
BETA: Biometric-Enabled Threshold
Authentication

Shashank Agrawal1, Saikrishna Badrinarayanan2, Payman Mohassel3,
Pratyay Mukherjee2, and Sikhar Patranabis2

1 Western Digital, shashank.agrawal@wdc.com
2 Visa Research, {sabadrin, pratmukh, sipatran}@visa.com

3 Facebook, payman.mohassel@gmail.com

Abstract. In the past decades, user authentication has been dominated
by server-side password-based solutions that rely on “what users know”.
This approach is susceptible to breaches and phishing attacks, and poses
usability challenges. As a result, the industry is gradually moving to
biometric-based client-side solutions that do not store any secret infor-
mation on servers. This shift necessitates the safe storage of biometric
templates and private keys, which are used to generate tokens, on user
devices.

We propose a new generic framework called Biometric Enabled Thresh-
old Authentication (BETA) to protect sensitive client-side information
like biometric templates and cryptographic keys. Towards this, we for-
mally introduce the notion of Fuzzy Threshold Tokenizer (FTT) where
an initiator can use a “close” biometric measurement to generate an au-
thentication token if at least t (the threshold) devices participate. We
require that the devices only talk to the initiator, and not to each other,
to capture the way user devices are connected in the real world. We
use the universal composability (UC) framework to model the security
properties of FTT, including the unforgeability of tokens and the privacy
of the biometric values (template and measurement), under a malicious
adversary. We construct three protocols that meet our definition.

Our first two protocols are general feasibility results that work for any
distance function, any threshold t and tolerate the maximal (i.e. t −
1) amount of corruption. They are based on any two round UC-secure
multi-party computation protocol in the standard model (with a CRS)
and threshold fully homomorphic encryption, respectively. We show how
to effectively use these primitives to build protocols in a constrained
communication model with just four rounds of communication.

For the third protocol, we consider inner-product based distance metrics
(cosine similarity, Euclidean distance, etc.) specifically, motivated by the
recent interest in its use for face recognition. We use Paillier encryption,
efficient NIZKs for specific languages, and a simple garbled circuit to
build an efficient protocol for the common case of n = 3 devices with one
compromised.

1 Introduction

Traditionally, password-based authentication has been the dominant approach
for authenticating users on the Internet, by relying on “what users know”. How-
ever, this approach has its fair share of security and usability issues. It typically
requires the servers to store a (salted) hash of all passwords, making them sus-
ceptible to offline dictionary attacks. Indeed, large-scale password breaches in
the wild are extremely common [6,8]. Passwords also pose challenging usability
problems. High entropy passwords are hard to remember by humans, while low
entropy passwords provide little security, and research has shown that introduc-
ing complex restrictions on password choices can backfire [39, Sec A.3].

There are major ongoing efforts in the industry to address some of these
issues. For example, “unique” biometric features such as finger-print [4], facial
scans [1], and iris scans [9] are increasingly popular first or second factor au-
thentication mechanisms for logging into devices and applications. Studies show
that biometrics are much more user-friendly [2], particularly on mobile devices,
as users do not have to remember or enter any secret information. At the same
time, a (server-side) breach of biometric data is much more damaging because,
unlike passwords, there is no easy way to change biometric information regularly.

Therefore, the industry is shifting away from transmitting or storing user
secrets on the server-side. For example, biometric templates and measurements
are stored and processed on the client devices where the matching also takes
place. A successful match then unlocks a private signing key for a digital signa-
ture scheme which is used to generate a token on a fresh challenge. Instead of
the user data, the token is transmitted to the server, who only stores a public
verification key to verify the tokens. (Throughout the paper, we shall use the
terms token and signature interchangeably.) Thus, a server breach does not lead
to a loss of sensitive user data.

Most prominently, this is the approach taken by the FIDO Alliance [3],
the world’s largest industry-wide effort to enable an interoperable ecosystem
of hardware-, mobile- and biometric-based authenticators that can be used by
enterprises and service providers. This framework is also widely adopted by ma-
jor Internet players and incorporated into all major browsers in the form of W3C
standard Web Authentication API [10].

Hardware-based protection. With biometric data and private keys (for generating
tokens) stored on client devices, a primary challenge is to securely protect them.
As pointed out before, this is particularly crucial with biometrics since unlike
passwords they are not replaceable. The most secure approach for doing so relies
on hardware-based solutions such as secure enclaves [5] that provide physical
separation between secrets and applications. However, secure hardware is not
available on all devices, can be costly to support at scale, and provides very
little programmability.

Software-based protection. Software-based solutions such as white-box cryptog-
raphy are often based on ad-hoc techniques that are regularly broken [11]. The

2

provably secure alternative, i.e. cryptographic obfuscation [13,37], is not yet
practical for real-world use-cases.

A simple alternative approach is to apply “salt-and-hash” techniques, often
used to protect passwords, to biometric templates before storing them on the
client device. Here, näıve solutions fail because biometric matching is almost
always a fuzzy match that checks whether the distance between two vectors is
above a threshold or not.

Using fuzzy extractors. It is tempting to think that a better way to implement the
hash-and-salt approach for biometric data is through a cryptographic primitive
known as fuzzy extractor [33,21]. However, as also discussed by Dupont et al. [34],
this approach only works for high-entropy biometric data and is susceptible to
offline dictionary attacks.

Distributed cryptography to the rescue. Our work is motivated by the fact that
most users own and carry multiple devices (laptop, smart-phone, smart-watch,
etc.) and have other IoT devices around when authenticating (smart TV, smart-
home appliances, etc.). We introduce a new framework for client-side biometric-
based authentication that securely distributes both the biometric template as
well as the secret signing key among multiple devices. These devices can col-
lectively perform biometric matching and token generation without ever recon-
structing the template or the signing key on any one device. We refer to this
framework as Biometric Enabled Threshold Authentication (BETA for short)
and study it at length in this paper.

Before diving deeper into the details, we note that while our primary motiva-
tion stems from a client-side authentication mechanism, our framework is quite
generic and can be used in other settings. For example, it can also be used to
protect biometric information on the server-side by distributing it among mul-
tiple servers who perform the matching and token generation (e.g., for a single
sign-on authentication token) in a fully distributed manner.

1.1 Our Contributions

To concretely instantiate our framework BETA, we formally introduce the no-
tion of fuzzy threshold tokenizer (FTT). We provide a universally composable
(UC) security definition for FTT and design several protocols that realize it. We
first briefly describe the notion of a Fuzzy Threshold Tokenizer.

Fuzzy Threshold Tokenizer. Consider a set of n parties/devices, a distribu-
tion W over vectors in Z`q, a threshold t on the number of parties, a distance
predicate Dist and an unforgeable threshold signature scheme TS. Initially, in
a global setup phase, a user generates some public and secret parameters (in
a trusted setting), and distributes them amongst the n devices she owns. Fur-
ther, she also runs the setup of the scheme TS and secret shares the signing key
amongst the devices. In an enrollment phase, user samples a biometric template
−→w ∈ Z`q according to W and securely shares it amongst all the devices. Any set

3

of t devices can, together, completely reconstruct the biometric template −→w and
the signing key of the threshold signature scheme. Then, during an online sign
on session, an initiating device P , with a candidate biometric measurement −→u
as input, can interact in a protocol with a set S of (t− 1) other devices. At the
end of this, if −→u is “close enough” to the template −→w (with respect to distance
predicate Dist), the initiating device P obtains a token (signature) on a message
of its choice.

It is important to note that we do not allow the other participating (t − 1)
devices to interact amongst themselves4 and all communication goes through the
initiating device P . This is a critical requirement on the communication model for
FTT since in a typical usage scenario, one or two primary devices (e.g., a laptop
or a smart-phone) play the role of the initiating device and all other devices are
only paired/connected to the primary device. (These devices may not even be
aware of the presence of other devices.) Indeed, this requirement makes the design
of constant-round FTT protocols significantly more challenging. Further, in any
round of communication, we only allow unidirectional exchange of messages, i.e.,
either P sends a message to some subset of the other (t−1) devices or vice versa.

Security definition. Consider a probabilistic polynomial time adversary A that
corrupts a set T of devices where |T | < t. Informally, the security properties
that we wish to capture in an FTT scheme are as follows:

(i) Privacy of biometric template: From any sign on session initiated by a cor-
rupt device, A should not be able to learn any information about the bio-
metric template −→w apart from just the output of the predicate Dist(−→u ,−→w)
for its choice of measurement −→u . If the sign on session was initiated by an
honest device, A should learn no information about −→w . Crucially, we do not
impose any restriction on the entropy of the distribution from which the
template is picked.

(ii) Privacy of biometric measurement: For any sign on session initiated by an
honest device, A should learn no information whatsoever about the mea-
surement −→u .

(iii) Token unforgeability : A should not be able to compute a valid token (that
verifies according to the threshold signature scheme TS) unless it initiated a
sign on session on behalf of a corrupt party with a measurement −→u such that
Dist(−→u ,−→w) = 1. Furthermore, A should only be able to compute exactly one
token from each such session.

Our first contribution is a formal modeling of the security requirements of a
fuzzy threshold tokenizer via a real-ideal world security definition in the univer-
sal composability (UC) framework [26]. We refer the reader to Section 4 for the
formal definition and a detailed discussion on its intricacies.

Our next contribution is a design of several protocols that realize this primitive.

4Note that corrupt parties can of course freely interact amongst themselves.

4

Protocol-1(πmpc). Given any threshold signature scheme TS, for any distance
measure Dist, any n, t, we construct a four round5 UC-secure FTT protocol
πmpc. Our construction is based on any two-round (over a broadcast channel)
UC-secure multi-party computation (MPC) protocol [45,49,38,15] in the CRS
model that is secure against up to all but one corruption along with other basic
primitives. πmpc tolerates up to (t− 1) (which is maximal) malicious devices.

Protocol-2 (πtfhe). Given any threshold signature scheme TS, for any distance
measure Dist, any n, t, we construct a four round UC-secure FTT protocol πtfhe.
Our construction is based on any t out of n threshold fully homomorphic en-
cryption scheme (TFHE) and other basic primitives. Like πmpc, this protocol is
secure against (t− 1) malicious devices.

The above two feasibility results are based on two incomparable primitives
(two round MPC and threshold FHE). On the one hand, two-round MPC seems
like a stronger notion than threshold FHE. But, on the other hand, two-round
MPC is known from a variety of assumptions like LWE/DDH/Quadratic Resid-
uosity, while threshold FHE is known only from LWE. Further, the two protocols
have very different techniques which may be of independent interest.

Protocol-3 (πip). We design the third protocol πip specifically for the cosine
similarity distance metric, which has recently been shown to be quite effective for
face recognition (CosFace [56], SphereFace [43], FaceNet [54]). We pick a thresh-
old of three for this protocol as people nowadays have at least three devices on
them most of the time (typically, a laptop, a smart-phone and a smart-watch).
πip is secure in the random oracle model as long as at most one of the devices is
compromised. We use Paillier encryption, efficient NIZKs for specific languages,
and a simple garbled circuit to build an efficient four-round protocol.

Efficiency analysis of πip. Finally, we perform a concrete efficiency analysis of
our third protocol πip. We assume that biometric templates and measurements
have ` features (or elements) and every feature can be represented with m bits.
Let λ denote the computational security parameter and s denote the statistical
security parameter. In the protocol πip, we use Paillier encryption scheme to
encrypt each feature of the measurement and its product with the shares of the
template. The initiator device proves that the ciphertexts are well-formed and
the features are of the right length. For Paillier encryption, such proofs can be
done efficiently using only O(`m) group operations [31,30].

5Recall that by one communication round, we mean a unidirectional/non-
simultaneous message exchange channel over a peer-to-peer network. That is, in each
round either the initiator sends messages to some subset of the other participating de-
vices or vice versa. In contrast, one round of communication over a broadcast channel
means that messages are being sent simultaneously by multiple (potentially all) parties
connected to the channel and all of them receive all the messages sent in that round.
All our FTT protocols use peer-to-peer channels which is the default communication
model in this paper.

5

The other devices use the homomorphic properties of Paillier encryption
to compute ciphertexts for inner-product shares and some additional values.
They are sent back to the initiator but with a MAC on them. Then the other
devices generate a garbled circuit that takes the MAC information from them
and the decrypted ciphertexts from the initiator to compute if the cosine value
exceeds a certain threshold. The garbled circuit constructed here only does 5
multiplications on numbers of length O(m+log `+s). Oblivious transfers can be
preprocessed in the setup phase between every pair of parties so that the online
phase is quite efficient (only symmetric-key operations). Furthermore, since only
one of the two helping devices can be corrupt, only one device needs to transfer
the garbled circuit [44], further reducing the communication overhead. (We have
skipped several important details of the protocol here, but they do not affect the
complexity analysis. See Section 2.3 for a complete overview of the protocol.)

An alternate design appropach is to use the garbled circuit itself to compute
the inner-product. However, there are two disadvantages of this approach. First,
it does not scale efficiently with feature vector length. The number of multipli-
cations to be done inside the garbled circuit would be linear in the number of
features, or the size of the circuit would be roughly O(m2`). This is an important
concern because the number of features in a template can be very large (e.g., see
Figure 1 in the NISTIR draft on Ongoing Face Recognition Vendor Test (FRVT)
[7]). Second, the devices would have to prove in zero knowledge that the bits fed
as input to the circuit match the secret shares of the template given to them in
the enrollment phase. This incurs additional computational overheads.

1.2 Related Work

Fuzzy identity based encryption, introduced by Sahai and Waters [53], allows de-
crypting a ciphertext encrypted with respect to some identity id if the decryptor
possesses the secret key for an identity that almost matches id. However, un-
like FTT, the decryptor is required to know both identities and which positions
match. Recall that one of our main goals is to distribute the biometric template
across all devices so that no one device ever learns it.

Function secret sharing, introduced by Boyle et al. [22], enables to share the
computation of a function f amongst several users. Another interesting related
primitive is homomorphic secret sharing [23]. However, both these notions don’t
quite fit in our context because of the limitations on our communication model
and the specific security requirements against a malicious adversary.

Secure multiparty computation protocols in the private simultaneous mes-
sages model [36,41,14] consider a scenario where there is a client and a set of
servers that wish to securely compute a function f on their joint inputs wherein
the communication model only involves interaction between the client and each
individual server. However, in that model, the adversary can either corrupt the
client or a subset of servers but not both.

The work of Dupont et al. [34] construct a fuzzy password authenticated
key exchange protocol where each of the two parties have a password with low
entropy. At the end of the protocol, both parties learn the shared secret key

6

only if the two passwords are “close enough” with respect to some distance
measure. In our work, we consider the problem of generating signatures and also
multiple parties. Another crucial difference is that in their work, both parties
hold a copy of the password whereas in our case, the biometric template is
distributed between parties and therefore is never exposed to any party. There is
also a lot of work on distributed password authenticated key exchange [16] (and
the references within) but their setting considers passwords (and so, equality
matching) and not biometrics.

There has been a lot of work in developing privacy-preserving ways to com-
pare biometric data [25,17,32] but it has mostly focused on computing specific
distance measures (like Hamming distance) in the two-party setting where each
party holds a vector. There has also been some privacy-preserving work in the
same communication model as ours [29,42,19] but it has mainly focused on pri-
vate aggregation of sensitive user data.

Open Problems. We leave it as an open problem to define weaker game-based
security definitions for FTT and to design more efficient protocols that satisfy
those. We also leave it open to design FTT protocols that tolerate adaptive
corruptions and/or support dynamic addition/deletion of parties and rotation
of signature keys.

2 Technical Overview

2.1 MPC based protocol

Emulating General Purpose MPC. Our starting point is the observation
that suppose all the parties could freely communicate, then any UC-secure MPC
protocol against a malicious adversary in the presence of a broadcast channel
would intuitively be very useful in the design of an FTT scheme if we consider the
following functionality: the initiator P ∗ has input (msg, S,−→u), every party Pi ∈ S
has input (msg, S), their respective shares of the template −→w and the signing key.
The functionality outputs a signature on msg to party P ∗ if Dist(−→u ,−→w) = 1 and
|S| = t. Recently, several works [45,50,24,38,15] have shown how to construct
two round UC-secure MPC protocols in the CRS model in the presence of a
broadcast channel from standard cryptographic assumptions. However, the issue
with following this intuitive approach is that the communication model of our
FTT primitive does not allow all parties to interact amongst each other - in
particular, the parties in the set S can’t directly talk to each other and all
communication has to be routed through the initiator. Armed with this insight,
our goal now is to emulate a two round MPC protocol π in our setting.

For simplicity, let us first consider n = t = 3. That is, there are three parties:
P1, P2, P3. Consider the case when P1 is the initiator. Now, in the first round
of our FTT scheme, P1 sends msg to both parties. Then, in round 2, we have
P2 and P3 send their round one messages of the MPC protocol π. In round 3 of
our FTT scheme, P1 sends its own round one message of the MPC protocol to

7

both parties. Along with this, P1 also sends P2’s round one message to P3 and
vice versa. So now, at the end of round 3 of our FTT scheme, all parties have
exchanged their first round messages of protocol π.

Our next observation is that since we care only about P1 getting output, in
the underlying protocol π, only party P1 needs to receive everyone else’s mes-
sages in round 2. Therefore, in round 4 of our FTT scheme, P2 and P3 can
compute their round two messages based on the transcript so far and just send
them to P1. This will enable P1 to compute the output of protocol π.

Challenges. Unfortunately, the above scheme is insecure. Note that in order to
rely on the security of protocol π, we crucially need that for any honest party
Pi, every other honest party receives the same first round message on its behalf.
Also, we require that all honest parties receive the same messages on behalf of the
adversary. In our case, since the communication is being controlled and directed
by P1 instead of a broadcast channel, this need not be true if P1 was corrupt and
P2, P3 were honest. Specifically, one of the following two things could occur: (i)
P1 can forward an incorrect version of P3’s round one message of protocol π to
P2 and vice versa. (ii) P1 could send different copies of its own round 1 message
of protocol π to both P2 and P3.

Signatures to Solve Challenge 2. To solve the first problem,we simply en-
force that P3 sends a signed copy of its round 1 message of protocol π which is
forwarded by P1 to P2. Then, P2 accepts the message to be valid if the signature
verifies. In the setup phase, we can distribute a signing key to P3 and a verifi-
cation key to everyone, including P2. Similarly, we can ensure that P2’s actual
round 1 message of protocol π was forwarded by P1 to P3.

Pseudorandom Functions to Solve Challenge 2. Tackling the second prob-
lem is a bit trickier. The idea is instead of enforcing that P1 send the same round
1 message of protocol π to both parties, we will instead ensure that P1 learns
their round 2 messages of protocol π only if it did indeed send the same round
1 message of protocol π to both parties. We now describe how to implement
this mechanism. Let us denote msg2 to be P1’s round 1 message of protocol π
sent to P2 and msg3 (possibly different from msg2) to be P1’s round 1 message
of protocol π sent to P3. In the setup phase, we distribute two keys k2, k3 of
a pseudorandom function (PRF) to both P2, P3. Now, in round 4 of our FTT
scheme, P3 does the following: instead of sending its round 2 message of protocol
π as is, it encrypts this message using a secret key encryption scheme where the
key is PRF(k3,msg3). Then, in round 4, along with its actual message, P2 also
sends PRF(k3,msg2) which would be the correct key used by P3 to encrypt its
round 2 message of protocol π only if msg2 = msg3. Similarly, we use the key
k2 to ensure that P2’s round 2 message of protocol π is revealed to P1 only if
msg2 = msg3.

The above approach naturally extends for arbitrary n, t. by sharing two PRF keys
between every pair of parties. There, each party encrypts its round 2 message of
protocol π with a secret key that is an XOR of all the PRF evaluations. There are

8

additional subtle issues when we try to formally prove that the above protocol is
UC-secure and we refer the reader to the full version [12] for more details about
the proof.

2.2 Threshold FHE based protocol

The basic idea behind our second protocol is to use an FHE scheme to perform
the distance predicate computation between the measurement −→u and the tem-
plate −→w . In particular, in the setup phase, we generate the public key pk of an
FHE scheme and then in the enrollment phase, each party is given an encryp-
tion ct−→w of the template. In the sign on phase, an initiator P ∗ can compute a
ciphertext ct−→u that encrypts the measurement and send it to all the parties in
the set S which will allow them to each individually compute a ciphertext ct∗

homomorphically that evaluates Dist(−→u ,−→w). However, the first challenge is how
to decrypt this ciphertext ct∗? In other words, who gets the secret key sk of the
FHE scheme in the setup? If sk is given to all parties in S, then they can, of
course, decrypt ct−→u but that violates privacy of the measurement. On the other
hand, if sk is given only to P ∗, that allows P ∗ to decrypt ct−→w violating privacy
of the template.

Threshold FHE. Observe that this issue can be overcome if somehow the se-
cret key is secret shared amongst all the parties in S in such a way that each of
them, using their secret key share ski, can produce a partial decryption of ct∗

that can then all be combined by P ∗ to decrypt ct∗. In fact, this is exactly the
guarantee of threshold FHE. This brings us to the next issue that if only P ∗

learns whether Dist(−→u ,−→w) = 1, how do the parties in S successfully transfer the
threshold signature shares? (recall that the transfer should be conditioned upon
Dist evaluating to 1) One natural option is, in the homomorphic evaluation of
the ciphertext ct, apart from just checking whether Dist(−→u ,−→w) = 1, perhaps
the circuit could then also compute the partial signatures with respect to the
threshold signature scheme if the check succeeds. However, the problem then is
that, for threshold decryption, there must be a common ciphertext available to
each party. In this case, however, each party would generate a partial signature
using its own signing key share resulting in a different ciphertext and in turn
preventing threshold decryption.

Partial Signatures. To overcome this obstacle, at the beginning of the sign-on
phase, each party computes its partial signature σi and information-theoretically
encrypts it via one-time pad with a uniformly sampled one-time key Ki. The
parties then transfer the partial signatures in the same round in an encrypted
manner without worrying about the result of the decryption. Now, to complete
the construction, we develop a mechanism such that:

– Whenever the FHE decryption results in 1, P ∗ learns the set of one-time
secret keys {Ki} and hence reconstructs the set of partial signatures {σi}.

9

– Whenever the FHE decryption results in 0, P ∗ fails to learn any of the one-
time secret keys, which in turn ensures that each of the partial signatures
remains hidden from P ∗.

To achieve that, we do the following: each party additionally broadcasts
ctKi

, which is an FHE encryption of its one-time secret key Ki, to every other
party during the enrollment phase. Additionally, we use t copies of the FHE
circuit being evaluated as follows: the ith circuit outputs Ki if Dist(−→u ,−→w) = 1
– that is, this circuit is homomorphically evaluated using the FHE ciphertexts
ct−→u , ct−→w , ctKi .

6 Now, at the end of the decryption, if Dist(−→u ,−→w) was indeed
equal to 1, P ∗ learns the set of one-time keys {Ki} via homomorphic evaluation
and uses these to recover the corresponding partial signatures.

Consider the case where the adversary A initiates a session with a measure-
ment −→u such that Dist(−→u ,−→w) = 0. Our security proof formally establishes that
the adversary A learns no information about each one-time key Ki of the honest
parties and hence about the corresponding signature share. At a high level, we
exploit the simulation and semantic security guarantees of the threshold FHE
scheme to: (a) simulate the FHE partial decryptions to correctly output 0 and
(b) to switch each ctKi

to be an encryption of 0. At this point, we can switch
each Ki to be a uniformly random string and hence “unrecoverable” to A. We
refer the reader to Section 6 for more details.

NIZKs. One key issue is that parties may not behave honestly - that is, in the
first round, P ∗ might not run the FHE encryption algorithm honestly and simi-
larly, in the second round, each party might not run the FHE partial decryption
algorithm honestly which could lead to devastasting attacks. To solve this, we
require each party to prove honest behavior using a non-interactive zero knowl-
edge argument (NIZK). Finally, as in the previous section, to ensure that P ∗

sends the same message ct−→u to all parties, we use a signature-based verification
strategy, which adds two rounds resulting in a four round protocol.

2.3 Cosine Similarity: single corruption

In this section, we build a protocol for a specific distance measure7 (Cosine
Similarity). It is more efficient compared to our feasibility results. On the flip
side, it tolerates only one corruption: that is, our protocol is UC-secure in the
Random Oracle model against a malicious adversary that can corrupt only one

party. For two vectors −→u ,−→w , CS.Dist(−→u ,−→w) = 〈−→u ,−→w〉
||−→u ||·||−→w || where ||−→x || denotes

the L2-norm of the vector. Dist(−→u ,−→w) = 1 if CS.Dist(−→u ,−→w) ≥ d where d is
chosen by Dist. Without loss of generality, assume that distribution W samples
vectors −→w with ||−→w || = 1. Then, we check if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 instead of

6Note that the creation and broadcasting of these ciphertexts can happen in parallel
within a single round of communication between P ∗ and the other parties in the set S.

7Our construction can also be extended to work for the related Euclidean Distance
function but we focus on Cosine Similarity in this section.

10

CS.Dist(−→u ,−→w) > d. This syntactic change allows more flexibility.

Distributed Garbling. Our starting point is the following. Suppose we had
t = 2. Then, we can just directly use Yao’s [57] two party semi-honest secure
computation protocol as a building block to construct a two round FTT scheme.
In the enrollment phase, secret share −→w into −→w1,

−→w2 and give one part to each
party. The initiator requests for labels via oblivious transfer (OT) corresponding
to his share of −→w and input −→u while the garbled circuit, which has the other
share of −→w hardwired, reconstructs −→w , checks if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 and if
so, outputs a signature. This protocol is secure against a malicious initiator who
only has to evaluate the garbled circuit, if we use an OT protocol that is mali-
cious secure in the CRS model. However, to achieve malicious security against
the garbler, we would need expensive zero knowledge arguments that prove cor-
rectness of the garbled circuit. Now, in order to build an efficient protocol that
achieves security against a malicious garbler and to work with threshold t = 3,
the idea is to distribute the garbling process between two parties.

Consider an initiator P1 interacting with parties P2, P3. We repeat the below
process for any initiator and any pair of parties that it must interact with. For
ease of exposition, we just consider P1, P2, P3 in this section. Both P2 and P3 gen-
erate one garbled circuit each using shared randomness generated during setup
and the evaluator just checks if the two circuits are identical. Further, both P2

and P3 get the share −→w2 and a share of the signing key in the enrollment and
setup phase respectively. Note that since the adversary can corrupt at most one
party, this check would guarantee that the evaluator can learn whether the gar-
bled circuit was honestly generated. In order to ensure that the evaluator does
not evaluate both garbled circuits on different inputs, we will also require the
garbled circuits to check that P1’s OT receiver queries made to both parties was
the same. The above approach is inspired from the three party secure computa-
tion protocol of Mohassel et al. [44].

However, the issue here is that P1 needs a mechanism to prove in zero knowl-
edge that it is indeed using the share −→w1 received in the setup phase as input
to the garbled circuit. Moreover, even without this issue, the protocol is com-
putationally quite expensive. For cosine similarity, the garbled circuit will have
to perform a lot of expensive operations - for vectors of length `, we would have
to perform O(`) multiplications inside the garbled circuit. As mentioned in the
introduction, because the number of features in a template (`) can be very large
for applications like face recognition, our goal is to improve the efficiency and
scalability of the above protocol by performing only a constant number of mul-
tiplications inside the garbled circuit.

Additive Homomorphic Encryption. Our strategy to build an efficient pro-
tocol is to use additional rounds of communication to offload the heavy com-
putation outside the garbled circuit and also along the way, solve the issue of

11

the initiator using the right share −→w1. In particular, if we can perform the in-
ner product computation outside the garbled circuit in the first phase of the
protocol, then the resulting garbled circuit in the second phase would have to
perform only a constant number of operations. In order to do so, we leverage the
tool of efficient additively homomorphic encryption schemes [48,35]. In our new
protocol, in round 1, the initiator P1 sends an encryption of −→u . P1 can compute
〈−→u ,−→w1〉 by itself. Both P2 and P3 respond with encryptions of 〈−→u ,−→w2〉 com-
puted homomorphically using the same shared randomness. P1 can decrypt this
to compute 〈−→u ,−→w〉. The parties can then run the garbled circuit based protocol
as above in rounds 3 and 4 of our FTT scheme: that is, P1 requests for labels
corresponding to 〈−→u ,−→w〉 and 〈−→u ,−→u 〉 and the garbled circuit does the rest of
the check as before. While this protocol is correct and efficient, there are still
several issues.

Leaking Inner Product. The first problem is that the inner product 〈−→u ,−→w〉 is
currently leaked to the initiator P1 thereby violating the privacy of the template
−→w . To prevent this, we need to design a mechanism where no party learns the
inner product entirely in the clear and yet the check happens inside the gar-
bled circuit. A natural approach is for P2 and P3 to homomorphically compute
an encryption of the result 〈−→u ,−→w2〉 using a very efficient secret key encryption
scheme. In our case, just a one time pad suffices. Now, P1 only learns an en-
cryption of this value and hence the inner product is hidden, while the garbled
circuit, with the secret key hardwired into it, can easily decrypt the one-time pad.

Input Consistency. The second major challenge is to ensure that the input
on which P1 wishes to evaluate the garbled circuit is indeed the output of the
decryption. If not, P1 could request to evaluate the garbled circuit on suitably
high inputs of his choice, thereby violating unforgeability! In order to prevent
this attack, P2 and P3 homomorphically compute not just x = 〈−→u ,−→w2〉 but also
a message authentication code (mac) y on the value x using shared random-
ness generated in the setup phase. We use a simple one time mac that can be
computed using linear operations and hence can be done using the additively
homomorphic encryption scheme. Now, the garbled circuit also checks that the
mac verifies correctly and from the security of the mac, P1 can not change the
input between the two stages. Also, we require P1 to also send encryptions of
〈−→u ,−→u 〉 in round 1 so that P2, P3 can compute a mac on this as well, thereby
preventing P1 from cheating on this part of the computation too.

Ciphertext Well-formedness. Another important issue to tackle is to ensure
that P1 does indeed send well-formed encryptions. To do so, we rely on efficient
zero knowledge arguments from literature [31,30] when instantiating the addi-
tively homomorphic encryption scheme with the Paillier encryption scheme [48].
For technical reasons, we also need the homomorphic encryption scheme to be
circuit-private. We refer the reader to the full version [12] for more details. Ob-
serve that in our final protocol, the garbled circuit does only a constant number

12

of multiplications, which makes protocol computationally efficient and scalable.

Optimizations. To further improve the efficiency of our protocol, as done in
Mohassel et al. [44], we will require only one of the two parties P2, P3 to actually
send the garbled circuit. The other party can just send a hash of the garbled
circuit and the initiator can check that the hash values are equal. We refer to
Section 7 for more details on this and other optimizations.

3 Preliminaries

Let P1, . . . ,Pn denote the n parties and λ the security parameter. Recall that the
L2 norm of a vector −→x = (−→x 1, . . . ,

−→x n) is defined as ||−→x || =
√−→x 2

1 + . . .+−→x 2
n.

〈−→u ,−→w〉 denotes the inner product between two vectors −→u ,−→w .

Definition 1. (Cosine Similarity) For any two vectors −→u ,−→w ∈ Z`q, the Co-
sine Similarity between them is defined as follows:

CS.Dist(−→u ,−→w) =
〈−→u ,−→w〉
||−→u || · ||−→w ||

.

When using this distance measure, we say that Dist(−→u ,−→w) = 1 if and only if
CS.Dist(−→u ,−→w) ≥ d where d is a parameter specified by Dist(·).

3.1 Threshold Signature

Definition 2 (Threshold Signature [18]). Let n, t ∈ N. A threshold signa-
ture scheme TS is a tuple of four algorithms (Gen,Sign, Comb,Ver) that satisfy
the correctness condition below.

– Gen(1λ, n, t) → (pp, vk, JskKn). A randomized algorithm that takes n, t and
the security parameter λ as input, and generates a verification-key vk and a
shared signing-key JskKn.

– Sign(ski,m) =: σi. A deterministic algorithm that takes a mesage m and
signing key-share ski as input and outputs a partial signature σi.

– Comb({σi}i∈S) =: σ/⊥. A deterministic algorithm that takes a set of partial
signatures {ski}i∈S as input and outputs a signature σ or ⊥ denoting failure.

– Ver(vk, (m,σ)) =: 1/0. A deterministic algorithm that takes a verification
key vk and a candidate message-signature pair (m,σ) as input, and outputs
1 for a valid signature and 0 otherwise.

Correctness. For all λ ∈ N, any t, n ∈ N such that t ≤ n, all (pp, vk, JskKn)
generated by Gen(1λ, n, t), any message m, and any set S ⊆ [n] of size at
least t, if σi = Sign(ski,m) for i ∈ S, then Ver(vk, (m,Comb({σi}i∈S))) = 1.

Definition 3 (Unforgeability). A threshold signatures scheme TS = (Gen,Sign,
Comb,Ver) is unforgeable if for all n, t ∈ N, t ≤ n, and any PPT adversary A,
the following game outputs 1 with negligible probability (in security parameter).

13

– Initialize. Run (pp, vk, JskKn)← Gen(1λ, n, t). Give pp, vk to A. Receive the
set of corrupt parties C ⊂ [n] of size at most t− 1 from A. Then give JskKC
to A. Define γ := t− |C|. Initiate a list L := ∅.

– Signing queries. On query (m, i) for i ⊆ [n] \ C return σi ← Sign(ski,m).
Run this step as many times A desires.

– Building the list. If the number of signing query of the form (m, i) is at
least γ, then insert m into the list L. (This captures that A has enough
information to compute a signature on m.)

– Output. Eventually receive output (m?, σ?) from A. Return 1 if and only if
Ver(vk, (m?, σ?)) = 1 and m? 6∈ L, and 0 otherwise.

4 Formalizing Fuzzy Threshold Tokenizer (FTT)

In this section we formally introduce the notion of fuzzy threshold tokenizer
(FTT) and give a UC-secure definition. We first describe the algorithms/protocols
in the primitive followed by the security definition in the next subsection.

Definition 4 (Fuzzy Threshold Tokenizer (FTT)). Given a security pa-
rameter λ ∈ N, a threshold signature scheme TS = (TS.Gen,TS.Sign,TS.Combine,
TS.Verify), biometric space parameters q, ` ∈ N, a distance predicate Dist : Z`q ×
Z`q → {0, 1}, n ∈ N parties P1, . . . ,Pn and a threshold of parties t ∈ [n], a FTT
scheme/protocol consists of the following tuple (Setup,Enrollment,SignOn,Ver)
of algorithms/protocols:

– Setup(1λ, n, t,TS)→ (ppsetup, {si, sk
TS
i }i∈[n], vk) : The Setup algorithm is run

by a trusted authority. It first runs the key-generation of the threshold sig-
nature scheme, ({skTSi }i∈[n], vk) ← Gen(1λ, n, t). It generates other public
parameters ppsetup and secret values s1, . . . , sn for each party respectively. It

outputs (vk, ppsetup) to every party and secrets (skTSi , si) to each party Pi.
(ppsetup will be an implicit input in all the algorithms below.)

– Enrollment(n, t, q, `,Dist) → ({ai}i∈[n]) : On input the parameters from any
party, this algorithm is run by the trusted authority to choose a random
sample −→w ←W. Then, each party Pi receives some information ai.

– SignOn(·) : SignOn is a distributed protocol involving a party P ∗ along with
a set S of parties. Party P∗ has input a measurement −→u , message msg and
its secret information (s∗, sk

TS
∗). Each party Pi ∈ S has input (si, sk

TS
i). At

the end of the protocol, P ∗ obtains a (private) token Token (or ⊥, denoting
failure) as output. Each party Pi ∈ S gets output (msg, i, S). The trusted
authority is not involved in this protocol.

– Ver(vk,msg,Token)→ {0, 1} : Ver is an algorithm which takes input verifica-
tion key vk, message msg and token Token, runs the verification algorithm of
the threshold signature scheme b := TS.Verify(vk, (msg,Token)), and outputs
b ∈ {0, 1}. This can be run locally by any party or even any external entity.

Communication Model. In the SignOn(·) protocol, only party P∗ can com-
municate directly with every party in the set S. We stress that the other parties
in S can not interact directly with each other.

14

4.1 Security Definition

We formally define security via the universal composability (UC) framework [26].
Similar to the simplified UC framework [28] we assume existence of a default au-
thenticated channel in the real world. This simplifies the definition of our ideal
functionality and can be removed easily by composing with an ideal authenti-
cated channel functionality (e.g. [27]).

Consider n parties P1, . . . , Pn. We consider a fixed number of parties in the
system throughout the paper. That is, no new party can join the execution sub-
sequently. Let πTS be an FTT scheme parameterized by a threshold signature
scheme TS. Consider an adversarial environment Z. We consider a static cor-
ruption model where there are a fixed set of corrupt parties decided a priori.8

Informally, it is required that for every adversary A that corrupts some subset
of the parties and participates in the real execution of the protocol, there exist
an ideal world adversary Sim, such that for all environments Z, the view of the
environment is same in both worlds. We describe it more formally below.

Real world. In the real execution, the FTT protocol πTS is executed in the
presence of an adversary A. The adversary A takes as input the security pa-
rameter λ and corrupts a subset of parties. Initially, the Setup algorithm is
implemented by a trusted authority. The honest parties follow the instructions
of πTS. That is, whenever they receive an “Enrollment” query from Z, they will
run the Enrollment phase of πTS. Similarly, whenever they receive a “Sign on”
query from Z with input (msg,−→u , S), they will initiate a SignOn(·) protocol with
the parties in set S and using input (msg, S, skTSi). If a SignOn(·) protocol is ini-
tiated with them by any other party, they participate honestly using input skTSi .
A sends all messages of the protocol on behalf of the corrupt parties following
any arbitrary polynomial-time strategy. We assume that parties are connected
by point to point secure and authenticated channels.

Ideal world. The ideal world is defined by a trusted ideal functionality FTS
ftt

described in Figure 1 that interacts with n (say) ideal dummy parties P1, . . . ,Pn
and an ideal world adversary, a.k.a. the simulator Sim via secure (and authenti-
cated) channels. The simulator can corrupt a subset of the parties and may fully
control them. We discuss the ideal functionality in more detail later below.

The environment sets the inputs for all parties including the adversaries and
obtain their outputs in both the worlds. However, the environment does not ob-
serve any internal interaction. For example, in the ideal world such interactions
takes between the ideal functionality and another entity (a dummy party, or the
simulator); in real world such interactions take place among the real parties.
Finally, once the execution is over, the environment outputs a bit denoting ei-
ther real or ideal world. For ideal functionality F , adversary A, simulator Sim,

8However, we allow the attacker to decide on the corrupt set adaptively after re-
ceiving the public values.

15

environment Z and a protocol π we formally denote the output of Z by random
variable IDEALF,Sim,Z in the ideal world and REALπ,A,Z in the real world. We
describe the ideal functionality for a FTT scheme in Figure 1 and we elaborate
on it in the next subsection.

Definition 5 (UC-Realizing FTT). Let TS be a threshold signature scheme
(Definition 3), FTS

ftt be an ideal functionality as described in Figure 1 and πTS

be a FTT scheme. πTS UC-realizes FTS
ftt if for any real world PPT adversary A,

there exists a PPT simulator Sim such that for all environments Z,

IDEALFTS
ftt ,Sim,Z ≈c REALπTS,A,Z

Intuitively, for any adversary there should be a simulator that can simulate its
behavior such that no environment can distinguish between these two worlds.
Also, our definition can also capture setup assumptions such as random oracles
by considering a G-hybrid model with an ideal functionality G for the setup.

Ideal Functionality FTS

ftt
The ideal functionality we consider is presented

formally in Figure 1. We provide an informal exposition here. Contrary to most of
the UC ideal functionalities, our ideal functionality FTS

ftt is parameterized with
a threshold signature scheme TS = (TS.Gen, TS.Sign, TS.Combine, TS.Verify)
(see discussion about this choice later in this section). The ideal functionality is
parameterized with a distance predicate Dist, which takes two vectors, a template
and a candidate measurement and returns 1 if and only if the two vectors are
“close”. Additionally, the functionality is parameterized with other standard
parameters and a probability distribution over the biometric vectors.

The ideal functionality has an interface to handle queries from different par-
ties. For a particular session, the first query it responds to “Setup” from Sim.
In response, the functionality FTS

ftt generates the key pairs of the given threshold
signature scheme, gives the control for the corrupt parties to the simulator and
marks this session “Live”. Then, an “Enroll” query can be made by any party.
FTS

ftt chooses a template −→w at random from the distribution W, stores it and
marks the session as “Enrolled”.

For any “Enrolled” session, FTS
ftt can receive many “SignOn” queries (the

previous two queries are allowed only once per session). This is ensured by not
marking the session in response to any such query. The “SignOn” query from a
party Pi contains a set S of parties (i.e. their identities), a message to be signed
and a candidate measurement −→u . If the set S contains any corrupt party, FTS

ftt

reaches out to the simulator for a response — this captures a corrupt party’s
power to deny a request.

Then, FTS
ftt checks whether the measurement −→u is “close enough” by com-

puting b := Dist(−→u ,−→w). If b is 1, the size of the set S = t and all parties in S
send an agreement response, FTS

ftt generates the partial signatures (tokens) on
behalf of the parties in S and sends them only to the initiator Pi; otherwise,
it sends ⊥ denoting failure to Pi. Note that the signatures (or even the failure
messages) are not sent to the simulator unless the initiator Pi is corrupt. This
is crucial for our definition as it ensures that if a “SignOn” query is initiated by

16

Ideal Functionality FTS
ftt

Given a threshold signature scheme (TS.Gen,TS.Sign,TS.Combine,TS.Verify), the func-
tionality FTS

ftt is parameterized by a security parameter λ ∈ N, biometric space param-
eters q, ` ∈ N, a distance predicate Dist : Z`q × Z`q → {0, 1}, number of parties n ∈ N
and a threshold of parties t ∈ [n]. It interacts with an ideal adversary (the simulator)
Sim and n dummy parties P1, . . . ,Pn via the following queries.

– On receiving a query of the form (“Setup”, sid, aux) from Sim, do as follows
only if sid is unmarked:
1. run (vk, {skTS

i }i∈[n])← TS.Gen(1λ);
2. send (“VerKey”, sid, vk, aux) to Sim;
3. receive (“Corrupt”, sid, C ⊆ [n]) from Sim;
4. send (sid, skTS

i) to each Pi for all i ∈ [n].
5. store the tuple (sid, vk, {skTS

i }i∈[n]) and mark this session as “Live”.

– On receiving a query of the form (“Enroll”, sid) from P, only if sid is marked
“Live”:
1. choose −→w ←W and store the tuple (sid,−→w);
2. send (“Enrolled”, sid) to Sim and mark sid as “Enrolled”.

– On receiving a query of the form (“SignOn”, sid, vk, msg, P, −→u , S ⊆ [n])
from P, if the session sid is not marked “Enrolled”, ignore this query. Else,
retrieve the record (sid, pp, vk, {skTS

i }i∈[n]) and let {Pj}j∈S be the parties in the set.
Send (msg, Pi, S) to each Pj for j ∈ S. Then, if S∩C 6= ∅ (contains a corrupt party),
send (“Signing Req”, sid,msg,P, S) to Sim. If Sim sends back (“Agreed”, sid, msg,
P) then do as follows:

1. if Dist(−→u ,−→w) = 1, |S| = t then: generate {Tokenj ← TS.Sign(skTS
j ,msg)}j∈S ;

and send (sid,msg, {Tokenj}j∈S) to P.

2. otherwise, return (sid,msg,⊥) to P.

Fig. 1: The ideal functionality FTS
ftt .

an honest party, then the simulator does not obtain anything directly, except
when there is a corrupt party in S via which it knows such a query has been
made and only learns the tuple (m,Pi, S) corresponding to the query. In fact,
no one except the initiator learns whether “SignOn” was successful. Intuitively,
a protocol realizing FTS

ftt must guarantee that a corrupt party can not compute
a valid sign-on token (signature) just by participating in a session started by an
honest party. In our definition of FTS

ftt , such a token would be considered as a
forgery. To the best of our knowledge, this feature has not been considered in
prior works on threshold signatures.

We provide more discussions on our definition in the full version [12].

5 Any Distance Measure from MPC

In this section, we show how to construct a four round secure fuzzy threshold
tokenizer using any two round malicious UC-secure MPC protocol in a broadcast

17

channel as the main technical tool. Our tokenizer scheme satisfies Definition 1
for any n, t, for any distance measure. Formally, we show the following theorem:

Theorem 1. Assuming unforgeable threshold signatures and a two round UC-
secure MPC protocols in the CRS model in a broadcast channel, there exists a
four round secure fuzzy threshold tokenizer protocol for any n, t and any distance
predicate.

Such two round MPC protocols can be built assuming DDH/LWE/QR/N th

Residuosity [46,50,38,15]. Threshold signatures can be built assuming LWE/Gap-
DDH/RSA [20,18,55]. Instantiating this, we get the following corollary:

Corollary 1. Assuming LWE, there exists a four round secure FTT protocol
for any n, t and any distance predicate.

We describe the construction below and defer the proof to the full version [12].

5.1 Construction

Notation. Let π be a two round UC-secure MPC protocol in the CRS model in
the presence of a broadcast channel that is secure against a malicious adversary
that can corrupt upto (t− 1) parties. Let π.Setup denote the algorithm used to
generate the CRS. Let (π.Round1, π.Round2) denote the algorithms used by any
party to compute the messages in each of the two rounds and π.Out denote the al-
gorithm to compute the final output. Let (TS.Gen,TS.Sign,TS.Combine,TS.Verify)
be a threshold signature scheme, (SKE.Enc,SKE.Dec) be a secret key encryption
scheme, (Share,Recon) be a (t, n) threshold secret sharing scheme and PRF be
a pseudorandom function. We now describe the construction of our four round
secure fuzzy threshold tokenizer protocol πAny for any n and t.

Setup: The following algorithm is executed by a trusted authority:

– Generate crs← π.Setup(1λ).
– For each i ∈ [n], compute (ski, vki)← Gen(1λ).
– For every i, j ∈ [n], compute (kPRFi,j , k

PRF
j,i) as uniformly random strings.

– Compute (ppTS, vkTS, skTS1 , . . . , skTSn)← TS.Gen(1λ, n, t).
– For each i ∈ [n], give (crs, ppTS, vkTS, skTSi , ski, {vkj}j∈[n], {kPRFj,i , k

PRF
i,j }j∈[n])

to party Pi.
Enrollment: In this phase, any party Pi that wishes to enroll queries the trusted
authority which then does the following:

– Sample a random vector −→w from the distribution W.
– Compute (−→w1, . . . ,

−→wn)← Share(1λ,−→w , n, t).
– For each i ∈ [n], give (−→w i) to party Pi.

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input
vector −→u , a message msg on which it wants a token. P∗ interacts with the other
parties in the below four round protocol.

Round 1: (P∗ →) 9 Party P∗ does the following:

9The arrowhead denotes that in this round messages are outgoing from party P∗.

18

1. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity, with-
out loss of generality, we assume that P∗ is also part of set S.

2. To each party Pi ∈ S, send (msg, S).

Round 2: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Participate in an execution of protocol π with parties in set S using input
yi = (−→w i, sk

TS
i) and randomness ri to compute circuit C defined in Figure 2.

Compute first round message msg1,i ← π.Round1(yi; ri).

2. Compute σ1,i = Sign(ski,msg1,i).

3. Send (msg1,i, σ1,i) to party P∗.

Round 3: (P∗ →) Party P∗ does the following:

1. Let Transfuzzy threshold tokenizer denote the set of messages received in round
2.

2. Participate in an execution of protocol π with parties in set S using input
y∗ = (−→w∗, skTS∗ ,

−→u ,msg) and randomness r∗ to compute circuit C defined in
Figure 2. Compute first round message msg1,∗ ← π.Round1(y∗; r∗).

3. To each party Pi ∈ S, send (Transfuzzy threshold tokenizer,msg1,∗).

Round 4: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Let Transfuzzy threshold tokenizer consist of a set of messages of the form (msg1,j , σ1,j),
∀j ∈ S \ P∗. Output ⊥ if Verify(vkj ,msg1,j , σ1,j) 6= 1.

2. Let τ1 = {msg1,j}j∈S denote the transcript of protocol π after round 1.
Compute second round message msg2,i ← π.Round2(yi, τ1; ri).

3. Let (Transfuzzy threshold tokenizer,msg1,∗) denote the message received from P∗
in round 3. Compute eki = ⊕j∈SPRF(kPRFi,j ,msg1,∗) and cti = SKE.Enc(eki,msg2,i).

4. For each party Pj ∈ S, compute ekj,i = PRF(kPRFj,i ,msg1,∗).

5. Send (cti, {ekj,i}j∈S) to P∗.

Output Computation: Every party Pj ∈ S outputs (msg,P∗, S). Addition-
ally, party P∗ does the following to generate a token:

1. For each party Pj ∈ S, compute ekj = ⊕j∈Sekj,i, msg2,j = SKE.Dec(ekj , ctj).

2. Let τ2 denote the transcript of protocol π after round 2. Compute the output
of π: {Tokeni}i∈S ← π.Out(y∗, τ2; r∗).

3. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).

4. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}i∈S . Else, output ⊥.

Token Verification: Given a verification key vkTS, message msg and a token
{Tokeni}i∈S , where |S| = t, the token verification algorithm does the following:

1. Compute Token← TS.Combine({Tokeni}i∈S).

2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.

19

Inputs:

– Party Pi ∈ S has input (−→w i, skTS
i).

– Party P∗ ∈ S additionally has input (−→u ,msg).

Computation:

– Compute −→w = Recon({−→w i}i∈S). Output ⊥ to P∗ if the reconstruction fails or if
Dist(−→u ,−→w) = 0.

– Compute Tokeni = TS.Sign(skTS
i ,msg). Output {Tokeni}i∈S to party P∗.

Fig. 2: Circuit C

6 Any Distance Measure using Threshold FHE

In this section, we construct a FTT protocol for any distance measure using any
fully homomorphic encryption (FHE) scheme with threshold decryption. Our
token generation protocol satisfies the definition in Section 4 for any n, t, and
works for any distance measure. Formally, we show the following theorem:

Theorem 2. Assuming threshold fully-homomorphic encryption, non-interactive
zero knowledge argument of knowledge (NIZK) and unforgeable threshold signa-
tures, there exists a four round secure FTT protocol for any n, t and any distance
predicate.

Threshold FHE, NIZKs and unforgeable threshold signatures can be built as-
suming LWE [20,51]. Instantiating this, we get the following corollary:

Corollary 2. Assuming LWE, there exists a four round secure FTT protocol
for any n, t and any distance predicate.

6.1 Construction

Notation. Let (TFHE.Gen, TFHE.Enc, TFHE.PartialDec, TFHE.Eval, TFHE.Combine)
be a threshold FHE scheme and let (TS.Gen,TS.Sign,TS.Combine,TS.Verify)
be a threshold signature scheme. Let (Prove,Verify) be a NIZK scheme and
(Gen,Sign,Verify) be a strongly-unforgeable digital signature scheme and Commit
be a non-interactive commitment scheme. We now describe the construction of
our four round secure FTT protocol πAny−TFHE for any n and k. We defer the
proof to the full version [12].

Setup Phase: The following algorithm is executed by a trusted authority:

– Generate (pkTFHE, skTFHE1 , . . . , skTFHEN)← TFHE.Gen(1λ, n, t) and (ppTS, vkTS, skTS1 , . . . ,
skTSn) ← TS.Gen(1λ, n, t).

– For each i ∈ [n], compute comi ← Commit(skTFHEi ; rcomi) and (ski, vki) ←
Gen(1λ).

– For each i ∈ [n], give the following to party Pi: (pkTFHE, skTFHEi , ppTS, vkTS, skTSi ,
(vk1, . . ., vkn), ski, (com1, . . . , comn), rcomi).

20

Enrollment: In this phase, any party Pi that wishes to register a fresh template
queries the trusted authority, which then executes the following algorithm:

– Sample a template −→w from the distribution W over {0, 1}`.
– Compute and give ct−→w to each party Pi, where ct−→w = TFHE.Enc(pkTFHE,−→w).

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input
vector −→u ∈ {0, 1}` and a message msg on which it wants a token. P∗ interacts
with the other parties in the below four round protocol.

– Round 1: (P∗ →) 10 Party P∗ does the following:

1. Compute ciphertext ct−→u = TFHE.Enc(pkTFHE,−→u ; r−→u).

2. Compute π−→u ← Prove(st−→u ,wit−→u) for st−→u = (ct−→u , pk
TFHE) ∈ L1 using

witness wit−→u = (−→u , r−→u) (language L1 is defined in Figure 3).

3. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity,
without loss of generality, we assume that P∗ is also part of set S.

4. To each party Pi ∈ S, send (ct−→u , π−→u).

Statement: The statement st is as follows: st = (ct, pk).

Witness: The witness wit is as follows: wit = (x, r).

Relation: R1(st,wit) = 1 if and only if ct = TFHE.Enc(pk, x; r).

Fig. 3: NP language L1

– Round 2: (→ P∗) Each party Pi ∈ S (except P∗) does the following:

1. Abort and output ⊥ if Verify(π−→u , st−→u) 6= 1 for language L1 where the
statement st−→u = (ct−→u , pk

TFHE).

2. Sample a uniformly random one-time key Ki ← {0, 1}λ and compute
ctKi

= TFHE.Enc (pkTFHE,Ki; rKi
).

3. Compute πKi
← Prove(stKi

,witKi
) for stKi

= (ctKi
, pkTFHE) ∈ L1 using

the witness witKi = (Ki, rKi) (language L1 is defined in Figure 3).

4. Compute signatures σi,0 = Sign(ski, ct−→u) and σi,1 = Sign(ski, ctKi
).

5. Send the following to the party P∗: (ctKi
, πKi

, σi,0, σi,1).

– Round 3: (P∗ →) Party P∗ checks if there exists some party Pi ∈ S such

that Verify(πKi , stKi) 6= 1 for language L1 where stKi = (ctKi , pk
TFHE). If

yes, it outputs ⊥ and aborts. Otherwise, it sends {(ctKi
, πKi

, σi,0, σi,1)}Pi∈S
to each party Pi ∈ S.

– Round 4: (→ P∗) Each party Pi ∈ S (except P∗) does the following:

10The arrowhead denotes that in this round messages are outgoing from party P∗.

21

1. If there exists some party Pj ∈ S such that Verify(πKj
, stKj

) 6= 1 for

language L1 where stKj
= (ctKj

, pkTFHE) (OR) Verify(vkj , ct−→u , σj,0) 6= 1
(OR) Verify(vkj , ctKj

, σj,1) 6= 1, then output ⊥ and abort.

2. Otherwise, for each Pj ∈ S, do the following:

• Compute ctC,j = TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctKj
) using cir-

cuit C (Figure 4). Note that ctC,j is either an encryption Kj or an
encryption of 0λ.

Inputs: A template −→w ∈ {0, 1}`, measurement −→u ∈ {0, 1}` and string K ∈ {0, 1}λ.

Computation: If Dist(−→u ,−→w) = 1, output K. Else, output 0λ.

Fig. 4: Circuit C

• Compute a partial decryption: µi,j = TFHE.PartialDec(skTFHEi , ctC,j).

• Compute πi,j ← Prove(sti,j ,witi) for sti,j = (ctC,j , µi,j , comi) ∈ L2

using witi = (skTFHEi , rcomi) (language L2 is defined in Figure 5).

3. Compute partial signature Tokeni = TS.Sign(skTFHEi ,msg) and ciphertext
cti = Ki ⊕ Tokeni.

4. Send (cti, {(πi,j , µi,j)}Pj∈S) to P∗.

Statement: The statement st is as follows: st = (ct, µ, com).

Witness: The witness wit is as follows: wit = (skTFHE, r).

Relation: R2(st,wit) = 1 if and only if: (a) TFHE.PartialDec(skTFHE, ct) = µ and
(b) Commit(skTFHE, r) = com.

Fig. 5: NP language L2

– Output Computation: Every party Pi ∈ S outputs (msg,P∗, S). Addi-
tionally, party P∗ does the following to generate a token:

1. For each Pj ∈ S, do the following:
(a) For each Pi ∈ S, abort if Verify(πi,j , sti,j) 6= 1 for language L2 where

sti,j = (ctC,j , µi,j , comi).

(b) Set Kj = TFHE.Combine({µi,j}Pi∈S). If Kj = 0λ, output ⊥.

(c) Otherwise, recover partial signature Tokenj = Kj ⊕ ctj .

2. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).

3. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}Pi∈S . Else, out-
put ⊥.

Token Verification: Given a verification key vkTS, message msg and a set
of partial tokens {Tokeni}Pi∈S , the token verification algorithm outputs 1 if
TS.Verify(vkTS,msg,Token) = 1, where Token = TS.Combine({Tokeni}Pi∈S).

22

7 Cosine Similarity: Single Corruption

In this section, we construct an efficient four round secure FTT in the Random
Oracle (RO) model for Euclidean Distance and Cosine Similarity. Our protocol
satisfies Definition 1 for any n with threshold t = 3 and is secure against a
malicious adversary that can corrupt any one party. The special case of n = 3
corresponds to the popularly studied three party honest majority setting. We
first focus on the Cosine Similarity distance measure. In the full version, we
explain how to extend our result for Euclidean Distance. Formally:

Theorem 3. Assuming unforgeable threshold signatures, two message OT in
the CRS model, circuit-private additively homomorphic encryption and NIZKs
for NP languages L1, L2 defined below, there exists a four round secure fuzzy
threshold tokenizer protocol for Cosine Similarity. The protocol works for any n,
threshold t = 3 and is secure against a malicious adversary that can corrupt any
one party.

We describe the construction below and defer the proof to the full version [12].

Paillier Encryption Scheme. The Paillier encryption scheme [48] is an example
of a circuit-private additively homomorphic encryption based on the N th resid-
uosity assumption. With respect to Paillier, we can also build NIZK arguments
for languages L1 and L2 defined below, in the RO model. Formally:

Imported Theorem 1 ([31]) Assuming the hardness of the N th residuosity
assumption, there exists a NIZK for language L1, defined below, in the RO model.

Imported Theorem 2 ([30]) Assuming the hardness of the N th residuosity
assumption, there exists a NIZK for language L2, defined below, in the RO model.

The above NIZKs are very efficient and only require a constant number of group
operations for both prover and verifier. Two message OT in the CRS model can
be built assuming DDH/LWE/Quadratic Residuosity/N th residuosity [47,52,40].
Threshold signatures can be built assuming LWE/Gap-DDH/RSA [20,18,55].
Instantiating the primitives used in Theorem 3, we get the following corollary:

Corollary 3. Assuming the hardness of the N th residuosity assumption and
LWE, there exists a four round secure fuzzy threshold tokenizer protocol for Co-
sine Similarity in the RO model. The protocol works for any n, t = 3 and is
secure against a malicious adversary that can corrupt any one party.

NP Languages.
Let (AHE.Setup,AHE.Enc,AHE.Add,AHE.ConstMul,AHE.Dec) be an additively
homomorphic encryption scheme. Let epk← AHE.Setup(1λ), m = poly(λ).
Language L1:
Statement: st = (ct, pk). Witness: wit = (x, r).
Relation: R1(st,wit) = 1 if ct = AHE.Enc(epk, x; r) AND x ∈ {0, 1}m

23

Language L2:
Statement: st = (ct1, ct2, ct3, pk). Witness: wit = (x2, r2, r3).
Relation: R2(st,wit) = 1 if

ct2 = AHE.Enc(epk, x2; r2) AND ct3 = AHE.ConstMul(pk, ct1, x2; r3).

Construction. Let RO denote a random oracle, d be the threshold value for Co-
sine Similarity. Recall that we denote Dist(−→u ,−→w) = 1 if CS.Dist(−→u ,−→w) ≥ d. Let
(Share,Recon) be a (2, n) threshold secret sharing scheme, TS = (TS.Gen,TS.Sign,
TS.Combine, TS.Verify) be a threshold signature scheme, (SKE.Enc,SKE.Dec)
denote a secret key encryption scheme, PRF denote a pseudorandom function,
(Garble,Eval) denote a garbling scheme for circuits, (Prove,Verify) be a NIZK sys-
tem in the RO model, AHE = (AHE.Setup,AHE.Enc, AHE.Add,AHE.ConstMul,
AHE.Dec) be a circuit-private additively homomorphic encryption scheme and
OT = (OT.Setup,OT.Round1,OT.Round2,OT.Output) be a two message oblivi-
ous transfer protocol in the CRS model. We now describe the construction of our
four round secure fuzzy threshold tokenizer protocol πCS for Cosine Similarity.

Setup: The trusted authority does the following:

– Compute (ppTS, vkTS, skTS1 , . . . , skTSn)← TS.Gen(1λ, n, k).
– For i ∈ [n], generate crsi ← OT.Setup(1λ) and pick a random PRF key ki.
– For i ∈ [n], give (ppTS, vkTS, skTSi , {crsj}j∈[n], {kj}j∈[n]\i) to party Pi.

Enrollment: In this phase, any party Pi that wishes to enroll, queries the
trusted authority which then does the following:

– Sample a random vector −→w from the distribution W. Without loss of gener-
ality, let’s assume that the L2-norm of −→w is 1.

– For each i ∈ [n], do the following:
• Compute (−→w i,

−→v i)← Share(1λ,−→w , n, 2).
• Compute (eski, epki)← AHE.Setup(1λ).
• Let −→w i = (wi,1, . . . ,wi,`). ∀j ∈ [`], compute Jwi,jK = AHE.Enc(epki,wi,j).
• Give (−→w i, ski, pki, {Jwi,jK}j∈[`]) to party Pi and (−→v i, pki, {Jwi,jK}j∈[`]) to

all the other parties.

SignOn Phase: In the SignOn phase, let’s consider party Pi that uses an in-
put vector −→u = (u1, . . . , u`) and a message msg on which it wants a token. Pi
picks two other parties Pj and Pk and interacts with them in the below protocol.

Round 1: (Pi →) 11 Party Pi does the following:

1. Let S = (Pj ,Pk) with j < k.
2. For each j ∈ [`], compute the following:

– JujK = AHE.Enc(epki, uj ; r1,j). π1,j ← Prove(st1,j ,wit1,j) for st1,j =
(JujK, epki) ∈ L1 using wit1,j = (uj , r1,j).

11The arrowhead denotes that in this round messages are outgoing from party Pi.

24

– Ju2jK = AHE.ConstMul(epki, JujK, uj ; r2,j). π2,j ← Prove(st2,j ,wit2,j) for

st2,j = (JujK, JujK, Ju2jK, epki) ∈ L2 using wit2,j = (uj , r1,j , r2,j).
– Jwi,j · ujK = AHE.ConstMul(epki, Jwi,jK, uj ; r3,j). π3,j ← Prove(st3,j ,wit3,j)

for st3,j = (Jwi,jK, JujK, Jwi,j · ujK, epki) ∈ L2 using wit3,j = (uj , r1,j , r3,j).

3. To both parties in S, send msg1 = (S,msg, {JujK, Ju2jK, Jwi,j · ujK, π1,j , π2,j , π3,j}j∈[`]).

Round 2: (→ Pi) Both parties Pj and Pk do the following:

1. Abort if any of the proofs {π1,j , π2,j , π3,j}j∈[`] don’t verify.
2. Generate randomness (a, b, e, f, p, q, rz)← PRF(ki,msg1).
3. Using the algorithms of AHE, compute Jx1K, Jx2K, Jy1K, Jy2K, Jz1K, Jz2K as fol-

lows:
– x1 = 〈−→u ,−→w i〉, y1 = 〈−→u ,−→u 〉, z1 = (〈−→u ,−→v i〉+ rz).
– x2 = (a · x1 + b), y2 = (e · y1 + f), z2 = (p · z1 + q)

4. Send (Jx2K, Jy2K, Jz1K, Jz2K) to Pi.

Round 3: (Pi →) Party Pi does the following:

1. Abort if the tuples sent by both Pj and Pk in round 2 were not the same.
2. Compute x1 = 〈−→u ,−→w i〉, x2 = AHE.Dec(eski, Jx2K).
3. Compute y1 = 〈−→u ,−→u 〉, y2 = AHE.Dec(eski, Jy2K).
4. Compute z1 = AHE.Dec(eski, Jz1K), z2 = AHE.Dec(eski, Jz2K).
5. Generate and send msg3 = {otrecs,t ← OT.Round1(crsi, st)}s∈{x,y,z},t∈{1,2}.

Round 4: (Pj → Pi) Party Pj does the following:

1. Compute C̃ = Garble(C) for the circuit C described in Figure 6.
2. For each s ∈ {x, y, z}, t ∈ {0, 1}, let lab0s,t, lab

1
s,t denote the labels of the gar-

bled circuit C̃ corresponding to input wires st. Generate otsens,t = OT.Round2(crsi,

lab0s,t, lab
1
s,t, ot

rec
s,t). Let otsen = {otsens,t }s∈{x,y,z},t∈{1,2}

3. Compute pad = PRF(ki,msg3). Set ctj = SKE.Enc(pad,TS.Sign(skTSj ,msg)).

4. Send (C̃, otsen, ctj) to Pi.

Round 4: (Pk → Pi) Party Pk does the following:

1. Compute (C̃, otsen, pad) exactly as done by Pj .
2. Set ctk = SKE.Enc(pad,TS.Sign(skTSk ,msg)).

3. Send (RO(C̃, otsen), ctk) to Pi.

Output Computation: Parties Pj ,Pk output (msg,Pi, S). Party Pi does:

1. Let (C̃, otsen, ctj) be the message received from Pj and (msg4, ctk) be the

message received from Pk. Abort if RO(C̃, otsen) 6= msg4.
2. For each s ∈ {x, y, z}, t ∈ {0, 1}, compute labs,t = OT.Output(otsens,t , ot

rec
s,t , r

ot
s,t).

Let lab = {labs,t}s∈{x,y,z},t∈{0,1}. Compute pad = Eval(C̃, lab).

3. Compute Tokenj = SKE.Dec(pad, ctj),Tokenk = SKE.Dec(pad, ctk), Tokeni
= TS.Sign(skTSi , msg), Token← TS.Combine({Tokens}s∈{i,j,k}).

25

Inputs: (x1, x2, y1, y2, z1, z2). Hardwired values: (a, b, e, f, p, q, rz, pad, d2).
Computation:

– Abort if x2 6= (a · x1 + b) (or) y2 6= (e · y1 + f) (or) z2 6= (p · z1 + q)
– Compute IP = (z1 − rz) + x1
– If IP2 ≥ (d2 · y1), output pad. Else, output ⊥.

Fig. 6: Circuit C to be garbled.

4. Output {Tokens}s∈{i,j,k} if TS.Verify(vkTS,msg,Token). Else, output ⊥.

Token Verification: Given a verification key vkTS, message msg and token
(Tokeni, Tokenj , Tokenk), the token verification algorithm does the following:

1. Compute Token← TS.Combine({Tokens}s∈{i,j,k}).
2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.

References

1. About Face ID advanced technology. https://support.apple.com/en-us/HT208108,
accessed on March 2, 20212

2. Advantages and disadvantages of biometrics. https://
www.ukessays.com/dissertation/examples/information-systems/
advantages-and-disadvantages-of-biometrics.php?vref=1., accessed on March 2,
20212

3. FIDO Alliance. https://fidoalliance.org/, accessed on March 2, 20212
4. Google Pixel Fingerprint. https://support.google.com/pixelphone/answer/6285273?

hl=en, accessed on March 2, 20212
5. iOS Security — iOS 12. https://www.apple.com/business/site/docs/iOS Security

Guide.pdf, page-8, Accessed on March 2, 20212
6. List of data breaches. https://en.wikipedia.org/wiki/List of data breaches, accessed

on March 2, 20212
7. NISTIR Draft on Ongoing Face Recognition Vendor Test Part 1: Verifica-

tion. https://pages.nist.gov/frvt/reports/11/frvt report 2020 01 21.pdf, accessed on
March 2, 20216

8. Privacy Rights Clearinghouse – Data Breaches. https://www.privacyrights.org/
data-breaches, accessed on March 2, 20212

9. Samsung Galaxy: Iris Scans for Security. https://www.samsung.com/global/galaxy/
galaxy-s8/security/, accessed on March 2, 20212

10. Web Authentication: W3 Standard. https://www.w3.org/TR/2018/
CR-webauthn-20180320/, accessed on March 2, 20212

11. White-Box Competition. https://whibox-contest.github.io/, accessed on March 2,
20212

12. Agrawal, S., Badrinarayanan, S., Mohassel, P., Mukherjee, P., Patranabis, S.:
BETA: biometric enabled threshold authentication. IACR Cryptol. ePrint Arch.
2020, 679 (2020) 9, 12, 17, 18, 20, 23

26

https://support.apple.com/en-us/HT208108
https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://fidoalliance.org/
https://support.google.com/pixelphone/answer/6285273?hl=en
https://support.google.com/pixelphone/answer/6285273?hl=en
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://en.wikipedia.org/wiki/List_of_data_breaches
https://pages.nist.gov/frvt/reports/11/frvt_report_2020_01_21.pdf
https://www.privacyrights.org/data-breaches
https://www.privacyrights.org/data-breaches
https://www.samsung.com/global/galaxy/galaxy-s8/security/
https://www.samsung.com/global/galaxy/galaxy-s8/security/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://whibox-contest.github.io/

13. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001) 3

14. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: Secure computa-
tion without coordination. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580–608. Springer, Heidelberg (Apr / May 2017) 6

15. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg
(Apr / May 2018) 5, 7, 18

16. Blazy, O., Chevalier, C., Vergnaud, D.: Mitigating server breaches in password-
based authentication: Secure and efficient solutions. In: CT-RSA (2016) 7

17. Blundo, C., De Cristofaro, E., Gasti, P.: Espresso: Efficient privacy-preserving eval-
uation of sample set similarity. In: Di Pietro, R., Herranz, J., Damiani, E., State, R.
(eds.) Data Privacy Management and Autonomous Spontaneous Security (2013) 7

18. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003) 13, 18, 23

19. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017. pp. 1175–1191. ACM Press (Oct / Nov 2017) 7

20. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: CRYPTO (2018) 18, 20, 23

21. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P. (eds.) ACM CCS 2004. pp. 82–91. ACM Press (Oct 2004) 3

22. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (Apr 2015) 6

23. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018. vol. 94, pp. 21:1–21:21. LIPIcs
(Jan 2018) 6

24. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (Aug 2016) 7

25. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE com-
putation from oblivious transfer. In: Adams, A.A., Brenner, M., Smith, M. (eds.)
FC 2013 Workshops. pp. 164–176. LNCS, Springer, Heidelberg (Apr 2013) 7

26. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)
4, 15

27. Canetti, R.: Universally Composable Signature, Certification, and Authentication.
In: CSFW (2004) 15

28. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: CRYPTO (2015) 15

29. Chan, T.H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault
tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (Feb / Mar 2012) 7

30. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–299. Springer, Heidelberg (May 2001) 5, 12, 23

27

31. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (Feb 2001) 5, 12, 23

32. Dinh, T., Steinfeld, R., Bhattacharjee, N.: A lattice-based approach to privacy-
preserving biometric authentication without relying on trusted third parties. In:
ISPEC (2017) 7

33. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: EUROCRYPT (2004) 3

34. Dupont, P.A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 393–424. Springer, Heidelberg
(Apr / May 2018) 3, 6

35. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984) 12

36. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th ACM STOC. pp. 554–563. ACM Press (May 1994) 6

37. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013) 3

38. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Heidelberg (Apr / May 2018) 5, 7, 18

39. Grassi, P.A., Fenton, J., Newton, E., Perlner, R., Regenscheid, A., Burr, W.,
Richer, J., Lefkovitz, N., Danker, J., Choong, Y., Greene, K., Theofanos, M.: Nist
special publication 800-63b: Digital identity guidelines: Authentication and lifecy-
cle management (June 2017), https://pages.nist.gov/800-63-3/sp800-63b.html 2

40. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology 25(1), 158–193 (Jan 2012) 23

41. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ISTCS ’97. Washington, DC, USA (1997) 6

42. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of
time-series data. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (Apr 2013) 7

43. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere
embedding for face recognition. In: CVPR (2017) 5

44. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015. pp. 591–602. ACM Press (Oct 2015) 6, 11, 13

45. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: EUROCRYPT (2016) 5, 7

46. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg (May 2016) 18

47. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA. pp. 448–457. ACM-SIAM (Jan 2001) 23

48. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999) 12, 23

49. Peikert, C., Shiehian, S.: Multi-key FHE from lwe, revisited. In: TCC (2016) 5

28

https://pages.nist.gov/800-63-3/sp800-63b.html

50. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidel-
berg (Oct / Nov 2016) 7, 18

51. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: CRYPTO (2019) 20

52. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (Aug 2008) 23

53. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT (2005)
6

54. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: CVPR (2015) 5

55. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (May 2000) 18, 23

56. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface:
Large margin cosine loss for deep face recognition. In: CVPR (2018) 5

57. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986) 11

29

	BETA: Biometric-Enabled Threshold Authentication

