which relies on being able to bound the amount of infor-
mation revealed by a signature using the tampered signing key, given the
verification key. (Their signing key sk is a ciphertext of a symmetric-key
encryption scheme and the verification key vk comprises of two obfuscated
programs.)

Comparison with the work of [18]. Predictable argument of knowl-
edge (PAoK) [18] are 2-round public-coin argument systems where the
answer of the prover can be predicted, given the private randomness of
the verifier (thus necessitating the prover to be deterministic). They insist
on knowledge soundness from PAoK and show that a PAoK for general
NP relations is equivalent to extractable witness encryption. In contrast,
DMWM are non-interactive.

1.3 Technical Overview

1.3.1 Compact Witness Maps. We now sketch the main idea behind
the construction of our unique witness map (UWM) scheme, which is the
strongest form of compact witness maps (CWMs). Our construction es-
sentially follows the same (abstracted out) approach of Sahai and Waters
NIZKs [41]. The setup of the UWM generates a (public) CRS K. The CRS
K in our construction embeds the description of an obfuscated program P ,
with the signing key of the Puncturable Digital Signature (PDS) scheme
hard-coded in it. The obfuscated program P functions as follows: the in-
put to the program P is a statement-witness pair, say (stmnt, w) belonging
to underlying NP relation R` (we consider statements of size at most `).
The program simply checks if R`(stmnt, w) = 1, and signs the statement
stmnt using the signing key sk to obtain a signature on stmnt. While gen-
erating the mapping, the mapping algorithm uwm.map(K, stmnt, w) runs
the obfuscated program P with input (stmnt, w) to obtain a signature
σstmnt on stmnt using sk. The representative witness w∗ is just the signa-
ture σstmnt. The verification of the mapping is done by simply verifying
the signature σstmnt (using the verification algorithm of the PDS scheme).

For proving security of the UWM scheme, we consider the notion of se-
lective soundness3, where the adversary announces the statement stmnt∗

3 The size of the statements supported by UWM scheme is bounded (looking ahead,
this will indeed be the case in our FLTR signature scheme). Hence, we can achieve
adaptive soundness via a standard complexity leveraging argument, albeit incurring
a sub-exponential loss in the security parameter.
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on which it tries to break the soundness (i.e, produce a representative
witness w∗corresponding to it) of the UWM scheme, before receiving the
key K. In the hybrid, we change the obfuscated program by puncturing
the signing key sk at the statement stmnt∗. The consistency property of
the PDS scheme ensures that the signatures output by the punctured
key skstmnt∗ (punctured at stmnt∗) produces the same output as the sig-
natures generated by the original signing key sk. If the adversary could
produce a witness w∗ (which is nothing but a signature) corresponding
to the false statement stmnt∗, this means it has managed to successfully
output a forgery for the PDS scheme. Also note that, our mapping satis-
fies uniqueness, since (x,w) is deterministically mapped to the signature
on x, independent of w.

Construction of PDS. To instantiate the UWMs described above,
it remains to construct a Puncturable Digital Signature (PDS) scheme.
The work of Sahai and Waters [41] implicitly constructs one using iO
as a part of their construction of NIZKs, and Bellare et al. [3] makes
this explicit. We show a simple construction from one-way functions. The
main idea is to rely on tree-based signatures, where every node of the tree
is associated with a fresh verification/signing key of a standard (one-time)
signature and a PRG seed; the seed of the parent node is used to generate
the values (the verification/signing key and the seed) of each of the two
children nodes. The verification key of the scheme corresponds to that of
the root note and the signing key corresponds to the (signing key, seed)
of the root. Each message traces out a path in the tree from a root to a
leaf and the signature corresponds to a “certificate chain” consisting of
signed verification keys along that path together with a signature of the
message under the leaf’s key. Note that the intermediate values in the tree
are generated on the fly and the entire tree (which is of exponential size)
is never stored all at once. Puncturing the signing key is analogous to
puncturing the GGM PRF [7,8,24,30]. In particular, we remove all of the
values along one path from the root to a particular leaf for the specified
message on which we are puncturing, and instead give out the values of
(signing key, seed) for each sibling along that path; this is sufficient to
generate signatures for every other message aside from the punctured one.

UWMs imply Witness Encryption. Lastly, we show that UWMs
are a powerful cryptographic primitive and in fact imply witness encryp-
tion (WE) [23]. In a WE scheme, it is possible to encrypt a message m
under an NP statement x such that, if the statement is true, then the
ciphertext can be decrypted using any witness w for x. However, if x is a
false statement, then the ciphertext should computationally hide the en-
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crypted message. To construct a WE scheme from a UWM the encryption
algorithm chooses a random seed z for a pseudorandom generator G and
sets y = G(z). It then uses a UWM to get a representative witness w∗

for the statement x̂ stating that “either x is true or y is pseudorandom”,
using z as the witness. It uses the Goldreich-Levin hardcore bit of w∗ to
blind the message m and outputs the blinded value along with y. The
decryption algorithm uses the UWM to map the witness w for x into the
unique witness w∗ for the statement x̂. It then computes the hardcore
bit of w∗ and uses it to recover the message. Intuitively, if an adversary
can break WE security, then it can distinguish encryptions of 0 and 1
with non-negligible probability even if x is a false statement. This means
that, using Goldreich-Levin decoding, it can compute the correct value
w∗ given y with non-negligible probability. Furthermore this value w∗ is a
valid representative witness for the statement x̂. Since the adversary can-
not break the PRG, it must also compute a valid representative witness
for x̂ if we switch y to false. But this contradicts the soundness of UWM.

1.3.2 Leakage and Tamper Resilient Signatures. We now give
an overview of our leakage and tamper resilient (LTR) signature con-
struction. The construction proceeds in 3 steps. First, we construct LTR
signatures from dual-mode witness maps (DMWMs). Second, we con-
struct DWMs from cummulatively all-lossy-but-one tradoor functions (C-
ALBO-TDFs) and compact witness maps (CWMs). Thirdly, we construct
C-ALBO-TDFS from DDH and LWE and iO.

LTR Signatures from DMWMs. Recall that DMWM is essentially
a witness map that takes as input a branch index b. The CRS is also
generated with an injective branch b∗ and a trapdoor td. If the map uses
the branch b = b∗ then it is injective and the original witness can be
extracted using the trapdoor. Otherwise the map reveals very little infor-
mation about the original witness. The two modes are computationally
indistinguishable from each other.

Our signature scheme has the following form: The signing key is a
random string x, and the verification key is y = H(x), where H is a
sufficiently compressing, second pre-image resistant hash function. To sign
a message m, we set the branch for the DMWM to be the message m,
and construct a representative witness w∗ for the statement: ∃x, y =
H(x) using x as the original witness. Note that the signing procedure
is deterministic. The verifier checks the representative witness using the
DMWM scheme.

To argue selective security, we can set up the CRS of the DMWM
so that the injective branch b∗ is exactly the message that the adversary
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will forge the signature on. It remains indistinguishable to the adversary
that this happened and hence the probability of forging does not change.
However, now we can extract a pre-image x′ such that H(x′) = y from
the adversary’s forgery. Moreover, since all the other signatures obtained
by the adversary are all lossy, it would be information-theoretically hard
to recover the original pre-image x. This holds even given some bounded
additional leakage about the secret key x. It also holds even if x is tam-
pered and then used to produce a signature since this still only provides
bounded leakage on x. Therefore we recover a second pre-image x′ 6= x
which contradicts the second pre-image resistance of H.

We also adapt our results to the continuous leakage and tampering
(CLT) model. We do so by essentially taking the same construction, but
using a “entropy-bounded” or “noisy” continuous-leakage-resilient (CLR)
one-way relation [15] in place of the second pre-image resistant hash
(which can be thought of as a leakage-resilient one-way function). We
achieve security as long as the adversary cannot tamper the randomness
of the refresh procedure, and this restriction is inherent.

DMWMs from CWMs via C-ALBO-TDFs. We now discuss how
to construct dual-mode witness maps (DMWMs) from compact witness
maps (CWMs). Recall that DMWM has branches in one of two modes:
injective and lossy. On the other hand a CWM does not have any branches
and is always lossy. To convert a CWM into DMWM we add a “cumu-
latively all-lossy-but-one trapdoor functions (C-ALBO-TDFs)”. This is
a family of functions f(b, )̇ parametrized by tags/branches b such that,
for one special branch b∗ the function f(b∗, ·) is injective and efficiently
invertible using a trapdoor, but for all other b 6= b∗ the functions f(b, ·)
are cumulatively lossy. The CRS of the DMWM will consist of the public
key of the C-ALBO-TDF with the special injective branch b∗ as well as a
CRS of CWM scheme. To compute a proof for a statement y with witness
w under a tag b, the prover computes z = f(b, w) and then uses the CWM
to prove that z was computed correctly using a valid witness w for the
statement y.

Construction of C-ALBO-TDFs. Finally, we discuss how to con-
struct cumulative all-lossy-but-one trapdoor functions (C-ALBO-LTDFs).
We start with a simpler primitive of C-LTDFs which can be used to sam-
ple a function fek described by a public key ek. The key ek can be sampled
indistinguishably in either lossy or injective mode (with a trapdoor). We
require that the combination of arbitrarily many different lossy functions
is cumulatively lossy.

12



We construct C-LTDFs by adapting a construction of LTDFs from
DDH due to [38]. In that construction, the key ek is given by a matrix
of group elements gM where g is a generator of the group of order q
and M ∈ Zn×nq is a matrix of exponents. For x ∈ {0, 1}n the function is

defined as fek(x) = gM ·x. If M is invertible than this function is injective
and can be inverted with knowledge of M−1. If M is low rank (e.g., rank
1) then this function is lossy. The two modes are indistinguishable by
DDH. However, if we choose many different lossy functions by choosing
random rank 1 matrices each time then the scheme is not cumulatively
lossy; in fact n random lossy function taken together are injective! To
get a cumulative lossy scheme, we fix some public parameters gA where
A ∈ Zn×nq is a random rank 1 matrix. We then choose each fresh lossy

key ek by choosing a random R ∈ Zn×nq and setting ek = gRA. Injective

keys ek are still chosen as gM for a random M , which is invertible with
overwhelming probability. It’s easy to show that lossy and injective keys
are indistinguishable even given the public parameters. Now if we apply
many different lossy functions on the same input x we only reveal Ax,
which loses information about x.

The above construction can also be extended to rely on the d-Linear
assumption for larger d instead of DDH. We also provide an analogous
construction under LWE by adapting an LTDF of [2], which relies on the
“lossy mode” of LWE from [25].

We then show how to bootstrap C-LTDFs to get C-ALBO-LTDFS
via iO. The idea is to obfuscate a program that, on input a branch b,
applies a pseudorandom function to b to sample a fresh lossy key of a C-
LTDF, except for a special branch b∗ on which it outputs a (hard-coded)
injective C-LTDF key. By relying on standard puncturing techniques, we
show that this yields a C-ALBO-LTDF.

2 Puncturable Digital Signature Schemes

A puncturable digital signature (PDS) scheme [3] is a digital signature
scheme with the additional facility to “puncture” the signing key at some
arbitrary message, say, m∗. The resulting punctured signing key allows
one to sign all messages except m∗. A PDS is said to be consistent, if a
secret signing key sk and all possible punctured signing keys ŝkm∗ derived
from sk, for every unpunctured message, produce the same signature,
deterministically. In this paper, we shall consider only PDS schemes that
are consistent, and hence shall omit that qualifier in the sequel.

The security requirement of a PDS scheme is that the (standard)
existential unforgeability should hold for the punctured message m∗. Fol-
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lowing Bellare et al. [3], we focus on selective unforgeability, wherein the
adversary must specify the message m∗ at which the signing key needs to
be punctured ahead of time, i.e., before receiving the public parameters
and the verification key. It then receives the punctured signing key ŝkm∗

(punctured at m∗) and the verification key of the PDS, and the goal of
the adversary is produce a forgery on m∗. A formal definition is provided
in the full version of our paper [11].

Below, we summarize the construction of our PDS scheme, and refer to
the full version [11] for the formal details of the scheme. Our construction
of the PDS relies on the sole assumption that one-way functions exist.

The construction follows the paradigm of extending one-time signa-
tures into full-fledged signatures using a tree of pseudorandomly gener-
ated key pairs [27,34,37]. Each message in the message space is associated
with a leaf in this tree, and the key pair at that leaf is used to exclusively
sign that message. The signature on a message will also certify the leaf’s
verification key using a “certificate chain” that follows the path from root
to leaf in the tree. Our scheme will rely on a punctured PRF to generate
this tree. The signing key punctured at a message m∗ will include a punc-
tured PRF key, punctured at all the points in the path from root to the leaf
corresponding to m∗; also it will include a small set of certificates that,
for every message m 6= m∗, can be used to certify the verification key for
the first node that is in the path from the root to the leaf corresponding
to m, but not in the path from the root to the leaf corresponding to m∗.
Compared to the certificate chains used in the standard signature con-
struction, it is important in our case to verifiably tie the verification keys
to specific nodes in the tree, because otherwise the signer with a punc-
tured signing key can use keys for one leaf to sign the message associated
with another leaf.

3 Witness Maps

In this section we formally define the new primitives called Compact
Witness Maps and Dual Mode Witness Maps.

Recall that R ⊆ {0, 1}∗ × {0, 1}∗ is said to be an NP relation if
membership in it can be computed in time polynomial in the length of
the first input.

Given an NP relation R, we define the NP language LR := {x |
∃w, (x,w) ∈ R}. When referring to (x,w) ∈ R, where R is a given NP
relation, x is called the statement and w the witness. It will be convenient
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for us to consider NP relations parametrized with their input length:
Below we let R` := R ∩ {0, 1}` × {0, 1}∗.

Definition 1 (Compact Witness Map (CWM)). For α ≥ 0, an α-
CWM for an NP relation R is a triple cwm = (setup,map, check) where
setup is a PPT algorithm and the other two are deterministic polynomial
time algorithms such that:

• setup(κ, `) outputs a string K of length polynomial in the security pa-
rameter κ and `.
• Completeness: For any polynomial `, ∀(x,w) ∈ R`(κ), ∀K← setup(κ, `(κ)),

check(K, x,map(K, x, w)) = 1.

• Lossiness: For any polynomial `, ∀K← setup(κ, `(κ)), ∀x ∈ {0, 1}`(κ),

|{map(K, x, w) | (x,w) ∈ R`(κ)}| ≤ 2α.

• Soundess: For any polynomial ` and any PPT adversary A, Advcwm
A (κ)

defined below is negligible:

Pr
K←setup(κ,`(κ))

[A(K)→ (x∗, w∗), check(K, x∗, w∗) = 1, x∗ 6∈ LR ].

A 0-CWM is called a Unique Witness Map (UWM).

The above definition has perfect security in the sense that the com-
pleteness and lossiness conditions hold for every possible K that cwm.setup
can output with positive probability. A statistical version, where this
needs to hold with all but negligible probability over the choice of K will
suffice for all our applications. But for simplicity, we shall use the perfect
version above. It is useful to consider a variant of the definition with a
selective soundness guarantee, in which the adversary is required to gen-
erate x∗ first (given κ, `) before it gets K. For some applications (e.g.,
construction of a witness encryption scheme from a UWM) this level of
soundness suffices. It also provides an intermediate target for construc-
tions, as one can convert a selectively sound CWM to a standard CWM
by relying on complexity leveraging (as we shall do in our construction
in Section 3.1).

Definition 2 (Dual Mode Witness Maps (DMWM)). An α-DMWM
with tag space T for an NP relation R is a tuple dmwm = (setup,map, check,
extract) where setup is a PPT algorithm and the others are deterministic
polynomial time algorithms such that:
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• setup(κ, `, tag) outputs (K, td), where κ is a security parameter, `(κ) is
a polynomial, and tag ∈ T , K and td are strings of length polynomial
in κ.

• Completeness: ∀tag, tag′ ∈ T for all polynomials `, ∀(x,w) ∈ R`(κ),
∀K← setup(κ, `(κ), tag),

check(K, tag′, x,map(K, tag′, x, w)) = 1.

• Hidden Tag: For any PPT adversary A, Advdmwm-hide
A (κ) defined below

is negligible:∣∣Pr
[
A(κ, `)→ (tag0, tag1, st), b← {0, 1},

(K, td)← setup(κ, `(κ), tagb),A(K, st)→ b′, b = b′
]
− 1

2

∣∣.
• Extraction: For any polynomial `, for any PPT adversary A, Advdmwm

A (κ)
defined below is negligible:

Advdmwm
A (κ) := Pr[A(κ, `)→ (tag, st), (K, td)← setup(κ, `(κ), tag),

A(K, st)→ (x∗, w∗), check(K, tag, x∗, w∗) = 1,

(x∗, extract(td, x, w∗)) 6∈ R`(κ)]

• Cumulative Lossiness: ∀tag, `, ∀K ← setup(κ, `, tag), ∀x ∈ LR`, there
exist (inefficient) functions compressK,x : {0, 1}∗ → SK,x and expandK,x :

SK,x×{0, 1}∗ → {0, 1}∗ such that |SK,x| ≤ 2α(κ), and for all tag′ 6= tag,
map(K, tag′, x, w) = expandK,x(compressK,x(w), tag′).

3.1 Unique Witness Maps

In this section, we present a construction of 0-CWM or an UWM.

3.1.1 A UWM for any NP Relation. Now we present the construc-
tion of our UWM system uwm for any NP relation R (see Figure 1). The
main building blocks of our construction are a punctured digital signature
(PDS) scheme pds and an iO scheme (denoted as iO).

Theorem 1. Let iO be a (polynomially) secure indistinguishability ob-
fuscator for circuits and pds be a (polynomially) secure consistent punc-
turable digital signature scheme. Then uwm defined in Figure 1 is a UWM
for the NP relation R satisfying selective soundness.
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Let pds = (keygen, sign, ver, pkeygen, psign) be a secure punctured digital signature
scheme and iO be a secure indistinguishability obfuscator for circuits.

1. uwm.setup(`, κ): Generate (sk, vk) ← pds.keygen(`, κ). Then create an obfuscated
program P ← iO(EndorseR`

sk ), where the program EndorseR`
sk is as shown below.

Output K = (vk, P ).
2. uwm.map(K, x, w) : Parse K as (vk, P ). Output w∗ ← P (x,w).
3. uwm.check(K, x, w∗) : Parse K as (vk, P ). Output pds.ver(vk, x, w∗).

Program EndorseR`
sk ((x,w))

Constant: Signing key sk

Input Domain: (x,w) ∈ {0, 1}` ×
{0, 1}`

′

if (x,w) ∈ R` then
output pds.sign(sk, x)

else

output ⊥

Program pEndorseR`

ŝkx∗
((x,w))

Constant:

Punctured signing key ŝkx∗

Input Domain: (x,w) ∈ {0, 1}` ×
{0, 1}`

′

if (x,w) ∈ R` and x 6= x∗ then

output pds.psign(ŝkx∗ , x)

else
output ⊥

Fig. 1. The UWM for an NP relation R. The program pEndorseR`

ŝkx∗
is used only in the

proof.

Proof. Firstly, we note that uwm satisfies perfect completeness (assuming
iO and pds are perfectly correct). Also, it satisfies uniqueness, since (x,w)
is deterministically mapped to the signature on x, independent of w.
Below, we shall prove that the scheme is sound as well.

Consider an adversary A in the definition of Advuwm
A (κ). Note that

A outputs a point x∗ first. We consider a hybrid experiment where, af-
ter A outputs x∗, K is derived from a modified uwm.setup: The modi-
fied uwm.setup is only different in that instead of using EndorseR`sk , the

program pEndorseR`
ŝkx∗

(also shown in Figure 1) is used, where ŝkx∗ ←
pds.pkeygen(sk, x∗).

We claim that the advantage A has in the modified experiment can
only be negligibly more than that in the original experiment. For this con-
sider, a coupled execution of the two experiments, with A’s random tape
being the same in the two executions. Then it is enough to upper bound
the the difference of probabilities of the condition uwm.check(K, x∗, w∗) =
1 ∧ x∗ 6∈ LR` holding in the modified experiment and in the original
experiment. Fix a choice of randomness that maximizes this difference,
δ. We shall describe a (non-uniform) adversary AiO, which internally
runs the coupled experiment with this choice of randomness for A. Let
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x∗ be the output of A with this choice. Note that for δ > 0, we need
x∗ 6∈ LR` . For such x∗, observe that EndorseR`sk and pEndorseR`

ŝkx∗
are func-

tionally equivalent programs (for all sk). This is because, if (x,w) ∈ R`,
then x 6= x∗ and the consistency of the PDS scheme guarantees that
pds.sign(sk, x) = pds.sign(ŝkx∗ , x). So AiO can output the pair of pro-
grams EndorseR`sk and pEndorseR`

ŝkx∗
. It receives back an obfuscated program

P and carries out the rest of the UWM security game with A using P .
If P ← iO(EndorseR`sk ), then this game is exactly the original game, and
otherwise it is the modified game. Hence, AiO distinguishes between these
two cases with advantage δ. Hence, by the security of iO, δ is negligible;
this in turn shows that the advantage A has in the modified experiment
is only negligibly far from that in the original experiment.

Next, we argue that in the modified selective soundness experiment A
has negligible advantage. Note that in the modified experiment,A outputs
a string x∗ ∈ {0, 1}`, gets back (vk, P ), where (vk, sk)← pds.keygen(`, κ),
and P is generated from the punctured secret-key ŝkx∗ , outputs a pur-
ported signature w∗, and wins if pds.ver(vk, x∗, w∗) = 1. By the security
of pds, the probability of A winning is at most AdvpdsA (κ), which is neg-
ligible. ut

Remark 1. In the above proof, we only show selective soundness of uwm.
We note that, one can transform a selectively sound UWM to an adap-
tively sound one using complexity leveraging, when appropriate. This
can be done by choosing pds to be 2-(`+κ)-secure punctured digital sig-
nature scheme and iO to be 2-(`+κ)-secure indistinguishability obfuscator
for circuits respectively (i.e., the advantages AdvpdsA (κ1) ≤ 2-(`+κ) and
AdviOSamp,D(κ2) ≤ 2-(`+κ), where κ1 and κ2 are the security parameters for
pds and iO respectively, and κ is the security parameter for uwm). One
can set κ1 and κ2 to be large enough to satisfy this.

3.1.2 Implication to Witness Encryption. In this section, we show
that UWM implies Witness encryption (WE). Due to space constraints,
we only present a high level idea behind the construction and refer the
reader to our full version [11] for the detailed description.

Intuition behind the construction. In a WE scheme, it is possible to en-
crypt a message m under an NP statement x such that, if the statement
is true, then the ciphertext can be decrypted using any witness w for x.
However, if x is a false statement, then the ciphertext should computa-
tionally hide the encrypted message. We show a construction of WE for
an arbitrary NP language L starting from an UWM for the language
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LOR = L ∨ L′, where L′ is another NP language whose YES instances
are indistinguishable from NO instances. To WE encrypt a bit m ∈ {0, 1}
with respect to an NP statement x ∈ L, we sample an YES instance
from the NP language L′. We do so by sampling a pseudo-random string
y = G(z), such that z serves as a valid witness corresponding to the string
y. We then consider the language LOR = L∨L′ which consists of instances
x̂ of the form “either x ∈ L ∨ y is pseudorandom”. We use the UWM to
derive a representative witness w∗ for a statement corresponding to this
augmented NP language (using witness z) and then derive the Goldreich-
Levin hardcore bit of w∗ to be used as a one-time pad to encrypt the bit
m. The decryptor can derive the same representative witness w∗ using his
witness for x ∈ L (which is also a valid witness for LOR) and therefore
decrypt. Intuitively, if an adversary can break WE security, then it can
distinguish encryptions of 0 and 1 with non-negligible probability even if x
is a false statement. This means that, using Goldreich-Levin decoding, it
can compute the correct value w∗ given y with non-negligible probability.
Furthermore this value w∗ is a valid representative witness for the state-
ment x̂. At this point, we switch the YES instance of L′ to a NO instance
(this can be done by sampling a random y, instead of a pseudorandom y),
without affecting the advantage of the adversary much. Hence, it must
also compute a valid representative witness for x̂ if we switch y to false.
But this contradicts the soundness of UWM. We remark that, for this
reduction it suffices even if the UWM is only selectively sound.

3.2 New Kinds of Lossy Trapdoor Functions

3.2.1 Cumulative Lossy Trapdoor Functions. Here we introduce
the notion of “cumulative” lossy trapdoor functions (C-LTDF). A (stan-
dard) lossy trapdoor function (LTDF) f can be sampled in one of two
indistinguishable modes – injective or lossy. In the injective mode, the
function f can be efficiently inverted with the knowledge of a trapdoor;
whereas in the lossy mode the function statistically loses a lot of infor-
mation about its input. We say that a function f with domain {0, 1}n is
(n, k)-lossy if its image size is at most 2n−k. Then, mapping a random x
to f(x) loses at least k bits of information about x.

Now, consider the information about x revealed by (f1(x), · · · , fm(x)),
where f1, · · · , fm are m independently sampled functions from an (n, k)-
lossy function family. According to the current definitions and construc-
tions of LTDFs, up to m(n − k) bits could be revealed about x; if m ≥
n/(n− k), x could be completely determined by these values.
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This is where C-LTDF differs from an LTDF. In a C-LTDF, the
amount of information about x that (f1(x), · · · , fm(x)) reveals is bounded
by a cumulative loss parameter α, irrespective of how large m is. Here the
lossy functions fi can all be sampled independently, but using the same
public parameters. The formal definition follows.

Definition 3 (C-LTDF). Let κ ∈ N be the security parameter, and `, α :
N→ N. A (`, α)-cumulative lossy trapdoor function family (C-LTDF) is
a tuple of (probabilistic) polynomial time algorithms (setup, sampleinj,
sampleloss, eval, invert) (the last two being deterministic), having properties
as follows:

• Parameter Generation. The setup algorithm setup(κ) outputs a pub-
lic parameter pp.

• Sampling: Injective mode. The algorithm sampleinj(κ, pp) outputs
the tuple (ek, tk) such that invert(tk, eval(ek, x)) = x for all x ∈ {0, 1}`(κ)
(i.e., eval(ek, ·) computes an injective function fek(·) and invert(tk, ·)
computes f−1ek (·)).

• Sampling: Lossy mode. For all pp in the support of setup(κ) there
exists an (inefficient) function compresspp : {0, 1}`(κ) → Rpp with range

|Rpp| ≤ 2`(κ)−α(κ), and for all ek in the support of sampleloss(κ, pp) there
exists an (inefficient) function expandek(·) such that the following holds:
for all x ∈ {0, 1}`(κ) we have eval(ek, x) = expandek(compresspp(x)).

• Indistinguishability of modes. The ensembles {(pp, ek) : pp ←
setup(κ), (ek, tk)← sampleinj(κ, pp)}κ∈N and {(pp, ek) : pp← setup(κ),
ek← sampleloss(κ, pp)}κ∈N are computationally indistinguishable.

3.2.1.1 C-LTDF from the d-Linear Assumption. Due to space
constraints, we present the construction of C-LTDF from the d-linear as-
sumption, and refer the reader to our full version [11] for the construction
from LWE.

The d-linear assumption [5] is a generalization of the Decision Diffie-
Hellman (DDH) assumption. For our construction, we will actually need
Matrix d-Linear assumption, which is implied by the d-Linear assumption,
as shown by Naor and Segev [36]. Due to space constraints, we only specify
the d-Linear assumption here, and refer the reader to our full version [11]
for the definition of Matrix d-Linear assumption.

Definition 4 (d-Linear assumption [5]). Let d ≥ 1 be an integer,
and GroupGen be as above. We say that the d-linear assumption holds for
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GroupGen if the following two distributions are computationally indistin-
guishable:

{(g,G, p, {gi, grii }
d
i=1, h, h

∑d
i=1 ri) : (g,G, p)← GroupGen; gi, h

$←− G; ri
$←− Zp},

{(g,G, p, {gi, grii }
d
i=1, h, h

r) : (g,G, p)← GroupGen; gi, h
$←− G; ri, r

$←− Zp},

Before specifying the assumption, we will need some additional notations
as follows.

Additional Notation. Let GroupGen be a PPT algorithm that takes as in-
put the security parameter κ and outputs the a triplet (G, p, g) where
G is a group of prime order p generated by g ∈ G. We denote by
Rki(Fa×bp ) the set of all a × b matrices over the field Fp of rank i. For
a vector x = (x1, · · ·xn) ∈ Fnp , we define gx to be the column vector
(gx1 , · · · , gxn) ∈ Gn. If M = (mij) is a n × n matrix over Fp, we de-
note by gM the n × n matrix over G given by (gmij ). Given any ma-
trix M = (mij) ∈ Fn×np and a column vector y = (y1, · · · yn) ∈ Gn,

we define by yM =
(∏n

j=1 y
m1j

j , · · · ,
∏n
j=1 y

mnj
j

)
∈ Gn. For any matrix

R = (rij) ∈ Gn×n and a column vector z = (z1, · · · , zn) ∈ Fnp , we define

by Rz =
(∏n

j=1 r
zj
1j , · · · ,

∏n
j=1 r

zj
nj

)
∈ Gn. This naturally generalizes for

two matrices as well. In other words, for two matrices R ∈ Gn×n and
Z ∈ Fn×np , we denote by RZ = (Rz1 , · · · , Rzn) ∈ Gn×n, where each Rzi

(i ∈ [n]) is a column vector in Gn (as defined above) and for all i, zi
denotes the ith column of the matrix Z.

The construction. Let d ≥ 1 be a positive integer. Define the tuple
c-ltdf = (setup, sampleinj, sampleloss, eval, invert) as follows:

1. setup(κ) : On input the security parameter κ, do the following:

• Run GroupGen(κ) to obtain the tuple (G, p, g).

• Sample a random matrix M
$←− Rkd(Zn×np ) and let S = gM ∈ Gn×n.

• Set the public parameter pp = (G, p, g, S).

2. sampleinj(κ, pp) : On input pp, chooses a random matrixM1
$←− Rkn(Zn×np )

and computes S1 = gM1 ∈ Gn×n. Set the function index as ek = S1
and the associated trapdoor as tk = (g,M1).

3. sampleloss(κ, pp) : On input pp, chooses a random matrixM1
$←− Rkd(Zn×np )

and computes S1 = SM1 ∈ Gn×n. Set the function index as ek = S1.

4. eval(ek,x) : On input a function index ek and an input vector x ∈
{0, 1}n, compute the function fek(x) = Sx

1 ∈ Gn.
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5. invert(ek, tk,y) : Given a function index ek = S1, the trapdoor tk =
(g,M1) and a vector y ∈ Gn, do the following:

• Compute (z1, · · · , zn) = yM
−1
1 .

• Let xi = logg(zi) for i = 1, · · · , n.
• Output the vector x = (x1, · · · , xn).

Theorem 2. Suppose the d-Linear assumption holds for GroupGen. Let
pmax(κ) be an upper bound on the order of the group generated by GroupGen(κ).
Then c-ltdf is an (n, (1− ε)n))-cumulative lossy trapdoor function fam-
ily, provided ε > d log2 pmax(κ)/n(κ).

Due to space constraints, we present the proof in our full version [11].

3.2.2 Cumulative All-Lossy-But-One Trapdoor Functions. For
our construction of dual mode witness maps (DMWM), we will need a
richer abstraction, which we call cumulative all-lossy-but-one trapdoor
functions (C-ALBO-TDF). These functions are associated with an ad-
ditional branch space B = {Bκ}κ∈N. For a C-ALBO-TDF, almost all the
branches are lossy, except for one branch which is injective. This notion of
C-ALBO-TDF is actually contrary to the notion of All-But-One Lossy
TDF (ABO-LTDF) defined by Peikert and Waters [39]. ABO-LTDFs are
also associated with many branches, all but one of which are injective.
Also, note that, we do not need any additional public parameters in the
definition C-ALBO-TDF, and we require that the residual leakages of
different lossy functions are “correlated” via the public key (which is
shared by different functions). Now, we formally define C-ALBO-TDF
and state its properties as below:

Definition 5 (C-ALBO-TDF). Let κ ∈ N be the security parameter
and `, α : N → N be functions. Also, let B = {Bκ}κ∈N be a collec-
tion of sets whose elements represent the branches. An (`, α)-cumulative
all-lossy-but-one lossy trapdoor function family (C-ALBO-TDF) with
branch collection B is given by a tuple of (probabilistic) polynomial time
algorithms (samplec-albo, evalc-albo, invertc-albo) (the last two being deter-
ministic), as follows:

• Sampling a trapdoor function with given injective branch. For
any branch b∗ ∈ B, samplec-albo(κ, b∗) outputs the tuple (ek, tk), where
ek is the function index and tk is its associated trapdoor.
• (Injective branch.) For the branch b∗, invertc-albo(tk, b∗, evalc-albo

(ek, b∗, x)) = x for all x ∈ {0, 1}`(κ) (i.e., evalc-albo(ek, b∗, ·) com-
putes an injective function gek,b∗(·) over the domain {0, 1}`(κ), and
invertc-albo(tk, b∗, ·) computes g−1ek,b∗(·)).

22



• (α-Cumulative Lossy branches.) For all ek there exists an (in-
efficient) function compressek : {0, 1}`(κ) → Rek with range |Rek| ≤
2`(κ)−α(κ), and for all ek, b there exists a function expandek,b(·) such
that the following holds. For all b∗ ∈ B, all ek is in the support of
samplec-albo(κ, b∗), all b 6= b∗ and all x ∈ {0, 1}`(κ), we have

evalc-albo(ek, b, x) = expandek,b(compressek(x)).

• Hidden injective branch. ∀ b∗0, b∗1 ∈ B, the ensembles {ek0 : (ek0, tk0)←
samplec-albo(κ, b∗0)}κ∈N and {ek1 : (ek1, tk1) ← samplec-albo(κ, b∗1)}κ∈N
are computationally indistinguishable.

3.2.3 C-ALBO-TDF from iO and C-LTDF. In this section, we
present our construction of cumulative all-lossy-but-one LTDF (C-ALBO-
LTDF). We show a generic transformation from C-LTDF to C-ALBO-TDF
using iO. The main idea of our construction is as follows: We obfuscate
a program that has the public parameters pp of C-LTDF hardwired in
it and internally it runs either sampleinj or sampleloss depending on the
branch b. In other words, on input a branch b, it applies a pseudorandom
function to b to sample a fresh lossy branch, except for the special branch
b∗ on which it outputs a hard-coded injective C-LTDF key. Due to space
constraints, we refer to the full version of our paper [11] for the detailed
construction.

Theorem 3. Let c-ltdf be a collection of (`, α)-cumulative LTDF, iO
be an indistinguishability obfuscator for circuits, F be a secure puncturable
PRF with input space B. Then the construction c-albo-tdf sketched
above is a collection of (`, α)-cumulative all-lossy-but-one trapdoor func-
tions.

The detailed proof of this theorem is given in full version [11].

3.3 Construction of Dual Mode Witness Maps

In this section, we present a construction of dual mode witness maps
(DMWM) for any NP relation R` (see Figure 2). The main building
blocks of our construction are an appropriately lossy compact witness
map (CWM) and a cumulatively all-lossy-but-one trapdoor function (C-
ALBO-TDF).

Intuition behind the construction. The CRS of DMWM will consist of the
function index ek of C-ALBO-TDF sampled using the special injective
tag tag∗ (we require that the tag space of DMWM is same as the branch
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space of C-ALBO-TDF) as well as a CRS of CWM. To compute a proof
for a statement x with witness w under a tag tag, the prover computes
Y = evalc-albo(ek, tag, w) and then uses the CWM to prove that Y was
computed correctly using a valid witness w for the statement x. The com-
pleteness and soundness of DMWM follows directly from the completeness
and soundness guarantees of CWM. The cumulative lossiness of dmwm
follows from the cumulative lossiness of CWM and C-ALBO-TDF.

(a) Let c-albo-tdf = (samplec-albo, evalc-albo, invertc-albo) be collection of (`, (`− α′))-
c-albo-tdf, with branch space B.

(b) Let cwm = (cwm.setup,cwm.map,cwm.check) be a α-cwm (please refer to Sec-
tion 3) for the following language:

L :=
{(
x, ek, tag, Y

)
: ∃ w s.t.

(
Y = evalc-albo(ek, tag, w) ∧ (x,w) ∈ R`

}
We construct dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) with
tag space T = B for the NP relation R` as follows:

1. dmwm.setup(κ, `, tag) : Here tag ∈ T . Run cwm.setup(κ, `) to output a string K′

of length polynomial in the security parameter κ. Also, run samplec-albo(κ, tag) to
output the tuple (ek, tk). Set K = (K′, ek) and the trapdoor td = tk.

2. dmwm.map(K, tag′, x, w): Here tag′ ∈ T . Parse K as K = (K′, ek), and do the
following:

• Compute Y = evalc-albo(ek, tag′, w), and
• Compute w∗cwm = cwm.map(K′, (x, ek, tag′, Y ), w).

Output the representative witness w∗ = (Y,w∗cwm).

3. dmwm.check(K, tag′, x, w∗): Parse K = (K′, ek) and w∗ = (Y,w∗cwm). Output
cwm.check(K′, (x, ek, tag′, Y ), w∗cwm).

4. dmwm.extract(td, x, w∗): Parse w∗ = (Y,w∗cwm). Output invertc-albo(td, tag, Y ),
where (ek, tk) ← samplec-albo(κ, tag) was generated as part of setup using the
same tag tag.

Fig. 2. Construction of dmwm for an NP relation R`.

Theorem 4. Let α, α′ ≥ 0, and α′′ = (α+α′). Let cwm be a (selectively)
sound α-CWM for the NP language L, c-albo-tdf let a collection of
(`, (`−α′))-cumulative all-lossy-but-one LTDF with branch space B. Then
the construction dmwm defined in Figure 2 is α′′-DMWM with tag space
T = B for the NP relation R`.

The detailed proof of this theorem is given in full version of our paper [11].
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4 Fully Leakage and Tamper-resilient Signature Scheme

A signature scheme with setup sig is a tuple of PPT algorithms sig =
(setup, keygen, sign, verify). The setup algorithm takes as input the secu-
rity parameter κ, and outputs a set of public parameters pub, which is
taken as an implicit input (along with κ) by all the other algorithms.
We denote the message space (implicitly parametrized by κ) as M. We
shall require perfect correctness: For all pub← sig.setup(κ), any key pair
(ssk, vk) produced by sig.keygen and all messages m ∈ M, we require
sig.verify(vk, (m, sig.sign(ssk,m))) = 1.

We define fully-leakage and tamper-resilient (FLTR) signature secu-
rity, in the bounded leakage and tampering model. Before defining the
model formally, we provide an informal description here. In this model,
first the challenger sets up the public parameters pub, and also generates
a key-pair (ssk, vk). Then, vk is given to the adversary, and as in the case
of standard signature security experiment, the adversary is given access
to a signing oracle and it attempts to produce a valid signature on a mes-
sage which it has not queried. But in addition, the adversary has access
to a leakage oracle and a tampering oracle, as described below. Leakage
and tampering act on st, which consists of the signing key ssk and all the
randomness used by the signing algorithm thus far. Note that here, for
definitional purposes, we allow sig.sign to be randomized, though in our
construction it will be deterministic.

Leakage: The adversary can adaptively query the leakage oracle with
any efficiently computable functions f and will receive f(st) in return
(subject to bounds below).

Tampering: The adversary can adaptively query the tampering oracle
with efficiently computable functions T , and on each such query, the tam-
pering oracle will generate a signing key and randomness for signature:
(s̃sk, r̃) = T (st). Subsequently, the adversary can adaptively query each

signing oracle sig.sign(s̃sk, ·, r̃), any number of times (subject to bounds
below).

Bounds on Queries: The total output length of all the leakage functions
ever queried to the leakage oracle is bounded by λ(κ). For tampering,
there is an upper bound t(κ) on the total number of tampering functions
queried by the adversary. However, the adversary may ask an unbounded
number of untampered or tampered signing queries to the signing oracle.
We shall denote an FLTR signature scheme with security subject to these
bounds as (λ, t)-FLTR signature scheme.
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4.1 Security model for FLTR signatures.

Definition 6. ((λ, t)-FLTR security). We say that a signature scheme
sig = (sig.setup, sig.keygen, sig.sign, sig.verify) is (λ, t)-fully-leakage and
tamper-resilient (FLTR) if for all PPT adversaries/forgers F there exists

a negligible function negl : N→ {0, 1} such that Pr
[
Success

(λ,t)-FLTR
Π,F (κ)

]
≤

negl(κ), where the event Success
(λ,t)-FLTR
Π,F (κ) is defined via the following

experiment between a challenger C and the forger F :

1. Initially, the challenger C computes pub← sig.setup(κ) and (ssk, vk)←
sig.keygen(κ, pub), and sets st = ssk.

2. The forger on receiving pub and vk, can adaptively query the following
oracles as defined below:

• Signing queries: The signing oracle sig.sign∗ssk(·) receives as input
a message mi ∈ M. The challenger C then samples ri ← R, and
computes σi ← sig.sign(ssk,m, ri). It appends ri to st and outputs
σi.
• Leakage queries: The leakage oracle receives as input (the descrip-

tion of) an efficiently computable function fj : {0, 1}∗ → {0, 1}λj ,
and responds with fj(st).
• Tampering queries: When the forger F (adaptively) submits the

ith tampering query Ti, the challenger computes (s̃ski, r̃i) = Ti(st).
Subsequently, F can adaptively query the tampered-signing oracle
sig.sign(s̃ski, ·, r̃i) using messages inM. We call these as “tampered
signing queries”.

3. Eventually, F outputs a message-signature pair (m∗, σ∗) as the pur-
ported forgery.

Success
(λ,t)-FLTR
Π,F (κ) denotes the event in which the following happens:

• The signature σ∗ verifies with respect to the original verification key
vk, i.e., sig.verify(vk, (m∗, σ∗)) = 1.
• m∗ was never queried as input to the signing or tampered signing oracle

by the forger F .
• The output length of all the leakage functions

∑
j λj is at most λ(κ).

• The number of tampering queries made by F is at most t(κ).

We also consider a selective variant of the above definition, where the
message m∗ (on which the forgery is to be produced) is declared by the
adversary before receiving the public parameters pub and the verification
key vk. We call this selectively unforgeable (λ, t)-FLTR signature scheme.
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We shall focus on this model in our construction (see Section 4.2) and
note that one can convert a selectively unforgeable (λ, t)-FLTR signature
scheme to an adaptively secure one by relying on complexity leveraging,
when appropriate.

4.2 Construction of our FLTR signature scheme.

In this section, we present our construction of FLTR signature scheme.
In Figure 3, we present this construction.

1. Let spr = (spr.gen, spr.eval) be a family of SPR functions from {0, 1}d(κ) to
{0, 1}m(κ), where m(κ)� d(κ).

2. Let dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) be a κ-lossy
dual-mode witness map (DMWM) (refer to Definition 2) with tag space T =M for
the following language:

L :=
{(
s, y
)

: ∃ x s.t. y = spr.evals(x)
)}

Define the signature scheme sig = (sig.setup, sig.keygen, sig.sign, sig.verify) as follows:

1. sig.setup(κ): On input κ, sample s ← spr.gen(κ). It then samples a random tag
tag ∈ T , computes (K, td) ← dmwm.setup(κ, `, tag), and discards the trapdoor tk.
Set pub := (s,K).

2. sig.keygen(κ, pub): On input the public parameters pub, it samples x ← {0, 1}d(κ)
uniformly at random, and compute y = spr.evals(x). Output the signing key ssk = x,
and the verification key vk = y.

3. sig.sign(ssk,m): On input a message m, do the following:

• Set the tag tag of dmwm to be tag = m.
• Re-compute the value y = spr.evals(x).
• Generate a representative witness w∗ ← dmwm.map

(
K, tag, (s, y), x

)
, where (s, y)

is the statement and x is the corresponding witness.
• Output the signature σ = w∗.

4. sig.verify(vk, (m,σ)): Parse the signature σ as σ = w∗. It then sets tag = m and runs
dmwm.check

(
K, tag, (s, y), w∗

)
to check if the mapping verifies correctly. It outputs

1 if and only if the above verification evaluates to 1.

Fig. 3. Construction of FLTR Signature Scheme sig

Theorem 5. Let λ(κ), t(κ), d(κ) and m(κ) be parameters. Let spr be a
second pre-image resistant function mapping d(κ) bits to m(κ) bits, and
dmwm be a κ-lossy DMWM with tag space T = M (where M is the
message space of sig). Then the above construction sig is a

(
λ(κ), t(κ)

)
-

FLTR signature scheme, as long as the parameters satisfy:
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0 ≤ λ(κ) ≤ d(κ)− κ
(
t(κ) + 1)

)
−m(κ)− ω(log κ).

Hence, the relative leakage rate is λ(κ)
d(κ) ≈ 1− κ(t(κ)+1)−m(κ)−ω(log κ)

d(κ) = 1−
o(1), for an appropriate choice of

(
κ(t(κ)+1)−m(κ)−ω(log κ)

)
= o(d(κ)).

The tampering rate ρ(κ) is ρ(κ) = t(κ)
d(κ) = O(1/κ).

Due to space constraints, we present the proof of Theorem 5 in the full
version of our paper [11].

Extension to Continuous Leakage and Tampering. Our construc-
tion can be readily extended to a model of continuous leakage and tam-
pering, with periodic (tamper-proof) key updates. To this end, first we
note that we can replace the SPR function family used in our construction
with a ‘entropy-bounded” or “noisy” leakage-resilient one-way relations
(LR-OWR) [9,16]. Then, we show that the only modification required to
upgrade our LTR signature construction to the setting of continuous leak-
age and tampering is to further replace the noisy LR-OWR above with
its continuous leakage analogue, which we call noisy continuous LR-OWR
(CLR-OWR), as defined by Dodis et al. [15]. Our construction bypasses
the impossibility result of [22] by allowing the signing key to periodically
update in between leakage and tampering queries. We refer the reader to
the full version [11] for further details.
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