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Abstract. We show new partial and full instantiation results under
chosen-ciphertext security for the widely implemented and standardized
RSA-OAEP encryption scheme of Bellare and Rogaway (EUROCRYPT
1994) and two variants. Prior work on such instantiations either showed
negative results or settled for “passive” security notions like IND-CPA.
More precisely, recall that RSA-OAEP adds redundancy and random-
ness to a message before composing two rounds of an underlying Feistel
transform, whose round functions are modeled as random oracles (ROs),
with RSA. Our main results are:
– Either of the two oracles (while still modeling the other as a RO)

can be instantiated in RSA-OAEP under IND-CCA2 using mild
standard-model assumptions on the round functions and generaliza-
tions of algebraic properties of RSA shown by Barthe, Pointcheval,
and Báguelin (CCS 2012). The algebraic properties are only shown to
hold at practical parameters for small encryption exponent (e = 3),
but we argue they have value for larger e as well.

– Both oracles can be instantiated simultaneously for two variants of
RSA-OAEP, called “t-clear” and “s-clear” RSA-OAEP. For this we
use extractability-style assumptions in the sense of Canetti and Dak-
douk (TCC 2010) on the round functions, as well as novel yet plau-
sible “XOR-type” assumptions on RSA. While admittedly strong,
such assumptions may nevertheless be necessary at this point to
make positive progress.

In particular, our full instantiations evade impossibility results of Shoup
(J. Cryptology 2002), Kiltz and Pietrzak (EUROCRYPT 2009), and Bi-
tansky et al. (STOC 2014). Moreover, our results for s-clear RSA-OAEP
yield the most efficient RSA-based encryption scheme proven IND-CCA2
in the standard model (using bold assumptions on cryptographic hash-
ing) to date.

1 Introduction

In this paper, we show new partial and full instantiations under chosen-ciphertext
attack (CCA) for the RSA-OAEP encryption scheme [10] and some variants.
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This helps explain why the scheme, which so far has only been shown to have
such security in the random oracle (RO) model, has stood up to cryptanalysis
despite the existence of “uninstantiable” RO model schemes and other negative
results. It also leads to the fastest CCA-secure RSA-based public-key encryption
scheme in the standard model (where one assumes standard-model properties of
cryptographic hash functions) to date. We now discuss some background and
motivation before an overview of our results.

1.1 Background and Motivation

In the random oracle (RO) model of Bellare and Rogaway [9], every algorithm
has oracle access to the same truly random functions. This model has been enor-
mously enabling in the design of practical protocols for various goals; examples
include public-key encryption [9, 10, 43], digital signatures [9, 11], and identity-
based encryption [21]. When a RO model scheme is implemented, one “instanti-
ates” the oracles, that is, replaces their invocations with invocations of functions
with publicly-available code. Thus, there are many possible “instantiations” of a
protocol, depending on the choice of the latter. To obtain a practical instantia-
tion, it was suggested by [9] to build these functions from cryptographic hashing
in an appropriate way. We call this the canonical instantiation. The RO model
thesis of [9] is that if a protocol is secure in the RO model then its canonical
instantiation remains secure in the standard (RO devoid) sense.

Unfortunately, the RO model thesis has been refuted in a strong sense, start-
ing with the work of Canetti et al. [28]. These works show that there exist RO
model schemes for which any instantiation, let alone the canonical one, yields
a scheme that can be broken efficiently in the standard model. However, the
consensus of the community is that such schemes always seem contrived or ar-
tificial in some way. Indeed, RO model schemes that have been standardized
have stood up to decades of cryptanalysis. If the RO model thesis is false, what
explains this? This leads to what may be called the practical RO model thesis:
For a “practical” scheme proven secure in the RO model scheme, its canonical
instantiation remains secure in the standard model. However, from a scientific
standpoint this thesis is unsatisfactory because it lacks a definition of “practi-
cal.”4 This shortcoming is the starting point for our work.

1.2 Our Thesis

Candidate differentiating properties. It seems problematic to try to de-
fine practicality in the above sense. Instead, we propose some candidate prop-
erties that we conjecture to differentiate schemes to which the RO model thesis
applies from those to which it does not. Here are some such properties, some of
which are inspired by our work described below:

4 Here we do not mean “practical” in the sense of efficient enough to use in practice,
but rather “does not do anything contrived.”
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1. There exist standard-model properties of the constituent functions that to-
gether suffice to prove security of the scheme, ideally as well as realizations
of such functions under standard assumptions.

2. Each individual constituent function can be separately instantiated as above,
while possibly modeling the others as ROs.

3. Variants of the scheme that fall under the same framework satisfy one of the
above properties.

4. There exist constructions of standard-model hash functions that allow to
prove security of the scheme when replacing the ROs, ideally these construc-
tions being under standard assumptions.

The revised thesis. Our revised RO model thesis is that a scheme satisfy-
ing one of the above properties is such that the canonical instantiation yields
a secure scheme in the standard model, where we relax the notion of instanti-
ation to allow stronger assumptions on non-RO constituent functions. That is,
“constituent functions” refers not only to those modeled as ROs but possibly
other functions associated with the scheme, like RSA. Thus, one may search for
novel assumptions on RSA, for example. Indeed, if one looks at the question of
why some RSA-based RO scheme is secure in practice, it could very well have
to do with properties of RSA (which has a lot of algebraic structure) beyond
mere one-wayness. We have seen the same strategy used to explain security of
schemes, without transitioning between the RO and standard models, for exam-
ple with Chaum’s blind signature scheme [7] and Damg̊ard’s ElGamal [33]. It was
also advocated by Pandey et al. [54] to resolve some long-standing theoretical
questions.

It is also worth mentioning that there are impossibility results in the standard
model for RSA-OAEP [49] and RSA-FDH, RSA-PSS [36, 35]. However, these
are black-box impossibility results that demonstrate that a proof treating the
functions as black-boxes cannot suffice. As in other areas of cryptography [2]
this motivates looking at non-blackbox assumptions.

1.3 Discussion of The Properties and Our Goals

Our focus: RSA-OAEP. We focus our study on whether the RO model thesis
applies to a very influential scheme, namely RSA-OAEP [10]. Roughly, RSA-
OAEP is defined as follows. RSA-OAEP encrypts a message as f(s‖t) where f
is the RSA function, where for functions G and H (originally modeled as ROs)
we have s = G(r)⊕m‖0ζ for randomness r ∈ {0, 1}ρ and message m ∈ {0, 1}µ,
t = H(s)⊕r. (We denote s = s1‖s2.) Thus, we would like to examine whether
RSA-OAEP satisfies the properties listed above.

The first property. Here we seek standard model properties of RSA, G, and
H that suffice to prove IND-CCA. For this property, we mentioned that ideally
we would also have theoretical realizations of such functions under standard
assumptions. We make it clear that we do not advocate using these theoretical
realizations in practice, but they would show that the goal is not impossible to
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achieve. The importance of this is illustrated by the fact that the most general
forms of assumptions such as correlation intractability (CI) [28] and universal
computational extraction (UCE) [5, 23] have been shown (likely) impossible.
(But special cases of CI and UCE which suffice for the schemes considered remain
plausible [5, 23, 25].) Unfortunately, we do not know how to achieve the first
property for RSA-OAEP, even without such theoretical realizations.

The second property. The second property asks for so-called “partial instan-
tiations” for each one of G or H, while still modeling the other as a RO. Partial
instantiations are valuable because ROs are used in different ways in a scheme,
and instantiating one of them isolates a property it relies on. Moreover, we ask
that every oracle can be (separately) instantiated. This has provable implications
in practice as well, as now an attacker would need to exploit weakness in the
interaction between these functions in order to break the scheme in the standard
model. In our eyes this makes a standard model attack much less plausible. We
show that RSA-OAEP satisfies this property under suitable assumptions.

The third property. The third property is more subjective than the others,
as it hinges on what constitutes a scheme falling under the same framework. The
aim is to capture the scheme designers’ intent or their general approach. Again,
the idea is not to use the modified schemes in practice necessarily (although
one certainly could if the efficiency penalty is acceptable), but to validate the
framework more than simply proving the original scheme is secure in the RO
model. An upshot is that this approach can indeed lead to variants of the scheme
that offer better security with similar efficiency. We show the third property holds
for RSA-OAEP, and in fact our results for one of our variants, namely s-clear
RSA-OAEP, leads to the most efficient IND-CCA secure scheme in the standard
model, albeit under bold assumptions on cryptographic hashing.

The fourth property. Note that this property differs from the first in that
it does not require giving higher-level properties that the hash functions should
satisfy in order to make the scheme secure. Thus, it does not really give insight
into what properties hash functions used in the canonical instantiation should
satisfy to do this. Still, existence of such hash functions refutes uninstantiability
of the scheme, showing that the job of the hash functions in making the scheme
secure is at least plausible. As with the first property, we leave it as an open
problem to show this for RSA-OAEP. We note that this property has been shown
for other RO model schemes in, e.g, [46, 61].

We proceed to describe our approach and results in more detail.

1.4 Using PA + IND-CPA

Using PA + IND-CPA. A common thread running through our analyses is
the use of plaintext awareness (PA) [10, 4, 8]. PA captures the intuition that an
adversary who produces a ciphertext must “know” the corresponding plaintext.
It is not itself a notion of privacy, but, at a high level, combined with IND-CPA it
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implies IND-CCA. We use this approach to obtain modularity in proofs, isolate
assumptions needed, and make overall analyses more tractable. Moreover, while
it seems that PA necessitates using knowledge assumptions, this is somewhat
inherent anyway due to black-box impossibility results discussed below.

Flavors and implications. PA comes in various flavors: PA-RO [4], and PA0,
PA1, and PA2 [8]. PA-RO refers to a notion in the RO model, while PA0, PA1,
and PA2 refer to standard model notions that differ in what extent the adversary
can query its decryption or encryption oracles. (In particular, in PA2 the ad-
versary can query for encryptions of unknown plaintexts.) Similarly, IND-CCA
comes in flavors [56, 4]: IND-CCA0, IND-CCA1, and IND-CCA2. We use that [4,
8] show that IND-CPA + PA-RO implies IND-CCA2 in the RO model, IND-
CPA + PA0 implies IND-CCA1 with one decryption query, IND-CPA + PA1
implies IND-CCA1, and IND-CPA + PA2 implies IND-CCA2.

1.5 Partial Instantiation Results

High-level approach. We first give partial instantiation results of RSA-
OAEP under IND-CCA2. Such results have been sought after in prior work [24,
17, 18] but have proven negative results or settled for weaker security notions.
The heroes for us here are new generalizations of the notions of “second-input ex-
tractability” (SIE) and “common-input extractability” (CIE) proven by Barthe
et al. [3] to hold for small-exponent RSA (e = 3). SIE says that an RSA image
point can be inverted given a sufficiently-long (depending on e) part of the preim-
age, whereas CIE says that two RSA images can be inverted if the preimages
share a common part. They were used by [3] where the “part” is the least-
significant bits to analyze a no-redundancy, one-round version of RSA-OAEP in
the RO model. The assumptions are proven via Coppersmith’s algorithm to find
small roots of a univariate polynomial modulo N [30].

We show that generalized versions where the “part” refers to some of the
middle or most-significant bits, rather than least-significant bits, is useful for
analyzing RSA-OAEP more generally. We show these versions also hold for
small-exponent RSA, but based on the bivariate Coppersmith algorithm [30,
15, 31]. Moreover, despite the similarity of assumptions, our proof strategies in
the partial instantiations are somewhat different than that of Barthe et al. [3].
Another interesting point is that while (generalized) SIE and CIE hold for e = 3,
we argue they have practical value for larger e as well. Namely, while e > 3 would
require an impractical “part” length using Coppersmith’s technique, they could
possibly hold for practical parameters via other (in particular, non-blackbox)
techniques. At least, we do not see how to refute that, which could lend insight
into why there is no IND-CCA2 attack on the scheme for general e. 5

5 Moreover, we conjecture this is different from the case of “lossiness” [55, 48] as shown
for RSA and used to analyze IND-CPA security of RSA-OAEP in [48]. Namely, to
get sufficient lossiness it seems to inherently require large e, since the only way to
make RSA parameters lossy is to have e | φ(N).
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Results and intuition. Namely, we show partial instantiations of both oracles
G,H under very mild assumptions on the round functions — roughly, that G is a
pseudorandom generator and H is a hardcore function for RSA, respectively —
in both cases assuming RSA is SIE and CIE. We first prove IND-CPA security in
these cases. Interestingly, the instantiation of G under IND-CPA uses that RSA
is SIE while the instantiation of H does not, the intuition being that in the latter
case we assume H is a hardcore function so its output masks r ∈ {0, 1}ρ used in
the challenge ciphertext unconditionally. Now for PA-RO, in both cases we use
SIE and CIE, but wrt. different bits of the input. In the case of instantiating G,
it is wrt. the redundancy bits s2. Intuitively, for a decryption query there are
two cases. Firstly, that it has a different r-part than the challenge and therefore
this must have been queried to the RO, in which case the SIE extractor works.
Secondly, that it has the same r-part as the challenge, but it therefore shares
s2, in which case the CIE extractor works. In the case of instantiating H, there
are again two cases for an encryption query depending on whether it shares the
same s-part of the challenge or not; thus the assumption is wrt. the whole s-part.

1.6 Full Instantiation Results

High-level approach. We next give full instantiation results for two variants
of RSA-OAEP, called t-clear and s-clear RSA-OAEP. Prior results on t-clear
RSA-OAEP [18] showed only partial instantiations or relatively weak security
notions, and s-clear RSA-OAEP was only considered indirectly by Shoup [59]
for negative results. In t-clear RSA-OAEP, a message is encrypted as f(s1)‖s2‖t
where f is the RSA function s1‖s2 = G(r)⊕m‖0ζ for randomness r ∈ {0, 1}ρ and
message m ∈ {0, 1}µ, t = H(s1‖s2)⊕r. Here we divide s into s1‖s2, where s2 ∈
{0, 1}ζ , so the name “t-clear” while consistent with prior work [18], is somewhat
of a misnomer. On the other hand, in s-clear RSA OAEP a message is encrypted
as s‖f(t). One of the heroes for us here is a hierarchy of “extractability” notions
we define and assume for the round functions, called EXT-RO, EXT0, EXT1,
EXT2, roughly paralleling PA-RO, PA0, PA1, PA2 respectively, and generalizing
prior work [26, 27, 34, 12], although we mention that [34] already has our EXT1
definition. Besides this parallel, our generalizations consider adversaries that
output only part of an image point or an image point along with part of a
pre-image. These are bold assumptions to make on (functions constructed out
of) cryptographic hash functions, but, as discussed above, we believe studying
their implications is justified. In the case of s-clear, another hero is a family
of new “XOR-type” assumptions we introduce, and give intuitive justifications
for in light of the multiplicative structure of RSA. Again, we view part of our
contribution as putting forth novel assumptions that the research community
can analyze (say in the generic ring model) in the future.

We make several remarks about our results, particularly how they avoid
known impossibility results, before detailing them:

– Extractability is a non-blackbox assumption (saying for every adversary
there exists a non-blackbox “extractor”) so we avoid the impossibility re-
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sult of Kiltz and Pietrzak [49].6. That is, the fact we use extractable hash
functions (extractability being an intuitive property used in the original RO
model proof) is somewhat unavoidable.

– While extractability of H would prima facie be false, we use it only in a
plausible way for a cryptographic hash function. Namely, the adversary also
outputs part of the preimage. Extractability assumptions we use on G, even
where the adversary outputs only part of an image point, remain plausi-
ble as it is an expanding function with a sparse range (usually constructed
something like G(x) = (H(0‖x)‖H(1‖x), . . .).

– For extractability we use only bounded key-independent auxiliary input (ba-
sically, the keys for the other functions in the scheme), so we avoid the impos-
sibility result of Bitansky et al. [14]. Moreover, the key-dependent auxiliary
information is just one image query (at least in the proof of IND-CCA2).

– Our “XOR-type” assumptions on RSA avoid a negative result of Shoup [59],
showing that there is an attack if the general trapdoor permutation is “XOR-
malleable.”7

– We typically use the various forms of extractability in combination with (at
least) collision-resistance, so that the extractor returns the “right” preimage.
The collision-resistant construction of [52] based on knowledge assumptions,
albeit where the adversary outputs the entire image point, is on the lowest
level of our hierarchy (EXT0); furthermore, it is not known to work when the
adversary outputs part of the image point. Any theoretical constructions for
higher levels (EXT1, EXT2) are similarly open. We hope these are targeted
in future work.

Results and intuition for t-clear. Our results for t-clear RSA-OAEP are
weaker than those for s-clear RSA-OAEP. First, for t-clear we prove IND-CPA
for high-entropy, public key independent messages, under mild assumptions on
the round functions, namely that H is a hardcore function for RSA and G is a
pseudorandom generator. Intuitively, the high-entropy requirement comes from
the fact that the adversary attacking H needs to know r to prepare its challenge
ciphertext, so the randomness of the input toH needs to come from m. (We could
avoid it using the stronger assumption of UCE as per the result of [5], which
could be viewed as a hedge.) Furthermore, m needs to be public-key independent
so as to not bias the output. Then we can prove PA0 based on forms of EXT0
for G and H, the intuition being that the plaintext extractor first extracts from
the part G(r) that is left in clear by the redundancy to get r and then runs the
extractor for H on t⊕r from which it can compute m, with the above part of
the pre-image to get s. Note that when running the extractor here and below
we have to be careful that the constructed extractor uses the same coins as the

6 As acknowledged by the authors there was a bug in the proceedings version of this
paper, but this has been fixed for the full version [50].

7 In more detail, note that for s-clear the “overall” TDP (including the part output in
the clear) is not partial one-way [39] so their security proof does not apply. In fact,
Shoup [59] considers the scheme in his proof that RSA-OAEP is not IND-CCA2-
secure for general one-way TDPs, exhibiting the above-mentioned attack.



Nairen Cao, Adam O’Neill, and Mohammad Zaheri

starting one for consistency (otherwise we won’t end up with the right extractor).
We can also prove PA1, although we have to make an extractability assumption
directly on the padding scheme.8 Interestingly, even this approach does not work
for PA2, which we leave completely open for t-clear (cf. Remark 14).

Results and intuition for s-clear. We find s-clear is much more friendly
to a full instantiation by making novel but plausible assumptions on RSA. One
is XOR-nonmalleability (XOR-NM), saying that from F(x) it is hard to find
some F(x′) and z such that z = x⊕x′. Another is XOR-indistinguishability
(XOR-IND), saying for random x and adversarially-chosen z one cannot tell
F(x) from F(x⊕z) given “hint” G(x). In our results, G is a PRG, which we show
also implies G is a HCF for F . So, the notion can be viewed as an extension of
the classical notion of HCF. In fact, we use XOR-IND just to show IND-CPA.
The intuition is that it allows breaking the dependency of s in the input to
OAEP with the input to RSA. The proofs of PA0 and PA1 are very similar,
and showcase one reason s-clear is much more friendly to a full instantiation,
namely it heavily depends on the extractability of G. That is, if G is suitably
extractable, the plaintext extractor can simply recover r and then compute the
plaintext as s⊕G(r). For PA2, one has to be careful as when the adversary makes
an encryption query, the plaintext extractor should call the image oracle for G,
where in addition to G(x) for random x it receives the hint of RSA on x. We
show that if RSA is XOR-IND then this implies the adversary can get the whole
ciphertext as a hint to simulate the encryption oracle. Then we also have the
worry about the adversary querying “mauled” ciphertexts to the extract oracle.
Intuitively, if the r-part is the same then it cannot run the extractor for G, but
we show this violates XOR-NM of RSA. On the other hand, if the s-part is the
same then we cannot break XOR-NM but this creates a collision for G.

1.7 Discussion and Perspective

We summarize and compare our results to prior work in Fig. 1. Note that we get
a lot of mileage from assuming the trapdoor permutation is specifically RSA,
whereas prior work, which has mostly shown negative results CCA-style security
notions, went for a general approach. We also highlight that while our assump-
tions on both RSA and the round functions for our full instantiability results
are expectedly stronger than what we need for partial instantiations, they still
compare favorably to prior work. In particular, while our assumption of EXT2
for G in our s-clear result is already “PA2-flavored,” prior work [18, Definition
3.3] made CCA-style assumptions on the round functions even to obtain rela-
tively weak notions of non-malleability. It can also be viewed as a strengthening
of “adaptive” (CCA-style) security notions on one-way functions [54, 47].9 Plus,

8 At a very high level, we can prove EXT0 of G,H implies EXT0 for the padding
scheme, but we do not know how to do this for EXT1 because of an “extractor
blow-up” problem.

9 These works do not precisely match our setting as [54] consider keyless functions
and [47] consider functions with a trapdoor.
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Scheme Assumptions on OAEP Assumptions on F Security Size Ref

RSA-OAEP G : PRG and H : RO OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : RO and H : PHCF OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : t-wise independent Lossy TDP IND-CPA n [48]

RSA-OAEP G,H : UCE OW IND-CPA-KI n [5]

RSA-OAEP G : PRG, EXT0 and NCR OW $IND-CCA0-KI 3n+ 3k Full version

t-clear H : HCF, EXT0 and CR

RSA-OAEP OAEP : EXT1 and NCR OW $IND-CCA1-KI 3n+ 3k Full version

t-clear G : PRG and H : HCF

RSA-OAEP G : PRG and NCR OW IND-CCA2 n+ k [18]

t-clear H : RO

RSA-OAEP G : RO OW IND-CCA2 n+ k [18]

t-clear H : NM PRG with hint

RSA-OAEP G : PRG and NCR OW $NM-CPA n+ k [18]

t-clear H : NM PRG with hint

RSA-OAEP G : PRG, EXT1 and NCR XOR-IND0 IND-CCA1 2n+ k + µ Section 6

s-clear

RSA-OAEP G : PRG, EXT2 and NCR XOR-IND1,2 IND-CCA2 2n+ k + µ Section 6

s-clear H : CR and XOR-NM0

Fig. 1: Instantiability results for RSA-OAEP, where n is modulus length, k is security param and µ
is message length. Typically n = 2048, k = 128 and µ = 128.

it is not clear how to get an IND-CCA2 encryption scheme from EXT2 functions
in a simpler way.

1.8 Related Work

RO model results. Results about security of F-OAEP for an abstract TDP F
with applications to RSA-OAEP in the RO model were shown in [10, 59, 39]. Ul-
timately, these works showed RSA-OAEP is IND-CCA2 secure in the RO model
assuming only one-wayness of RSA, but with a loose security reduction. Inter-
estingly, Shoup [59] considers s-clear RSA-OAEP indirectly in a negative result
about RSA-OAEP with a general one-way TDP. Security of t-clear RSA-OAEP
(under the name “RSA-OAEP++‘’) has been analyzed in the RO model by
Boldyreva, Imai and Kobara [19], who show tight security in the multi-challenge
setting.

Partial instantiation results. Canetti [24] conjectured that his notion of
perfect one-wayness sufficed to instantiate one of the two oracles in F-OAEP.
This was disproved in general by Boldyreva and Fischlin [17], but their results
do not contradict ours because they use a contrived TDP F . Subsequently,
Boldyreva and Fischlin [18] gave partial instantiations for t-clear F-OAEP under
stronger assumptions on the round functions.

Full instantiation results. Brown [22] and Paillier and Villar [53] showed
negative results for proving RSA-OAEP is IND-CCA secure in restricted mod-
els, and Kiltz and Pietrzak [49] showed a general black-box impossibility re-
sult. As mentioned above, their results do not contradict ours because we use
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non-blackbox assumptions. Moving to weaker notions, Kiltz et al. [47] show
IND-CPA security of RSA-OAEP using lossiness [55], while Bellare, Hoang,
and Keelveedhi [5] show RSA-OAEP is IND-CPA secure for public-key inde-
pendent messages assuming the round functions meet their notion of universal
computational extraction. Boldyreva and Fischlin [18] show a weak form of non-
malleability for t-clear F-OAEP, again using very strong assumptions on the
round functions. Lewko et al. [51] show IND-CPA security of the RSA PKCS
v1.5 scheme, with the bounds later being corrected and improved by Smith and
Zhang [60].

Candidate instantiability assumptions. General notions for function fam-
ilies geared toward instantiating ROs that have been proposed include corre-
lation intractability [28, 25], extractable hash functions [26, 27, 12, 14], perfect
one-wayness [24, 29, 37], seed incompressibility [42], non-malleability [16, 1], and
universal computational extraction (UCE) [5, 23, 6].

1.9 Organization

In Section 2, we give the preliminaries. In Section 3, we formalize the algebraic
properties of RSA we use and our partial instantiation results for RSA-OAEP.
In Section 4, we give a new hierarchy of extractable functions. In Section 5, we
abstract out some properties of the OAEP padding scheme we use. Then, in Sec-
tion 6 we give novel “XOR-type” assumptions on RSA and combine them with
the above to give our full instantiation result s-clear RSA-OAEP. Due to space
constraints, our results for t-clear RSA-OAEP are deferred to the supplementary
materials. We also defer all detailed proofs to the supplementary materials.

2 Preliminaries and Some Generalizations

2.1 Notation and Conventions

For a probabilistic algorithm A, by y←$A(x) we mean that A is executed on
input x and the output is assigned to y. We sometimes use y ← A(x; r) to make
A’s random coins explicit. We denote by Pr

[
A(x) = y : x←$X

]
the probability

that A outputs y on input x when x is sampled according to X. We denote
by [A(x)] the set of possible outputs of A when run on input x. The security
parameter is denoted k ∈ N. Unless otherwise specified, all algorithms must run
in probabilistic polynomial-time (PPT) in k, and an algorithm’s running-time
includes that of any overlying experiment as well as the size of its code. Integer
parameters often implicitly depend on k. The length of a string s is denoted |s|.
We denote by s|ji the i-th least significant bits(LSB) to j-th least significant bits
of s(including i-th and j-th bits), where 1 ≤ i ≤ j ≤ |s|. For convenience, we

denote by s|` = s|`1 the ` least significant bits of s and s|` = s||s||s|−` the ` most

significant bits(MSB) of s, for 1 ≤ ` ≤ |s| . We write PX for the distribution
of random variable X and PX(x) for the probability that X puts on value x,
i.e. PX(x) = Pr[X = x]. We denote by U` the uniform distribution on {0, 1}`.
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Game PA-ROA,Ext
PKE (k)

b←$ {0, 1} ; i← 1 ; j ← 1

(pk , sk)←$ Kg(1k)

b′←$ARO(·,1),Enc(pk,·),D(sk,·)(pk)

Return (b = b′)

Procedure RO(x, i)

If H[x] = ⊥ then H[x]←$ {0, 1}`

If i = 1 then

x[j]← x ; h[j]← H[x] ; j ← j + 1

Return H[x]

Procedure Enc(pk ,M)

m←$M(1k, pk)

c←$ EncRO(·,2)(pk ,m)

c[i]← c ; i← i+ 1

Return c

Procedure D(sk , c)

If c ∈ c then return ⊥
m0 ← Dec(sk , c)

m1←$ ExtRO(·,3)(x,h, c, c, pk)

Return mb

Fig. 2: Game to define PA-RO security.

We write US for the uniform distribution on the set S. Vectors are denoted
in boldface, for example x. If x is a vector then |x| denotes the number of
components of x and x[i] denotes its i-th component, for 1 ≤ i ≤ |x|. For
convenience, we extend algorithmic notation to operate on each vector of inputs
component-wise. For example, if A is an algorithm and x,y are vectors then
z←$A(x,y) denotes that z[i]←$A(x[i],y[i]) for all 1 ≤ i ≤ |x|. Let X be
random variables taking values on a common finite domain. The min-entropy of
a random variable X is H∞(X) = − log(maxx Pr [X = x ]).

2.2 Public-Key Encryption and its Security

Public-key encryption. A public-key encryption scheme PKE with message
space Msg is a tuple of algorithms (Kg,Enc,Dec). The key-generation algorithm
Kg on input 1k outputs a public key pk and matching secret key sk . The en-
cryption algorithm Enc on inputs pk and a message m ∈ Msg(1k) outputs a
ciphertext c. The deterministic decryption algorithm Dec on inputs sk and ci-
phertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)]
and all m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with probability 1.

PA-RO security. We first define plaintext-awareness in the RO model fol-
lowing [4], which builds on the definition in [10] and is strictly stronger than
IND-CCA2 security in general. Let PKE = (Kg,Enc,Dec) be a public key en-
cryption scheme and let M be a PPT algorithm that takes as inputs 1k and a
public key pk , and outputs a message m ∈ Msg(1k). To adversary A and extrac-
tor Ext, we associate the experiment in Fig. 2 for every k ∈ N. We say that PKE
is PA-RO secure if for every PPT adversary A there exists an extractor Ext such
that

Advpa-ro
PKE,A,Ext(k) = 2 · Pr

[
PA-ROA,Ext

PKE (k)⇒ 1
]
− 1 .

is negligible in k.

Remark 1. Our definition of plaintext awareness in the random oracle model
differs from the definition given in [4] in the following way. In our definition,
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Game PAIA,ExtPKE (k)

(pk , sk)←$ Kg(1k)

b←$ {0, 1} ; i← 1 ; c← ε

r←$ Coins(k) ; st← (pk , r)

b′ ← AD(sk,·),O(pk ; r)

Return (b = b′)

Procedure D(sk , c)

If c ∈ c then return ⊥
m0 ← Dec(sk , c)

(m1, st)←$ Ext(st, c, c)

Return mb

Procedure Enc(pk ,M)

m←$M(1k, pk)

c←$ Enc(pk ,m)

c[i]← c ; i← i+ 1

Return c

Fig. 3: Games to define PAI security.

we are giving the extractor access to the random oracle. We observe that the
analogous result of [4, Theorem 4.2] that IND-CPA and PA-RO together imply
IND-CCA2 still holds for our modified definition, since in the proof the IND-CPA
adversary could query its own random oracle to answer to the random oracle
queries of the extractor.

We now turn to definitions of plaintext awareness in the standard model,
following [8].

PA security. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme.
For PAI ∈ {PA0,PA1,PA2}, we associate the experiment in Fig. 3 to adversary
A and extractor Ext, for every k ∈ N. Define the PAI advantage of A

Advpai
PKE,A,Ext(k) = 2 · Pr

[
PAIA,ExtPKE (k)⇒ 1

]
− 1 .

If PAI = PA1, then O = ε. PA0 is defined similarly to PA1, except A is only
allowed to make a single decryption query. If PAI = PA2, then O = Enc. We
say that PKE is PAI secure if for every PPT adversary A with coin space Coins
there exists an extractor Ext such that, Advpai

PKE,A,Ext(k) is negligible in k.

Remark 2. Our PA2 definition comes from [8]. We give PA2 adversary extra
access to encryption oracle. This models the ability that IND-CCA2 adversary
obtains ciphertext without knowing the randomness.

2.3 Trapdoor Permutations and Their Security

Trapdoor permutations. A trapdoor permutation family with domain TDom
is a tuple of algorithms F = (Kg,Eval, Inv) that work as follows. Algorithm Kg
on input a unary encoding of the security parameter 1k outputs a pair (f, f−1),
where f : TDom(k) → TDom(k). Algorithm Eval on inputs a function f and
x ∈ TDom(k) outputs y ∈ TDom(k). We often write f(x) instead of Eval(f, x).
Algorithm Inv on inputs a function f−1 and y ∈ TDom(k) outputs x ∈ TDom(k).
We often write f−1(y) instead of Inv(f−1, y). We require that for any (f, f−1) ∈
[Kg(1k)] and any x ∈ TDom(k), f−1(f(x)) = x. We call F an n-bit trapdoor
permutation family if TDom = {0, 1}n. We will think of the RSA trapdoor
permutation family [57] n-bit for simplicity, although its domain is Z∗N for an
n-bit integer N . Additionally, for convenience we define the following. For an ν-
bit trapdoor permutation family and ` ∈ N, we define F|` = (Kg|`,Eval|`, Inv|`)
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as the (ν + `)-bit trapdoor permutation families such that for all k ∈ N, all
(f |`, f−1|`) ∈ [Kg|`(1k)], and all x ∈ {0, 1}ν+`, we have f(x)|` = f(x|n−`)‖x|`,
and analogously for F|`.

2.4 Function Families and Associated Security Notions

Function families. A function family with domain F.Dom and range F.Rng
is a tuple of algorithms F = (KF , F ) that work as follows. Algorithm KF on
input a unary encoding of the security parameter 1k outputs a key KF . Deter-
ministic algorithm F on inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k).
We alternatively write F as a function F : KF × F.Dom→ F.Rng. We call F an
`-injective function if for all distinct x1, x2 ∈ F.Dom(k) and KF ∈ [KF (1k)], we
have F (KF , x1)|` 6= F (KF , x2)|`.
Near-collision resistance. Let H : KH ×HDom→ HRng be a function fam-
ily. For m ∈ N suppose HRng = {0, 1}m. For 1 ≤ ` ≤ m we sayH is near-collision
resistant with respect to `-least significant bits of the outputs (NCR`) if for any
PPT adversary A:

Advn-cr`
H,A (k) = Pr

KH ←$KH(1k)

[
(x1, x2)← A(KH)
x1, x2 ∈ HDom(k)

∧ H(KH , x1)|` = H(KH , x2)|`
x1 6= x2

]
is negligible in k. We note that our definition differs slightly from [18] as both
x1, x2 are adversarially chosen. In terms of feasibility, the same construction
based on one-way permutations given in [18] works in our case as well. Simi-
larly, we define NCR` where the adversary tries to find collision on the `-most
significant bits of the output.

Partial hardcore functions. For convenience, we also generalize the no-
tion of hardcore function in the following way. Let F = (Kg,Eval, Inv) be n-bit
trapdoor permutation family. Let H : KH × {0, 1}n−` → HRng be a function
family, for some ` < n. To attacker A, we associate the experiment in Fig. 4 for
every k ∈ N. We say that H is a `-partial hardcore function for the trapdoor
permutation family F if for every PPT adversary A,

Advphcf
F,H,A(k) = 2 · Pr

[
PHCF-DISTAF,H(k)⇒ 1

]
− 1 .

is negligible in k. Note if (f(x), x|n−`) is a one-way function of x, then H is
a `-partial hardcore function for F when H is a computational randomness
extractor [32]. This is plausible for the case that F is RSA when n− ` is small
enough that Coppersmith’s techniques do not apply. This means n− ` ≤ n(e−
1)/e− log 1/ε such that N ε ≥ 2k for security parameter k.

2.5 The OAEP Framework

OAEP padding scheme. We recall the OAEP padding scheme [10]. Let mes-
sage length µ, randomness length ρ, and redundancy length ζ be integer parame-
ters, and ν = µ+ρ+ζ. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ andH : KH×{0, 1}µ+ζ →
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Game PHCF-DISTAF,H(k)

b←$ {0, 1} ; KH ←$KH(1k) ; (f, f−1)←$ Kg(1k)

x←$ {0, 1}n ; h0 ← H(KH , x|`) ; h1←$ HRng(k)

b′←$A(KH , f, f(x), x|n−`, hb)
Return (b = b′)

Fig. 4: Games to define PHCF-DIST security.

Algorithm OAEP(KG,KH )(m‖r)
s← (m‖0ζ)⊕G(KG, r)

t← r⊕H(KH , s)

x← s‖t
Return x

Algorithm OAEP−1
(KG,KH )(x)

s‖t← x ; r ← t⊕H(KH , s)

m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ return m′|µ

Else return ⊥

Fig. 5: OAEP padding scheme OAEP[G,H].

{0, 1}ρ be function families. The associated OAEP padding scheme is a triple
of algorithms OAEP[G,H] = (KOAEP,OAEP,OAEP

−1) defined as follows. On in-
put 1k, KOAEP returns (KG,KH) where KG←$KG(1k) and KH ←$KH(1k), and
OAEP,OAEP−1 are as defined in Fig. 5.

OAEP encryption scheme and variants. Slightly abusing notation, we
denote by OAEP[G,H,F ] the OAEP-based encryption scheme F-OAEP with
n = ν. We also consider two other OAEP-based encryption schemes, called t-
clear and s-clear F-OAEP, and denoted OAEPt-clear[G,H,F|ζ+ρ] and OAEPs-clear
[G,H,F|µ+ζ ]. Here n = µ and n = ρ, respectively. We often write OAEPt-clear
and OAEPs-clear instead of OAEPt-clear[G,H,F|ζ+ρ] and OAEPs-clear[G,H,F|µ+ζ ].
We typically think of F as RSA, and all our results apply to this case under
suitable assumptions. Note that, following prior work, despite its name t-clear
F-OAEP we actually apply F to only the µ most significant bits of the output
of the underlying padding scheme, leaving the redundancy part of s in the clear
as well.

3 Partial Instantiation Results for RSA-OAEP

In this section, we give partial instantiations of either G or H for RSA-OAEP
under IND-CCA2. Our results use only mild standard model properties of G
or H. We also use (generalizations of) algebraic properties of RSA proven by
Barthe et al. [3] for small enough e. For example, using a 2048-bit modulus and
encrypting a 128-bit AES key, our results hold for e = 3. They might be true for
larger e; at least, they cannot be disproved. Note that our results first necessitate
a separate proof of IND-CPA — the standard model IND-CPA results of Kiltz
et al. [48] and Bellare et al. [5] are not suitable, the first requiring large e and
the second holding only for public-key independent messages.
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3.1 Algebraic Properties of RSA

We first give generalizations of algebraic properties of RSA from Barthe et al. [3]
that we use, and their parameters. They used these assumptions to analyze
security of a zero-redudancy one-round version of RSA-OAEP. We show that
generalizations are useful for analyzing security of full RSA-OAEP.

Second-input extractability. Let F = (Kg,Eval, Inv) be a trapdoor permu-
tation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-second-
input-extractable (BB (i, j)-SIE) if there exists an efficient extractor E such that
for every k ∈ N, every f ∈ [Kg(1k)], and every x ∈ {0, 1}n, extractor E on inputs
f, f(x), x|ji+1 outputs x. We often write ζ-SIE instead of (n− ζ, n)-SIE.

Common-input extractability. Let F = (Kg,Eval, Inv) be a trapdoor per-
mutation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-
common-input-extractable if there exists an efficient extractor E such that for
every k ∈ N, every f ∈ [Kg(1k)], and every x1, x2 ∈ TDom(k), extractor E on
inputs f, f(x1), f(x2) outputs (x1, x2) if x1|ji+1 = x2|ji+1. We often write ζ-CIE
instead of (n− ζ, n)-CIE.

Comparison to Barthe et al. Compared to [3], we generalize the notions of
SIE and CIE to consider arbitrary runs of consecutive bits. That is, [3] only
considers the most significant bits; i.e., ζ-SIE and ζ-CIE in our notation.

Parameters. Barthe et al. [3] show via the univariate Coppersmith algorithm
[30] that RSA is ζ-SIE and ζ-CIE for sufficiently large ζ. Specifically, they show
RSA is ζ1-SIE for ζ1 > n(e − 1)/e, and ζ2-CIE for ζ2 > n(e2 − 1)/e2. We show
that a generalization to runs of arbitrary consecutive bits using the bivariate
Coppersmith algorithm [30, 15, 31]. Specifically, we show that RSA is (i, j)-SIE
for (j − i) > n(e− 1)/e, and (i, j)-CIE for (j − i) > n(e2 − 1)/e2, Due to space
constraints, this is shown in the full version. Note that in our partial instantiation
results for RSA-OAEP, j − i refers to the length of the redundancy ζ.

3.2 Main Results

Main results. We now give our main results, namely partial instantiations for
RSA-OAEP of either oracle G or H. These results refer to IND-CCA2 security
for simplicity, whereas we actually prove PA-RO + IND-CPA.

Theorem 3. Let n, µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}µ+ζ be a pseudorandom generator and H : {0, 1}µ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ+ ζ + ρ. Suppose F is one-way, (µ+ ζ)-second input and (µ+ ζ)-common
input extractable. Then OAEP[G,H,F ] is IND-CCA2 secure. In particular, for
any adversary A, there is an adversary D and an inverter I such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 ·Advowf

F,I(k) + 10 ·Advprg
G,D(k) +

2p

2µ+ζ
+

4q

2ζ
.
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where q is the total number of the decryption queries and p is the total number
of RO queries made by A. Furthermore, the running time of D and I are about
that of A plus the time to run SIE and CIE extractors.

Theorem 4. Let n, µ, ζ, ρ be integer parameters. Let H : KH × {0, 1}µ+ζ →
{0, 1}ρ be a hash function family and G : {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F be
a family of trapdoor permutations with domain {0, 1}n, where n = µ+ζ+ρ. Sup-
pose F is (ρ, ρ+ ζ)-second input and (ρ, ρ+ ζ)-common input extractable. Sup-
pose further H is a (µ+ ζ)-partial hardcore function for F . Then OAEP[G,H,F ]
is IND-CCA2. In particular, for any adversary A = (A1, A2), there exists an
adversary B such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 ·Advphcf

F,H,B(k) +
2p

2ρ
+

4q

2ζ
.

where q the total number of the decryption queries and p is the total number of
RO queries made by A. Furthermore, the running time of B is about that of A
plus the time to run SIE and CIE extractors.

The proofs of both theorems follow from below.

Parameters for RSA-OAEP. We discuss when our results support RSA-
OAEP encryption of an AES key of appropriate length, based on Subsection 3.1.
The main requirement is encryption exponent e = 3. In this case, with length
2048 bits we can use randomness and message length 128 bits, and for modulus
length 4096 we can use randomness length 256. The choice that e = 3 is some-
times used in practice but it is an interesting open problem to extend our results
to other common choices such as e = 216 + 1. In particular, it may be possible
that SIE and CIE hold in this case for the same parameters. Interestingly, we
have a “flipped” situation vs. [48] who show IND-CPA security of RSA-OAEP
in the standard model using large exponent RSA. We hope future work will help
reconcile these differences.

3.3 Partial Instantiation of G

We first show how to instantiate G when modeling H as a RO. In particular, we
show OAEP[G,H,F ] is IND-CPA + PA-RO when G is a pseudorandom generator
and F is one-way, (µ+ ζ)-SIE and (µ+ ζ)-CIE.

IND-CPA result. Under IND-CPA, we show a tight reduction when G is a
pseudorandom generator and F is one-way and (µ + ζ)-SIE. Alternatively, we
give result where F is only partial one-way, but the reduction is lossy (due to
space constraints, this is shown in the full version). Note that it is shown in [38]
that one-wayness of RSA implies partial one-wayness, but the reduction is even
more lossy, while SIE and CIE unconditionally hold for appropriate parameters.

Theorem 5. Let n, µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}µ+ζ be a pseudorandom generator and H : {0, 1}µ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
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n = µ+ ζ+ρ. Suppose F is one-way and (µ+ ζ)-second input extractable. Then
OAEP[G,H,F ] is IND-CPA. In particular, for any adversary A = (A1, A2), there
are an adversary D and an inverter I such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advowf

F,I(k) + 6 ·Advprg
G,D(k) +

2q

2µ+ζ
.

where q is the total number of RO queries made by A. Furthermore, the running
time of D is about that of A and the running time of I is about that of A plus
the time to run SIE extractor.

Proof idea. Let c = f(s‖t) be the challenge ciphertext. Note that, it is unlikely
that A queries value s to H since one could use SIE extractor to invert challenge
c knowing s. Thus, value t looks random to A. Moreover, we know G is PRG,
then value s looks random. Therefore, challenge c looks random to A.

PA-RO result. We show RSA-OAEP is PA-RO when modeling H as a RO
if G is a pseudorandom generator and F is both second-input extractable and
common-input extractable.

Theorem 6. Let n, µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}µ+ζ be a pseudorandom generator and H : {0, 1}µ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ+ ζ + ρ. Suppose F is (µ+ ζ)-second input and (µ+ ζ)-common input ex-
tractable. Then OAEP[G,H,F ] is PA-RO secure. In particular, for any adversary
A, there exists an adversary D and an extractor Ext such that

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 ·Advprg

G,D(k) +
2q

2ζ
.

where q is the total number of the extraction queries made by A. Furthermore,
the running time of D is about that of A and the running time of Ext is about
that of SIE and CIE extractors.

Proof idea. Let c = f(s‖t) be the extract query made by A. If there is a prior
query s to H, then one could use SIE or CIE extractor to extract message m.
Otherwise the challenge c is invalid whp, since the ζ-lsb of G(KG, r) and s are
not equal on random r whp, when G is PRG.

3.4 Partial Instantiation of H

Now, we instantiate the hash function H when modeling only G as a RO. In
particular, we show OAEP[G,H,F ] is IND-CPA + PA-RO when H is a special
type of hardcore function and F is one-way, second-input and common-input
extractable. Note that Boneh [20] previously showed a simplified RSA-OAEP
with one Feistel round G is IND-CCA2 secure and Barthe et al. [3] showed such
a scheme does not even need redundancy, but these proof do not translate to
the case of H as a cryptographic hash function.
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IND-CPA result. Under IND-CPA, we show a tight reduction when H is a
(µ + ζ)-partial hardcore function for F . In particular, it is plausible for H as
a computational randomness extractor [32] and that F is RSA in the common
setting ρ = k (e.g., ρ = 128 for modulus length n = 2048), since Coppersmith’s
technique fails.

Theorem 7. Let n, µ, ζ, ρ be integer parameters. Let H : KH × {0, 1}µ+ζ →
{0, 1}ρ be a hash function family and G : {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F
be a family of trapdoor permutations with domain {0, 1}n, where n = µ+ ζ+ ρ.
Suppose H is a (µ + ζ)-partial hardcore function for F . Then OAEP[G,H,F ]
is IND-CPA. In particular, for any adversary A = (A1, A2), there exists an
adversary B such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advphcf

F,H,B(k) +
2q

2ρ
,

where q is the total number of RO queries made by A. The running time of B
is about that of A.

Proof idea. Let c = f(s‖t) be the challenge ciphertext. Note that, it is unlikely
that A queries r to G, since one can build an adversary B attacking H. Moreover,
if A does not query r to G, value s looks random and A won’t be able to obtain
any information about b.

PA-RO result. We show another partial instantiation result modeling only G as
a RO. Namely, we show RSA-OAEP is PA-RO if F is second-input extractable,
and common-input extractable. Note that this does not require any assumption
on H.

Theorem 8. Let n, µ, ζ, ρ be integer parameters. Let H : {0, 1}µ+ζ → {0, 1}ρ
be a hash function family and G : KG × {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F be
a family of trapdoor permutations with domain {0, 1}n, where n = µ + ζ + ρ.
Suppose F is (ρ, ρ + ζ)-second input and (ρ, ρ + ζ)-common input extractable.
Then OAEP[G,H,F ] is PA-RO secure. In particular, for any adversary A, there
exists an extractor Ext such that,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2q

2ζ
.

where q is the total number of the extract queries made by A. The running time
of Ext is about that of SIE and CIE extractors.

Proof idea. Let c = f(s‖t) be the extract query made by A. If there is a prior
query r to G, then one with knowledge of G(r)|ζ could use SIE or CIE extractor
to extract message m. Otherwise, the challenge c is invalid whp, since the ζ-lsb
of G(H(KH , s)⊕t) and s are not equal whp.
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4 A Hierarchy of Extractability Notions

Intuitively, extractability of a function formalizes the idea that an adversary
that produces a point in the image must “know” a corresponding preimage,
as there being a non-blackbox extractor that produces one. Previous work on
extractability starting with [26, 27] considers a “one-shot” adversary. Inspired by
the related notion of plaintext awareness for encryption schemes [4, 8], we define
a hierarchy of extractability notions called EXT0, EXT1, EXT2, and EXT-RO,
which will in particular be useful for our full instantiation results. Even our
notion of EXT0 generalizes prior work, as explained below.

EXT functions. Let η, ζ, µ be integer parameters. LetH : KH×HDom→ HRng
be a hash function family. For EXTI ∈ {EXT0,EXT1,EXT2}, we associate the
experiment in Fig. 6 to an adversary A and extractor Ext, for every k ∈ N. For
any key independent auxiliary input z ∈ {0, 1}η, we define

Adv
(η,µ)-extiζ
H,F,A,Ext,z(k)

= Pr
KH ←$KH(1k)
r←$ Coins(k)

[
(x,y)← EXTIA,E,zH,F (KH , r)

∃i,∃x : H(KH , x)|ζ = y[i] ∧ x[i]|µ = x|µ ∧H(KH ,x[i])|ζ 6= y[i]

]

We define the EXTI advantage of A to be Adv
(η,µ)-extiζ
H,F,A,Ext (k) = maxz∈{0,1}η

Adv
(η,µ)-extiζ
H,F,A,Ext,z(k). If EXTI = EXT1, then O = ε. Note that, in EXT1 definition,

adversary A have only access to extract oracle E . EXT0 is defined similarly to
EXT1, except A is only allowed to make a single extract query. If EXTI = EXT2,
then O = I, where I is an image oracle. We say H is (η, µ)-EXTIζ if for any
PPT adversary A with coin space Coins, there exists a stateful extractor E such

that Adv
(η,µ)-extiζ
H,F,A,Ext (k) is negligible in k.

Similarly, we define the analogous notion (η, µ)-EXTIζ where the adversary
outputs the ζ most significant bits of the image point. We often write η-EXTIζ
and η-EXTIζ instead of (η, 0)-EXTIζ and (η, 0)-EXTIζ , respectively. We also
often write (η, µ)-EXTI instead of (η, µ)-EXTIζ when ζ = log |HRng|.

We generalized the notion of extractable functions in two ways. First, the
extractor should work when the adversary outputs ζ least significant bits of an
image point and µ bits of a preimage, given η bits of auxiliary information. Pre-
vious work considered ζ = log |HRng| and µ = 0. Next, we give a definition of
“many-times” extractability. We note that a central open problem in the the-
ory of extractable functions to construct a “many-times” extractable function
from a “one-time” extractable function, see e.g. [41]; the obvious approach suf-
fers an extractor “blow-up” issue. For practical purposes, we simply formalize
and assume this property for an appropriate construction from cryptographic
hashing.

In the EXT2 notion, we extend the definition of EXT1 and give the adversary
access to an oracle I that outputs the function evaluation of a random point from
its domain along with an uninvertible hint about the corresponding preimage
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Game EXTIA,E,zH,F (KH , r)

i← 1 ; j ← 1 ; st← ε

x← ε ; y← ε ; h← ε

h1 ← ε ; w← ε

(f, f−1)←$ Kg(1k)

Run AE(·,·),O(KH , f, z; r)

Return (x,y)

Procedure E(x2, y)

If y ∈ h1 then return ⊥
(st, x1)← Ext(st,KH , f, z,h,w, x2, y; r)

x[i]← x1‖x2 ; y[i]← y ; i← i+ 1

Return x1

Procedure I(1k)

v←$ HDom(k) ; h← H(KH , v)

h[j]← h ; w[j]← f(v) ; h1[j]← h|ζ ; j ← j + 1

Return (h, f(v))

Fig. 6: Game to define EXTI security.

(We also consider EXT2 notion without a hint, where the uninvertable hint
is an empty function). The adversary is not allowed to query any such point
to the extract oracle E . In other words, this is a form of extractability with key
dependent auxiliary information that parallels PA2 for encryption schemes. Note
that we avoid the impossibility result of [13] since in all of our EXT definitions,
we consider only bounded independent auxiliary information.

EXT-RO functions. Finally, we give a notion of extractability in the RO
model, inspired by PA-RO for encryption schemes. In particular, here the ad-
versary has access to an oracle F to which it queries a sampling algorithm, the
oracle returning the image of a point in the domain sampled accordingly. More-
over, instead of the adversary’s random coins the extractor gets a transcript of its
RO queries and responses, but not those made by F . Due to space constraints,
we refer to the full version for the complete definition.

Plausibility. We typically use EXT notions in tandem with other properties
such as collision-resistance. In terms of feasibility, there are several constructions
proposed for EXT0 with ζ = log |HRng| and µ = 0 and collision-resistance in [52]
based on knowledge assumptions. (In the weaker case of EXT0 with only one-
wayness, which does not suffice for us, the notion is actually achievable for these
parameters under standard assumptions [13].) However, for our generalizations
and notions of EXT1, EXT2, we are not aware of any constructions in the
standard model. Despite the fact that they are difficult to judge, it may be a
reality that as a community we need to move to such assumptions in order to
make progress on some difficult problems. A similar strategy was used for very
different goals by Pandey et al. [54]. It would be interesting for future work to
explore relations between our assumptions and theirs.

5 Results for Padding Schemes and OAEP

We abstract properties of the OAEP padding scheme and prove them based on
corresponding notions for the round functions. Namely, we study near-collision
resistance, EXT0ζ+ρ, EXT1µ+ζ and (ζ + ρ)-EXT-RO. In particular, note that
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while the OAEP padding scheme is invertible these notions are non-trivial be-
cause we consider adversaries that only produce part of the output. Proving the
other notions, EXT1ζ+ρ, EXT2µ+ζ and EXT2ζ+ρ, in the standard model based
on assumptions on the round functions remains open. However, they could be
justified as assumptions by the fact that OAEP is (ζ + ρ)-EXT-RO, similarly to
showing a RO is UCE [5, Section 6.1]. Due to space constraints, these are shown
in the full version.

6 Full Instantiation Results for s-Clear RSA-OAEP

In this section, we give full instantiation results for s-clear RSA-OAEP. Note
that we are the first to consider this variant. We show that s-clear is IND-CCA2
if G is a pseudorandom generator, near-collision resistant, and “many-times”
extractable with dependent auxiliary information, H is collision-resistant, and
F meets novel “XOR-nonmalleability” and “XOR-indistinguishability” notions
that seem plausible for RSA. Also note that we avoid the several impossibility
results here. First, we avoid the impossibility result of [58] by using XOR-non-
malleability of F . Second, we avoid the impossibility result of [13] since the
dependent auxiliary information is bounded.

6.1 XOR Assumptions on Trapdoor Permutations and RSA

Here, we give classes of novel assumptions on RSA (and trapdoor permutations
in general), which are stronger than one-wayness and needed for RSA-OAEP
s-clear.

XOR-IND. Our first class of assumptions speaks to the fact that addition or
XOR operations “break up” the multiplicative structure of RSA. Indeed, in a
related context of arithmetic progressions on ZN we have seen formal evidence
of this [51, 60]. It is interesting for future work to give formal evidence in our
case as well. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a function family. For ATK ∈
{IND0, IND1, IND2}, we associate the experiment in Fig. 7, for every k ∈ N.
Define the xor-atk advantage of A against F with the hint function family G

Advxor-atk
F,G,A (k) = 2 · Pr

[
XOR-ATKA

F,G(k)⇒ 1
]
− 1 .

If atk = ind0, then O = ε. We say that F is XOR-IND0 with respect to hint
function family G if for every PPT attacker A, Advxor-ind0

F,G,A (k) is negligible in k.
Similarly, if atk = ind1, then O = C, where C is a relation checker oracle that
on input y1, y2 and ω outputs 1, if ω = f−1(y1)⊕f−1(y2), otherwise outputs 0.
Similarly, if atk = ind2, then O = V`, where V` is an `-bit image verifier oracle
that on input y outputs 1, if there exists x such that y = G(KG, x)|`, otherwise
outputs 0. Note that A is not allowed to query for the challenge to V. We say
that F is XOR-IND1 (resp. XOR-IND2`) with respect to hint function family G
if for every PPT attacker A, Advxor-ind1

F,G,A (k) (resp. Advxor-ind2`
F,G,A (k)) is negligible

in k.
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Game XOR-ATKA
F,G(k)

b←$ {0, 1} ; (f, f−1)← Kg(1k)

KG ← KG(1k) ; x←$ TDom(k)

(state, z)←$A1(f,KG, G(KG, x))

y0 ← f(x) ; y1 ← f(x⊕z)
b′←$AO2 (state, yb)

Return (b = b′)

Fig. 7: Games to define XOR-ATK security.

Observe that the hint is crucial, as otherwise the assumption would trivially
hold. In our results, G is a PRG. In this case, we show that G is also a HCF
function for F . In other words, the assumption in our use-case can be viewed an
extension of the classical notion of HCF — G is “robust” not in the sense of [40],
but in the sense that the view of the adversary is also indistinguishable given F
applied to either the real input or related one. Note that not all hardcore func-
tions have this property, even when F is partial one-way. For example, consider a
hardcore function G that reveals first bit of its input x. Then if a partial one-way
function F also reveals the first bit of x, XOR-indistinguishability clearly does
not hold.

Theorem 9. Let F be a family of one-way trapdoor permutations with domain
TDom. Suppose G : KG×TDom→ GRng is a pseudorandom generator and F is
XOR-IND0 with respect to hint function family G. Then G is a hardcore function
for F on the uniform distribution. In particular, for any adversary A, there are
adversaries B,C such that

Advhcf
F,G,U,A(k) ≤ 2 ·Advxor-ind0

F,G,B (k) + 2 ·Advprg
G,C(k) .

XOR-NM0. Our second class of assumptions speak to the fact that RSA is
non-malleable wrt. XOR. Intuitively, if RSA was XOR malleable, then since it
is multiplicatively homomorphic it would be (something like) fully homomor-
phic, which is unlikely. (Although we do not claim the exact formulation of our
definitions imply a formal definition of fully homomorphic.) A similar argument
was made by Hofheinz for a non-malleability assumption on the Paillier trapdoor
permutation (which is additively homomorphic) wrt. multiplication [Assumption
4.2][44]. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain
TDom. To attacker A, we associate the experiment in Fig. 8 for every k ∈ N. We
say that F is XOR-NM0 if for every PPT attacker A,

Advxor-nm0
F,A (k) = Pr

[
XOR-NM0AF (k)⇒ 1

]
.

is negligible in k.

XOR-NM1. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a hash function family. To
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Game XOR-NM0AF (k)

(f, f−1)← Kg(1k)

x←$ TDom(k)

(ω, y′)←$A(f, f(x))

x′ ← f−1(y′)

If (ω = x⊕x′) ∧ (ω 6= 0)

Return 1

Else return 0

Game XOR-NM1AF,G(k)

(f, f−1)← Kg(1k) ; KG ← KG(1k)

x←$ TDom(k) ; z ← G(KG, x)

(α, st)←$A1(f,KG, z)

(ω, y′)←$A2(st, f(x⊕α))

x′ ← f−1(y′)

If (ω⊕α = x⊕x′)∧ (ω 6= 0) then return 1

Else return 0

Fig. 8: Games to define XOR-NM security.

attacker A, we associate the experiment in Fig. 8 for every k ∈ N. We say that
F is XOR-NM1 with respect to G if for every PPT attacker A,

Advxor-nm1
F,G,A (k) = Pr

[
XOR-NM1AF,G(k)⇒ 1

]
.

is negligible in k.

Relations between definitions. Interestingly, we show XOR-NM0 and XOR-
IND1 together imply XOR-NM1.

Theorem 10. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a function family. Suppose F
is XOR-NM0 and XOR-IND1 with respect to G. Then, F is XOR-NM1 with
respect to G. In particular, for any adversary A, there are adversaries B,C such
that

Advxor-nm1
F,G,A (k) ≤ Advxor-nm0

F,G,B (k) + 2 ·Advxor-ind1
F,G,C (k) .

Discussion. We caution that these are new assumptions and must be treated
with care, although they have some intuitive appeal as discussed where they
are introduced. It would be interesting for future work to establish theoretical
constructions meeting them or show that RSA meets them under more well-
studied assumptions.

6.2 Main Results

After establishing its security in the RO model, we show that s-clear RSA-
OAEP is IND-CCA1 and IND-CCA2 under respective suitable assumptions. As
in Section 3 we actually prove corresponding notions of IND-CPA + PA, yielding
stronger results. The results in Section follow from those below.

IND-CCA2 result in RO model. First, note that the partial one-wayness
result of [39] does not apply to this variant, and in fact the negative result
of [59] does apply, demonstrating that one-wayness of the trapdoor permutation
is not enough for the scheme to achieve IND-CCA2 security even in the RO
model. We show that XOR-nonmalleability is sufficient.
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Theorem 11. Let µ, ζ, ρ be integer parameters. Let F be a XOR-NM0 family of
one-way trapdoor permutations with domain {0, 1}ρ. Suppose G : KG×{0, 1}ρ →
{0, 1}µ+ζ is a RO and H : KH × {0, 1}µ+ζ → {0, 1}ρ is collision-resistant. Then
OAEPs-clear[G,H,F|µ+ζ ] is IND-CCA2 secure in the random oracle model. In
particular, for any adversary A, there are adversaries B,C such that

Advind-cca2
OAEPs-clear,A(k) ≤ 2q

2ρ
+

4p

2ζ
+ 2 ·Advcr

H,C(k) + 4 ·Advxor-nm0
F,B (k) .

where p is the number of decryption-oracle queries of A and q is the total number
of random-oracle queries of A and M. Adversary B and C makes at most q
random-oracle queries.

IND-CCA1 result. To prove IND-CCA1, we use EXT1 and near-collision
resistance of the overall OAEP padding scheme (which follows from assumptions
on the round functions as per Section 5), as well as the assumption that G is a
pseudorandom generator and F is XOR-IND (as defined in Section 6.1).

Theorem 12. Let η, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor
permutations with domain {0, 1}µ, and let η = |[Kg(1k)]|. Let G : KG×{0, 1}ρ →
{0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families. Suppose G
is a pseudorandom generator, and let F is XOR-IND0 with respect to hint
function G (as defined in Section 6.1). Also suppose OAEP[G,H] is η-EXT1µ+ζ

and NCRµ+ζ . Then OAEPs-clear[G,H,F|µ+ζ ] is IND-CCA1 secure. In particular,
for any adversary A that makes q decryption queries, there exist adversaries
C,D,E, and EXT1 adversary B that makes q extract queries such that for all
extractors Ext,

Advind-cca1
OAEPs-clear,A(k) ≤ 2 ·Advη-ext1

µ+ζ

OAEP[G,H],B,Ext(k) + 2 ·Advn-crµ+ζ
OAEP[G,H],C(k)

+6 ·Advxor-ind0
F,G,D (k) + 4 ·Advprg

G,E(k) .

IND-CCA2 result. To prove IND-CCA2, we use EXT2 and near-collision
resistance of G, as well as the assumptions that G is a pseudorandom generator,H
is collision-resistant and F is XOR-IND and XOR-NM (as defined in Section 6.1).
Note that, EXT2 adversary only makes one image query. Thus, the dependent
auxiliary information is bounded by the size of the image.

Theorem 13. Let η, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor
permutations with domain {0, 1}µ and η = |[Kg(1k)]|+ |[KH(1k)]|. Let G : KG×
{0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families.
Suppose G is PRG, NCRζ , EXT2ζ and η-EXT2ζ with respect to F , and H is
collision-resistant. Suppose F is XOR-NM0, XOR-IND1 and XOR-IND2ζ with
respect to G. Then OAEPs-clear[G,H,F|µ+ζ ] is IND-CCA2 secure. In particular,
for any adversary A that makes q decryption queries, there exists adversaries
CH , CG, D1, D2, D3, E, and adversary B1, B2 that makes q extract queries such
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that for all extractors Ext1,Ext2,

Advind-cca2
OAEPs-clear,A(k) ≤ 6 ·Adv

η-ext2ζ
G,F,B1,Ext1

(k) + 18 ·Adv
xor-ind2ζ
F,G,D1

(k)

+ 10 ·Adv
n-crζ
G,CG(k) + 4 ·Advcr

H,CH (k) + 4 ·Advxor-nm0
F,G,D3

(k)

+ 14 ·Advxor-ind1
F,G,D2

(k) + 16 ·Advprg
G,E(k) + 24 ·Adv

ext2ζ
G,B2,Ext2

(k)

Efficiency. The ciphertext length is 2n + k + µ where n is the length of the
RSA modulus, k is the security parameter, and µ is the message length. For
example, if n = 2048, k = 128, and we encrypt an AES key with µ = 128
(i.e., we use RSA-OAEP as a key encapsulation mechanism, which is typical in
practice then the ciphertext length is 4352). It is interesting to compare this with
the standard model IND-CCA2 secure key encapsulation mechanism of Kiltz
et al. [45]. They describe their scheme based on modular squaring (factoring),
but it is straightforward to derive a scheme based on RSA with large hardcore
function and a cryptographic hash function being target collision-resistant, which
results in the most efficient prior standard-model RSA-based encryption scheme
we are aware of. It performs one “small” exponentiation wrt. e and one “full”
exponentiation modulo N , so is much more computationally expensive than our
scheme. Thus, one could arguably say ours is the most computationally efficient
RSA-based encryption scheme under “plausible standard-model assumptions”
(where one takes the liberty of making bold assumptions on cryptographic hash
functions) to date. On the other hand, the scheme of [45] has ciphertext length
only 2n.

Remark 14. It is worth mentioning why we are able to get IND-CCA2 (i.e.,
adaptive) security for s-clear RSA-OAEP but not t-clear. The point is that, in
the t-clear setting, it is not even clear how to define EXT2 of OAEP in a useful
way. Since OAEP is invertible, the image oracle should output only part of the
image point. But then it is not clear how the EXT2 adversary against OAEP can
simulate the encryption oracle for the PA2 adversary against t-clear RSA-OAEP.
On the other hand, for EXT2 of G, the image oracle can output the full image
point since G is not invertible. This then allows proving that s-clear RSA-OAEP
is PA2 directly (without using monolithic assumptions on the padding scheme
not known to follow from assumptions on the round functions).

6.3 IND-CPA, PA0 and PA1 Result

We show that s-clear RSA-OAEP is IND-CPA secure under suitable assump-
tions. Then, we show either PA0, PA1 and PA2 security depending on the
strength of assumptions on G,H and F . Interestingly, even our IND-CPA re-
sult uses an XOR-based assumption on the trapdoor permutation. We also give
a full instantiation result for s-clear RSA-OAEP and show that it is PA0 and
PA1 under suitable assumptions. We show that s-clear RSA-OAEP “inherits”
the extractability of the underlying padding transform, in the form of PA1 and



Nairen Cao, Adam O’Neill, and Mohammad Zaheri

EXT1, as long as the latter is also near-collision resistant. Here we state the
result for an abstract padding scheme rather than specifically for OAEP. Note
that results for OAEP then follow from the round functions as per Section 5.
Due to space constraints, these are shown in the full version.

6.4 PA2 Result

We give a full instantiation result for s-clear RSA-OAEP and show that it is
PA2 under stronger assumptions on G,H and F . We note that we can reduce
assumptions as per Theorem 10.

Theorem 15. Let η, µ, ζ, ρ be integer parameters. Let F be a family of trap-
door permutations with domain {0, 1}ρ. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and
H : KH × {0, 1}µ+ζ → {0, 1}ρ be hash function families. Let η = |[Kg(1k)]| +
|[KH(1k)]|. Suppose G is PRG, NCRζ , EXT2ζ and η-EXT2ζ with respect to F
and H is collision-resistant. Suppose F is XOR-NM1 and XOR-IND2ζ with re-
spect to G. Then OAEPs-clear[G,H,F|µ+ζ ] is PA2 secure. In particular, for any
adversary A that makes at most q decryption queries and p encryption queries,
there are extractor Ext, adversaries BF , BG, BH , C,D, adversary AG, CG that
makes at most q extract queries and p image queries such that for all extractors
ExtG,Ext

′
G

Advpa2
OAEPs-clear,A,Ext(k) ≤ 3 ·Adv

η-ext2ζ
G,F,AG,ExtG(k) + 9p ·Adv

xor-ind2ζ
F,G,C (k)

+ 6p ·Advprg
G,D(k) + 12p ·Adv

ext2ζ
G,CG,Ext′G

(k)

+ 5 ·Adv
n-crζ
G,BG(k) + 2 ·Advcr

H,BH (k) + 2p ·Advxor-nm1
F,G,BF (k)

Proof idea. Let c = (s, y) be the random ciphertext that A obtains from it’s
encryption oracle. Let c′ = (s′, y′) be the extract query made by A. Note that if
s|ζ 6= s′|ζ then we use ExtG on input s|ζ to recover r and then m. Note that if
s|ζ = s′|ζ then there is 2 cases. First, if y = y′ then we can find collision on H.
Next, if y 6= y′ then we can build an XOR-NM adversary. Note that, there are two
obstacles in the proof. First, EXT2 adversary need to simulate the encryption
oracle for PA2 adversary using its image oracle. Moreover, PA2 adversary may
query for the key-dependent messages to the encryption oracle. We were able to
enable EXT2 adversary to simulate the encryption oracle assuming G is PRG
and EXT2.
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