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Abstract. Non-interactive zero-knowledge proofs or arguments allow a
prover to show validity of a statement without further interaction. For
non-trivial statements such protocols require a setup assumption in form
of a common random or reference string (CRS). Generally, the CRS can
only be used for one statement (single-theorem zero-knowledge) such
that a fresh CRS would need to be generated for each proof. Fortu-
nately, Feige, Lapidot and Shamir (FOCS 1990) presented a transfor-
mation for any non-interactive zero-knowledge proof system that allows
the CRS to be reused any polynomial number of times (multi-theorem
zero-knowledge). This FLS transformation, however, is only known to
work for either computational zero-knowledge or requires a structured,
non-uniform common reference string.
In this paper we present FLS-like transformations that work for non-
interactive statistical zero-knowledge arguments in the common random

string model. They allow to go from single-theorem to multi-theorem
zero-knowledge and also preserve soundness, for both properties in the
adaptive and non-adaptive case. Our �rst transformation is based on the
general assumption that one-way permutations exist, while our second
transformation uses lattice-based assumptions. Additionally, we de�ne
di�erent possible soundness notions for non-interactive arguments and
discuss their relationships.

Keywords Non-interactive arguments, statistical zero-knowledge, sound-
ness, transformation, one-way permutation, lattices, dual-mode commit-
ments

1 Introduction

In a non-interactive proof for a language L the prover P shows validity of some
theorem x ∈ L via a proof π based on a common string crs chosen by some
external setup procedure. The common requirements are completeness �that
the honest prover is able to convince the veri�er V for true statements x�
and soundness �that the veri�er will not accept false statements x /∈ L from
malicious provers. Blum et al. [5] showed that such non-interactive proofs can
also be zero-knowledge [22], saying that a simulator can create a proof π on
behalf of P if it has the ability to place some trapdoor information in crs.



1.1 Flavors of Non-Interactive Zero-Knowledge

Non-interactive zero-knowledge protocols come in many variations:

� If the prover is computationally unbounded then one speaks of a NIZK proof
system whereas in arguments or argument systems the prover runs in poly-
nomial time [8].

� Zero-knowledge may be computational (NICZK) or statistical (NISZK) or
even perfect (NIPZK). Note that non-interactive statistical (or perfect) zero-
knowledge for NP requires that the prover is computationally bounded, un-
less the polynomial hierarchy collapses [31].

� The common string crs may be uniformly distributed over all bit strings of
a certain length, in which case one speaks of the common random string or,
less frequently, of the uniform reference string model. In any other case the
string may have more structure and one calls it a common reference string
or, sometimes, also public parameter model. In this work, we will focus on
the case where the crs is uniformly distributed.

Another important aspect is the question of when malicious parties choose
their challenge statement x. Both zero-knowledge and soundness come in an
adaptive and in a non-adaptive version. The adaptive versions say that the ad-
versary may choose the statement x after having seen the common reference
string. For zero-knowledge this means that the simulator must prepare crs inde-
pendently of x and then �nd a valid proof π after learning a maliciously chosen
x ∈ L. Adaptive soundness says that the malicious prover P∗ �rst receives crs
and then tries to �nd a false statement x /∈ L with a convincing proof π.

Remarkably, for soundness one usually merely distinguishes between non-
adaptive and adaptive notions. But there are also di�erent ways how to capture
the fact that a malicious prover P∗ needs to succeed for an invalid statement
x /∈ L. Either one assumes that the prover only outputs invalid statements, thus
excluding some adversaries, or one penalizes the prover and declares it to lose if
it chooses some x ∈ L.1 The penalizing de�nition implies the exclusive one. We
note that Arte and Bellare [3], in a concurrent work, have proposed a similar
distinction between exclusive and penalizing soundness.

Both notions, exclusive and penalizing soundness, already appeared implic-
itly in the literature, e.g., the work by Blum et al. [7] gives both an adaptive and a
non-adaptive soundness de�nition in the exclusive setting. Indeed, non-adaptive
soundness in the literature is often cast in this style. In contrast, for adap-
tive soundness nowadays one often encounters the penalizing variant. It seems,
however, that the adaptive/exclusive version is already su�cient for many ap-
plications, e.g., to build universally composable NIZK protocols [26]. We discuss
this in more detail in Section 3 when de�ning the di�erent versions.

1 We use here the terminology from [4] for the comparable scenario of admissible
decryption queries in chosen-ciphertext security.
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1.2 From Single-Theorem to Multi-Theorem Proofs

In this work we focus on another important property of NIZK, namely, if the
crs can be used only once (bounded or single-theorem) or is applicable for many
proofs (unbounded or multi-theorem). The latter is of course preferable, and
indeed Feige et al. [17,18] show how to generally turn single-theorem NICZK
proofs and arguments into multi-theorem zero-knowledge protocols. We call this
the FLS-transformation.

The idea of the FLS-transformation is to augment the common random string
by an extra uniformly distributed portion crsaux and let the prover for this NP-
language show that �x ∈ L or crsaux is the output of a pseudorandom generator�.
This allows the simulator to create this part crsaux pseudorandomly and use the
generator's seed as a witness for simulating the or-proof. If the original proof
is zero-knowledge, then it is also witness indistinguishable [19], and then one
cannot distinguish or-proofs generated by the genuine prover with the witness
for x from proofs created by the simulator with the witness for crsaux.

Soundness, on the other hand, is not a�ected because a random string crsaux

is not pseudorandom, except with exponentially small probability. Hence, for
invalid x the �or� of the statements x /∈ L or �crsaux is pseudorandom� would
not be satis�ed either with overwhelming probability. This implies that a prover
would still need to break soundness of the or-protocol.

The FLS-transformation, per se, is only known to work for non-interactive
computational zero-knowledge. The reason is that the pseudorandom string crsaux

of the zero-knowledge simulator is only computationally indistinguishable from
a truly random string. There exists a folklore �dual version� of the FLS-transfor-
mation for non-interactive perfect (and therefore also statistical) zero-knowledge,
where the crs contains a pseudorandom value by construction. But this trans-
formation requires a structured, non-uniformly chosen crs, whereas we are in-
terested in the setting of common random strings. For completeness, we provide
a formal description of that folklore result along our terminology in the eprint
version [20].

It is thus unclear if the FLS-transformation can be used equally smoothly
for statistical zero-knowledge in the common random string model. For exam-
ple, Peikert and Shiehian [32] recently presented a statistical zero-knowledge
argument for NP based on LWE in the common random string model, which is
only zero-knowledge for a single theorem. They therefore asked whether there
is an FLS-like transformation to achieve multi-theorem zero-knowledge in the
statistical case.

1.3 Known NISZK Constructions

There are only a few known constructions of NISZK and NIPZK protocols for the
general class NP. Groth et al. [25,26] were the �rst to give a NIPZK argument
for NP based on speci�c number-theoretic constructions over bilinear groups.
Their protocol achieves multi-theorem adaptive zero-knowledge, but only non-
adaptive/exclusive soundness (although this can be extended to some limited
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form of adaptive soundness, called adaptive culpable soundness). It is cast in
the common reference string model.

Abe and Fehr [1] later showed how to achieve NIPZK arguments for NP un-
der some form of the knowledge-of-exponent assumption. Their protocol achieves
adaptive multi-theorem zero-knowledge and is adaptively sound (in the penaliz-
ing setting). This protocol is again in the common reference string model.

Sahai and Waters [34] show how to build NIPZK arguments for NP based on
indistinguishability obfuscation and one-way functions. Their solution is adap-
tive multi-theorem zero-knowledge and non-adaptively/exclusively sound. It is
designed in the common reference string model.

Peikert and Shiehian [32] constructed NISZK arguments for NP based on
the LWE assumption. Their construction is based on the NIZK framework of
Canetti et al. [10,9] as well as Holmgren and Lombardi [27] which, among others,
constructs a non-adaptively/exclusively sound NISZK argument for NP in the
common random string model. Their protocol is adaptively zero-knowledge for
single theorems. The instantiation of Peikert and Shiehian [32] uses the LWE
assumption to implement the primitives and inherits the characteristics of the
solutions in [10,27,9].

An interesting observation, based on [11, Footnote 13], is that one should be
able to show adaptive soundness for the constructions in [9] when using the exclu-
sive notion. Noteworthy, Canetti et al. [11] merely claim non-adaptive soundness,
because for the adaptive version they switch to the penalizing variant. They de-
tail why this notion cannot be achieved with the current construction, and the
point touches precisely the di�erence between penalizing and exclusive sound-
ness. Reverting to adaptive/exclusive soundness, the construction may satisfy
this weaker level. This gives the interesting twist that the solution by Peikert
and Shiehian [32] may already be adaptively/exclusively sound, such that our
transformation lifts it from single-theorem to multi-theorem (adaptive) zero-
knowledge.

Libert et al. [29] recently showed how to build designated-veri�er statistical
zero-knowledge arguments based on the (kernel) k-linear assumption, and how
this construction can also be turned into a public veri�able NISZK argument.
Their public veri�able construction achieves multi-theorem zero-knowledge and
non-adaptive/exclusive soundness in the common reference string model.

In another work, Libert et al. [28] achieve multi-theorem zero-knowledge in
the common random string model. Their protocol provides non-adaptive/non-
uniform soundness, i.e., where one quanti�es over all inputs x /∈ L and the
crs is chosen as part of the experiment. We will later argue that in the non-
adaptive case this notion is equivalent to non-adaptive/exclusive and to non-
adaptive/penalizing soundness for non-uniform provers.

1.4 Our Results

In this work we show multiple FLS-SZK-transformations which preserve statis-
tical zero-knowledge. Moreover, they allow to preserve non-adaptive or adaptive
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Work Soundness CRS

uniform?

ZK Required

FLS* [17,18] adaptive/
penalizing

✓ computational PRGs

folklore* adaptive/
exclusive

✗ perfect PRGs

Groth et al. [25,26] non-adaptive/
exclusive

✗ perfect bilinear
groups

Abe and Fehr [1] adaptive/
penalizing

✗ perfect knowledge-of-
exponent

Sahai and Waters [34] non-adaptive/
exclusive

✗ perfect iO

Libert et al. [29] non-adaptive/
exclusive

✗ statistical k-linear

Libert et al. [28] non-adaptive/
non-uniform

✓ statistical LWE

this work*
adaptive/
exclusive

✓ statistical OWP or
LWE

adaptive/
exclusive

✓ perfect OWP+
expected
simulation

Fig. 1: Comparison of di�erent multi-theorem NIZK schemes. The entries marked
with * are actually transformations for the single-to-multi-theorem cases.

zero-knowledge and also inherit the adaptive security of soundness (in the ex-
clusive variant). In detail, we show:

� For statistical zero-knowledge we show how to transform any single-theorem
zero-knowledge NISZK argument for NP-languages into one which is a multi-
theorem zero-knowledge NISZK argument in the common random string
model. This requires only the existence of one-way permutations2.

� For perfect zero-knowledge we show that our transformation can be aug-
mented to preserve perfect zero-knowledge. This, however, comes at the cost
of having a zero-knowledge simulator which runs in expected polynomial-
time.

� Finally, we show that we can build a transformation for statistical zero-
knowledge from the Learning with Errors (LWE) assumption in the common
random string model. This transformation, in contrast to the construction
by Libert et al. [28], even works for adaptively sound NISZK arguments.
This �ts in nicely with the recent construction of statistical zero-knowledge
arguments based on LWE [32].

� Additionally, we de�ne and discuss the di�erent soundness properties for
non-interactive arguments and analyze their relationship. In particular, we

2 Note that we de�ne one-way permutations as one-way functions that are 1-1 and
length-preserving, not as a family of such functions.
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show that in the non-adaptive case, the notions of exclusive, penalizing,
and non-uniform soundness are all equivalent when considering non-uniform
provers.

Our techniques for the constructions based on general assumptions uses a
�dual� version of the original FLS-transformation. That is, instead of building
the or-language for crsaux being pseudorandom, we use that crsaux is not pseu-
dorandom. Since this is in general a coNP-language we need to make sure that
it is also in NP. We achieve this by using the Blum-Micali-Yao pseudorandom
generator [35,6] based on one-way permutations and hardcore bits, which lies in
NP ∩ coNP. Soundness for our dual FLS-transformation then follows since we
can let the malicious prover run on a pseudorandom string crsaux instead, since
this is indistinguishable for the e�cient prover in an argument. Then the or of
the two statements, x ∈ L or crsaux is not pseudorandom, is again not satis�ed.

The construction based on LWE is inspired by a primitive called dual-mode
commitment scheme, i.e., a commitment which can be either perfectly-binding
or statistically-hiding, based on the choice of how to generate the public key.
The public keys for both modes are computationally indistinguishable. We note
that the usefulness of such dual-mode commitments for non-interactive zero-
knowledge is well known, starting with the work by Groth et al. [25] where this
technique was called parameter switching, to recent e�orts like the construc-
tion of Libert et al. [29]. Most times, however, the solutions work over certain
structures and yield arguments in the common reference string model.

Here, we use a construction of Gorbunov et al. [23] to build these dual-mode
commitments where the (statistically-hiding) public key and a commitment can
be chosen as uniform bit strings. As in the FLS-transformation we extend the
CRS by a public key string pk and a random commitment string c and extend the
language to �x ∈ L or c is a commitment to 1�. For the simulator, we choose our
public key to be statistically-hiding. In our construction, a statistically-hiding
public key will be statistically close to a uniformly random string and indeed
generate a commitment to the value 1.

However, for the soundness game we exchange the public key pk for a perfectly-
binding one and change the commitment to 0, thereby forcing the malicious
prover to prove x to be in L. We emphasize that we only switch between these
modes and merely require computational indistinguishability of the di�erent
types of public keys. In particular, we do not need to rely on the SIS assumption
as considered in [23] but, as pointed out in [13], the LWE assumption su�ces.
Indeed, one could directly use Regev's LWE encryption scheme [33] which also
supports a statistically-hiding, lossy mode.

1.5 Squeezing in into Possibility and Impossibility Results

There are some known impossibility results for statistical and perfect zero-
knowledge arguments. Strictly speaking, these results do not infringe with our
results here, since we show how to transform statistical zero-knowledge argu-
ments (from single to multiple theorems) but do not give constructions. Still,
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one may wonder if the combination of our transformations with the impossibil-
ity results have any implications on potential constructions.

Abe and Fehr [1] were the �rst to show that NISZK arguments cannot be
proven to be adaptively sound via so-called direct black-box reductions, unless
the language is in P/poly. One property which such direct reductions has is that
one can use an e�cient alternative to the crs generator which in addition outputs
the simulator's trapdoor information (property II.(b) in [1]). Our construction,
however, bypasses this property because for the soundness proof it generates a
bad crs which does not have a trapdoor. In this sense, our technique indicates
that the notion of direct black-box reductions may be too restrictive.

Pass [30], using similar ideas and techniques as [1], shows that adaptive statis-
tical and perfect zero-knowledge arguments with adaptive soundness cannot be
based on hard primitives via black-box reductions. How does the result of Pass
[30] match our results? First we remark that our NIPZK is indeed adaptively
sound and adaptively zero-knowledge. But the simulator only runs in polyno-
mial time averaged over its internal randomness. Such simulators escape the
results in [30].

Yet, the most striking di�erence between the results in [1,30] and our trans-
formations lies in the distinct notions of adaptive soundness. We show that our
transformations preserve adaptive/exclusive soundness. Opposite to that, the
impossibility results of [1,30] rely on the ability of the malicious prover to occa-
sionally output theorems x ∈ L. Put di�erently, they rule out the stronger form of
adaptive/penalizing sound arguments, whereas we argue that adaptive/exclusive
soundness is preserved. As remarked above, however, adaptive/exclusive sound
arguments may still be su�cient for applications.

1.6 Concurrent Work

As mentioned earlier, Arte and Bellare [3] have touched upon the issue of di�erent
soundness notions in non-interactive proofs as well. Their starting point are dual-
mode systems in which the common reference string can be generated in two
modes, and in how far such systems allow for transference of security properties
in the di�erent modes. Our work instead focuses on the transformations for
multi-theorem statistical zero-knowledge arguments.

Arte and Bellare de�ne notions of penalizing and exclusive soundness, called
SND-P and SND-E, with which our adaptive notions for soundness coincide (for
e�cient provers).3 Remarkably, they show a separating example of their exclusive
and penalizing soundness notion in the adaptive case, under the decisional Di�e-
Hellman assumption. This example applies to our notions in the adaptive setting
as well. We complement this result by showing that the notions are equivalent
in the non-adaptive case, assuming non-uniform provers.

Another notably di�erence between the two works lies in the applications
of the di�erent soundness notions. Arte and Bellare discuss the example of the

3 Strictly speaking, their notion of exclusiveness allows for a negligible error which
could be integrated in our notion as well.
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Bellare-Goldwasser signature scheme where penalizing soundness is required and
exclusive soundness is insu�cient. We argue along the implication of culpability
that exclusive soundness may su�ce in many settings.

2 Preliminaries

An NP-relation R consists of pairs (x, ω) of theorems and witnesses where
the length of witness is polynomially bounded in the length of the theorem,
and where one can e�ciently decide membership. More formally, there exists a
polynomial-time Turing machine MR and a polynomial pR such that

R = {(x, ω) | |ω| ≤ pR(|x|) ∧MR(x, ω) = 1} .

The induced language LR is given by

LR = {x ∈ {0, 1}∗ | ∃ω : (x, ω) ∈ R} .

2.1 Non-Interactive Arguments

A non-interactive argument or proof system for an NP-relation is now a protocol
in which the setup algorithm Setup generates a common string crs which the
prover P then uses to generate a proof π for the input (x, ω). The veri�er V then
checks this proof against crs and x only. There are some length restrictions, of
course, namely that the length of the theorem x determines the length of the com-
mon string. In particular, we assume that there is a polynomial pSetup such that

crs ∈ {0, 1}pSetup(n) for any crs
$← Setup(1n). Let R(1n) = {(x, ω) ∈ R | |x| = n}

and LR(1n) = {x ∈ LR | |x| = n} denote the restriction of inputs of the relation
and language with length |x| = n such that the length of the common string for
such inputs is given by pSetup(n). Note that the veri�er can easily check that |x|
matches the security parameter n such that we can assume that this is always
the case.

We note that the string crs generated by Setup may be uniformly distributed,
in which case we speak of a common random string. It may have a di�erent
distribution, in which case we call it a common reference string. In particular,
we see a common random string as a special case of a common reference string.

The usual completeness notion of non-interactive arguments and proofs asks
that the veri�er V accepts genuine proofs π generated by the prover P for input
x ∈ LR. Soundness, on the hand, demands that the veri�er does not accept false
proofs generated by a malicious prover P∗ for inputs x /∈ LR. As explained in
the introduction there are various possibilities to de�ne soundness, which we will
discuss in Section 3, and just use one example of the possible de�nitions here.

De�nition 1 (Non-interactive Argument). A non-interactive argument for
an NP-relation R (in the common reference string model) is a triple of proba-
bilistic polynomial-time algorithms Π = (Setup,P,V) satisfying the completeness
and soundness condition:
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(Perfect) Completeness: For every n ∈ N, every (x, ω) ∈ R(1n), every crs
$←

Setup(1n), every π
$← P(1n, x, ω, crs) we have that V(1n, x, π, crs) = 1 with

probability 1.

(Non-Adaptive/Exclusive) Soundness: For every (possibly malicious) prob-
abilistic polynomial-time prover P∗ outputting only x /∈ LR there exists a
negligible function ϵ(n) such that for every n ∈ N we have

Pr[V(1n, x, π, crs) = 1] ≤ ϵ(|x|),

where the probability is over (x, st)
$← P∗(1n), crs

$← Setup(1n), as well as

π
$← P∗(1n, st, crs), and V's randomness.

We say that the argument is in the common random string model if Setup(n)
outputs uniformly distributed strings over {0, 1}pSetup(n) for every n ∈ N.

2.2 Zero-Knowledge

We next de�ne zero-knowledge with the usual notion of a simulator ZKSim. In
the non-interactive setting this algorithm has the advantage to choose the com-
mon string crs to simulate proofs. In the bounded case the distinguisher only
gets to see a single proof for a chosen theorem, where the proof is either gen-
uine or fabricated by the simulator. We simultaneously de�ne the single-theorem
and multi-theorem case where the distinguisher learns one or many (genuine or
simulated) proofs. We �rst de�ne both cases in the adaptive setting where the
distinguisher selects the theorems in dependence of the common string and of
previous proofs and in the non-adaptive case where the distinguisher chooses
the statement(s) in advance. We stress that we are interested in statistical zero-
knowledge here such that the distinguisher is unbounded, except that it can only
ask for polynomially many proofs. We also allow the simulator to run in expected
polynomial time in specially marked cases.

De�nition 2 (Statistical and Perfect Zero Knowledge). Let R be an NP-
relation and let Π = (Setup,P,V) be a non-interactive argument for R. The
argument is zero-knowledge if it satis�es one of the following properties:

Non-adaptive multi-theorem zero-knowledge: For any unbounded algorithm
D there exists a probabilistic algorithm ZKSim, the simulator, running in (ex-
pected) polynomial time, such that the advantage

AdvnaSZKΠ,ZKSim,D(1
n) := Pr

[
ExptnaSZKΠ,ZKSim,D(1

n) = 1
]
− 1

2

is negligible for polynomially bounded q, where experiment ExptnaSZKΠ,ZKSim,D(1
n)

is de�ned in Figure 2. If the advantage of any such D is always 0 then the
argument is called perfect zero-knowledge.
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ExptnaSZKΠ,ZKSim,D(1
n):

1 b
$← {0, 1}

2 (stD, x1, ω1, . . . , xq, ωq)
$← D(1n)

3 crs0
$← Setup(1n)

4 (crs1, stZKSim)
$← ZKSim(1n)

5 for i = 1..q do
6 if (xi, ωi) ∈ R then

7 πi,0
$← P(1n, xi, ωi, crs0)

8 πi,1
$← ZKSim(1n, stZKSim, xi)

9 else πi,0 ← πi,1 ← ⊥
10 d

$← D(1n, stD, π1,b, . . . , πq,b, crsb)
11 return b = d

ExptaSZK(Setup,P,V),ZKSim,D(1
n):

1 b
$← {0, 1}, q← 0, stD ← ⊥

2 crs0
$← Setup(1n)

3 (crs1, stZKSim)
$← ZKSim(1n)

4 repeat
5 q← q+ 1

6 (stD, x, ω)
$← D(1n, stD, crsb)

7 if (x, ω) ∈ R then

8 π0
$← P(1n, x, ω, crs0)

9 π1
$← ZKSim(1n, stZKSim, x)

10 else π0 ← π1 ← ⊥
11 (stD, cont, d)

$← D(1n, stD, πb)
12 until cont = false

13 return b = d

Fig. 2: Non-adaptive and adaptive statistical zero-knowledge experiments.

Adaptive multi-theorem zero knowledge: For any unbounded algorithm D

there exists a probabilistic algorithm ZKSim, the simulator, running in (ex-
pected) polynomial time, such that the advantage

AdvaSZKΠ,ZKSim,D(1
n) := Pr

[
ExptaSZKΠ,ZKSim,D(1

n) = 1
]
− 1

2

is negligible for polynomially bounded q, where experiment ExptaSZKΠ,ZKSim,D(1
n)

is de�ned in Figure 2. If the advantage of any such D is always 0 then the
argument is called perfect zero-knowledge.

The argument is single-theorem zero-knowledge of the corresponding type if the
property holds for q = 1.

De�nition 3 (Statistical Witness Indistinguishability). Let R be an NP-
relation. A non-interactive argument Π = (Setup,P,V) for R is called statistical
witness indistinguishable (NISWI) if it satis�es one of the following properties:

Non-Adaptive multi-theorem witness indistinguishability: For any un-
bounded algorithm D the advantage

AdvnaSWI
Π,D (1n) := Pr

[
ExptnaSWI

Π,D (1n) = 1
]
− 1

2

is negligible for polynomially bounded q, where the experiment ExptnaSWI
Π,D (1n)

is de�ned in Figure 3. If the advantage of any such D is always 0 then the
argument is called perfect witness indistinguishable.
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ExptnaSWI

Π,D (1n):

1 b
$← {0, 1}

2 (stD, (xi, ωi,0, ωi,1)i=1..q)
$← D(1n)

3 crs
$← Setup(1n)

4 for i = 1..q do
5 if (xi, ωi,0) ∈ R ∧ (xi, ωi,1) ∈ R
6 πi,0

$← P(1n, xi, ωi,0, crs)

7 πi,1
$← P(1n, xi, ωi,1, crs)

8 else πi,0 ← πi,1 ← ⊥
9 d

$← D(1n, stD, π1,b, . . . , πq,b, crs)

10 return b = d

ExptaSWI

Π,D (1n):

1 b
$← {0, 1}, q← 0, stD ← ⊥

2 crs
$← Setup(1n)

3 repeat
4 q← q+ 1

5 (stD, x, ω0, ω1)
$← D(1n, stD, crsb)

6 if (x, ω0) ∈ R ∧ (x, ω1) ∈ R
7 π0

$← P(1n, x, ω0, crs)

8 π1
$← P(1n, x, ω1, crs)

9 else π0 ← π1 ← ⊥
10 (stD, cont, d)

$← D(1n, stD, πb)
11 until cont = false

12 return b = d

Fig. 3: Non-adaptive and adaptive statistical witness indistinguishability exper-
iments.

Adaptive multi-theorem witness indistinguishability: For any unbounded
algorithm D the advantage

AdvaSWI
Π,D (1n) := Pr

[
ExptaSWI

Π,D (1n) = 1
]
− 1

2

is negligible for polynomially bounded q, where the experiment ExptaSWI
Π,D (1n)

is de�ned in Figure 3. If the advantage of any such D is always 0 then the
argument is called perfect witness indistinguishable.

The argument is single-theorem witness indistinguishable of the corresponding
type if the property holds for q = 1.

2.3 From Single-Theorem Zero-Knowledge to Multi-Theorem
Witness Indistinguishability

We repeat here the well known fact that zero-knowledge implies witness indis-
tinguishability, and that witness indistinguishability is closed under repetitions
[19]. We state the results here for sake of completeness and according to our
terminology in the statistical setting.

Lemma 1. Any adaptive resp. non-adaptive single-theorem NISZK argument is
also an adaptive resp. non-adaptive single-theorem NISWI argument.

Proof (Sketch). We only argue the adaptive case; the non-adaptive case follows
analogously. We can perform a game hop starting with the witness-indistinguish-
ability experiment ExptaSWI

Π,D (1n). In this hop we replace the CRS and both proofs
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π0 and π1 in each iteration by simulated ones, all created by the simulator ZKSim
without knowledge of the witnesses ω0 and ω1 but using the same trapdoor. Note
that we can view the proofs in the WI experiment as two sequentially requested
proofs in the ZK experiment, such that the SZK property ensures that this hop
is statistically indistinguishable. (In the non-adaptive case we would split each
entry (xi, ωi,0, ωi,1) in D's initial choice into two entries (xi, ωi,0) and (x, ωi,1).)

But now both proofs π0 and π1 are created without the speci�c witness, and
since the simulator does not update its state for giving proofs, the order in which
the proofs are computed is irrelevant. In this case the bit b is perfectly hidden
from the distinguisher such that the advantage in predicting b is 0. ⊓⊔

Lemma 2. Any adaptive resp. non-adaptive single-theorem NISWI argument is
also an adaptive resp. non-adaptive multi-theorem NISWI argument.

Proof (Sketch). We again only discuss the adaptive case since the non-adaptive
case follows analogously. The proof follows by a hybrid argument. For this we
reduce the multi-theorem distinguisher D to a bounded one D1 which only
makes one query. Let Q(n) be a polynomial upper bound on the number of
queries q which D makes. The bounded distinguisher D1 initially picks an in-

dex i
$← {1, 2, . . . ,Q(n)} and then internally runs in the �rst stage (Line 5) the

distinguisher D up to the i-th query (stD, x, ω0, ω1). All requested proofs up to
this step are computed internally by D1 via P and the left witness, and returned
to D. The i-th query is then computed externally, and D1 then hands the proof
back to D. In the �nal steps till halting, D1 computes the remaining proofs for
ω1, and eventually returns D's decision bit d unchanged.

It can be shown that the advantage of the bounded distinguisher D1 is at
most a factor Q(n) larger than the one of D. Since Q(n) is polynomial, the
di�erence is negligible. ⊓⊔

3 Soundness of Non-Interactive Arguments

Soundness of a non-interactive argument assures that a (computationally-bound)
malicious prover is unable to convince the veri�er of a false statement. Com-
monly, soundness is de�ned in two variants: Adaptive soundness, with allows
the (possibly malicious) prover P∗ to chose the statement to prove x before see-
ing the common random string crs, and non-adaptive soundness, in which the
prover P∗ has to decide on the statement x before the common random string
crs is generated.

Remarkably, there is another dimension of de�nitional choice for soundness
which often goes unnoticed in the literature. This dimension refers to the ques-
tion how we measure success of the malicious prover. Clearly, the malicious
prover should not make the veri�er accept for a statement x not in the language.
But there are two possibilities to capture the non-membership requirement. One
is to disallow P∗ to output x ∈ L at all. The other one is to declare P∗ to lose if
it picks x ∈ L. Following the work of Bellare et al. [4] about the question how
to deal with inadmissible decryption queries in CCA-secure encryption schemes,
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we call the former stipulation of P∗ outputting only x /∈ L exclusive, because it
excludes certain adversaries. The latter is called penalizing as it punishes P∗ if
it chooses x ∈ L.

3.1 Soundness De�nitions

In total, we de�ne �ve soundness notions: adaptive vs. non-adaptive, and ex-
clusive vs. penalizing, as well as a non-uniform variant that only exists for
the non-adaptive case. We typically speak of non-adaptive/exclusive and adap-
tive/penalizing soundness etc. to distinguish the di�erent types. Figure 4 pro-
vides an overview. It is also easy to see that adaptive soundness implies non-
adaptive soundness in both settings, and penalizing soundness implies exclusive
soundness in any of the other dimensions. The latter is easy to see because any
malicious prover P∗ breaking exclusive soundness must output x /∈ L such that
this prover also satis�es the winning condition in the penalizing setting. In this
chapter, we highlight the further connections between these de�nitions and their
implications.

The di�erence between exclusive and penalizing soundness may appear to
be insigni�cant. Indeed, for non-interactive proofs it is folklore to show that
the weakest one of the �ve notions, non-adaptive/exclusive soundness, implies
the strongest one, adaptive/penalizing soundness. See for instance [21]. This
may explain why today's literature mostly distinguishes between the (exclusive)
non-adaptive notion and the (penalizing) adaptive notion. An exception is the
seminal paper by Blum et al. [7] which de�nes the adaptive version according
to the exclusive dimension (without using our terminology here, of course). We
emphasize, however, that the equivalence of all notions is not known to hold for
non-interactive arguments.

Is a more �ne-grained distinction between exclusive and penalizing soundness
in arguments necessary? We argue that it is. Roughly, the di�erence is that in
the exclusive case the malicious prover (and any other party) knows that its
output is not in the language, in the penalizing case even the prover may itself
be oblivious about this. This is an important ingredient in Pass' impossibility
result to build adaptive sound and adaptive statistical zero-knowledge arguments
based on black-box reductions [30]. The result crucially relies on the malicious
prover choosing a (random or pseudorandom) statement for which it does not
know the status. In other words, this impossibility results rules out the strongest
form of adaptive/penalizing soundness.

We next argue that the weaker form of adaptive/exclusive soundness is very
relevant. It is easy to see that this notion implies a slightly weaker notion of
adaptive/culpable soundness [26]. This notion is similar to our de�nition of adap-
tive/exclusive soundness, but also requires the malicious prover to output an
e�ciently veri�able witness (denoted ωguilt in [26]) that the statement x is not
in the language L. Our exclusive notion asks P∗ to output x /∈ L. We prove the
implication that adaptive/exclusive yields adaptive/culpable soundness formally
in Section 3.3.
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non-adaptive adaptive

exclusive soundness:

1 // only P∗ outputting x /∈ L
2 (x, stP∗)

$← P∗(1n)

3 crs
$← Setup(1n)

4 π
$← P∗(1n, crs, stP∗)

5 return V(1n, x, π, crs)

exclusive soundness:

1 // only P∗ outputting x /∈ L
2

3 crs
$← Setup(1n)

4 (x, π)
$← P∗(1n, crs)

5 return V(1n, x, π, crs)

penalizing soundness:

1 (x, stP∗)
$← P∗(1n)

2 crs
$← Setup(1n)

3 π
$← P∗(1n, crs, stP∗)

4 return V(1n, x, π, crs) ∧ x /∈ L

penalizing soundness:

1

2 crs
$← Setup(1n)

3 (x, π)
$← P∗(1n, crs)

4 return V(1n, x, π, crs) ∧ x /∈ L

non-uniform soundness:

1 // for all x /∈ L
2 crs

$← Setup(1n)

3 π
$← P∗(1n, crs, x)

4 return V(1n, x, π, crs)

Fig. 4: Di�erent notions of soundness.

The noteworthy fact is that adaptive/culpable soundness su�ces for many
applications. One of the most important ones is the possibility to derive univer-
sally composable NIZK argument [26]. Other applications include correctness
proofs for shu�es [24,14,15] or for e-voting [12]. Since adaptive/exclusive sound-
ness implies adaptive/culpable soundness, any protocol satisfying the exclusive
notion is also applicable in such settings.

We can now de�ne arguments with the di�erent soundness properties:

De�nition 4 (Soundness of non-interactive Arguments). A non-interactive
argument for an NP-relation R (in the common reference string model) is a triple
of probabilistic polynomial-time algorithms Π = (Setup,P,V) satisfying the com-
pleteness as well as at least one of the soundness conditions:

Non-Adaptive/Exclusive Soundness: For every (possibly malicious) prob-
abilistic polynomial-time prover P∗ outputting only x /∈ LR there exists a
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negligible function ϵ(n) such that for every n ∈ N we have

Pr[V(1n, x, π, crs) = 1] ≤ ϵ(|x|),

where the probability is over (x, st)
$← P∗(1n), crs

$← Setup(1n), as well as

π
$← P∗(1n, st, crs), and V's randomness.

Non-Adaptive/Penalizing Soundness: For every (possibly malicious) prob-
abilistic polynomial-time prover P∗ there exists a negligible function ϵ(n) such
that for every n ∈ N we have

Pr[V(1n, x, π, crs) = 1 ∧ x /∈ LR] ≤ ϵ(|x|),

where the probability is over (x, st)
$← P∗(1n), crs

$← Setup(1n), as well as

π
$← P∗(1n, st, crs), and V's randomness.

Adaptive/Exclusive Soundness: For every (possibly malicious) probabilistic
polynomial-time prover P∗ outputting only x /∈ LR there exists a negligible
function ϵ(n) such that for every n ∈ N we have

Pr[V(1n, x, π, crs) = 1] ≤ ϵ(|x|),

where the probability is over crs
$← Setup(1n), (x, π)

$← P∗(1n, crs), and V's
randomness.

Adaptive/Penalizing Soundness: For every (possibly malicious) probabilis-
tic polynomial-time prover P∗ there exists a negligible function ϵ(n) such that
for every n ∈ N we have

Pr[V(1n, x, π, crs) = 1 ∧ x /∈ LR] ≤ ϵ(|x|),

where the probability is over crs
$← Setup(1n), (x, π)

$← P∗(1n, crs), and V's
randomness.

Non-Adaptive/Non-Uniform Soundness: For every (possibly malicious) prob-
abilistic polynomial-time prover P∗ there exists a negligible function ϵ(n) such
that for every n ∈ N and every x ̸∈ LR with |x| = n, we have

Pr[V(1n, x, π, crs) = 1 ∧ x /∈ LR] ≤ ϵ(|x|),

where the probability is over crs
$← Setup(1n), and π

$← P∗(1n, x, crs), and
V's randomness.

3.2 Equivalence of the Non-Adaptive Soundness Notions

We now show that the non-adaptive soundness de�nitions are all equivalent if
we allow the malicious provers to be non-uniform:

Theorem 1. For non-uniform (malicious) provers, a non-interactive argument
Π = (Setup,P,V) has non-adaptive/exclusive soundness i� it has non-adaptive/-
non-uniform soundness, and has non-adaptive/non-uniform soundness i� it has
non-adaptive/penalizing soundness.
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Proof. Non-adaptive/exclusive soundness follows directly from non-adaptive/pe-
nalizing soundness, therefore we only show that non-adaptive/non-uniform sound-
ness follows from non-adaptive/exclusive soundness and that non-adaptive/pe-
nalizing soundness follows from non-adaptive/non-uniform soundness.

We start by by showing non-adaptive/non-uniform soundness follows from
non-adaptive/exclusive soundness. Let Π = (Setup,P,V) be the non-interactive
argument in question. Assume that there exists a successful malicious prover
P∗
na/nu against the non-adaptive/non-uniform soundness, i.e., for any negligible

function ϵ(n) there exists an x /∈ L such that

Pr
[
V (crs, x,P∗

na/nu(crs, x))
]
> ϵ(|x|),

where the probability is over crs
$← Setup(1n), as well as P ∗

na/nu's and V's

randomness. We can now construct a malicious prover P∗
na/ex against non-

adaptive/exclusive soundness as follows: We de�ne the �rst-stage algorithm
P∗
na/ex,1(1

n) to choose x /∈ L of length n non-uniformly, such that P ∗
na/nu's

success probability is maximized. The state st is left empty. Further, the second-
stage algorithm P∗

na/ex,2 merely calls P∗
na/nu internally, ignoring the state st.

Then, the success probability of P∗
na/ex is at least as large as the one of P∗

na/nu

and thus non-negligible.

Next, we show that non-adaptive/penalizing soundness follows from non-
adaptive/non-uniform soundness. Assume that there exists a successful mali-
cious prover P∗

na/pn against the non-adaptive/penalizing soundness, i.e., for any
negligible function ϵ there exists an n ∈ N such that

Pr[V(crs, x, π) = 1 ∧ x /∈ L)] > ϵ(n),

where the probability is over (x, st)
$← P∗

na/pn,1(1
n), crs

$← Setup(1n), π
$←

P∗
na/pn,2 as well as V's internal randomness.

We can now construct a malicious prover P∗
na/nu against non-adaptive/non-

uniform soundness as follows: For each input length n, we �x the pair (x̄, s̄t),
x̄ ∈ {0, 1}n, x̄ /∈ L, on which P∗

na/pn,2's success probability is maximized (we
bound the length of s̄t by P∗

na/pn,1's running time). Next we de�ne P∗
na/nu as

follows: On input x, P∗
na/nu checks whether x equals x̄, and if that is the case, it

internally calls P∗
na/pn,2(crs, x̄, s̄t) to generate a proof. Otherwise, P

∗
na/nu returns

an empty proof. Note that we use the non-uniformity to save the sequence of
(x̄, s̄t) for each input length. It is again easy to see that this prover is indeed a
successful malicious prover against non-adaptive/non-uniform soundness. ⊓⊔

For adaptive soundness, Arte and Bellare [3] showed that there exists a pro-
tocol that provides adaptive/exclusive soundness but not adaptive/penalizing
soundness. This indicates that a NISZK protocol with adaptive/exclusive sound-
ness might indeed be achievable, compared to one with adaptive/penalizing
soundness, for which Pass [30] showed a black-box impossibility result.
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3.3 Exclusive Soundness Implies Culpable Soundness

In this section we show that adaptive/exclusive soundness implies the notion
of adaptive/culpable soundness of [26]. We �rst recall the de�nition of culpable
soundness (according to our terminology). For an NP-relation R let Rguilt be
an NP-relation for the complement of LR, i.e., x /∈ LR means that there is a
polynomial size ωguilt such that (x, ωguilt) ∈ Rguilt. Note that the relation Rguilt

is e�ciently veri�able as an NP-relation (and LR is therefore in co-NP).

De�nition 5 (Adaptive/Culpable Soundness). A non-interactive argument
(Setup,P,V) for an NP-relation R (in the common reference string model) has
adaptive culpable soundness if for any PPT algorithm P∗

culp there exists a negli-
gible function ϵ such that

Pr[V(1n, x, π, crs) = 1 ∧ (x, ωguilt) ∈ Rguilt] ≤ ϵ(n),

where the probability is over crs
$← Setup(1n), (x, π, ωguilt)

$← P∗
culp(1

n, crs), and
V's internal randomness.

Proposition 1. A non-interactive argument (Setup,P,V) for an NP-relation R
(in the common reference string model) which has a corresponding relation Rguilt

and is adaptive/exclusive sound is also adaptive/culpable sound.

Proof. Assume that we have a successful prover P∗
culp against culpable sound-

ness. We construct a malicious prover P∗
ex against exclusive soundness as fol-

lows. P∗
ex receives as input crs and forwards this to P∗

culp which, then, outputs
(x, π, ωguilt). Our prover P

∗
ex checks in polynomial time if (x, ωguilt) ∈ Rguilt. If

not it immediately outputs ⊥, else it returns (x, π).
Note that since we interpret outputs ⊥ as ⊥ /∈ LR our prover P∗

ex only
outputs values not in the language. It is thus an admissible attacker against
exclusive soundness. Furthermore, P∗

culp can only win for x /∈ LR such that only
outputting (x, π) for those x cannot decrease the success probability. This yields
that P∗

ex has the same success probability as P∗
culp. ⊓⊔

4 Constructions based on General Assumptions

4.1 Multi-theorem NISZK based on One-way Permutations

Our approach uses the same idea as in [17] of having crsaux, but we apply it
in a dual way. That is, we use a language saying that crsaux is not pseudoran-
dom. Since this is in general a coNP-relation we use the Blum-Micali-Yao [35,6]
generator for one-way permutations,

G(s) = f |s|(s)∥ hb(s)∥hb(f(s))∥ . . . ∥ hb(f |s|−1(x)),

where s is the seed of length |s| = n, f is a one-way permutation, f i(s) the i-fold
iteration of f for input s, and hb is a hardcore bit for f . Proving that a string
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crsaux is not in the range of G is easy if one presents the unique seed s such
that the �rst bits are equal to f |s|(s) and that the remaining bits are not the
hardcore bits.

For our simulator we can thus generate a perfectly distributed common ran-
dom string by picking s randomly, computing G(s), and randomly �ipping the
hardcore bits:

crsaux ← G(s)⊕ 0|s|∥t

where each bit ti
$← {0, 1} in t = t1∥ . . . ∥t|s| is chosen uniformly and indepen-

dently. Unless all ti's are 0 �which happens with probability 2−|s|� this gives
the simulator a witness for crsaux not being pseudorandom in form of s, t. If
t = 0|s| the we let the simulator abort. This unlikely event of all ti's being 0
causes our simulator to be statistical zero-knowledge instead of being perfect
zero-knowledge.

For the malicious prover in the soundness game we will hand over a pseu-
dorandom string G(s) instead of a truly random one. For the bounded prover
this is computationally indistinguishable. But then the prover does not have a
witness for the or-part and would thus need to break soundness of the other
protocol part for x /∈ LR. This step preserves any exclusive soundness notion
but not penalizing soundness, because we need to be able to detect diverging
success behavior of the prover in the two cases (which we may not necessarily
be able to in the penalizing setting since we cannot check if x is in the language
or not).

Below we formally de�ne the augmented language LorR as

LorR =
{
(x, y)

∣∣∣ ∃ω : (x, ω) ∈ R ∨ ∃s, t ∈ {0, 1}⌊|y|/2⌋ : y = G(s)⊕ 0|s|∥t, t ̸= 0|s|
}

and the corresponding relation Ror accordingly. Note that this is an NP-relation
such that, if we have any single-theorem statistical NIZK for general NP-relations,
then we also have an multi-theorem statistical witness-indistinguishable argu-
ment for this relation Ror.

For pseudorandomness of G we consider for any probabilistic polynomial-
time algorithm D the probability that D(1n, yb′) = b′ where the probability

is taken over b′
$← {0, 1}, y0 ← G(s) for s

$← {0, 1}n, y1
$← {0, 1}2n. Let

AdvPRGG,D (1n) := Pr [D(1n, yb′) = b′] − 1
2 be D's advantage. We say that G is a

pseudorandom generator if for any probabilistic polynomial-time algorithm D
this advantage is negligible. Note that the Blum-Micali-Yao generator based on
a one-way permutation f achieves this property.

Construction 2 (SZK-FLS-Transformation). Let R be an NP-relation. Let
f be a one-way permutation and Πor = (Setupor,Por,Vor) be a multi-theorem
non-interactive statistical witness-indistinguishable argument for the NP-relation
Ror. We construct a multi-theorem non-interactive statistical zero knowledge ar-
gument Π = (Setup,P,V) for R as follows (see also Figure 5):
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Setup(1n)

crsor
$← Setup

or(1n)

crsaux
$← {0, 1}2n

crs← crsor∥crsaux

return crs

P(1n,x,ω,crs)

// crs = crs
or∥crsaux

πor
$← P

or((x, crsaux), ω, crsor)

π ← πor

return π

V(1n,x,π,crs)

// crs = crs
or∥crsaux

d
$← V

or((x, crsaux), π, crsor)

return d

Fig. 5: SZK-FLS-Transformation for multi-theorem NISZK argument (additional
input 1n omitted for Por and Vor for space reasons).

CRS: We de�ne the sampling algorithm Setup(1n) for the common random
string crs for our construction as

Setup(1n) = Setupor(1n)∥U2n,

where U2n is the uniform distribution on all 2n-bit strings.
Prover: The prover P, receiving 1n, crs = crsor||crsaux, x and ω (for R) as

input, uses (x, crsaux) and ω for the augmented relation Ror and computes
a witness-indistinguishable proof πor for this NP-relation using the string
crsor.

Veri�er: The veri�er V receives 1n, crs = crsor∥crsaux, x, and a proof πor for
Ror. The veri�er accepts i� Vor(1n, (x, crsaux), πor, crsor) accepts.

Theorem 3. Let R be an NP-relation. Assuming that Πor = (Setupor,Por,Vor)
is a non-interactive statistical single-theorem zero-knowledge argument for Ror

and that f is a one-way permutation, the non-interactive argument system Π =
(Setup,P,V) in Construction 2 is a multi-theorem statistical zero-knowledge ar-
gument. Furthermore, if the underlying protocol Πor is (non-adaptively resp. adap-
tively) exclusively sound, then so is the derived protocol Π; if Πor is adaptive
resp. non-adaptive zero-knowledge, then so is Π.

Proof. (Perfect) Completeness: Note that the veri�er V accepts a genuine proof

πor
$← P(1n, x, ω, crs) for original data crs = crsor∥crsaux $← Setup(1n) and

x ∈ LR if and only if Vor accepts πor for (x, crsaux) under crsor. The latter is
always true since x ∈ LR such that the pair (x, crsaux) of the or-relation is also
in LorR, the output of P is given by the output of Por for valid input, and the
veri�er Vor accepts genuine proofs of Por.

Non-adaptive/Exclusive Soundness: Assume that Πor is non-adaptively/exclu-
sively sound. Our argument to show that Π, too, has this property is as follows.
We will �rst substitute the �real� common random string by one in which the
augmented component crsaux is always in the range of the pseudorandom gen-
erator G. This will be indistinguishable for the bounded prover P∗ such that
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P∗ outputs a valid proof with roughly equal probability for pseudorandom G.
In this step we exploit the property of non-adaptive/exclusive soundness that
x /∈ LR is chosen before crs. But then the or-language does not have a witness for
either part, such that the malicious prover would have to break (non-adaptive)
exclusive soundness of the protocol for Ror.

More formally, let crs be a CRS generated as described above and crsG an
arti�cial CRS generated as

crsG ← Setupor(1n)||G(s),

where s is chosen uniformly from {0, 1}n. In a �rst game hop we argue that a
successful malicious prover P∗ for such a CRS is almost as successful as for a
genuine one, that is,

Pr[V(1n, x, π, crs) = 1] ≈ Pr[V(1n, x, π, crsG) = 1]

are negligibly close, where the probability is over (x, st)
$← P∗(1n), crs

$←
Setup(1n) and π

$← P∗(1n, st, crs) and V's randomness in the �rst case, and ac-

cordingly over (x, st)
$← P∗(1n), crsG

$← Setupor(1n)||G(s), π
$← P∗(1n, st, crsG)

and V's randomness in the second case.
We show the indistinguishability by de�ning a distinguisher D against the

pseudorandom generator G. For security parameter n the distinguisher receives
a string y ∈ {0, 1}2n as input, either picked uniformly at random, or being
the output of the pseudorandom generator. The distinguisher then invokes the
prover and veri�er to decide:

D(1n, y)
(x, st)

$← P
∗(1n)

crsor
$← Setup

or(1n)

crs← crsor∥y

π
$← P

∗(1n, st, crs)

return V(1n, x, π, crs)

We claim that the distinguishing advantage bounds the di�erence between
the two games, where G0 is the original soundness game (with output 1 indicating
that P∗ has won) and G1 describes the game where we use the arti�cial string
crsG instead. Since the two games correspond syntactically to the cases that the
distinguisher receives a random y resp. a pseudorandom y we get:

Pr[G0(1
n) = 1]− Pr[G1(1

n)] ≤ 2 · AdvPRGG,D (1n).

Next we turn the malicious prover P∗ in G1 against non-adaptive/exclusive
soundness against the unbounded scheme Π into one of the same type for the
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augmented scheme Πor. Note that we are guaranteed that P∗ always outputs
x /∈ LR by assumption. Our prover P∗

or against Π
or works as follows:

P∗
or(1

n)

(x, st)
$← P

∗(1n)

s
$← {0, 1}n

crsaux ← G(s)

stor ← (st, crsaux)

return ((x, crsaux), stor)

P∗
or(1

n, stor, crs
or)

// stor = (st, crs
aux

)

crs← crsor||crsaux

π
$← P

∗(1n, st, crs)

return π

We �rst observe that, if P∗ always outputs x /∈ LR, then our prover P∗
or

always outputs (x, crsaux) /∈ LorR. This holds as the string crsaux is pseudorandom
such that neither condition of the or-language is satis�ed. In addition, P∗

or is
e�cient. Hence, P∗

or is also an admissible attacker against non-adaptive/exclusive
soundness, this time against LorR.

We conclude that, by the soundness of Πor, the success probability of prover
P∗
or must be negligible. But because P

∗
or has the same success probability as P∗

in G1 it follows that the winning probability of P∗ in G1 must also be negligible.
Since this success probability is negligibly close to the one of P∗ in G0 by the
pseudorandomness ofG, we derive that P∗ success probability against our derived
protocol Π must be negligible.

Adaptive/Exclusive Soundness: The proof in the adaptive case follows exactly as
in the non-adaptive case. Only this time P∗ chooses x /∈ LR after seeing crs. But
both the distinguisher D against the pseudorandomness D, as well as the prover
P∗
or against soundness, can assemble the common random string before P∗ selects

x. It follows as before that the probability of P∗
or against adaptive/exclusive

soundness of Πor and thus the one of P∗ against Π must be negligible.

Zero Knowledge: The simulator ZKSim works as follows: On input 1n it �rst

generates crs = crsor||crsaux, where crsor $← Setupor(1n) and crsaux is sampled as

crsaux ← G(s)⊕ 0|s|∥t

for s, t chosen uniformly from {0, 1}n. Note that since f is a permutation this
CRS has the same distribution as a truly random string. If t = 0|s| then the
simulator immediately aborts. Else it outputs crs as the common random string
and (s, t) as state stZKSim. When receiving a (valid) theorem x ∈ LR the simu-
lator runs the prover Por for Ror on input 1n, (x, crsaux), crsor and witness (s, t)
to generate a proof πor. The state remains unchanged.

By assumption,Πor is single-theorem statistical zero knowledge (either adap-
tively or non-adaptively secure). Further, by Lemma 1 it is single-theorem sta-
tistical witness indistinguishable, and by Lemma 2 also multi-theorem statistical
witness indistinguishable for the same level of adaptiveness. Therefore, whenever
ZKSim is able to �nd a valid t ̸= 0|s|, the statistical distance between genuine
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proofs by Por (for witness ω) and proofs by ZKSim resp. Por (with witness (s, t)) is
given by a negligible term ϵ(n) for any distinguisher requesting at most q proofs.
As ZKSim fails to derive t ̸= 0|s| with probability 2−n, the overall statistical dis-
tance is therefore at most ϵ(n)+2−n and thus negligible. Thus, Π = (Setup,P,V)
is multi-theorem statistical zero knowledge. We note that the protocol inherits
the notion of zero-knowledge adaptiveness from Πor. ⊓⊔

We remark that the transformation also preserves adaptive/culpable sound-
ness. For this notion the distinguisher against the pseudorandom generator in
the soundness part can check e�ciently if the prover's choice x is in the language
or not with the help of the witness ωguilt which the prover needs to output, too.

4.2 Adaptive Perfect Zero-Knowledge under Expected Poly-Time

The construction in the previous section displays a small error in the simulation,
even if we would start with a perfect zero-knowledge or witness-indistinguishable
argument. The reason is that our simulator may not generate a valid pair (s, t)
with t ̸= 0|s|. However, to preserve perfect zero-knowledge the simulator cannot
simply discard such bad pairs, else outputs of the form G(s) would not be hit
(while a uniformly chosen string may actually be in the range of G).

The solution in the single-theorem case is to use the fact that the event of
picking bad t's is very unlikely, namely, 2−n. We will now decrease the probability
further such that we can safely search for the actual witness ω for the x part in
this rare case, without violating polynomial run time on the average. For this
let pR denote the polynomial which bounds the witness length of relation R.
Then we use a pseudorandom generator G(s) as before, but we iterate the one-
way permutation f for pR(n) steps. Now the probability of picking some input
(s, t) ∈ {0, 1}n×{0, 1}pR(n) with t = 0pR(n) is 2−pR(n). Given that this happens
we let the simulator (later, after having obtained the input x) search through
all potential witnesses w ∈ {0, 1}≤pR(n) and each time check in polynomial time
qR(n) if (x,w) ∈ R. The run time of the simulator for the exhaustive search
is then bounded from above by 2 · 2pR(n) · qR(n). But since this step is only
executed with probability at most 2−pR(n) the overall run time of the simulator
remains polynomial in expectation.

If we assume that the original argument system Πor is perfectly witness in-
distinguishable for non-adaptively chosen statements, then the derived protocol
is perfectly zero-knowledge, with as simulator running in expected polynomial
time and holding either a witness s, t for the auxiliary part or a witness for
x to compute the proof. As in the statistical case, the protocol still preserves
non-adaptive/exclusive or adaptive/exclusive soundness.

The next step is to extend the above idea to multiple theorems. If we have
polynomial many statements x1, . . . , xq then we would have to search for all
witnesses to simulate the proofs if t = 0 . . . 0. But the time to search for all these
witnesses by brute force is additive and requires at most 2q · qR(n) ·2pR(n) many
steps. Hence, the expected run time is still polynomial.
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We �nally remark that our simulator only attains the simple notion of ex-
pected polynomial where we average the number of steps over the randomness of
the algorithm. It is not known if one can modify the simulator to achieve more
robust notions, such as Levin's average-time complexity.

5 A Lattice-Based Construction

The main drawbacks of the previous constructions based on general assumptions
is that they are not directly applicable to lattice-based problems because they
require a one-way permutation. In this section we therefore present a multi-
theorem extension in the common random string using dual-mode commitments,
based on the Learning-With-Errors (LWE) assumption.

5.1 Dual-Mode Commitment Schemes based on Lattices

A (non-interactive) commitment scheme consists of a probabilistic polynomial-
time algorithm to generate a public key and another probabilistic polynomial-
time algorithm which allows to commit to a message under a public key. The
scheme can be statistically-hiding (and computationally-binding), or it can be
perfectly-binding (and computationally-hiding). A dual-mode scheme has now
two key generation algorithms, one for the statistically-hiding and one for the
perfectly-binding case. Furthermore, the output of the two key generation algo-
rithms is computationally indistinguishable. To preserve statistical zero-knowl-
edge we make the additional assumption that the public key output in hiding
mode is close to uniform:

De�nition 6 (Dual-mode Commitment Scheme). A non-interactive com-
mitment scheme Γ = (GenH ,GenB ,Com) is called a dual-mode commitment
scheme if,

Statistically-Hiding Mode: The scheme (GenH ,Com) is a statistically-hiding,
computationally-binding commitment scheme. Furthermore, the output of
GenH is statistically close to the uniform distribution.

Perfectly-Binding Mode: The scheme (GenB ,Com) is a perfectly-binding, com-
putationally-hiding commitment scheme.

Indistinguishability of Modes: The random variables GenH and GenB are
computationally indistinguishable.

Note that for a dual commitment scheme, it su�ces to show that the scheme
is statistically-hiding in the hiding mode, perfectly-binding in the binding mode,
and that the modes are computationally indistinguishable. The complementary
property of the corresponding mode (with computational guarantees) follows
immediately.

For the dual-mode commitments, we will use (a stripped-o� version of) the
two homomorphic trapdoor functions de�ned by Gorbunov et al. [23]. As pointed
out in [13], these two trapdoor functions give rise to a dual-mode commitment
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scheme. It has been shown in [13] that it can be used together with a non-
interactive witness-indistinguishable proof system for bounded distance decod-
ing to build non-interactive designated-veri�er computational zero-knowledge
arguments. We will describe this dual-mode commitment scheme now in detail
and provide proof sketches based on the security proofs in [23].

The construction of the commitment scheme in [23] itself is based on the SIS
problem [2], stating that for parameters n,m = poly(n), q and βSIS it is hard to
�nd a short non-zero integer vector u (of length at most βSIS) to a given random
n × m-matrix A over Zq such that Au = 0. The noteworthy property is that
there is also a method to generate an n ×m matrix A over Zq together with a
trapdoor in a secure way. This is implemented by an algorithm TrapGen, taking
1n, 1m and q as input. Furthermore, there exists an algorithm Sam(1m, 1m, q)
which outputs a �small� matrix U ∈ Zm×m

q . As discussed in [23] it holds that
A generated by TrapGen(1n, 1m, q) is statistically close to uniform, and that A
and A ·U (sampled according to Sam) are statistically close to A and a uniform
matrix V ′. The �nal ingredient is a �xed and easy to compute matrix G ∈ Zn×m

q

for the given parameter which allows us to build the commitment scheme. We
can then commit to a value x ∈ Zq for matrix A by computing A · U + x · G.
Note that since A ·U is statistically close to a uniform matrix V ′ we obtain that
x is statistically hidden.

We note that we do not take advantage of the trapdoor property here in
our construction, but instead sample a uniform matrix A (in the hiding mode).
Moreover, as pointed out in [13], the SIS assumption is not necessary either.
The LWE assumption su�ces for our purpose, since we only need that the mode
switching is computationally indistinguishable. Indeed, the same could be al-
ready accomplished with Regev's encryption scheme [33] where one can alter to
a lossy mode. We describe the dual-commitment scheme more formally in the
following constructions:

Construction 4 (Hiding-Mode Commitment Scheme).

Key Generation GenH : We sample A ∈ Zn×m
q uniformly and set pk← A.

Commitment Com: For input pk and x ∈ Zq, we sample U ← Sam(1m, 1m, q)
and return Com(pk, x;U) = pk ·U+x ·G. To open the commitment, we reveal
x and U (or the randomness used to sample U).

Proposition 2. Construction 4 is a statistically hiding commitment scheme.

Proof. As shown in [23], we have that the following two tuples are statistically
close:

(pk, x,pk · U + x ·G) ≡s (pk, x, V
′)

where U ← Sam(1m, 1m, q) and V ′ ← Zn×m
q , i.e., the commitment is statistically

indistinguishable from a random matrix. This holds for public keys generated
by TrapGen and, since that algorithm's output is close to uniform, also for the
random matrix A. ⊓⊔
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Next we recall from [23] how we can switch to a perfectly-binding mode by
assuming the hardness of LWE. This problem states that given a matrix A and
As+ e for a small error vector e sampled from a distribution χ, recovering s is
hard [33].

Construction 5 (Binding-Mode Commitment Scheme).

Key Generation GenB: We sample A′ ← Z(n−1)×m
q uniformly and s′

$← Zn−1
q

and set

pk←
(

A′

s′A′ + e

)
,

where e is a short �noise vector� sampled from χ.
Commitment Com: The commitment is identical to the one in Construction 4.

Proposition 3. Construction 5 is a perfectly binding commitment scheme.

Proof. To show this construction is perfectly binding, it su�ces to show that we
can uniquely recover x using s. Indeed, if we know s′, we can set s = (−s′, 1)
and z = (0, . . . , 0, r) and calculate

s (pk · U + x ·G)G−1(z) = e · U ·G−1(z) + x · ⟨s, z⟩ = x · r + e′.

Note that G−1 is a polynomial-time algorithm whose existence is guaranteed by
Lemma 2.2 in [23]. For correctly chosen parameters r and e, this lets us recover
x uniquely. Now, as s does not depend on x or U , if for two pairs (x, U) and
(x′, U ′)

pk · U + x ·G = pk · U ′ + x′ ·G,

holds, then we have x = x′. ⊓⊔

Proposition 4. Assuming the LWE(q, χ)-assumption holds, Constructions 4
and 5 together form a dual-mode commitment scheme.

Proof. We start by showing that the public keys of both schemes are computa-
tionally indistinguishable. First, note that all but the last column of matrix A
are generated uniformly random (or statistically close to that) for both public
keys. Therefore, the problem is equivalent to distinguish between A′s+ e and v′

given A′, where v′ ∈ Zn
q is a uniformly random vector and s and e are sampled as

described in the scheme. However, this is exactly the decisional LWE problem.
By our assumption, the two public keys are therefore indistinguishable.

We have not yet shown that Construction 4 is computationally binding and
that Construction 5 is computationally hiding. However, we argue this follows
directly from what we have shown already. Assume Construction 5 would not be
computationally hiding, i.e., there exists an adversary that, given a public key
pk, can distinguish between a commitment to x and x′ with notable advantage.
However, in this case, we can use this adversary to distinguish the public keys
of the schemes, as Construction 4 is statistically hiding and no adversary with
notable advantage can exist here.
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Similarly, assume that Construction 4 is not computationally binding. Then,
there exists an adversary that, given a public key pk, can generate a commitment
c that opens to two values x and x′ with non-negligible probability. However, as
Construction 5 is perfectly binding, we can use such an adversary to distinguish
between public keys of the two schemes. ⊓⊔

5.2 SZK-FLS-Transformation based on Lattices

We will now de�ne our multi-theorem transformation based on the dual-mode
commitment scheme in the previous section. As before, we will use the FLS-
type transform, therefore we only need to de�ne a sampling algorithm for the
auxiliary CRS crsaux and an augmented or-relation Ror for this string.

The sampling algorithm Setupaux to generate crsaux will just generate uni-
formly random values representing a public key pk and a commitment c:

crsaux = (pk, c)← Unmq × Unmq.

Note that a random public key corresponds to the hiding-mode public key.
Technically the public key and the commitment in crsaux are matrices over

Zq, and not uniform strings as required by the common random string model.
However, we can generate random elements in Zq from uniform strings by in-
terpreting a random string of length |q| + n as an integer and mapping it to
the residue mod q. The statistically distance to a uniform element from Zq is
then exponentially small. We stress that we can also go �backwards� with this
technique. Given a random value v ∈ Zq we can add a random multiple i · q to

v for i
$← {0, 1, . . . , 2n−1} to get an (almost) uniform |q| + n bit string which

would map to v again. Hence, from now on we switch between random matrices
from Zq and uniformly random string whenever convenient.

Our relation will now ask for a given public key pk of the commitment scheme
and commitment c, both found in the common random string, if there is a matrix
U ← Sam(1m, 1m, q) resp. randomness u such that U = Sam(1m, 1m, q;u), such
that the commitment opens to 1:

((pk, c), u) ∈ Ror :⇐⇒ U = Sam(1m, 1m, q;u) ∧ c = Com(pk, 1;U).

Given these two properties we can now use the same construction as for the one-
way permutation, only that we use the relation above and the sampler Setupaux

to generate crsaux. In fact the construction is otherwise identical to the one in
Figure 5:

Construction 6 (SZK-FLS-Dual-Mode-Transformation). Let R be an NP-
relation. Further, let Γ = (GenH ,GenB ,Com) be a non-interactive dual-mode
commitment scheme and suppose that Πor = (Setupor,Por,Vor) be a multi-
theorem non-interactive statistical witness-indistinguishable argument for the NP-
relation Ror. We construct a multi-theorem non-interactive statistical zero knowl-
edge argument Π = (Setup,P,V) for R as in Figure 5 with the following excep-
tion:
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CRS: We de�ne the sampling algorithm Setup(1n) for the common random
string crs for our construction as

Setup(1n) = Setupor(1n)∥Setupaux(1n).

The prover algorithm P and veri�er algorithm V are as before.

Theorem 7. Let R be an NP-relation. Assuming that Πor = (Setupor,Por,Vor)
is a non-interactive statistical single-theorem zero-knowledge argument for Ror

and that Γ = (GenH ,GenB ,Com) is a dual-mode non-interactive commitment
scheme, the non-interactive argument Π = (Setup,P,V) in Construction 6 is a
multi-theorem statistical zero-knowledge argument. Furthermore, if the underly-
ing protocol Πor is (non-adaptively resp. adaptively) exclusively sound, then so
is the derived protocol Π; if Πor is adaptive resp. non-adaptive zero-knowledge,
then so is Π.

Proof. The proof is very close to the one of Theorem 3 such that we only sketch
the main di�erences here.

(Perfect) Completeness: It follows as in the one-way permutation case that the
honest veri�er accepts proofs generated by P for x ∈ LR.

Exclusive Soundness: To show exclusive soundness (in the non-adaptive or adap-
tive case) we �rst switch the auxiliary string to a randomly sampled binding key

pk
$← GenB(1

n) and a 0-commitment Com(pk, 0;U), instead of using uniformly
random values. Note that we can use two game hops to show that this is com-
putationally indistinguishable from genuine common random strings. In the �rst

hop we replace the random key component in crsaux by a key pk
$← GenH(1n),

which is even statistically close. Then we replace the random commitment com-
ponent in crsaux by a random commitment to 0, Com(pk, 0;U). This is again
statistically indistinguishable.

And �nally we switch to a binding key pk
$← GenB(1

n) and a 0-commitment
under this key. This is computationally indistinguishable by the indistinguisha-
bility of the dual-mode key generation. (The additional 0-commitment can be
computed easily given a hiding or binding key.) This is where we again use ex-
clusive soundness to turn a malicious prover into a distinguisher against the
dual-mode scheme, analogously to the distinguisher against the pseudorandom-
ness of the generator in the one-way permutation case.

We now have an auxiliary string which contains a binding key and a 0-
commitment, such that the or-part in the Ror cannot be satis�ed. It follows now
as before that soundness of the constructed protocol follows from the soundness
of the original non-interactive argument.

Zero-Knowledge: For adaptive multi-theorem zero-knowledge we remark that the
simulator ZKSim can create the key part in the auxiliary string as a hiding key

pk
$← GenH(1n) and the commitment part as a 1-commitment under pk. Since

the key pk and the 1-commitment are statistically close to a uniform strings,
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the simulator's string crsaux is statistically close to a uniform string. For this
string crsaux the simulator can use the randomness of the commitment as a
witness. The remaining steps in the proof are identical to the ones in the proof
of Theorem 3. ⊓⊔

6 Conclusion

We have shown how to apply the idea of the FLS transformation also for statis-
tical zero-knowledge arguments. Let us highlight two important aspects of our
transformations.

First, our transformations based on one-way permutations and on lattices
work in the common random string model and does not require any structure of
the CRS. Common reference strings have the inherent disadvantage that they
have some structure and that one needs to trust the party which generates the
string. A prominent example is the discussion about the trustworthiness of the
Zcash reference string and follow-up suggestions to use common random strings
instead, e.g., [16]. Of course, a party generating a common random string may
also impose some trust assumption, as our lattice-based solution with the implicit
trapdoor generation algorithm shows. But several measures to thwart attacks
can be implemented much easier than for structured strings. This includes the
computation of the string as the output of a hash function, or by xoring common
random strings from several sources.

The other aspect we would like to emphasize that our transformations pre-
serve adaptive security for both zero-knowledge and soundness. This does not
con�ict with black-box impossibility result for such statistical zero-knowledge
arguments [1,30], because in the course of showing adaptive soundness we have,
in passing, encountered a possibility to bypass the impossibility results. A key
observation is that one may be able to achieve adaptive soundness and zero-
knowledge if one switches to the notion of exclusive soundness. This adap-
tive/exclusive soundness implies adaptive/culpable soundness and thus su�ces
for many practical applications.
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