
Two-Party Adaptor Signatures
From Identification Schemes

Andreas Erwig1, Sebastian Faust1, Kristina Hostáková2,†, Monosij Maitra1,‡,
and Siavash Riahi1

1 Technische Universität Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

2 ETH Zürich, Switzerland
kristina.hostakova@inf.ethz.ch

Abstract. Adaptor signatures are a novel cryptographic primitive with
important applications for cryptocurrencies. They have been used to con-
struct second layer solutions such as payment channels or cross-currency
swaps. The basic idea of an adaptor signature scheme is to tie the sign-
ing process to the revelation of a secret value in the sense that, much
like a regular signature scheme, an adaptor signature scheme can au-
thenticate messages, but simultaneously leaks a secret to certain parties.
Recently, Aumayr et al. provide the first formalization of adaptor signa-
ture schemes, and present provably secure constructions from ECDSA
and Schnorr signatures. Unfortunately, the formalization and construc-
tions given in this work have two limitations: (1) current schemes are
limited to ECDSA and Schnorr signatures, and no generic transforma-
tion for constructing adaptor signatures is known; (2) they do not offer
support for aggregated two-party signing, which can significantly reduce
the blockchain footprint in applications of adaptor signatures.
In this work, we address these two shortcomings. First, we show that
signature schemes that are constructed from identification (ID) schemes,
which additionally satisfy certain homomorphic properties, can gener-
ically be transformed into adaptor signature schemes. We further pro-
vide an impossibility result which proves that unique signature schemes
(e.g., the BLS scheme) cannot be transformed into an adaptor signature
scheme. In addition, we define two-party adaptor signature schemes with
aggregatable public keys and show how to instantiate them via a generic
transformation from ID-based signature schemes. Finally, we give instan-
tiations of our generic transformations for the Schnorr, Katz-Wang and
Guillou-Quisquater signature schemes.

1 Introduction

Blockchain technologies, envisioned first in 2009 [34], have spurred enormous
interest by academia and industry. This technology puts forth a decentralized

† Research partially conducted at Technische Universität Darmstadt, Germany.
‡ Research partially conducted at Indian Institute of Technology Madras, India.

payment paradigm, where financial transactions are stored in a decentralized
data structure – often referred to as the blockchain. The main cryptographic
primitive used by blockchain systems is the one of digital signature schemes,
which allow users to authenticate payment transactions. Various different fla-
vors of digital signature schemes are used by blockchain systems, e.g., ring
signatures [39] add privacy-preserving features to cryptocurrencies [40], while
threshold signatures and multi-signatures are used for multi-factor authoriza-
tion of transactions [18].

Adaptor signatures (sometimes also referred to as scriptless scripts) are an-
other important type of digital signature scheme introduced by the cryptocur-
rency community [37] and recently formalized by Aumayr et al. [2]. In a nutshell,
adaptor signatures tie together authorization of a message and the leakage of a
secret value. Namely, they allow a signer to produce a pre-signature under her
secret key such that this pre-signature can be adapted into a valid signature by
a publisher knowing a certain secret value. If the completed signature gets pub-
lished, the signer is able to extract the embedded secret used by the publisher.

To demonstrate the concept of adaptor signatures, let us discuss the simple
example of a preimage sale which serves as an important building block in many
blockchain applications such as payment channels [6, 10, 38, 2], payment routing
in payment channel networks (PCNs) [30, 13, 33] or atomic swaps [11, 21]. As-
sume that a seller offers to reveal a preimage of a hash value h in exchange for c
coins from a concrete buyer. This is a classical instance of a fair exchange prob-
lem, which can be solved using the blockchain as follows. The buyer locks c coins
in a transaction which can be spent by another transaction if it is authorized by
the seller and contains a preimage of the hash value h.

While this solution implements the preimage sale, it has various drawbacks:
(i) The only hash functions that can be used are the ones supported by the un-
derlying blockchain. For example, the most popular blockchain-based cryptocur-
rency, Bitcoin, supports only SHA-1, SHA-256 and RIPEMD-160 [5]. This makes
the above solution unsuitable for applications like privacy-preserving payment
routing in PCNs [30, 13] that crucially rely on the preimage sale instantiated
with a homomorphic hash function. (ii) The hash value has to be fixed at the
beginning of the sale and cannot be changed later without a new transaction be-
ing posted on the blockchain. This is problematic in, e.g., generalized payment
channels [2], where users utilize the ideas from the preimage sale to repeatedly
update channel balances without any blockchain interaction. (iii) Finally, the
blockchain script is non-standard as, in addition to a signature verification, it
contains a hash preimage verification. This does not only make the transaction
more expensive but also allows parties who are maintaining the blockchain (also
known as miners) to censor transactions belonging to a preimage sale.

The concept of adaptor signatures allows us to implement a preimage sale in
a way that overcomes most of the aforementioned drawbacks. The protocol works
at a high level as follows. The buyer locks c coins in a transaction which can be
spent by a transaction authorized by both the seller and the buyer. Thereafter,
the buyer pre-signs a transaction spending the c coins with respect to the hash

2

value h. If the seller knows a preimage of h, she can adapt the pre-signature
of the buyer, attach her own signature and claim the c coins. The buyer can
then extract a preimage from the adapted signature. Hence, parties are not
restricted to the hash functions supported by the blockchain, i.e., drawback (i)
is addressed. Moreover, the buyer can pre-sign the spending transaction with
respect to multiple hash values which overcomes drawback (ii). However, the
third drawback remains. While the usage of adaptor signatures avoids the hash
preimage verification in the script, it adds a signature verification (i.e., there are
now 2 signature verifications in total) which makes this type of exchange easily
distinguishable from a normal payment transaction. Hence, the sale remains
rather expensive and censorship is not prevented.

The idea of two-party adaptor signatures is to replace the two signature
verifications by one. The transaction implementing a preimage sale then has
exactly the same format as a transaction simply transferring coins. As a result
the price (in terms of fees paid to the miners) of the preimage sale transaction is
the same as the price for a normal payment. Moreover, censorship is prevented as
miners cannot distinguish the transactions belonging to the preimage sale from
a standard payment transaction. Hence, point (iii) is fully addressed.

The idea of replacing two signatures by one has already appeared in the
literature in the context of payment channels. Namely, Malavolta et al. [30] pre-
sented protocols for two-party threshold adaptor signatures based on Schnorr
and ECDSA digital signatures. However, they did not present a standalone def-
inition for the threshold primitive and hence security for these schemes has not
been analyzed. Furthermore, the key generation of the existing threshold adaptor
signature schemes is interactive which is undesirable. Last but not least, their
constructions are tailored to Schnorr and ECDSA signature schemes and hence
is not generic. From the above points, the following natural question arises:

Is it possible to define and instantiate two-party adaptor signature schemes
with non-interactive key generation in a generic way?

1.1 Our contribution

Our main goal is to define two-party adaptor signatures and explore from which
digital signature we can instantiate this new primitive. We proceed in three steps
which we summarize below and depict in Fig. 1.

Step 1: From ID schemes to adaptor signatures. Our first goal is to determine
if there exists a specific class of signature schemes which can be generically
transformed into adaptor signatures. Given the existing Schnorr-based construc-
tion [37, 2], a natural choice is to explore signature schemes constructed in a
similar fashion. To this end, we focus on signature schemes built from identifica-
tion (ID) schemes using the Fiat-Shamir transform [25]. We show that ID-based
signature schemes satisfying certain additional properties can be transformed
to adaptor signature schemes generically. In addition to Schnorr signatures [41],
this class includes Katz-Wang and Guillou-Quisquater signatures [24, 22]. As an

3

additional result, we show that adaptor signatures cannot be built from unique
signatures, ruling out constructions from, e.g., BLS signatures [9].

Our generic transformation of adaptor signatures from ID schemes has mul-
tiple benefits. Firstly, by instantiating it with the Guillou-Quisquater siganture
scheme, we obtain the first RSA-based adaptor signature scheme. Secondly, since
Katz-Wang signatures offers tight security (under the decisional Diffie-Hellman
(DDH) assumption), and our generic transformation also achieves tight security,
our result shows how to construct adaptor signatures with a tight reduction to
the underlying DDH assumption.

Step 2: From ID schemes to two-party signatures. Our second goal is to gener-
ically transform signature schemes built from ID schemes into two-party signa-
ture schemes with aggregatable public keys. Unlike threshold signatures, these
signatures have non-interactive key generation. This means that parties can inde-
pendently generate their key pairs and later collaboratively generate signatures
that are valid under their combined public key. For our transformation, we re-
quire the signature scheme to satisfy certain aggregation properties which, as
we show, are present in the three aforementioned signature schemes. While this
transformation serves as a middle step towards our main goal of constructing
two-party adaptor signatures, we believe it is of independent interest.

Step 3: From ID schemes to two-party adaptor signatures. Finally, we define
two-party adaptor signature schemes with aggregatable public keys. In order
to instantiate this novel cryptographic primitive, we use similar techniques as
in step 1 where we “lifted” standard signature schemes to adaptor signature
schemes. More precisely, we present a transformation turning a two-party signa-
ture scheme based on an ID scheme into a two-party adaptor signature scheme.

ID
Identification Scheme

SIGID

Signature Scheme

aSIGID,R

Adaptor Signature Scheme

SIGID
2

2-Party Signature Scheme

aSIGID,R
2

2-Party Adaptor Signature Scheme

[25] Sec. 3

Sec. 4

Sec. 5

Fig. 1: Overview of our results. Full arrow represents a generic transformation,
dotted and dashed arrows represent a generic transformation which requires
additional homomorphic or aggregation properties respectively.

Remark 1. Let us point out that Fig. 1 presents our transformation steps from
signature schemes based on ID schemes to two-party adaptor signatures. Despite
the fact that we generically construct our two-party adaptor signature scheme

4

from two-party signature schemes based on ID schemes, we reduce its security
to the strong unforgeability of the underlying single party signature scheme.
Therefore, we do not need the two-party signature scheme from ID schemes
to be strongly unforgeable. This gives us a more general result than proving
security based on strong unforgeability of the two-party signature scheme from
ID schemes. We note that any ID scheme can be transformed to a signature
scheme with strong unforgeability by Bellare and Shoup [4].

Let us further mention that our security proofs are in the random oracle
model. Proving the security of our constructions and the original constructions
from [2] in the standard model remains an interesting open problem.

1.2 Related Work

Adaptor Signatures. The notion of adaptor signatures was first introduced by
Poelstra [37] and has since been used in many blockchain related applications,
such as PCNs [30], payment channel hubs [43] or atomic swaps [11]. However, the
adaptor signatures as a standalone primitive were only formalized later by Au-
mayr et al. [2], where they were used to generalize the concept of payment chan-
nels. Concurrently, Fournier [17] attempted to formalize adaptor signatures, how-
ever, as pointed out in [2], his definition is weaker than the one given in [2] and
not sufficient for certain applications. All the previously mentioned works con-
structed adaptor signatures only from Schnorr and ECDSA signatures, i.e., they
did not show generic transformations for building adaptor signature schemes.
As previously mentioned, a two-party threshold variant of adaptor signatures
was presented by Malavolta et al. [30]. Their construction requires interactive
key generation, thereby differing from our two-party adaptor signature notion.
Moreover, no standalone definition of the threshold primitive was provided.

Two works [15, 44] have recently introduced post-quantum secure adaptor
signature schemes, i.e., schemes that remain secure even in presence of an ad-
versary having access to a quantum computer. In order to achieve post-quantum
security, [15] based its scheme on standard and well-studied lattice assumptions,
namely Module-SIS and Module-LWE, while the scheme in [44] is based on lesser
known assumptions for isogenies. Both works additionally show how to construct
post-quantum secure PCNs from their respective adaptor signature schemes.

Multi-Signatures and ID Schemes. Multi-Signatures have been subject to exten-
sive research in the past (e.g., [36, 35, 23]). In a nutshell, multi-signatures allow
a set of signers to collaboratively generate a signature for a common message
such that the signature can be verified given the public key of each signer. More
recently, the notion of multi-signatures with aggregatable public keys has been
introduced [31] and worked on [8, 26], which allows to aggregate the public keys
of all signers into one single public key. We use some results from the work of
Kiltz et al. [25], which provides a concrete and modular security analysis of sig-
natures schemes from ID schemes obtained via the Fiat-Shamir transformation.
Our paper builds up on their work and uses some of their notation.

5

2 Preliminaries

In this section, we introduce notation that we use throughout this work and pre-
liminaries on adaptor signatures and identification schemes. Due to space limita-
tions, we provide formal definitions of digital signature schemes, non-interactive
zero-knowledge proofs and extractable commitments in the full version of this
paper [14].

Notation. We denote by x ←$ X the uniform sampling of x from the set X .
Throughout this paper, n denotes the security parameter. By x ← A(y) we de-
note a probabilistic polynomial time (PPT) algorithm A that on input y, outputs
x. When A is a deterministic polynomial time (DPT) algorithm, we use the no-
tation x := A(y). A function ν : N→ R is negligible in n if for every k ∈ N, there
exists n0 ∈ N s.t. for every n ≥ n0 it holds that |ν(n)| ≤ 1/nk.

Hard relation. Let R ⊆ DS × Dw be a relation with statement/witness pairs
(Y, y) ∈ DS × Dw and let the language LR ⊆ DS associated to R be defined as
LR := {Y ∈ DS | ∃y ∈ Dw s.t. (Y, y) ∈ R}. We say that R is a hard relation if:
(i) There exists a PPT sampling algorithm GenR(1n) that on input the security
parameter outputs a pair (Y, y) ∈ R; (ii) The relation R is poly-time decidable;
(iii) For all PPT adversaries A, the probability that A outputs a valid witness
y ∈ Dw for Y ∈ LR is negligible.

2.1 Adaptor Signatures

We now recall the definition of adaptor signatures, recently put forward in [2].

Definition 1 (Adaptor signature). An adaptor signature scheme w.r.t. a
hard relation R and a signature scheme SIG = (Gen,Sign,Vrfy) consists of a
tuple of four algorithms aSIGR,SIG = (pSign,Adapt, pVrfy,Ext) defined as:

pSignsk (m,Y): is a PPT algorithm that on input a secret key sk, message m ∈
{0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃.

pVrfypk (m,Y ; σ̃): is a DPT algorithm that on input a public key pk, message
m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̃, outputs a bit b.

Adaptpk (σ̃, y): is a DPT algorithm that on input a pre-signature σ̃ and witness
y, outputs a signature σ.

Extpk (σ, σ̃, Y): is a DPT algorithm that on input a signature σ, pre-signature σ̃
and statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme, besides satisfying plain digital signature cor-
rectness, should also satisfy pre-signature correctness that we formalize next.

Definition 2 (Pre-signature correctness). An adaptor signature aSIGR,SIG

satisfies pre-signature correctness, if for all n ∈N and m ∈ {0, 1}∗:

Pr

pVrfypk (m,Y ; σ̃) = 1 ∧
Vrfypk (m;σ) = 1 ∧

(Y, y′) ∈ R

∣∣∣∣∣∣
(sk , pk)← Gen(1n), (Y, y)← GenR(1n)
σ̃ ← pSignsk (m,Y), σ := Adaptpk (σ̃, y)
y′ := Extpk (σ, σ̃, Y)

 = 1.

6

An adaptor signature scheme aSIGR,SIG is called secure if it satisfies three
security properties: existential unforgeablity under chosen message attack for
adaptor signatures, pre-signature adaptability and witness extractability. Let us
recall the formal definition of these properties next.

The notion of unforgeability for adaptor signatures is similar to existential
unforgeability under chosen message attacks for standard digital signatures but
additionally requires that producing a forgery σ for some message m∗ is hard
even given a pre-signature on m∗ w.r.t. a random statement Y ∈ LR.

Definition 3 (aEUF–CMA Security). An adaptor signature scheme aSIGR,SIG

is unforgeable if for every PPT adversary A there exists a negligible function
ν such that: Pr[aSigForgeA,aSIGR,SIG

(n) = 1] ≤ ν(n), where the definition of the
experiment aSigForgeA,aSIGR,SIG

is as follows:

aSigForgeA,aSIGR,SIG
(n)

1 :Q := ∅, (sk , pk)← Gen(1n)

2 :m∗ ← AOS,OpS(pk)

3 : (Y, y)← GenR(1n), σ̃ ← pSignsk (m∗, Y)

4 :σ∗ ← AOS,OpS(σ̃, Y)

5 :return
(
m∗ 6∈ Q ∧ Vrfypk (m∗;σ∗)

)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 :Q := Q∪ {m}
3 :return σ̃

A natural requirement for an adaptor signature scheme is that any valid pre-
signature w.r.t. Y (possibly produced by a malicious signer) can be completed
into a valid signature using a witness y with (Y, y) ∈ R.

Definition 4 (Pre-signature adaptability). An adaptor signature scheme
aSIGSIG,R satisfies pre-signature adaptability, if for all n ∈ N, messages m ∈
{0, 1}∗, statement/witness pairs (Y, y) ∈ R, public keys pk and pre-signatures
σ̃ ← {0, 1}∗ we have pVrfypk (m,Y ; σ̃) = 1, then Vrfypk (m;Adaptpk (σ̃, y)) = 1.

The last property that we are interested in is witness extractability. Infor-
mally, it guarantees that a valid signature/pre-signatue pair (σ, σ̃) for mes-
sage/statement (m,Y) can be used to extract a corresponding witness y.

Definition 5 (Witness extractability). An adaptor signature scheme aSIGR

is witness extractable if for every PPT adversary A, there exists a negligible
function ν such that the following holds: Pr[aWitExtA,aSIGR,SIG

(n) = 1] ≤ ν(n),
where the experiment aWitExtA,aSIGR,SIG

is defined as follows:

aWitExtA,aSIGR,SIG
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (m∗, Y ∗)← AOS,OpS(pk)

3 : σ̃ ← pSignsk (m∗, Y ∗)

4 : σ∗ ← AOS,OpS(σ̃)

5 : y := Extpk (σ∗, σ̃, Y ∗)

6 : return (m∗ 6∈ Q ∧ (Y ∗, y) 6∈ R ∧ Vrfypk (m∗;σ∗))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 : Q := Q∪ {m}
3 : return σ̃

7

Let us stress that while the witness extractability experiment aWitExt looks
fairly similar to the experiment aSigForge, there is one crucial difference; namely,
the adversary is allowed to choose the forgery statement Y ∗. Hence, we can
assume that it knows a witness for Y ∗ and can thus generate a valid signature
on the forgery message m∗. However, this is not sufficient to win the experiment.
The adversary wins only if the valid signature does not reveal a witness for Y ∗.

2.2 Identification and Signature Schemes

In this section we recall the definition of identification schemes and how they
are transformed to signature schemes as described in [25].

Definition 6 (Canonical Identification Scheme [25]). A canonical identifi-
cation scheme ID is defined as a tuple of four algorithms ID := (IGen,P,ChSet,V).

– The key generation algorithm IGen takes the system parameters par as input
and returns secret and public key (sk , pk). We assume that pk defines the
set of challenges, namely ChSet.

– The prover algorithm P consists of two algorithms namely P1 and P2:
• P1 takes as input the secret key sk and returns a commitment R ∈ Drand

and a state St.
• P2 takes as input the secret key sk, a commitment R ∈ Drand, a challenge
h ∈ ChSet, and a state St and returns a response s ∈ Dresp.

– The verifier algorithm V is a deterministic algorithm that takes the public
key pk and the conversation transcript as input and outputs 1 (acceptance)
or 0 (rejection).

We require that for all (sk , pk) ∈ IGen(par), all (R,St) ∈ P1(sk), all h ∈ ChSet
and all s ∈ P2(sk , R, h, St), we have V(pk , R, h, s) = 1.

We recall that an identification scheme ID is called commitment-recoverable,
if V first internally calls a function V0 which recomputes R0 = V0(pk, h, s) and
then outputs 1, iff R0 = R. Using Fiat-Shamir heuristic one can transform any
identification scheme ID of the above form into a digital signature scheme SIGID.
We recall this transformation in Fig. 2 when ID is commitment-recoverable.

Gen(1n)

1 : (sk , pk)← IGen(n)

2 : return (sk , pk)

Signsk (m)

1 : (R,St)← P1(sk)

2 : h := H(R,m)

3 : s← P2(sk , R, h, St)

4 : return (h, s)

Vrfypk (m; (h, s))

1 : R := V0(pk , h, s)

2 : return h = H(R,m)

Fig. 2: SIGID: Digital signature schemes from identification schemes [25]

8

3 Adaptor Signatures from SIGID

Our first goal is to explore and find digital signature schemes which can generi-
cally be transformed to adaptor signatures. Interestingly, we observe that both
existing adaptor signature schemes, namely the Schnorr-based and the ECDSA-
based schemes, utilize the randomness used during signature generation to trans-
form digital signatures to adaptor signatures [2]. We first prove a negative result,
namely that it is impossible to construct an adaptor signature scheme from a
unique signature scheme [42, 29, 19]. Thereafter, we focus on signature schemes
constructed from identification schemes (cf. Fig. 2) and show that if the underly-
ing ID-based signature scheme SIGID satisfies certain additional properties, then
we can generically transform it into an adaptor signature scheme. To demon-
strate the applicability of our generic transformation, we show in the full version
of this paper [14] that many existing SIGID instantiations satisfy the required
properties.

3.1 Impossibility Result for Unique Signatures

An important class of digital signatures are those where the signing algorithm
is deterministic and the generated signatures are unique. Given the efficiency
of deterministic signature schemes along with numerous other advantages that
come from signatures being unique [42, 29, 19], it would be tempting to design
adaptor signatures based on unique signatures. However, we show in Thm. 1 that
if the signature scheme has unique signatures, then it is impossible to construct
a secure adaptor signature scheme from it.

Theorem 1. Let R be a hard relation and SIG = (Gen,Sign,Vrfy) be a signature
scheme with unique signatures. Then there does not exist an adaptor signature
scheme aSIGR,SIG.

Proof. We prove this theorem by contradiction. Assume there exists an adap-
tor signature scheme where the underlying signature scheme, SIG, has unique
signatures. We construct a PPT algorithm A which internally uses the adaptor
signature and breaks the hardness of R. In other words, A receives (1n, Y) as
input and outputs y, such that (Y, y) ∈ R. Below, we describe A formally.

On input (1n, Y), A proceeds as follows:

1 : Sample a new key pair (sk , pk)← Gen(1n).

2 : Choose an arbitrary message m from the signing message space.

3 : Generate a pre-signature, σ̃ ← preSignsk (m,Y).

4 : Generate a signature, σ := Signsk (m).

5 : Compute and output y := Extpk (σ, σ̃, Y).

We now show that y returned by A is indeed a witness of Y , i.e., (Y, y) ∈ R.
From the correctness of the adaptor signature scheme, we know that for any

9

y′ s.t. (Y, y′) ∈ R the signature σ′ := Adapt(σ̃, y′) is a valid signature, i.e.,
Vrfypk(m,σ′) = 1. Moreover, we know that y′′ := Extpk (σ′, σ̃, Y) is such that
(Y, y′′) ∈ R. As SIG is a unique signature scheme, this implies that σ′ = σ which
in turn implies that the witness y returned by A is y′′. Hence, A breaks the
hardness of R with probability 1.

Let us briefly discuss which signature schemes are affected by our impossi-
bility result. Unique signature schemes (also known as verifiable unpredictable
functions (VUF)) have been first introduced in [19]. Furthermore, many follow-
up works such as [32, 29] and most recently [42], have shown how to instantiate
this primitive in the standard model. Another famous example of a unique sig-
nature scheme is BLS [9]. Naturally, due to our impossibility result, an adaptor
signature scheme cannot be instantiated from these signature schemes.

3.2 Generic Transformation to Adaptor Signatures

We now describe how to generically transform a randomized digital signature
scheme SIGID from Fig. 2 into an adaptor signature scheme w.r.t. a hard relation
R. For brevity, we denote the resulting adaptor signature scheme as aSIGID,R

instead of aSIGR,SIGID . The main idea behind our transformation is to shift the
public randomness of the Sign procedure by a statement Y for the relation R
in order to generate a modified signature called a pre-signature. Using a cor-
responding witness y (i.e., (Y, y) ∈ R), the shift of the public randomness in
the pre-signature can be reversed (or adapted), in order to obtain a regular (or
full) signature. Moreover, it should be possible to extract a witness given both
the pre-signature and the full-signature. To this end, let us formalize three new
deterministic functions which we will use later in our transformation.

1. For the randomness shift, we define a function fshift : Drand×LR → Drand that
takes as input a commitment value R ∈ Drand of the identification scheme
and a statement Y ∈ LR of the hard relation, and outputs a new commitment
value R′ ∈ Drand.

2. For the adapt operation, we define fadapt : Dresp × Dw → Dresp that takes as
input a response value s̃ ∈ Dresp of the identification scheme and a witness
y ∈ Dw of the hard relation, and outputs a new response value s ∈ Dresp.

3. Finally, for witness extraction, we define fext : Dresp ×Dresp → Dw that takes
as input two response values s̃, s ∈ Dresp and outputs a witness y ∈ Dw.

Our transformation from SIGID to aSIGID,R is shown in Fig. 3.
In order for aSIGID,R to be an adaptor signature scheme, we need the functions

fshift, fadapt and fext to satisfy two properties. The first property is a homomorphic
one and relates the functions fshift and fadapt to the commitment-recoverable
component V0 and the hard relation R. Informally, for all (Y, y) ∈ R, we need
the following to be equivalent: (i) Extract the public randomness from a response
s̃ using V0 and then apply fshift to shift the public randomness by Y , and (ii)
apply fadapt to shift the secret randomness in s̃ by y and then extract the public

10

pSignsk (m,Y)

1 : (Rpre, St)← P1(sk)

2 : Rsign := fshift(Rpre, Y)

3 : h := H(Rsign,m)

4 : s̃← P2(sk , Rpre, h, St)

5 : return (h, s̃)

pVrfypk (m,Y ; (h, s̃))

1 : R̂pre := V0(pk , h, s̃)

2 : R̂sign := fshift(R̂pre, Y)

3 : b := (h = H(R̂sign,m))

4 : return b

Adaptpk ((h, s̃), y)

1 : s = fadapt(s̃, y)

2 : return (h, s)

Extpk ((h, s), (h, s̃), Y)

1 : return fext(s, s̃)

Fig. 3: Generic transformation from SIGID to a aSIGID,R scheme

IGen(n)

1 : sk ←$ Zq, pk = gsk

2 : return (sk , pk)

P1(sk)

1 : r ←$ Zq, R = gr

2 : return (R, r)

P2(sk , R, h, r)

1 : s = r + h · sk
2 : return s

V0(pk , h, s)

1 : R = gs · pk−h

2 : return (R)

Fig. 4: Schnorr signature scheme

randomness using V0. Formally, for any public key pk , any challenge h ∈ ChSet,
any response value s̃ ∈ Dresp and any statement/witness pair (Y, y) ∈ R, it must
hold that:

fshift(V0(pk , h, s̃), Y) = V0(pk , h, fadapt(s̃, y)). (1)

The second property requires that the function fext(s̃, ·) is the inverse function
of fadapt(s̃, ·) for any s̃ ∈ Dresp. Formally, for any y ∈ Dw and s̃ ∈ Dresp, we have

y = fext(fadapt(s̃, y), s̃). (2)

To give an intuition about the functions fshift, fadapt and fext and their pur-
pose, let us discuss their concrete instantiations for Schnorr signatures and show
that they satisfy Equations (1) and (2). The instantiations for Katz-Wang sig-
natures and Guillou-Quisquater signatures can be found in the full version of
this paper [14].

Example 1 (Schnorr signatures). Let G = 〈g〉 be a cyclic group of prime order
p where the discrete logarithm problem in G is hard. The functions IGen, P1, P2

and V0 for Schnorr’s signature scheme are defined in Fig. 4.

Let us consider the hard relation R = {(Y, y) | Y = gy}, i.e., group elements
and their discrete logarithms, and let us define the functions fshift, fadapt, fext as:

fshift(Y,R) := Y ·R, fadapt(s̃, y) := s̃+ y, fext(s, s̃) := s− s̃.

Intuitively, the function fshift is shifting randomness in the group while the func-
tion fadapt shifts randomness in the exponent. To prove that Eq. (1) holds, let us

11

fix an arbitrary public key pk ∈ G, a challenge h ∈ Zq, a response value s ∈ Zq
and a statement witness pair (Y, y) ∈ R, i.e, Y = gy. We have

fshift(V0(pk , h, s), Y) = fshift(g
s · pk−h, Y) = gs · pk−h · Y

= gs+y · pk−h = V0(pk , h, s+ y) = V0(pk , h, fadapt(s, y))

which is what we wanted to prove. In order to show that Eq. (2) holds, let us
fix an arbitrary witness y ∈ Zq and a response value s ∈ Zq. Then we have

fext(fadapt(s, y), s) = fext(s+ y, s) = s+ y − s = y

and hence Eq. (2) is satisfied as well.

We now show that the transformation from Fig. 3 is a secure adaptor signa-
ture scheme if functions fshift, fadapt, fext satisfying Equations (1) and (2) exist.

Theorem 2. Assume that SIGID is a SUF–CMA-secure signature scheme trans-
formed using Fig. 2, let fshift, fadapt and fext be functions satisfying the relations

from Equations (1) and (2), and R be a hard relation. Then the resulting aSIGID,R

scheme from the transformation in Fig. 3 is a secure adaptor signature scheme
in the random oracle model.

In order to prove Thm. 2, we must show that aSIGID,R satisfies pre-signature cor-
rectness, aEUF–CMA security, pre-signature adaptability and witness extractabil-
ity properties described in Defs. 2 to 5 respectively.

Lemma 1 (Pre-Signature Correctness). Under the assumptions of Thm. 2,
aSIGID,R satisfies pre-signature correctness as for Def. 2.

Proof. Let us fix an arbitrary message m and a statement witness pair (Y, y) ∈ R.
Let (sk , pk) ← Gen(1n), σ̃ ← pSignsk (m,Y), σ := Adaptpk (σ̃, y) and y′ :=
Extpk (σ, σ̃, Y). From Fig. 3 we know that σ̃ = (h, s̃), σ = (h, s) and y′ =
fext(s, s̃), where we have s := fadapt(s̃, y), s̃← P2(sk , Rpre, h, St), h := H(Rsign,m),
Rsign := fshift(Rpre, Y) and (Rpre, St)← P1(sk). We first show pVrfypk (m,Y ; σ̃) =
1. From completeness of the ID scheme, we know that V0(pk , h, s̃) = Rpre. Hence:

H(fshift(V0(pk , h, s̃), Y),m) = H(fshift(Rpre, Y),m) = H(Rsign,m) = h (3)

which is what we needed to prove. We now show that Vrfypk (m;σ) = 1. By Fig. 2,
we need to show that h = H(V0(pk , h, s),m). This follows from the property of
fshift, fadapt (cf. Eq. (1)) and Eq. (3) as follows:

H(V0(pk , h, s),m) =H(V0(pk , h, fadapt(s̃, y)),m)

(1)
=H(fshift(V0(pk , h, s̃), Y),m)

(3)
= h.

Finally, we need to show that (Y, y′) ∈ R. This follows from Eq. (2) since:

y′ = fext(s, s̃) = fext(fadapt(s̃, y), s̃)
(2)
= y.

12

Lemma 2 (aEUF–CMA-Security). Under the assumptions of Thm. 2, aSIGID,R

satisfies the aEUF–CMA security as for Def. 3.

Let us give first a high level overview of the proof. Our goal is to pro-
vide a reduction such that, given an adversary A who can win the experiment
aSigForgeA,aSIGID,R , we can build a simulator who can win the strongSigForge ex-
periment of the underlying signature or can break the hardness of the relation
R. In the first case, we check if A’s forgery σ∗ is equal to Adaptpk (σ̃, y). If so,
we use A to break the hardness of the relation R by extracting the witness
y = Ext(σ∗, σ̃, Y). Otherwise, A was able to forge a signature “unrelated” to the
pre-signature provided to it. In this case, it is used to win the strongSigForge ex-
periment. All that remains is to answer A’s signing and pre-signing queries using
strongSigForge’s signing queries. This is done by programming the random oracle
such that the full-signatures generated by the challenger in the strongSigForge
game look like pre-signatures for A.

Proof. We prove the lemma by defining a series of game hops. The modifications
for each game hop is presented in code form in the full version of this paper [14].

Game G0G0G0: This game is the original aSigForge experiment, where the adver-
sary A outputs a valid forgery σ∗ for a message m of its choice, while having
access to pre-signing and signing oracles OpS and OS respectively. Being in the
random oracle model, all the algorithms of the scheme and the adversary have
access to the random oracle H. SinceG0G0G0 corresponds to aSigForge, it follows that
Pr[aSigForgeA,aSIGID,R(n) = 1] = Pr[G0G0G0 = 1].
Game G1G1G1: This game works as G0G0G0 except when the adversary outputs a forgery
σ∗, the game checks if adapting the pre-signature σ̃ using the secret witness y
results in σ∗. If so, the game aborts.

Claim. Let Bad1 be the event where G1G1G1 aborts. Then Pr[Bad1] ≤ ν1(n), where
ν1 is a negligible function in n.

Proof: This claim is proven by a reduction to the relation R. We construct a
simulator S which breaks the hardness of R using A that causesG1G1G1 to abort with
non-negligible probability. The simulator receives a challenge Y ∗, and generates
a key pair (sk , pk)← Gen(1n) in order to simulate A’s queries to the oracles H,
OpS and OS. This simulation of the oracles work as described in G1G1G1.

Upon receiving the challenge message m∗ fromA, S computes a pre-signature
σ̃ ← pSignsk (m∗, Y ∗) and returns the pair (σ̃, Y) to the adversary. Upon A
outputting a forgery σ∗ and assuming that Bad1 happened (i.e., Adapt(σ̃, y) =
σ), pre-signature correctness (Def. 2) implies that the simulator can extract y∗

by executing Ext(σ∗, σ̃, Y ∗) in order to obtain (Y ∗, y∗) ∈ R.
We note that the view of A in this simulation and inG1G1G1 are indistinguishable,

since the challenge Y ∗ is an instance of the hard relation R and has the same
distribution to the public output of GenR. Therefore, the probability that S
breaks the hardness of R is equal to the probability that the event Bad1 happens.
Hence, we conclude that Bad1 only happens with negligible probability. �

13

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds
that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(n).

Game G2G2G2: This game is similar to the previous game except for a modification
in the OpS oracle. After the execution of preSignsk , the oracle obtains a pre-
signature σ̃ from which it extracts the randomness Rpre ← V0(pk , σ̃). The oracle
computes Rsign = fshift(Rpre, Y) and checks ifH was already queried on the inputs
Rpre‖m or Rsign‖m before the execution of pSignsk . In this case the game aborts.

Claim. Let Bad2 be the event that G2G2G2 aborts in OpS. Then Pr[Bad2] ≤ ν2(n),
where ν2 is a negligible function in n.

Proof: We first recall that the output of P1 (i.e., Rpre) is uniformly random from
a super-polynomial set of size q in the security parameter. From this it follows
that Rsign is distributed uniformly at random in the same set. Furthermore, A
being a PPT algorithm, it can only make polynomially many queries to H, OS

and OpS oracles. Denoting ` as the total number of queries to H, OS and OpS,
we have: Pr[Bad2] = Pr[H ′[Rpre||m] 6= ⊥∨H ′[Rsign||m] 6= ⊥] ≤ 2 `q ≤ ν2(n). This
follows from the fact that ` is polynomial in the security parameter. �

Since games G2G2G2 and G1G1G1 are identical except in the case where Bad2 occurs,
it holds that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(n).

Game G3G3G3: In this game, upon a query to the OpS, the game produces a full-
signature instead of a pre-signature by executing Signsk instead of preSignsk .
Accordingly, it programs the random oracle H to make the full-signature “look
like” a pre-signature from the point of view of the adversary A. This is done by:

1. It sets H(Rpre‖m) to the value stored at position H(Rsign‖m).
2. It sets H(Rsign‖m) to a fresh value chosen uniformly at random.

The above programming makes sense as our definition of fshift requires it to
be deterministic and to possess the same domain and codomain with respect
to the commitment set Drand. Note further that A can only notice that H was
programmed if it was previously queried on either Rpre‖m or Rsign‖m. But as
described in the previous game, we abort if such an event happens. Hence, we
have that Pr[G2G2G2 = 1] = Pr[G3G3G3 = 1].

Game G4G4G4: In this game, we impose new checks during the challenge phase that
are same as the ones imposed in G2G2G2 during the execution of OpS.

Claim. Let Bad3 be the event that G4G4G4 aborts in the challenge phase. Then
Pr[Bad3] ≤ ν3(n), where ν3 is a negligible function in n.

Proof: The proof is identical to the proof in G2G2G2. �
It follows that Pr[G4G4G4 = 1] ≤ Pr[G3G3G3 = 1] + ν3(n).

GameG5G5G5: Similar to gameG3G3G3, we generate a signature instead of a pre-signature
in the challenge phase and program H such that the full-signature looks like a
correct pre-signature from A’s point of view. We get Pr[G5G5G5 = 1] = Pr[G4G4G4 = 1].

14

Now that the transition from the original aSigForge experiment (gameG0G0G0) to
gameG5G5G5 is indistinguishable, it only remains to show the existence of a simulator
S that can perfectly simulate G5G5G5 and uses A to win the strongSigForge game.
The modifications from games G1G1G1 - G5G5G5 and the simulation in code form can be
found in the full version of this paper [14].

We emphasize that the main differences between the simulation and Game
G5G5G5 are syntactical. Namely, instead of generating the public and secret keys and
computing the algorithm Signsk and the random oracle H, S uses its oracles
SIGID and HID. Therefore, S perfectly simulates G5G5G5. It remains to show that S
can use the forgery output by A to win the strongSigForge game.

Claim. (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: To prove this claim, we show that the tuple (m∗, σ∗) has not been returned
by the oracle SIGID before. First note that A wins the experiment if it has not
queried on the challenge message m∗ to OpS or OS. Therefore, SIGID is queried
on m∗ only during the challenge phase. If A outputs a forgery σ∗ that is equal to
the signature σ as output by SIGID, it would lose the game since this signature
is not valid given the fact that H is programmed.

Hence, SIGID has never output σ∗ when queried on m∗ before, thus making
(m∗, σ∗) a valid forgery for game strongSigForge. �

From games G0G0G0 −G5G5G5, we have that Pr[G0G0G0 = 1] ≤ Pr[G5G5G5 = 1] + ν(n), where
ν(n) = ν1(n)+ν2(n)+ν3(n) is a negligible function in n. Since S simulates game
G5G5G5 perfectly, we also have that Pr[G5G5G5 = 1] = Pr[strongSigForgeSA,SIG(n) = 1].
Combining this with the probability statement in G0G0G0, we obtain the following:

Pr[aSigForgeA,aSIGID,R(n) = 1] ≤ Pr[strongSigForgeSA,SIGID(n) = 1] + ν(n).
Recall that the negligible function ν1(n), contained in the sum ν(n) above,

precisely quantifies the adversary’s advantage in breaking the hard relation R.
Thus, the probability of breaking the unforgeability of the aSIGID,R is clearly
bounded above by that of breaking either R or the strong unforgeability of SIGID.

Lemma 3 (Pre-Signature Adaptability). Under the assumptions of Thm. 2,
aSIGID,R satisfies the pre-signature adaptability as for Def. 4.

Proof. Assume pVrfypk (m,Y ; σ̃) = 1, with the notations having their usual
meanings from Fig. 3, which means h = H(fshift(V0(pk , h, s̃), Y),m). For any
valid pair (Y, y) ∈ R, we can use the homomorphic property from Eq. (1). Then,
for such a pair (Y, y) ∈ R, plugging fshift(V0(pk , h, s̃), Y) = V0(pk , h, fadapt(s̃, y))
in the above equation implies h = H(V0(pk , h, fadapt(s̃, y)),m). This directly im-
plies Vrfypk (m;σ) = 1, where s = fadapt(s̃, y) and σ = (h, s). Therefore, adapting
the valid pre-signature would also result in a valid full-signature.

Lemma 4 (Witness Extractability). Under the assumptions of Thm. 2,
aSIGID,R satisfies the witness extractability as for Def. 5.

This proof is very similar to the proof of Lemma 2 with the mere difference
that we only need to provide a reduction to the strongSigForge experiment. This

15

is because in the aWitExtA,aSIG
Rg,SIGID

experiment, A provides the public value Y ∗

and must forge a valid full-signature σ∗ such that (Y ∗,Extpk (σ∗, σ̃, Y ∗)) 6∈ R.
The full proof can be found in the full version of this paper [14].

Remark 2. We note that our proofs for the aEUF–CMA security and witness
extractability are in its essence reductions to the strong unforgeability of the
underlying signature schemes. Yet the Fiat-Shamir transformation does not im-
mediately guarantee the resulting signature scheme to be strongly unforgeable.
However, we first note that many such signature schemes are indeed strongly
unforgeable, for instance Schnorr [25], Katz-Wang (from Chaum-Pedersen iden-
tification scheme) [24] and Guillou-Quisquater [1] signature schemes all satisfy
strong unforgeability. Moreover, one can transform any Fiat-Shamir based ex-
istentially unforgeable signature scheme into a strongly unforgeable one via the
generic transformation using the results of Bellare et.al. [4].

4 Two-party Signatures with Aggregatable Public Keys
from Identification Schemes

Before providing our definition and generic transformation for two-party adaptor
signatures, we show how to generically transform signature schemes based on
identification schemes into two-party signature schemes with aggregatable public
keys denoted by SIG2. In Sec. 5, we then combine the techniques used in this
section with the ones from Sec. 3 in order to generically transform identification
schemes into two-party adaptor signature schemes.

Informally, a SIG2 scheme allows two parties to jointly generate a signature
which can be verified under their combined public keys. An application of such
signature schemes can be found in cryptocurrencies where two parties wish to
only allow conditional payments such that both users have to sign a transaction
in order to spend some funds. Using SIG2, instead of submitting two separate
signatures, the parties can submit a single signature while enforcing the same
condition (i.e., a transaction must have a valid signature under the combined
key) and hence reduce the communication necessary with the blockchain. Im-
portantly and unlike threshold signature schemes, the key generation here is
non-interactive. In other words, parties generate their public and secret keys
independently and anyone who knows both public keys can compute the joint
public key of the two parties.

We use the notation ΠFunc〈xi,x1−i〉 to represent a two-party interactive proto-
col Func between Pi and P1−i with respective secret inputs xi, x1−i for i ∈ {0, 1}.
Furthermore, if there are common public inputs e.g., y1, · · · , yn we use the no-
tation ΠFunc〈xi,x1−i〉(y1, · · · , yn). We note that the execution of a protocol might
not be symmetric, i.e., party Pi executes the procedures ΠFunc〈xi,x1−i〉 while
party P1−i executes the procedures ΠFunc〈x1−i,xi〉.

16

4.1 Two-party Signatures with Aggregatable Public Keys

We start with defining a two-party signature scheme with aggregatable public
keys. Our definition is inspired by the definitions from prior works [8, 26, 7].

Definition 7 (Two-party Signature with Aggregatable Public Keys).
A two-party signature scheme with aggregatable public keys is a tuple of PPT pro-
tocols and algorithms SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy), formally defined as:

Setup(1n): is a PPT algorithm that on input a security parameter n, outputs
public parameters pp.

Gen(pp): is a PPT algorithm that on input public parameter pp, outputs a key
pair (sk , pk).

ΠSign〈sk i,sk1−i〉(pk0, pk1,m): is an interactive, PPT protocol that on input secret
keys sk i from party Pi with i ∈ {0, 1} and common values m ∈ {0, 1}∗ and
pk0, pk1, outputs a signature σ.

KAg(pk0, pk1): is a DPT algorithm that on input two public keys pk0, pk1, out-
puts an aggregated public key apk.

Vrfyapk (m;σ): is a DPT algorithm that on input public parameters pp, a public
key apk, a message m ∈ {0, 1}∗ and a signature σ, outputs a bit b.

The completeness property of SIG2 guarantees that if the protocol ΠSign is
executed correctly between the two parties, the resulting signature is a valid
signature under the aggregated public key.

Definition 8 (Completeness). A two-party signature with aggregatable public
keys SIG2 satisfies completeness, if for all key pairs (sk , pk)← Gen(1n) and mes-
sages m ∈ {0, 1}∗, the protocol ΠSign〈sk i,sk1−i〉(pk0, pk1,m) outputs a signature σ
to both parties P0,P1 such that Vrfyapk (m;σ) = 1 where apk := KAg(pk0, pk1).

A two-party signature scheme with aggregatable public keys should satisfy
unforgeability. At a high level, this property guarantees that if one of the two
parties is malicious, this party is not able to produce a valid signature under the
aggregated public key without cooperation of the other party. We formalize the
property through an experiment SigForgebA,SIG2

, where b ∈ {0, 1} defines which of
the two parties is corrupt. This experiment is initialized by a security parameter
n and run between a challenger C and an adversary A, which proceeds as follows.
The challenger first generates the public parameters pp by running the setup
procedure Setup(1n) as well as a signing key pair (sk1−b, pk1−b) by executing
Gen(1n), thereby simulating the honest party P1−b. Thereafter, C forwards ppC

and pk1−b to the adversary A who generates its own key pair (sk b, pk b), thereby
emulating the malicious party Pb, and submits (sk b, pk b) to C. The adversary
A additionally obtains access to an interactive and stateful signing oracle ObΠS

,

which simulates the honest party P1−b during the execution of ΠASign〈sk1−b,·〉.

Furthermore, every queried message m is stored in a query list Q.
Eventually, A outputs a forgery in form of a SIGID

2 signature σ∗ and a message
m∗. A wins the experiment if σ∗ is a valid signature for m∗ under the aggregated
public key apk := KAg(pk0, pk1) and m∗ was never queried before, i.e., m∗ 6∈ Q.
Below, we give a formal definition of the unforgeability game.

17

Definition 9 (2-EUF–CMA Security). A two-party, public key aggregatable
signature scheme SIG2 is unforgeable if for every PPT adversary A, there exists a
negligible function ν such that: for b ∈ {0, 1}, Pr[SigForgebA,SIG2

(n) = 1] ≤ ν(n),

where the experiment SigForgebA,SIG2
(n) is defined as follows:

SigForgebA,SIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (σ∗,m∗)← AO
b
ΠS

(·)
(pk1−b, skb, pkb)

5 : return
(
m∗ 6∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

ObΠS
(m)

1 : Q := Q∪ {m}

2 : σ ← ΠA
Sign〈sk1−b,·〉(pk0, pk1,m)

Remark 3 (On security definition.). There are two different approaches for mod-
eling signatures with aggregatable public keys in the literature, namely the
plain public-key model [3] (also known as key-verification model [12]) and the
knowledge-of-secret-key (KOSK) model [7]. In the plain public-key setting the
adversary chooses a key pair (sk b, pk b) and only declares the public key pk b to
the challenger in the security game. However, security proofs in this setting typ-
ically require rewinding techniques with the forking lemma. This is undesirable
for the purpose of this paper, as we aim to construct adaptor signatures and
its two-party variant generically as building blocks for further applications such
as payment channels [2]. Payment channels are proven secure in the UC frame-
work that does not allow the use of rewinding techniques in order to ensure
concurrency. Thus, the plain public-key model does not seem suitable for our
purpose. In the KOSK setting, however, the adversary outputs its (possibly ma-
liciously chosen) key pair (sk b, pk b) to the challenger. In practice this means that
the parties need to exchange zero-knowledge proofs of knowledge of their secret
key3. Similar to previous works [7, 28], we do not require the forking lemma or
rewinding in the KOSK setting and hence follow this approach.

4.2 Generic Transformation from SIGID to SIGID
2

We now give a generic transformation from SIGID schemes to two-party signature
schemes with aggregatable public keys.

At a high level, our transformation turns the signing procedure into an in-
teractive protocol which is executed between the two parties P0,P1. The main
idea is to let both parties engage in a randomness exchange protocol in order to
generate a joint public randomness which can then be used for the signing proce-
dure. In a bit more detail, to create a joint signature, each party Pi for i ∈ {0, 1}
can individually create a partial signature with respect to the joint randomness
by using the secret key sk i and exchange her partial signature with P1−i. The

3 Using techniques from [20, 16] it is possible to obtain NIZKs which allow for witness
extraction without rewinding.

18

joint randomness ensures that both partial signatures can be combined to one
jointly computed signature.

In the following, we describe the randomness exchange protocol that is exe-
cuted during the signing procedure in more detail, as our transformation heavily
relies on it. The protocol, denoted by ΠRand-Exc, makes use of two cryptographic
building blocks, namely an extractable commitment scheme C = (Gen,Com,Dec,
Extract) and a NIZK proof system NIZK = (SetupR,Prove,Verify). Consequently,
the common input to both parties P0 and P1 are the public parameters ppC of
the commitment scheme, while each party Pi takes as secret input her secret
key sk i. In the following, we give description of the ΠRand-Exc〈sk0,sk1〉(ppC, crs)
protocol and present it in a concise way in Fig. 5.

P0(ppC, crs, sk0) P1(ppC, crs, sk1)

(R0, St0)← P1(sk0)
π0 ← NIZK.Prove(crs, R0, sk0)

(c, d)← C.Com(ppC, (R0, π0))
c−−−−−−−−→ (R1, St1)← P1(sk1)

R1,π1←−−−−−−−− π1 ← NIZK.Prove(crs, R1, sk1)
d−−−−−−−−→ R′0 ← C.Dec(ppC, c, d)

If NIZK.Verify(crs, R1, π1) = 0, then abort If NIZK.Verify(crs, R′0, π0) = 0, then abort

R0, St0, R1 R1, St1, R0

Fig. 5: ΠRand-Exc Protocol

1. Party P0 generates her public randomness R0 using algorithm P1 from the
underlying ID scheme alongside a NIZK proof π0 ← NIZK.Prove(crs, R0, sk0)
that this computation was executed correctly with the corresponding secret
value sk0. P0 executes (c, d)← C.Com(pp, (R0, π0)) to commit to R0 and π0
and sends the commitment c to P1.

2. Upon receiving the commitment c from P0, party P1 generates her public
randomness R1 using algorithm P1. She also computes a NIZK proof as
π1 ← NIZK.Prove(crs, R1, sk1), which proves correct computation of R1, and
sends R1 and π1 to P0.

3. Upon receiving R1 and π1 from P1, P0 sends the opening d to her commit-
ment c to P1.

4. P1 opens the commitment in this round. At this stage, both parties check
that the received zero-knowledge proofs are valid. If the proofs are valid,
each party Pi for i ∈ {0, 1} outputs Ri, Sti, R1−i.

Our transformation can be found in Fig. 6. Note that we use a deterministic
function fcom-rand(·, ·) in step 3 in the signing protocol which combines the two
public random values R0 and R1. In step 6 of the same protocol, we assume
that the partial signatures are exchanged between the parties via the protocol
ΠExchange upon which the parties can combine them using a deterministic function
fcom-sig(·, ·) in step 7. Further, a combined signature can be verified under a
combined public key of the two parties. In more detail, to verify a combined

19

Setup(1n)

1 : ppC ← C.Gen(1n)

2 : crs← NIZK.SetupR(1n)

3 : return pp := (1n, ppC, crs)

Gen(pp)

1 : Parse pp = (1n, ppC, crs)

2 : (sk , pk ′)← IGen(n)

3 : pk := (pp, pk ′)

4 : return (sk , pk)

KAg(pk0, pk1)

1 : apk := fcom-pk(pk0, pk1)

2 : return apk

ΠSign〈sk i,sk1−i〉(pk i, pk1−i,m)

1 : Parse pk i = ((1n, ppC, crs), pk
′
i)

2 : (Ri, Sti, R1−i)← ΠRand-Exc〈ski,sk1−i〉(ppC, crs)

3 : Rsign := fcom-rand(R0, R1)

4 : h := H(Rsign,m)

5 : si ← P2(sk i, Ri, h, Sti)

6 : s1−i ← ΠExchange 〈si, s1−i〉
7 : (h, s) := fcom-sig(h, (s0, s1))

8 : return (h, s)

Vrfyapk (m; (h, s))

1 : Rsign := V0(apk , h, s)

2 : return h := H(Rsign,m)

Fig. 6: SIGID
2 : SIG2 scheme from identification scheme.

signature (h, s) := fcom-sig(h, (s0, s1)), in step 7, there must exist an additional
deterministic function fcom-pk(·, ·) (in step 1 of the KAg algorithm) such that:

Pr

Vrfyapk (m; (h, s)) = 1

∣∣∣∣∣∣
(pk0, sk0)← IGen(n), (pk1, sk1)← IGen(n)
(h, s)← ΠSign〈sk0,sk1〉(pk0, pk1,m)
apk := fcom-pk(pk0, pk1)

 = 1.

(4)

We also require that given a full signature and a secret key sk i with i ∈ {0, 1},
it is possible to extract a valid partial signature under the the public key pk1−i
of the other party. In particular, there exists a function fdec-sig(·, ·, ·) such that:

Pr

Vrfypk1−i
(m; (h, s1−i)) = 1

∣∣∣∣∣∣
(pk0, sk0)← IGen(n), (pk1, sk1)← IGen(n)
(h, s)← ΠSign〈sk0,sk1〉(pk0, pk1,m)
(h, s1−i) := fdec-sig(sk i, pk i, (h, s))

=1.

(5)

Note that equations 4 and 5 implicitly define fcom-sig through the execution
of ΠSign in the conditional probabilities.

The instantiations of these functions for Schnorr, Katz-Wang signatures and
Guillou-Quisquater signatures can be found in the full version of this paper [14].

We note the similarity between this transformation with that in Fig. 3. In
particular, both of them compute the public randomness Rsign by shifting the
original random values. Note also that running the algorithm V0 on the inputs
(pk i, h, si) would return Ri,∀i ∈ {0, 1}.

20

Below, we show that the transformation in Fig. 6 provides a secure two-party
signature with aggregatable public keys. To this end, we show that SIGID

2 satisfies
SIG2 completeness and unforgeability from Def. 8 and Def. 9, respectively.

Theorem 3. Assume that SIGID is a signature scheme based on the transfor-
mation from an identification scheme as per Fig. 2. Further, assume that the
functions fcom-sig, fcom-pk and fdec-sig satisfy the relations, Equations (4) and (5)

respectively. Then the resulting SIGID
2 scheme from the transformation in Fig. 6 is

a secure two-party signature scheme with aggregatable public keys in the random
oracle model.

Lemma 5. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 8.

Proof. The proof follows directly from Eq. 4 and the construction of KAg algo-
rithm in Fig. 6.

Lemma 6. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 9.

Proof. We prove this lemma by exhibiting a simulator S that breaks the un-
forgeability of the SIGID scheme if it has access to an adversary that can break
the unforgeability of the SIGID

2 scheme. More precisely, we show a series of games,
starting with the SigForgebA,SIG2

experiment, such that each game is computa-
tionally indistinguishable from the previous one. The last game is modified in
such a way that the simulator can use the adversary’s forgery to create its own
forgery for the unforgeability game against the SIGID scheme.

To construct this simulator, we note that the ΠRand-Exc protocol in Fig. 6
must satisfy two properties (similar to [27]). First, the commitment scheme must
be extractable for the simulator, and second, the NIZK proof used must be
simulatable. The reasons for these two properties become evident in the proof.

We prove Lemma 6 by separately considering the cases of the adversary
corrupting party P0 or party P1, respectively.

Adversary corrupts P0. In the following we give the security proof in case the
adversary corrupts party P0.
Game G0G0G0: This is the regular SigForge0A,SIG2

(n) experiment, in which the ad-
versary plays the role of party P0. In the beginning of the game, the simulator
generates the public parameters as pp ← Setup(1n). Note that the Setup proce-
dure, apart from computing crs ← NIZK.SetupR(1n), includes the execution of
C.Gen through which the simulator learns the trapdoor tr for the commitment
scheme C. Further, S generates a fresh signing key pair (sk1, pk1) ← Gen(1n),
sends pp and pk1 to A and receives the adversary’s key pair (pk0, sk0). The
simulator simulates the experiment honestly. In particular, it simulates the in-
teractive signing oracle O0

ΠS
honestly by playing the role of party P1.

Game G1G1G1: This game proceeds exactly like the previous game, with a modi-
fication in the simulation of the signing oracle. Upon A initiating the signing
protocol by calling the interactive signing oracle, S receives the commitment c
to its public randomness R0 from A. The simulator, using the trapdoor tr , then

21

extracts a randomness R′0 ← C.Extract(pp, tr , c) and computes the joint ran-
domness as Rsign ← fcom-rand(R

′
0, R1). S honestly computes the zero-knowledge

proof to its own randomness R1 and sends it to A. Upon receiving the opening
d to c from the adversary, S checks if R′0 = C.Dec(pp, c, d). If this does not hold,
S aborts, otherwise S continues to simulate the rest of the experiment honestly.

Claim. Let Bad1 be the event that G1G1G1 aborts in the signing oracle. Then, we
have Pr[Bad1] ≤ ν1(n), where ν1 is a negligible function in n.

Proof: Note that gameG1G1G1 aborts only if the extracted valueR′0 from commitment
c is not equal to the actual committed value R0 in c, i.e., if C.Extract(pp, tr , c) 6=
C.Dec(pp, c, d). By the extractability property of C this happens only with neg-
ligible probability. In other words, it holds that Pr[Bad1] ≤ ν1(n), where ν1 is a
negligible function in n. �

Game G2G2G2: This game proceeds as game G1G1G1, with a modification to the signing
oracle. Upon input message m, instead of generating its signature (h, s0) with
respect to the joint public randomness Rsign, the simulator generates it only
with respect to its own randomness R0. Further, the simulator programs the
random oracle in the following way: as in the previous game, it computes the
joint randomness Rsign and then programs the random oracle in a way such that
on input (Rsign,m) the random oracle returns h.

It is easy to see that this game is indistinguishable from G1G1G1 if the adversary
has not queried the random oracle on input (Rsign,m) before the signing query.
If, however, the adversary has issued this random oracle query before the signing
query (i.e., H(Rsign,m) 6= ⊥)), then the simulation aborts.

Claim. Let Bad2 be the event that G2G2G2 aborts in the signing oracle. Then, we
have Pr[Bad2] ≤ ν2(n), where ν2 is a negligible function in n.

Proof: We first recall that the output of P1 (i.e., Rpre) is uniformly random from
a super-polynomial set of size q in the security parameter. From this it follows
that Rsign is distributed uniformly at random in the same set. Furthermore, A
being a PPT algorithm, can only make polynomially many queries to H and
OpS oracles. Denoting ` as the total number of queries to H and OS, we have:
Pr[Bad2] = Pr[H(Rsign,m) 6= ⊥] ≤ `

q ≤ ν2(n). This follows from the fact that `
is polynomial in the security parameter. �

Game G3G3G3: In this game, the only modification as compared to the previous
game is that during the Setup procedure, the simulator executes the algorithm
(c̃rs, τ)← NIZK.Setup′R(1n) instead of crs← SetupR(1n), which allows the simu-
lator to learn the trapdoor τ . Since the two distributions {crs : crs← SetupR(1n)}
and {c̃rs : (c̃rs, τ) ← Setup′R(1n)} are indistinguishable to A except with negli-
gible probability, we have that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + ν3(n) where ν3 is a
negligible function in n.

Game G4G4G4: This game proceeds exactly like the previous game except that the
simulator does not choose its own key pair, but rather uses its signing oracle from

22

the EUF–CMA game to simulate the adversary’s interactive signing oracle O0
ΠS

.
More concretely, upon the adversary calling O0

ΠS
on message m, the simulator

calls its own signing oracle which provides a signature (h, s1) for m under secret
key sk1. Note that the simulator does not know sk1 or the secret randomness r1
used in s1. Therefore, the simulator has to additionally simulate the NIZK proof
that proves knowledge of r1 in s1. More concretely, the simulator executes πS ←
S(c̃rs, τ, R1), where R1 is the public randomness used in s1. Due to the fact that
the distributions {π : π ← Prove(c̃rs, R1, r1)} and {πS : πS ← S(c̃rs, τ, R1)} are
indistinguishable to A except with negligible probability, it holds that Pr[G3G3G3 =
1] ≤ Pr[G4G4G4 = 1] + ν4(n) where ν4 is a negligible function in n.

It remains to show that the simulator can use a valid forgery output by A to
break unforgeability of the SIGID scheme.

Claim. A valid forgery (m∗, (h∗, s∗)) output by A in game SigForgeA,SIGID
2

can

be transformed into a valid forgery (m∗, (h∗, s∗1)) in game SigForgeS,SIGID .

Proof: When A outputs a valid forgery (m∗, (h∗, s∗)), S extracts the partial sig-
nature (h∗, s∗1) by executing fdec-sig(sk0, pk0, (h

∗, s∗)) (from Eq. 5). Note that the
simulator knows the adversary’s key pair (sk0, pk0). The simulator then submits
(m∗, (h∗, s∗1)) as its own forgery to the EUF–CMA challenger. By definition, A
wins this game if it has not queried a signature on m∗ before. Thus, S has also
not queried the EUF–CMA signing oracle on m∗ before. Further, Eq. (5) implies
that (m∗, (h∗, s∗1)) is a valid forgery under the public key pk1. �

From games G0G0G0 −G4G4G4, we have that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + ν(n), where
ν(n) = ν1(n) + ν2(n) + ν3(n) + ν4(n) is a negligible function in n. Thus, we have
Pr[SigForgeA,SIGID

2
(n) = 1] ≤ Pr[SigForgeS,SIGID(n) = 1] + ν(n).

Adversary corrupts P1. In case the adversary corrupts P1, the simulator has to
simulate P0. The proof for this case follows exactly the same steps as above with
the exception that game G1G1G1 is not required. This is due to the reason that the
simulator now plays the role of the committing party in the randomness exchange
and hence does not have to extract A’s randomness from the commitment c.

5 Two-party Aggregatable Adaptor Signatures

We are now ready to formally introduce the notion of two-party adaptor signa-
tures with aggregatable public keys which we denote by aSIG2. Our definition
can be seen as a combination of the definition of adaptor signatures from Sec. 3
and the definition of two-party signatures with aggregatable public keys from
Sec. 4. Unlike the single party adaptor signatures, in aSIG2 both parties have the
role of the signer and generate pre-signatures cooperatively. Furthermore, both
parties can adapt the pre-signature given a witness value y. We note that both
the pre-signature and the full-signature are valid under the aggregated public
keys of the two parties. We formally define an aSIG2 scheme w.r.t. a SIG2 scheme
(which is in turn defined w.r.t. a SIG scheme) and a hard relation R.

23

Afterwards, we show how to instantiate our new definition. Concretely, we
present a generic transformation that turns a SIGID

2 scheme with certain ho-
momorphic properties into a two-party adaptor signatures scheme. As a SIGID

2

scheme is constructed w.r.t. a SIGID scheme (cf. Sec. 4), the construction pre-
sented in this section can implicitly transform digital signatures based on ID
schemes to two-party adaptor signatures.

The definition of a two-party adaptor signature scheme aSIG2 is similar to
the definition of a standard adaptor signature scheme as for Def. 1. The main
difference lies in the pre-signature generation. Namely, the algorithm pSign is
replaced by a protocol ΠpSign which is executed between two parties.

Definition 10 (Two-Party Adaptor Signature Scheme with Aggregat-
able Public Keys). A two-party adaptor signature scheme with aggregatable
public keys is defined w.r.t. a hard relation R and a two-party signature scheme
with aggregatable public keys SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy). It is run be-
tween parties P0,P1 and consists of a tuple aSIG2 = (ΠpSign,Adapt, pVrfy,Ext) of
efficient protocols and algorithms which are defined as follows:

ΠpSign〈sk i,sk1−i〉(pk0, pk1,m, Y): is an interactive protocol that on input secret
keys sk i from party Pi with i ∈ {0, 1} and common values public keys pk i,
message m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃.

pVrfyapk (m,Y ; σ̃): is a DPT algorithm that on input an aggregated public key
apk, a message m ∈ {0, 1}∗, a statement Y ∈ LR and a pre-signature σ̃,
outputs a bit b.

Adaptapk (σ̃, y): is a DPT algorithm that on input an aggregated public key apk,
a pre-signature σ̃ and witness y, outputs a signature σ.

Extapk (σ, σ̃, Y): is a DPT algorithm that on input an aggregated public key apk,
a signature σ, pre-signature σ̃ and statement Y ∈ LR, outputs a witness y
such that (Y, y) ∈ R, or ⊥.

We note that in aSIG2, the pVrfy algorithm enables public verifiability of the
pre-signatures, e.g., aSIG2 can be used in a three-party protocol where the third
party needs to verify the validity of the generated pre-signatrue.

In the following, we formally define properties that a two-party adaptor signa-
ture scheme with aggregatable public keys aSIG2 has to satisfy. These properties
are similar to the ones for single party adaptor signature schemes. We start by
defining two-party pre-signature correctness which, similarly to Def. 2 states that
an honestly generated pre-signature and signature are valid, and it is possible
to extract a valid witness from them.

Definition 11 (Two-Party Pre-Signature Correctness). A two-party
adaptor signature with aggregatable public keys aSIG2 satisfies two-party pre-
signature correctness, if for all n ∈ N, messages m ∈ {0, 1}∗, it holds that:

Pr


pVrfyapk (m,Y ; σ̃) = 1

∧
Vrfyapk (m;σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣
pp ← Setup(1n), (sk0, pk0)← Gen(pp)
(sk1, pk1)← Gen(pp), (Y, y)← GenR(1n)
σ̃ ← ΠpSign〈sk0,sk1〉(pk0, pk1,m, Y)
apk := KAg(pk0, pk1)
σ := Adaptapk (σ̃, y), y′ := Extapk (σ, σ̃, Y)

 = 1.

24

The unforgeability security definition is similar to Def. 9, except the adver-
sary interacts with two oracles ObΠS

,ObΠpS
in order to generate signatures and

pre-signatures, as in Def. 3. More precisely, in the aSigForgebA,aSIG2
(n) experiment

defined below, A obtains access to interactive, stateful signing and pre-signing
oracles ObΠS

and ObΠpS
respectively. Oracles ObΠS

and ObΠpS
simulate the honest

party P1−b during an execution of the protocols ΠASign〈sk1−b,·〉 and ΠApSign〈sk1−b,·〉
respectively. Similar to Def. 9, both the protocols ΠASign〈sk1−b,·〉, Π

A
pSign〈sk1−b,·〉 em-

ployed by the respective oracles ObΠS
,ObΠpS

gets an oracle access to A as well.

Definition 12 (2-aEUF–CMA Security). A two-party adaptor signature with
aggregatable public keys aSIG2 is unforgeable if for every PPT adversary A there
exists a negligible function ν such that: Pr[aSigForgeA,aSIG2

(n) = 1] ≤ ν(n), where
the experiment aSigForgeA,aSIG2

(n) is defined as follows:

aSigForgebA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : m∗ ← AO
b
ΠS

,ObΠpS (pk1−b, skb, pkb)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← ΠA
pSign〈sk1−b,·〉(m

∗, Y)

7 : σ∗ ← AO
b
ΠS

,ObΠpS (σ̃, Y)

8 : return
(
m∗ 6∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

ObΠS
(m)

1 : Q := Q∪ {m}

2 : σ ← ΠA
Sign〈sk1−b,·〉(pk0, pk1,m)

ObΠpS
(m,Y)

1 : Q := Q∪ {m}

2 : σ̃ ← ΠA
pSign〈sk1−b,·〉(pk0, pk1,m, Y)

The definition of two-party pre-signature adaptability follows Def. 4 closely.
The only difference is that in this setting the pre-signature must be valid under
the aggregated public keys.

Definition 13 (Two-Party Pre-Signature Adaptability). A two-party
adaptor signature scheme with aggregatable public keys aSIG2 satisfies two-party
pre-signature adaptability, if for all n ∈ N, messages m ∈ {0, 1}∗, statement
and witness pairs (Y, y) ∈ R, public keys pk0 and pk1, and pre-signatures σ̃ ∈
{0, 1}∗ satisfying pVrfyapk (m,Y ; σ̃) = 1 where apk := KAg(pk0, pk1), we have
Pr[Vrfyapk (m;Adaptapk (σ̃, y)) = 1] = 1.

Finally, we define two-party witness extractability.

Definition 14 (Two-Party Witness Extractability). A two-party public
key aggregatable adaptor signature scheme aSIG2 is witness extractable if for ev-
ery PPT adversary A, there exists a negligible function ν such that the following

25

holds: Pr[aWitExtA,aSIG2
(n) = 1] ≤ ν(n), where the experiment aWitExtA,aSIG2

is
defined as follows:

aWitExtbA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (m∗, Y ∗)← AO
b
ΠS

,ObΠpS (pk1−b, skb, pkb)

5 : σ̃ ← ΠA
pSign〈sk1−b,·〉(m

∗, Y ∗)

6 : σ∗ ← AO
b
ΠS

,ObΠpS (σ̃)

7 : apk := KAg(pk0, pk1), y′ := Extapk (σ∗, σ̃, Y ∗)

8 : return (m∗ 6∈ Q ∧ (Y ∗, y′) 6∈ R ∧ Vrfyapk (m∗;σ∗))

ObΠS
(m)

1 : Q := Q∪ {m}

2 : σ ← ΠA
Sign〈sk1−b,·〉(pk0, pk1,m)

ObΠpS
(m,Y)

1 : Q := Q∪ {m}

2 : σ̃ ← ΠA
pSign〈sk1−b,·〉(pk0, pk1,m, Y)

Note that the only difference between this experiment and the aSigForgeA,aSIG2

experiment is that here the adversary is allowed to choose the statement/witness
pair (Y ∗, y∗) and that the winning condition additionally requires that for the
extracted witness y′ ← Extapk (σ∗, σ̃, Y ∗) it holds that (Y ∗, y′) 6∈ R.

A two-party adaptor signature scheme with aggregatable public keys aSIG2

is called secure if it satisfies the properties 2-aEUF–CMA security, two-party pre-
signature adaptability and two-party witness extractability.

5.1 Generic transformation from SIGID
2 to aSIGID,R

2

We now present our generic transformation to achieve two-party adaptor signa-
ture schemes with aggregatable public keys from identification schemes. In its
essence, this transformation is a combination of the transformations presented in
Figs. 3 and 6. More precisely, similar to the transformation from SIGID to aSIGID,R

presented in Fig. 3, we assume the existence of functions fshift, fadapt and fext
with respect to the relation R. We then make use of the ΠRand-Exc protocol from
the transformation in Fig. 6 to let parties agree on the randomness that is going
to be used during the pre-signing process. However, unlike the transformation
in Fig. 6, the resulting randomness is shifted by a statement Y for relation R
using the function fshift. The transformation can be found in Fig. 7.

Theorem 4. Assume that SIGID is an SUF–CMA-secure signature scheme trans-
formed using Fig. 2. Let fshift, fadapt and fext be functions satisfying the rela-
tions from Equations (1) and (2), and R be a hard relation. Further, assume
that fcom-sig, fcom-pk and fdec-sig satisfy the relation from Equations (4) and (5).

Then the resulting aSIGID,R
2 scheme from the transformation in Fig. 7 is a secure

two-party adaptor signature scheme with aggregatable public keys in the random
oracle model.

26

ΠpSign〈sk0,sk1〉(pk0, pk1,m, Y)

1 : Parse pk i = ((1n, ppC, crs), pk
′
i), i ∈ {0, 1}

2 : (Ri, Sti, R1−i)← ΠRand-Exc〈ski,sk1−i〉(ppC, crs)

3 :Rpre := fcom-rand(R0, R1)

4 :Rsign := fshift(Rpre, Y), h := H(Rsign,m)

5 : s̃i ← P2(sk i, Ri, h, Sti)

6 : s̃1−i ← ΠExchange 〈s̃i, s̃1−i〉
7 : (h, s̃) := fcom-sig(h, (s̃i, s̃1−i))

8 : return (h, s̃)

pVrfyapk (m,Y ; (h, s̃))

1 : R̂pre := V0(apk , h, s̃)

2 : return h = H(fshift(R̂pre, Y),m)

Adaptpk ((h, s̃), y)

1 : return (h, fadapt(s̃, y))

Extpk ((h, s), (h, s̃), Y)

1 : return fext(s, s̃)

Fig. 7: A two-party adaptor signature scheme with aggregatable public keys
aSIGID,R

2 defined with respect to a SIGID
2 scheme and a hard relation R.

In order to prove Thm. 4, we must show that aSIGID,R
2 satisfies the pre-signature

correctness, 2-aEUF–CMA security, pre-signature adaptability and witness ex-
tractability properties as described in Defs. 11 to 14 respectively. We provide the
full proofs of the following lemmas in the full version of this paper [14] and only
mention the intuition behind the proofs here. As mentioned in the introduction
of this work, despite the fact that aSIGID,R

2 is constructed from SIGID
2 , we require

only SIGID to be SUF–CMA-secure in order to prove 2-aEUF–CMA security for
aSIGID,R

2 .

Lemma 7 (Two-Party Pre-Signature Correctness). Under the assump-

tions of Thm. 4, aSIGID,R
2 satisfies Def. 11.

The proof of Lemma 7 follows directly from Equations (1) to (3) and the
correctness of SIG2 from Lemma 5.

Lemma 8 (2-aEUF–CMA-Security). Under the assumptions of Thm. 4,

aSIGID,R
2 satisfies Def. 12.

Proof Sketch: In a nutshell the proof of this lemma is a combination of the proofs
of Lemmas 2 and 6, i.e., the proof is done by a reduction to the hardness of the
relation R and the SUF–CMA of the underlying signature scheme. During the
signing process, the challenger queries its SUF–CMA signing oracle and receives
a signature σ. As in the proof of Lemma 6, the challenger

programs the random oracle such that σ appears like a signature generated
with the combined randomness of the challenger and the adversary. Simulating
the pre-signing process is similar with the exception that before programming
the random oracle, the randomness must be shifted using the function fshift.
Finally, the challenger and the adversary generate a pre-signature σ̃∗ = (h, s̃) on
the challenge message m∗ and the adversary outputs the forgery σ∗ = (h, s). If
fext(s, s̃) returns the y generated by the challenger, as in the proof of Lemma 2,

27

the hardness of the relation R can be broken. Otherwise, using fdec-sig, it is
possible to use the forgery provided by the adversary to extract a forgery for the
SUF–CMA game.

Lemma 9 (Two-Party Pre-Signature Adaptability). Under the assump-

tions of Thm. 4, aSIGID,R
2 satisfies Def. 13.

Proof Sketch: The proof of Lemma 9 is analogous to the proof of Lemma 3.

Lemma 10 (Two-party Witness Extractability). Under the assumptions

of Thm. 4, aSIGID,R
2 satisfies Def. 14.

Proof Sketch: The proof of Lemma 10 is very similar to the proof of Lemma 8
except that the adversary chooses Y now and thus, no reduction to the hardness
of the relation R is needed.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG)
Emmy Noether Program FA 1320/1-1, by the DFG CRC 1119 CROSSING
(project S7), by the German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902) and by NSCX project (project number
CS1920241NSCX008801) on Design and Development of Blockchain based Tech-
nologies in the Department of Computer Science and Engineering, IIT Madras.

References

[1] M. Abdalla et al. “Tighter Reductions for Forward-Secure Signature
Schemes”. In: PKC 2013. 2013.

[2] L. Aumayr et al. Generalized Bitcoin-Compatible Channels. Cryptology
ePrint Archive, Report 2020/476. https://eprint.iacr.org/2020/476.
pdf. 2020.

[3] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model
and a general forking lemma”. In: ACM CCS 2006. 2006.

[4] M. Bellare and S. Shoup. “Two-Tier Signatures, Strongly Unforgeable Sig-
natures, and Fiat-Shamir Without Random Oracles”. In: PKC 2007. 2007.

[5] Bitcoin Scripts. https://en.bitcoin.it/wiki/Script#Crypto.
[6] Bitcoin Wiki: Payment Channels. https : / / en . bitcoin . it / wiki /

Payment_channels.
[7] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signa-

tures Based on the Gap-Diffie-Hellman-Group Signature Scheme”. In:
PKC 2003. 2003.

[8] D. Boneh et al. “Compact Multi-signatures for Smaller Blockchains”. In:
ASIACRYPT 2018, Part II. 2018.

28

https://eprint.iacr.org/2020/476.pdf
https://eprint.iacr.org/2020/476.pdf
https://en.bitcoin.it/wiki/Script#Crypto
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels

[9] D. Boneh et al. “Short Signatures from the Weil Pairing”. In: ASI-
ACRYPT 2001. 2001.

[10] C. Decker and R. Wattenhofer. “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels”. In: Stabilization, Safety,
and Security of Distributed Systems 2015. 2015.

[11] A. Deshpande and M. Herlihy. “Privacy-Preserving Cross-Chain Atomic
Swaps”. In: FC 2020. 2020.

[12] M. Drijvers et al. “On the Security of Two-Round Multi-Signatures”. In:
2019 IEEE Symposium on Security and Privacy. 2019.

[13] L. Eckey et al. Splitting Payments Locally While Routing Interdimension-
ally. Cryptology ePrint Archive, Report 2020/555. https : / / eprint .

iacr.org/2020/555. 2020.
[14] A. Erwig et al. Two-Party Adaptor Signatures From Identification

Schemes. Cryptology ePrint Archive, Report 2021/150. https://eprint.
iacr.org/2021/150. 2021.

[15] M. F. Esgin et al. “Post-Quantum Adaptor Signatures and Payment Chan-
nel Networks”. In: ESORICS 2020. 2020.

[16] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowl-
edge with Online Extractors”. In: CRYPTO 2005. 2005.

[17] L. Fournier. One-Time Verifiably Encrypted Signatures A.K.A. Adaptor
Signatures. https : / / github . com / LLFourn / one - time - VES / blob /

master/main.pdf. 2019.
[18] R. Gennaro et al. “Threshold-Optimal DSA/ECDSA Signatures and an

Application to Bitcoin Wallet Security”. In: ACNS 16. 2016.
[19] S. Goldwasser and R. Ostrovsky. “Invariant signatures and non-interactive

zero-knowledge proofs are equivalent”. In: Annual International Cryptology
Conference. Springer. 1992.

[20] J. Groth et al. “Perfect Non-interactive Zero Knowledge for NP”. In: EU-
ROCRYPT 2006. 2006.

[21] J. Gugger. Bitcoin–Monero Cross-chain Atomic Swap. Cryptology ePrint
Archive, Report 2020/1126. https://eprint.iacr.org/2020/1126.
2020.

[22] L. C. Guillou and J.-J. Quisquater. “A “Paradoxical” Indentity-Based Sig-
nature Scheme Resulting from Zero-Knowledge”. In: CRYPTO’88. 1990.

[23] T. Hardjono and Y. Zheng. “A practical digital multisignature scheme
based on discrete logarithms (extended abstract)”. In: Advances in Cryp-
tology — AUSCRYPT ’92. 1993.

[24] J. Katz and N. Wang. “Efficiency Improvements for Signature Schemes
with Tight Security Reductions”. In: ACM CCS 2003. 2003.

[25] E. Kiltz et al. “Optimal Security Proofs for Signatures from Identification
Schemes”. In: CRYPTO 2016, Part II. 2016.

[26] D.-P. Le et al. DDH-based Multisignatures with Public Key Aggregation.
Cryptology ePrint Archive, Report 2019/771. https://eprint.iacr.

org/2019/771. 2019.

29

https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2021/150
https://eprint.iacr.org/2021/150
https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://eprint.iacr.org/2020/1126
https://eprint.iacr.org/2019/771
https://eprint.iacr.org/2019/771

[27] Y. Lindell. “Fast Secure Two-Party ECDSA Signing”. In: CRYPTO 2017,
Part II. 2017.

[28] S. Lu et al. “Sequential Aggregate Signatures and Multisignatures Without
Random Oracles”. In: EUROCRYPT 2006. 2006.

[29] A. Lysyanskaya. “Unique signatures and verifiable random functions from
the DH-DDH separation”. In: Annual International Cryptology Confer-
ence. Springer. 2002.

[30] G. Malavolta et al. “Anonymous Multi-Hop Locks for Blockchain Scala-
bility and Interoperability”. In: NDSS 2019. 2019.

[31] G. Maxwell et al. “Simple Schnorr multi-signatures with applications to
Bitcoin”. In: Designs, Codes and Cryptography 2019 (2019).

[32] S. Micali et al. “Verifiable Random Functions”. In: 40th FOCS. 1999.
[33] A. Miller et al. “Sprites and State Channels: Payment Networks that Go

Faster Than Lightning”. In: FC 2019. 2019.
[34] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://

bitcoin.org/bitcoin.pdf. 2009.
[35] K. Ohta and T. Okamoto. “A digital multisignature scheme based on the

Fiat-Shamir scheme”. In: Advances in Cryptology — ASIACRYPT ’91.
1993.

[36] T. Okamoto. “A Digital Multisignature Scheme Using Bijective Public-Key
Cryptosystems”. In: ACM Trans. Comput. Syst. 4 (1988).

[37] A. Poelstra. Scriptless scripts. https://download.wpsoftware.net/

bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.

pdf. 2017.
[38] J. Poon and T. Dryja. The Bitcoin Lightning Network: Scalable Off-chain

Instant Payments. https://lightning.network/lightning-network-
paper.pdf. 2016.

[39] R. L. Rivest et al. “How to Leak a Secret”. In: ASIACRYPT 2001. 2001.
[40] N. van Saberhagen. CryptoNote v 2.0. https://bytecoin.org/old/

whitepaper.pdf.
[41] C.-P. Schnorr. “Efficient Signature Generation by Smart Cards”. In: Jour-

nal of Cryptology 3 (1991).
[42] S.-T. Shen et al. “Unique signature with short output from cdh assump-

tion”. In: International Conference on Provable Security. Springer. 2015.
[43] E. Tairi et al. A2L: Anonymous Atomic Locks for Scalability in Payment

Channel Hubs. Cryptology ePrint Archive, Report 2019/589. https://
eprint.iacr.org/2019/589. 2019.

[44] E. Tairi et al. Post-Quantum Adaptor Signature for Privacy-Preserving
Off-Chain Payments. To appear at FC 2021. https://eprint.iacr.org/
2020/1345.

30

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://eprint.iacr.org/2019/589
https://eprint.iacr.org/2019/589
https://eprint.iacr.org/2020/1345
https://eprint.iacr.org/2020/1345

	Two-Party Adaptor Signatures From Identification Schemes

